REORDERINGS FOR FILL-REDUCTION

e Permutations and reorderings - graph interpretations

e Band-reduction orderings: Cuthill-Mc Kee, Reverse Cuthill Mc Kee
e Profile/envelope methods. Profile reduction.

e Multicoloring and independent sets [for iterative methods]

e Minimal degree ordering

e Nested Dissection

Reorderings and graphs

» Letw = {1, ,%,} a permutation

» Ap. = {aﬂ(i),j}i P matrix A with its 2-th row replaced
by row number 7 (%).

» A, . = matrix A with its j-th column replaced by column 7 (j).

» Define P; = I, = "Permutation matrix" — Then:

(1) Each row (column) of Py consists of zeros and exactly one “1"
(2) A,T, = P;A

B) PP, =1

(4) A*,,r = APT
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Consider now:

A=A, .= P, APT

» Element in position (2,7) in matrix A’ is exactly element in
position (7 (%), 7 (7)) in A. (agj = Qr(i),n(j))

(t,J) € BEa <= (7(i),7(j)) € Ea

General picture :

i J ‘New labels’
@ @ '0ld labels’
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A 9 X 9 'arrow’ matrix and its adjacency graph.
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Fill-in?
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» Graph and matrix after swapping nodes 1 and 9:

C)

Fill-in?
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The Cuthill-McKee and its reverse orderings

» A class of reordering techniques which proceed by levels in the
graph.
» Related to Breadth First Search (BFS) traversal in graph theory.

» ldea of BFS is to visit the nodes by ‘levels’. Level 0 = level of
starting node.

»  Start with a node, visit its neighbors, then the (unmarked)
neighbors of its neighbors, etc...
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» Final traversal order:
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Level Oi
w
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» Levels represent distances from the root
» Algorithm can be implemented by crossing levels 1,2, ...

» More common: Queue implementation

Algorithm BF S (G, v) — Queue implementation

e Initialize: Queue := {v}; Mark v; ptr = 1,
e While ptr < length(Queue) do
—head = Queue(ptr);
— ForEach Unmarked w € Adj(head):
* Mark w;
* Add w to Queue: Queue = {Queue, w};
—ptr + +;
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function [p] = bfs(A,init )
%% BFS traversal. queue implementation
hth=—mmmmmmmmmmmm enqueue first node
p=[init];
n = size(A,1);
mask = zeros(n,1);
ngask(init) =1;

hfp———————————————————— main loop
for h=1:n
hoth—————m—mmmmmmmmm scan nodes in adj(p(h))
[ii, jj, rr] = find(A(C:,p(h)));
for v=1i’
if (mask(v)==0)
p = [p, vl ;
mask(v) = 1;
end
end
end
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A few properties of Breadth-First-Search

» |If G is a connected undirected graph then each vertex will be
visited once; each edge will be inspected at least once

» Therefore, for a connected undirected graph,

The cost of BFS is O(|V'| + |E|)

» Distance = level number; » For each node v we have:

min dist(s,v) = level number(v) = depthr(v)

» Several reordering algorithms are based on variants of Breadth-
First-Search
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Cuthill McKee ordering

Same as BFS except: Adj(head) always sorted by increasing
degree

Rule:
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A C(3) B(4)

A, C B, F(2)

A C B F, D(3), E(4)
A C B F D, E

A C B F D E, G(2)

A C,B F,D,E |G

A C,B F D EG

when adding nodes to the queue list them in 1 deg.
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Reverse Cuthill McKee ordering

» The Cuthill - Mc Kee ordering has a tendency to create small
arrow matrices (going the wrong way):

Origimal matrix CM ordering
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» |dea: Take the reverse ordering

0.

