SPARSE DIRECT METHODS

- Building blocks for sparse direct solvers
- SPD case. Sparse Column Cholesky/
- Elimination Trees Symbolic factorization

Direct Sparse Matrix Methods

Problem addressed: Linear systems

$$Ax = b$$

We will consider mostly Cholesky –

► We will consider some implementation details and tricks used to develop efficient solvers

Basic principles:

- Separate computation of structure from rest [symbolic factorization]
- Do as much work as possible statically
- Take advantage of clique formation (supernodes, mass-elimination).
 - Davis: Chap. 4 Direct

8-2

Sparse Column Cholesky

For
$$j = 1, \dots, n$$
 Do:
 $l(j:n,j) = a(j:n,j)$
For $k = 1, \dots, j - 1$ Do:
 $// \operatorname{cmod}(k,j)$:
 $l_{j:n,j} := l_{j:n,j} - l_{j,k} * l_{j:n,k}$
EndDo
 $// \operatorname{cdiv}(j)$ [Scale]
 $l_{j,j} = \sqrt{l_{j,j}}$
 $l_{j+1:n,j} := l_{j+1:n,j}/l_{jj}$
EndDo

Davis: Chap. 4 - Direct

The four essential stages of a solve

1. Reordering:
$$A \longrightarrow A := PAP^T$$

Preprocessing: uses graph [Min. deg, AMD, Nested Dissection]

2. Symbolic Factorization: Build static data structure.

Exploits 'elimination tree', uses graph only.

3. Numerical Factorization: Actual factorization $A = LL^T$

Pattern of L is known. Uses static data structure. Exploits supernodes (blas3)

4. Triangular solves: Solve Ly = b then $L^Tx = y$

Davis: Chap. 4 - Direct

ELIMINATION TREES

The notion of elimination tree

Elimination trees are useful in many different ways [theory, symbolic factorization, etc..]

 \blacktriangleright For a matrix whose graph is a tree, parent of column j < n is defined by

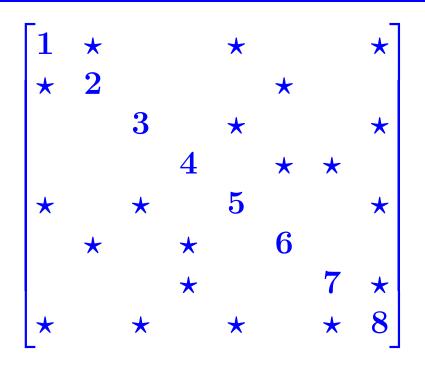
$$Parent(j) = i$$
, where $a_{ij}
eq 0$ and $i > j$

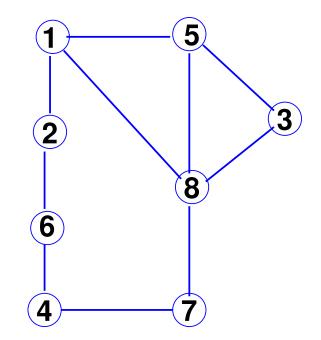
> For a general matrix matrix, consider $A = LL^T$, and $G^F =$ 'filled' graph = graph of $L + L^T$. Then

$$Parent(j) = \min(i) \; s.t. \; a_{ij}
eq 0$$
 and $i{>}j$

• Defines a tree rooted at column n (Elimintion tree).

