REORDERINGS FOR FILL-REDUCTION

- Permutations and reorderings - graph interpretations

- Band-reduction orderings: Cuthill-Mc Kee, Reverse Cuthill Mc Kee
- Profile/envelope methods. Profile reduction.
- Multicoloring and independent sets [for iterative methods]
- Minimal degree ordering
- Nested Dissection

Reorderings and graphs

$>$ Let $\pi=\left\{i_{1}, \cdots, i_{n}\right\}$ a permutation
$>\boldsymbol{A}_{\pi, *}=\left\{\boldsymbol{a}_{\pi(i), j}\right\}_{i, j=1, \ldots, n}=$ matrix \boldsymbol{A} with its \boldsymbol{i}-th row replaced by row number $\pi(i)$.
$>\boldsymbol{A}_{*, \pi}=$ matrix \boldsymbol{A} with its j-th column replaced by column $\pi(j)$.
$>$ Define $P_{\pi}=I_{\pi, *}=$ "Permutation matrix" - Then:
(1) Each row (column) of $\boldsymbol{P}_{\boldsymbol{\pi}}$ consists of zeros and exactly one "1"
(2) $\boldsymbol{A}_{\pi, *}=\boldsymbol{P}_{\pi} \boldsymbol{A}$
(3) $\boldsymbol{P}_{\boldsymbol{\pi}} \boldsymbol{P}_{\pi}^{\boldsymbol{T}}=\boldsymbol{I}$
(4) $A_{*, \pi}=A P_{\pi}^{T}$

Consider now:

$$
A^{\prime}=A_{\pi, \pi}=P_{\pi} A P_{\pi}^{T}
$$

$>$ Element in position (i, j) in matrix \boldsymbol{A}^{\prime} is exactly element in position $(\pi(i), \pi(j))$ in $A .\left(a_{i j}^{\prime}=a_{\pi(i), \pi(j)}\right)$

$$
(i, j) \in E_{A^{\prime}} \quad \Longleftrightarrow \quad(\pi(i), \pi(j)) \in E_{A}
$$

General picture

$$
\begin{array}{lll}
\boldsymbol{i}< & \longrightarrow \boldsymbol{j} & \text { 'New labels } \\
\pi(i)< & \pi(j) & \text { 'Old labels' }
\end{array}
$$

Example: A 9×9 'arrow' matrix and its adjacency graph.

Fill-in?
$7-4$ \qquad

- Graph and matrix after swapping nodes 1 and 9:

Fill-in?

The Cuthill-McKee and its reverse orderings

- A class of reordering techniques which proceed by levels in the graph.
> Related to Breadth First Search (BFS) traversal in graph theory.
$>$ Idea of BFS is to visit the nodes by 'levels'. Level $0=$ level of starting node.
$>$ Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc..
\qquad

h Queue
A A* B, C
B A, B* C, D, I
C $A, B, C^{*} D, I, E$
D A, B, C , D* I, E, G
I A, B, C, D , I* E, G, J, K
E A, B, C , D , I, E* G, J, K, F, H
G ...
E A, B, C, D , I, E, G, J, K, F, H*

> Levels represent distances from the root
> Algorithm can be implemented by crossing levels $1,2, \ldots$
> More common: Queue implementation

```
Algorithm \(\operatorname{BFS}(\boldsymbol{G}, \boldsymbol{v})\) - Queue implementation
    - Initialize: Queue \(:=\{v\}\); Mark \(v ; p t r=1\);
    - While ptr < length(Queue) do
    - head = Queue(ptr);
    - ForEach Unmarked \(\boldsymbol{w} \in \operatorname{Adj}(\) head):
    * Mark w;
    * Add \(\boldsymbol{w}\) to Queue: Queue \(=\{\) Queue, w \(\}\);
    \(-\boldsymbol{p t r}++\);
```

function [p] = bfs(A,init)
$\% \%$ BFS traversal. queue implementation
\%\%-------------------- enqueue first node
$\mathrm{p}=$ [init];
$\mathrm{n}=\operatorname{size}(\mathrm{A}, 1)$;
mask $=\operatorname{zeros}(\mathrm{n}, 1)$;
mask(init) = 1;
\%\%--------------------- main loop
for $h=1: n$
$\% \%$--------------------- scan nodes in $\operatorname{adj}(p(h))$
[ii, jj, rr] = find $(A(:, p(h)))$;
for $\mathrm{v}=\mathrm{ii}$ '
if (mask (v)==0)
$\mathrm{p}=[\mathrm{p}, \mathrm{v}]$;
mask(v) = 1; end
end
end
\qquad

A few properties of Breadth-First-Search

> If G is a connected undirected graph then each vertex will be visited once; each edge will be inspected at least once
> Therefore, for a connected undirected graph,

$$
\text { The cost of BFS is } \boldsymbol{O}(|\boldsymbol{V}|+|\boldsymbol{E}|)
$$

$>$ Distance $=$ level number; $>$ For each node \boldsymbol{v} we have:

$$
\min _{-} \operatorname{dist}(s, v)=\operatorname{level_ number}(v)=\operatorname{depth}_{T}(v)
$$