RCM ordering

10(*

200 ** *

301

40t

50

60

701

20 30 40 50 60 70
nz =377

» Reverse Cuthill M Kee ordering (RCM).
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Envelope/Profile methods

Many terms used for the same methods: Profile, Envelope, Skyline,

»  Generalizes band methods
» Consider only the symmetric (in fact SPD) case
» Define bandwith of row #. (“i-th bandwidth of A):

Bi(A) = max;<i.a, 20|t —
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Definition: Envelope of A is the set of all pairs (2, 5) such that
0 <t—73 < Bi(A). The quantity |[Env(A)| is called profile

of A.

Main result

Theorem: Let A = LLT the Cholesky factorization of A. Then

» An envelope / profile/ Skyline method is a method which treats
any entry a;;, with (¢,j) € Enwv(A) as nonzero.

7-15

The envelope is preserved by GE (no-pivoting)

Env(A) = Env(L + L7)
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Matlab test: do the following

1. Generate A = Lap2D(64,64)

2. Compute R = chol(A)

3. show nnz(R)

4. Compute RCM permutation (symrcm)

5. Compute B = A(p,p)

6. spy(B)

7. compute R1 = chol(B)

8. Show nnz(R)

9. spy(R1)
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(18) (©) (19) 1) 20)
Orderings for parallelism: Multicoloring
» General technique that can be exploited in many different ways
to introduce parallelism — generally of order IN. ® 0 @ ) 0
- N N - N
» Constitutes one of the most successful techniques for introducing
vector computations for iterative methods..
» Want: assign colors so that no two adjacent nodes have the same (13) (4) (14) 5) (s
color.
Simple example: | Red-Black ordering.
W ay 2) 12) ©)
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Corresponding matriz How to generalize Red-Black ordering?

" . i m Answer: | Multicoloring | & | independent sets
. ] ] - L] . [ ; . .
. L L A greedy multicoloring technique:
u H EE ©H
" . “u : -:: e Initially assign color number zero (uncolored) to every node.
= " e Choose an order in which to traverse the nodes.
.l_::.l_ .l_ e Scan all nodes in the chosen order and at every node %z do
H EE B |
moue " Color(i) = min{k # 0|k # Color(j),V 7 € Adj (i)}
H EHN |
H B ]

» Observe: L-U solves with lower and upper parts of A will require Adj(i) = set of nearest neighbors of i = {k | @i 7 0}.

only diagonal scalings + matrix-vector products with matrices of size

N/2.
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Independent Sets

An independent set (IS) is a set of nodes that are not coupled by
an equation. The set is maximal if all other nodes in the graph are
coupled to a node of IS. If the unknowns of the IS are labeled first,
then the matrix will have the form:

= a

in which B is a diagonal matrix, and E, F', and C' are sparse.

Greedy algorithm:  Scan all nodes in a certain order and at every
node ¢ do: if ¢ is not colored color it Red and color all its neighbors
Black. Independent set: set of red nodes. Complexity: O(|E| +
V).

0
7-21 Text: sec. 3.3 — coloring 7-22 Text: sec. 3.3 — coloring
7 Show that the size of the independent set I is such that
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n

1|
14 d;

where dj is the maximum degree of each vertex in I (not counting
self cycle).

According to the above inequality what is a good (heuristic)
order in which to traverse the vertices in the greedy algorithm?

Are there situations when the greedy alorithm for independent
sets yield the same sets as the multicoloring algorithm?
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Orderings used in direct solution methods

»  Two broad types of orderings used:

e Minimal degree ordering + many variations

o Nested dissection ordering + many variations
»  Minimal degree ordering is easiest to describe:

At each step of GE, select next node to eliminate, as the node v
of smallest degree. After eliminating node v, update degrees and
repeat.
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Minimal Degree Ordering

At any step ¢ of Gaussian elimination define for any candidate pivot
row j

Cost(j) = (nzc(j) — 1)(nz(3) — 1)

where nz.(j) = number of nonzero elements in column j of ‘active’
matrix, n2,(J) = number of nonzero elements in row j of ‘active’
matrix.