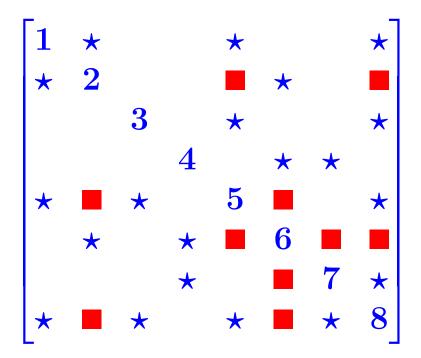
Example: Original matrix and Graph

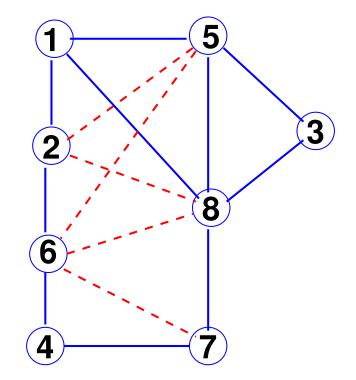


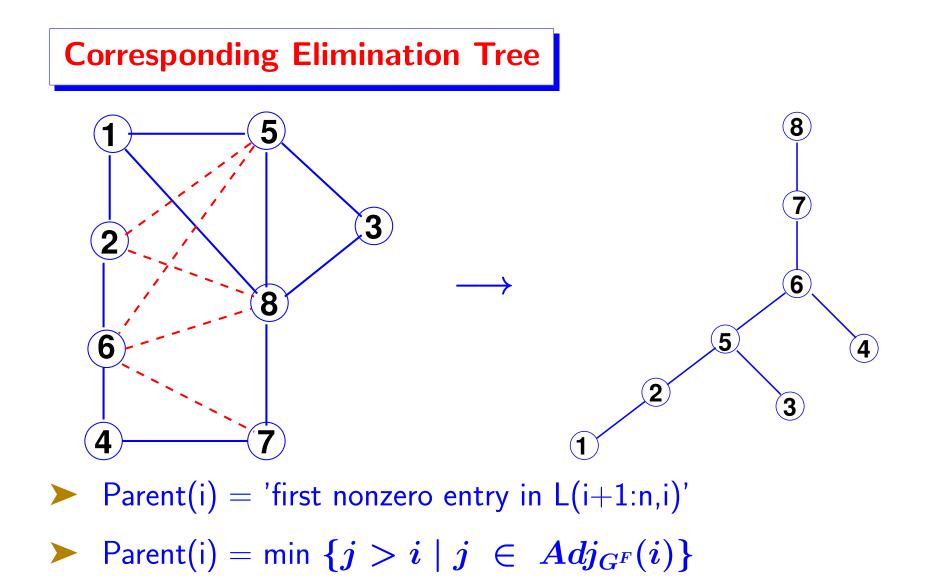


Davis: Chap. 4 - Direct

Filled matrix+graph



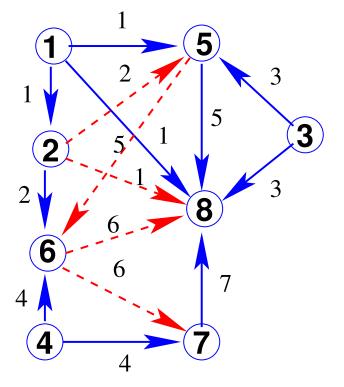




Where does the elimination tree come from?

Answer in the form of an excercise.

Consider the elimination steps for the previous example. A directed edge means a row (column) modification. It shows the task dependencies. There are unnecessary dependencies. For example: $1 \rightarrow 5$ can be removed because it is subsumed by the path $1 \rightarrow 2 \rightarrow 5$.



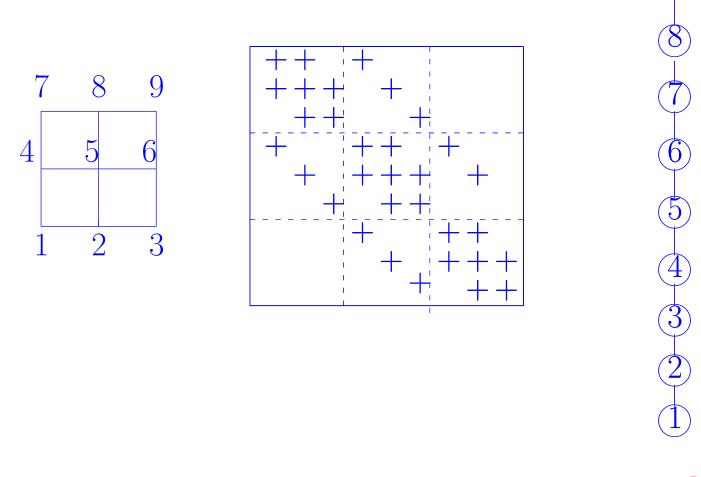
To do: Remove all the redundant dependencies.. What is the result?