$>$ Several reordering algorithms are based on variants of Breadth-First-Search
\qquad
\qquad

Cuthill McKee ordering

Same as BFS except: Adj(head) always sorted by increasing degree

Example:

A
A, C
A, C, B
A, C, B, F
A, C, B, F, D
$C(3) B(4)$
B, F(2)
$F, D(3), E(4)$
D, E
A
A, C, B, F, D, E, G

Rule: when adding nodes to the queue list them in \uparrow deg.
\qquad Text: sec. 3.3 - orderings

Reverse Cuthill McKee ordering

$>$ The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):

> Idea: Take the reverse ordering
RCM ordering

$>$ Reverse Cuthill M Kee ordering (RCM).
\qquad

Envelope/Profile methods

Many terms used for the same methods: Profile, Envelope, Skyline,
> Generalizes band methods
> Consider only the symmetric (in fact SPD) case
$>$ Define bandwith of row \boldsymbol{i}. (" i -th bandwidth of \boldsymbol{A}):

$$
\boldsymbol{\beta}_{i}(A)=\max _{j \leq i ; a_{i j} \neq 0}|i-j|
$$

Definition: Envelope of \boldsymbol{A} is the set of all pairs $(\boldsymbol{i}, \boldsymbol{j})$ such that $0<i-j \leq \boldsymbol{\beta}_{i}(\boldsymbol{A})$. The quantity $|\operatorname{Env}(\boldsymbol{A})|$ is called profile of \boldsymbol{A}.

Main result The envelope is preserved by GE (no-pivoting)

Theorem: Let $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}$ the Cholesky factorization of \boldsymbol{A}. Then

$$
\operatorname{Env}(A)=\operatorname{Env}\left(L+L^{T}\right)
$$

> An envelope / profile/ Skyline method is a method which treats any entry $a_{i j}$, with $(i, j) \in \operatorname{Env}(\boldsymbol{A})$ as nonzero.
\qquad

Matlab test: do the following

1. Generate A $=\operatorname{Lap} 2 D(64,64)$
2. Compute $\mathrm{R}=\mathrm{chol}(\mathrm{A})$
3. show nnz(R)
4. Compute RCM permutation (symrcm)
5. Compute $B=A(p, p)$
6. spy (B)
7. compute R1 = chol(B)
8. Show nnz (R)
9. $\operatorname{spy}(\mathrm{R} 1)$

Orderings for parallelism: Multicoloring

> General technique that can be exploited in many different ways to introduce parallelism - generally of order N.
> Constitutes one of the most successful techniques for introducing vector computations for iterative methods..

- Want: assign colors so that no two adjacent nodes have the same color.

Simple example: Red-Black ordering.

Corresponding matrix

> Observe: L-U solves with lower and upper parts of \boldsymbol{A} will require only diagonal scalings + matrix-vector products with matrices of size $N / 2$.
\qquad

How to generalize Red-Black ordering?

Answer: Multicoloring \& independent sets

A greedy multicoloring technique.

- Initially assign color number zero (uncolored) to every node.
- Choose an order in which to traverse the nodes.
- Scan all nodes in the chosen order and at every node i do
$\operatorname{Color}(i)=\min \{k \neq 0 \mid k \neq \operatorname{Color}(j), \forall j \in \operatorname{Adj}(i)\}$
$\operatorname{Adj}(\mathrm{i})=$ set of nearest neighbors of $i=\left\{k \mid a_{i k} \neq 0\right\}$.
\qquad

Independent Sets

An independent set (IS) is a set of nodes that are not coupled by an equation. The set is maximal if all other nodes in the graph are coupled to a node of IS. If the unknowns of the IS are labeled first, then the matrix will have the form:

$$
\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{F} \\
\boldsymbol{E} & \boldsymbol{C}
\end{array}\right]
$$

in which \boldsymbol{B} is a diagonal matrix, and $\boldsymbol{E}, \boldsymbol{F}$, and \boldsymbol{C} are sparse.
Greedy algorithm: Scan all nodes in a certain order and at every node i do: if i is not colored color it Red and color all its neighbors Black. Independent set: set of red nodes. Complexity: $\boldsymbol{O}(|\boldsymbol{E}|+$ $|\boldsymbol{V}|$).

$$
|I| \geq \frac{n}{1+d_{I}}
$$

where $\boldsymbol{d}_{\boldsymbol{I}}$ is the maximum degree of each vertex in \boldsymbol{I} (not counting self cycle).
$\square_{4} 4$ According to the above inequality what is a good (heuristic) order in which to traverse the vertices in the greedy algorithm?
Δ_{5} Are there situations when the greedy alorithm for independent sets yield the same sets as the multicoloring algorithm?

Orderings used in direct solution methods

> Two broad types of orderings used:

- Minimal degree ordering + many variations
- Nested dissection ordering + many variations
> Minimal degree ordering is easiest to describe:
At each step of GE, select next node to eliminate, as the node \boldsymbol{v} of smallest degree. After eliminating node \boldsymbol{v}, update degrees and repeat.