» Heuristic: fill-in at step j is < cost(7)

Strategy: [select pivot with minimal cost.|

>
» Local, greedy algorithm
>

Good results in practice.
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Many tmprovements made over the years

e Alan George and Joseph W-H Liu, THE EVOLUTION OF THE
MINIMUM DEGREE ORDERING ALGORITHM, SIAM Review, vol
31 (1989), pp. 1-19.

Min. Deg. Algorithm Storage| Order.
(words)|  time
Final min. degree 1,181 K| 43.90
Above w/o multiple elimn. 1,375 K| 57.38
Above w/o elimn. absorption 1,375 K| 56.00
Above w/o incompl. deg. update 1,375 K| 83.26
Above w/o indistiguishible nodes /1,308 K| 183.26
Above w/o mass-elimination 1,308 K |2289.44

» Results for a 180 X 180 9-point mesh problem
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» Since this article, many important developments took place.

» In particular the idea of “Approximate Min. Degree” and and
“Approximate Min. Fill", see

e E. Rothberg and S. C. Eisenstat, NODE SELECTION STRATE-
GIES FOR BOTTOM-UP SPARSE MATRIX ORDERING, SIMAX,
vol. 19 (1998), pp. 682-695.

e Patrick R. Amestoy, Timothy A. Davis, and lain S. Duff. AN
APPROXIMATE MINIMUM DEGREE ORDERING ALGORITHM.
SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp.
886-905.
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Practical Minimal degree algorithms

First Idea: | Use quotient graphs

* Avoids elimination graphs which are not economical
* Elimination creates cliques

* Represent each clique by a node termed an element (recall FEM
methods)

* No need to create fill-edges and elimination graph

* Still expensive: updating the degrees
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Second idea: | Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of
them simultaneously —

* Specifically eliminate independent sets of nodes with same degree.

Third idea: | Approximate Minimum degree

* Degree updates are expensive —
* Goal: To save time.

* Approach: only compute an approximation (upper bound) to de-
grees.

* Details are complex and can be found in Tim Davis’ book

Explore symamd and amd in matlab
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Nested Dissection Reordering (Alan George)

»  Computer science ‘Divide-and-Conquer’ strategy.
» Best illustration: PDE finite difference grid.

» Easily described by using recursivity and by exploiting ‘separators’:
‘separate’ the graph in three parts, two of which have no coupling
between them. The 3rd set ('the separator’) has couplings with
vertices from both of the first 2 sets.

» Key idea: dissect the graph; take the subgraphs and dissect them
recursively.

» Nodes of separators always labeled last after those of the parents
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Nested dissection ordering: illustration
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» For regular n X 1 meshes, can show: fill-in is of order n2log n
and computational cost of factorization is O (n?)

How does this compare with a standard band solver?
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Nested dissection for a small mesh

First dissection
Original Grid

,,,,,,

Second Dissection Third Dissection

**************

,,,,,,,,,,,,,,,,
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Nested dissection: cost for a regular mesh

» In 2-D consider an nn X m problem, N = n?

» In 3-D consider an n X . X n problem, N = n3

2-D 3-D

space (fill) O(Nlog N) | O(N*/3)
time (flops) O(NN3/%) O(N?)

» Significant difference in complexity between 2-D and 3-D
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Nested dissection and separators

» Nested dissection methods depend on finding a good graph
separator: V' = T7UUT>U S such that the removal of S leaves
T and 15 disconnected.

» Want: S small and T3 and T5 of about the same size.

» Simplest version of the graph partitioning problem.

A theoretical result:
If G is a planar graph with IN vertices, then there is a separator S
of size < v/ N such that |T1| < 2NN/3 and |T3| < 2IN/3.

In other words “Planar graphs have O(+/IN') separators”

» Many techniques for finding separators: Spectral, iterative swap-
ping (K-L), multilevel (Metis), BFS, ...
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