Facts about elimination trees

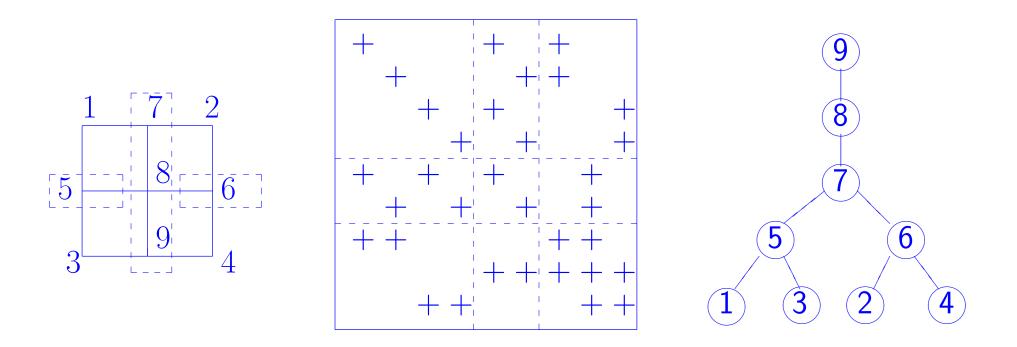
- Elimination Tree defines dependencies between columns.
- ► The root of a subtree cannot be used as pivot before any of its descendents is processed.
- Elimination tree depends on ordering;
- Can be used to define 'parallel' tasks.
- ▶ For parallelism: flat and wide trees \rightarrow good; thin and tall (e.g. of tridiagonal systems) \rightarrow Bad.
- ► For parallel executions, Nested Dissection gives better trees than Minimun Degree ordering.

Elim. tree depends on ordering (Not just the graph)

Example: 3×3 grid for 5-point stencil [natural ordering]



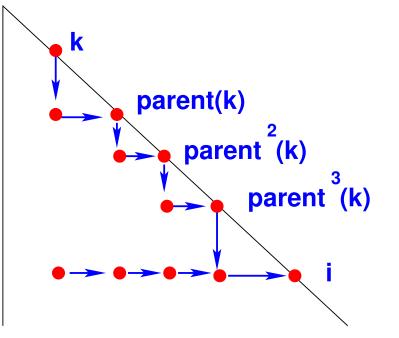
Same example with nested dissection ordering



Properties

The elimination tree is a spanning tree of the filled graph [a tree containing all vertices] - obtained by removing edges.

► If $l_{ik} \neq 0$ then *i* is an ancestor of *k* in the tree [▲1] In the previous example: follow the creation of the fill-in (6,8).



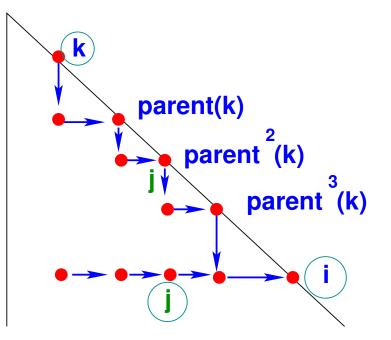
In particular: if $a_{ik}
eq 0, k < i$ then $i \rightsquigarrow k$

Consequence: no fill-in between branches of the same subtree

Elimination trees and the pattern of L

 \blacktriangleright It is easy to determine the sparsity pattern of L because the pattern of a given column is "inherited" by the ancestors in the tree.