Many improvements made over the years

- Alan George and Joseph W-H Liu, The evolution of the minimum degree ordering algorithm, SIAM Review, vol 31 (1989), pp. 1-19.

Min. Deg. Algorithm	Storage (words)	Order. time
Final min. degree	$1,181 \mathrm{~K}$	43.90
Above w/o multiple elimn.	$1,375 \mathrm{~K}$	57.38
Above w/o elimn. absorption	$1,375 \mathrm{~K}$	56.00
Above w/o incompl. deg. update	$1,375 \mathrm{~K}$	83.26
Above w/o indistiguishible nodes	$1,308 \mathrm{~K}$	183.26
Above w/o mass-elimination	$1,308 \mathrm{~K}$	2289.44

[^0]
Minimal Degree Ordering

At any step i of Gaussian elimination define for any candidate pivot row j

$$
\operatorname{Cost}(j)=\left(n z_{c}(j)-1\right)\left(n z_{r}(j)-1\right)
$$

where $\boldsymbol{n} \boldsymbol{z}_{\boldsymbol{c}}(\boldsymbol{j})=$ number of nonzero elements in column \boldsymbol{j} of 'active' matrix, $\boldsymbol{n} \boldsymbol{z}_{\boldsymbol{r}}(\boldsymbol{j})=$ number of nonzero elements in row \boldsymbol{j} of 'active' matrix.
$>$ Heuristic: fill-in at step j is $\leq \operatorname{cost}(j)$
$>$ Strategy: select pivot with minimal cost.
$>$ Local, greedy algorithm
$>$ Good results in practice.
\qquad - order2
> Since this article, many important developments took place.
> In particular the idea of "Approximate Min. Degree" and and "Approximate Min. Fill", see

- E. Rothberg and S. C. Eisenstat, Node selection strategies for bottom-up sparse matrix ordering, SIMAX, vol. 19 (1998), pp. 682-695.
- Patrick R. Amestoy, Timothy A. Davis, and lain S. Duff. An Approximate Minimum Degree Ordering Algorithm. SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 886-905.

Practical Minimal degree algorithms

First Idea: Use quotient graphs

* Avoids elimination graphs which are not economical
* Elimination creates cliques
* Represent each clique by a node termed an element (recall FEM methods)
* No need to create fill-edges and elimination graph
* Still expensive: updating the degrees

Nested Dissection Reordering (Alan George)

> Computer science 'Divide-and-Conquer' strategy.
> Best illustration: PDE finite difference grid.

- Easily described by using recursivity and by exploiting 'separators': 'separate' the graph in three parts, two of which have no coupling between them. The 3rd set ('the separator') has couplings with vertices from both of the first 2 sets.
> Key idea: dissect the graph; take the subgraphs and dissect them recursively.
- Nodes of separators always labeled last after those of the parents

Second idea: Multiple Minimum degree

* Many nodes will have the same degree. Idea: eliminate many of them simultaneously -
* Specifically eliminate independent sets of nodes with same degree.

Third idea: Approximate Minimum degree

* Degree updates are expensive -
* Goal: To save time.
* Approach: only compute an approximation (upper bound) to degrees.
* Details are complex and can be found in Tim Davis' bookExplore symamd and amd in matlab

Nested dissection ordering: illustration

- For regular $n \times n$ meshes, can show: fill-in is of order $n^{2} \log n$ and computational cost of factorization is $O\left(n^{3}\right)$

How does this compare with a standard band solver?

$\xrightarrow{- \text { order2 }}$

Nested dissection for a small mesh

Original Grid

First dissection

Second Dissection

Third Dissection

Nested dissection: cost for a regular mesh

$>\ln 2$-D consider an $n \times n$ problem, $N=\boldsymbol{n}^{2}$
$>\ln 3$-D consider an $n \times n \times n$ problem, $N=n^{3}$

	$2-\mathrm{D}$	$3-\mathrm{D}$
space (fill)	$O(N \log N)$	$O\left(N^{4 / 3}\right)$
time (flops)	$O\left(N^{3 / 2}\right)$	$O\left(N^{2}\right)$

$>$ Significant difference in complexity between 2-D and 3-D

Nested dissection and separators

Nested dissection methods depend on finding a good graph separator: $V=T_{1} \cup U T_{2} \cup S$ such that the removal of S leaves T_{1} and T_{2} disconnected.

Whant: S small and T_{1} and T_{2} of about the same size.
$>$ Simplest version of the graph partitioning problem.

A theoretical result:

If G is a planar graph with N vertices, then there is a separator S of size $\leq \sqrt{N}$ such that $\left|T_{1}\right| \leq 2 N / 3$ and $\left|T_{2}\right| \leq 2 N / 3$.

In other words "Planar graphs have $O(\sqrt{N})$ separators"
> Many techniques for finding separators: Spectral, iterative swapping (K-L), multilevel (Metis), BFS, ...

[^0]: > Results for a 180×1809-point mesh problem