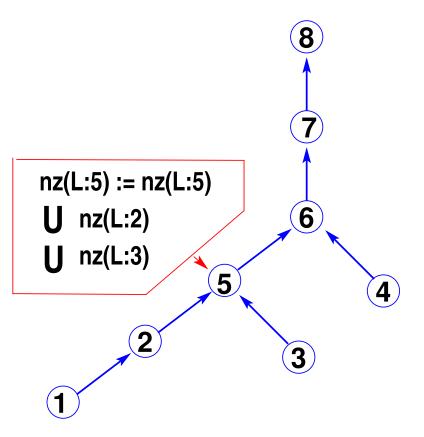
Theorem: For i > j, $l_{ij} \neq 0$ iff j is an ancestor of some $k \in Adj_A(i)$ in the elimination tree.



In other words:

 $l_{ij}
eq 0, i > j \hspace{0.2cm} ext{iff} \hspace{0.2cm} egin{array}{c} \exists k \hspace{0.2cm} \in \hspace{0.2cm} Adj_A(i)s.t. \ j \rightsquigarrow k \end{array}$

In theory: To construct the pattern of L, go up the tree and accumulate the patterns of the columns. Initially L has the same pattern as TRIL(A).



However: Let us assume tree is not available ahead of time

Solution: Parents can be obtained dynamically as the pattern is being built.

This is the basis of symbolic factorization.

Notation :

> nz(X) is the pattern of X (matrix or column, or row). A set of pairs (i, j)

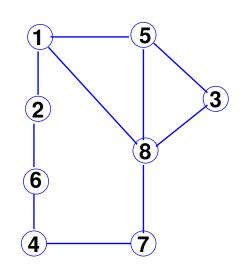
 $\blacktriangleright tril(X) = \text{Lower triangular part of pattern [matlab notation]} \\ \{(i,j) \in X \mid i > j\}$

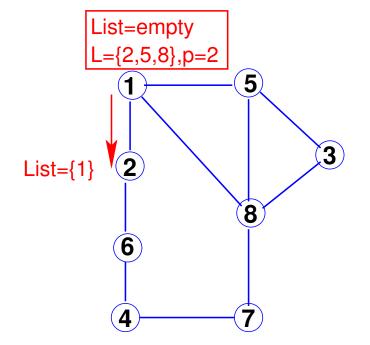
 \succ Idea: dynamically create the list of nodes needed to update $L_{:,j}$.

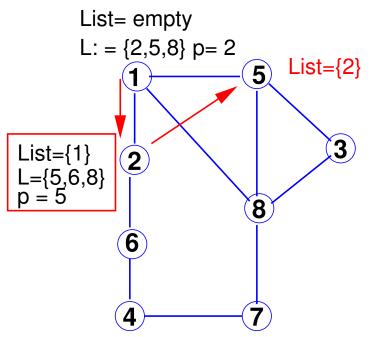
ALGORITHM : 1. Symbolic factorization

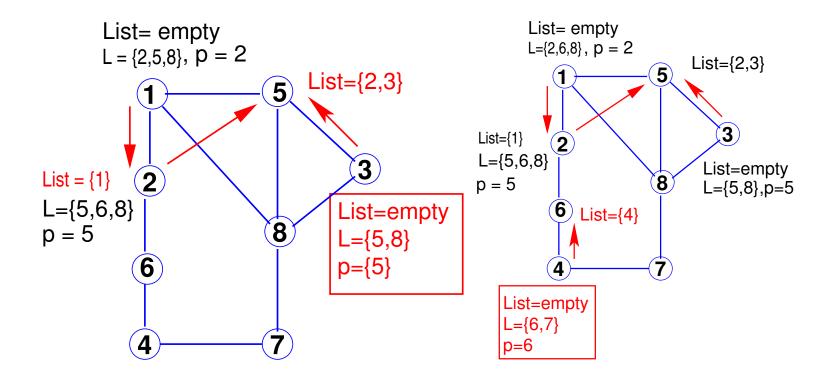
1. Set:
$$nz(L) = tril(nz(A))$$
,
2. Set: $list(j) = \emptyset, j = 1, \dots, n$
3. For $j = 1 : n$
4. for $k \in list(j)$ do
5. $nz(L_{:,j}) := nz(L_{:,j}) \cup nz(L_{:,k})$
6. end
7. $p = \min\{i > j \mid L_{i,j} \neq 0\}$
8. $list(p) := list(p) \cup \{j\}$
9. End

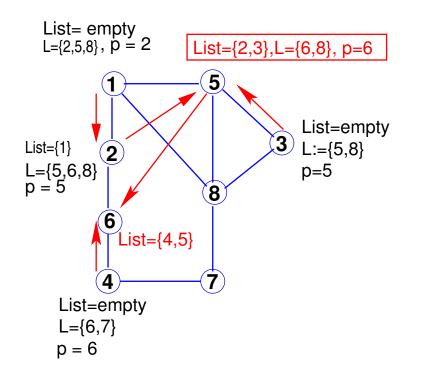
Example: Consider the earlier example:

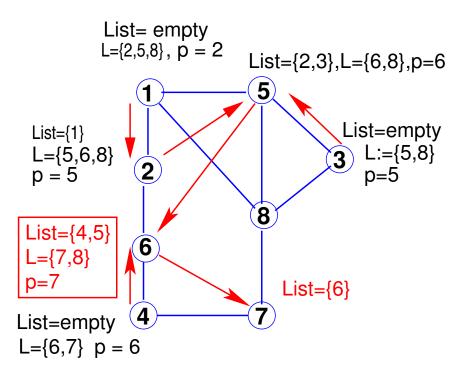












$Multifrontal\ methods$

Start with the frontal method.

Recall: Finite element matrix:

$$A = \sum A^{[e]}$$

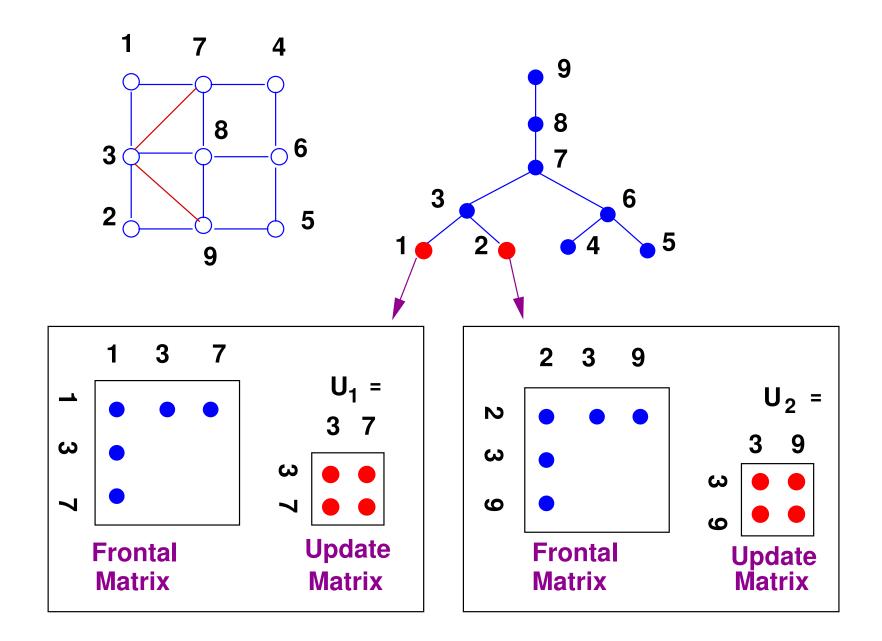
 $A^{[e]} =$ element matrix associated with element e.

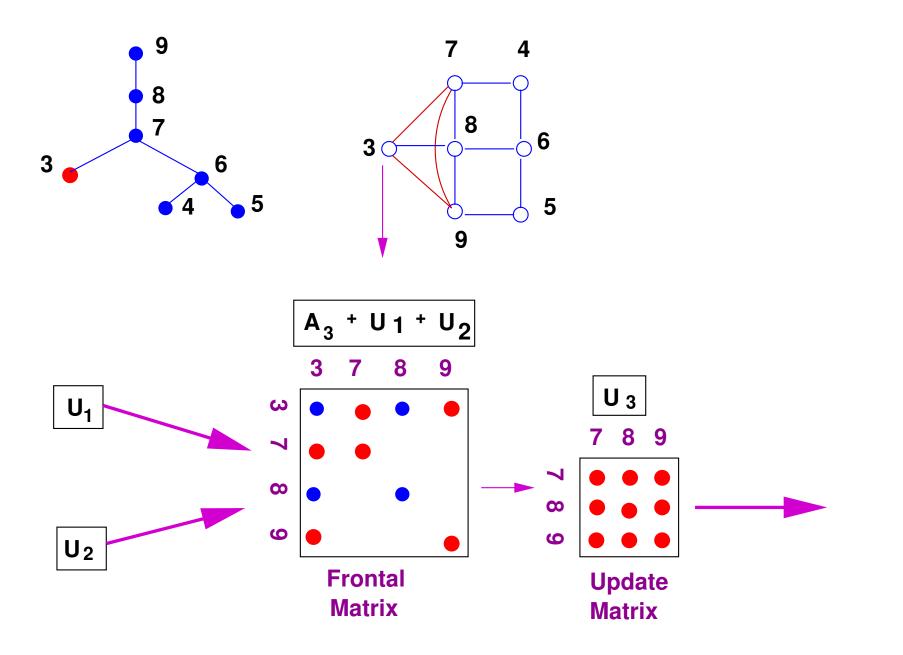
An old idea: Execute Gaussian elimination as the elements are being assembled

- \blacktriangleright Dependency: variabes \leftrightarrow elements, creates an assembly tree.
- Method is called the frontal method
- Very popular among finite element users: saves storage

Multifrontal methods: extension to general matrices

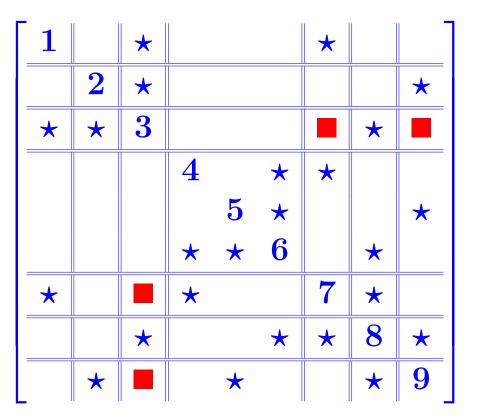
- Elimination tree replaces assembly tree
- Proceed in post-order traversal of elimination tree in order not to violate task dependencies.
- When a node is eliminated an update matrix is created.
- ► This matrix is passed to the parent which adds it to its frontal matrix.
- Requires a stack of pending update matrices
- Update matrices popped out as they are needed
- Often implemented with nested dissection-type ordering
- More complex than a left-looking algorithm





– Direct2

Eliminating nodes 1 and 2: What happens on matrix



$$\leftarrow U_1(3,:) \leftarrow U_2(3,:)$$

 $\leftarrow U_1(7,:)$

 $\leftarrow U_2(9,:)$

- Direct2

Supernodes

> Contiguous columns tend to inherit the pattern of the columns from they are updated \rightarrow Many columns with same sparsity pattern. Supernode = a set of contiguous columns in the Cholesky factor L that have the same sparsity pattern.

$$\blacktriangleright$$
 The set $\{j, j+1, ..., j+s\}$ is a supernode if

$$NZ(L_{*,k}) = NZ(L_{*,k+1}) \cup \{k+1\} \;\; j \leq k {<} j + s$$

where $NZ(L_{*,k})$ is nonzero set of column k of L.

Other terms used: Mass elimination, indistinguishible nodes, active variables in front, subscript compression,...

Gain in performance due to savings in Gather-Scatter operations.