
GRAPH LAPLACEANS AND THEIR APPLICATIONS

• Back to graphs - define graph Laplaceans

• Properties of graph Laplaceans

• Graph partitioning –

• Introduction to clustering



Graph Laplaceans - Definition

ä “Laplace-type” matrices associated with general undirected graphs
– useful in many applications

ä Given a graph G = (V,E) define

• A matrix W of weights wij for each edge

• Assume wij ≥ 0,, wii = 0, and wij = wji ∀(i, j)
• The diagonal matrix D = diag(di) with di =

∑
j 6=iwij

ä Corresponding graph Laplacean of G is:

L = D −W

ä Gershgorin’s theorem→ L is positive semidefinite.
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ä Simplest case:

wij =

{
1 if (i, j) ∈ E&i 6= j
0 else

D = diag

di =
∑
j 6=i

wij


Example:

Consider the graph
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L =


1 −1 0 0 0
−1 2 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 −1 −1 −1 3
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-1 Define the graph Laplacean for the
graph associated with the simple mesh
shown next. [use the simple weights of
0 or 1]. What is the difference with the
discretization of the Laplace operator for
case when mesh is the same as this graph? 1 2 3
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Proposition:
(i) L is symmetric semi-positive definite.
(ii) L is singular with 1 as a null vector.
(iii) If G is connected, then Null(L) = span{ 1}
(iv) If G has k > 1 connected components G1, G2, · · · , Gk,
then the nullity of L is k and Null(L) is spanned by the vectors
z(j), j = 1, · · · , k defined by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.
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Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is
a null vector for L. The vector D−1/2u is an eigenvector for the
matrixD−1/2LD−1/2 = I−D−1/2WD−1/2 associated with the
smallest eigenvalue. It is also an eigenvector for D−1/2WD−1/2

associated with the largest eigenvalue. By the Perron Frobenius
theorem this is a simple eigenvalue... (iv) Can be proved from the
fact that L can be written as a direct sum of the Laplacian matrices
for G1, · · · , Gk.
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A few properties of graph Laplaceans

Define: oriented incidence matrix H : (1)First orient the edges
i ∼ j into i→ j or j → i. (2) Rows of H indexed by vertices
of G. Columns indexed by edges. (3) For each (i, j) in E, define
the corresponding column in H as

√
w(i, j)(ei − ej).

Example: In previous ex-
ample (P. 11-3) orient i → j
so that j > i [lower triangular
matrix representation].
Then matrix H is: −→

H =


1 0 0 0
−1 1 0 0
0 0 1 0
0 0 0 1
0 −1 −1 −1


Property 1 L = HHT

-2 Re-prove part (iv) of previous proposition by using this property.
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A few properties of graph Laplaceans

x

x
j

i

Strong relation between xTLx and local
distances between entries of x
ä Let L = any matrix s.t. L = D −
W , with D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 2: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2
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Property 3: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2

ä Note: yj = j-th colunm of Y . Usually d < n. Each column
can represent a data sample.

Property 4: For the particular L = I − 1
n

1 1>

XLX> = X̄X̄> == n× Covariance matrix

Property 5: L is singular and admits the null vector
1 =ones(n,1)
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Property 6: (Graph partitioning) Consider situation when wij ∈
{0, 1}. If x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used to partition graphs

+1

−1
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ä Would like to minimize (Lx, x) subject to x ∈ {−1, 1}n and
eTx = 0 [balanced sets]

ä Wll solve a relaxed form of this problem

-3 What if we replace x by a vector of ones (representing one
partition) and zeros (representing the other)?

-4 Let x be any vector and y = x+α 1 andL a graph Laplacean.
Compare (Lx, x) with (Ly, y).
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ä Consider any symmetric (real) matrix A with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λn and eigenvectors u1, · · · , un

ä Recall that:
(Min reached for x = u1)

min
x∈Rn

(Ax, x)

(x, x)
= λ1

ä In addition:
(Min reached for x = u2)

min
x⊥u1

(Ax, x)

(x, x)
= λ2

ä For a graph Laplacean u1 = 1 = vector of all ones and

ä ...vector u2 is called the Fiedler vector. It solves a relaxed form
of the problem -
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min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x)
→ min

x∈Rn; 1Tx=0

(Lx, x)

(x, x)

ä Define v = u2 then lab = sign(v −med(v))
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Recursive Spectral Bisection

1 Form graph Laplacean
2 Partition graph in 2 based

on Fielder vector
3 Partition largest subgraph

in two recursively ...
4 ... Until the desired num-

ber of partitions is reached
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Three approaches to graph partitioning:

1. Spectral methods - Just seen + add Recursive Spectral Bisection.

2. Geometric techniques. Coordinates are required. [Houstis & Rice
et al., Miller, Vavasis, Teng et al.]

3. Graph Theory techniques – multilevel,... [use graph, but no coor-
dinates]

• Currently best known technique is Metis (multi-level algorithm)

• Simplest idea: Recursive Graph Bisection; Nested dissection
(George & Liu, 1980; Liu 1992]

• Advantages: simplicity – no coordinates required
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Example of a graph theory approach

ä Level Set Expansion Algorithm

ä Given: p nodes ‘uniformly’ spread in the graph (roughly same
distance from one another).

ä Method: Perform a level-set traversal (BFS) from each node
simultaneously.

ä Best described for an example on a 15× 15 five – point Finite
Difference grid.

ä See [Goehring-Saad ’94, See Cai-Saad ’95]

ä Approach also known under the name ‘bubble’ algorithm and
implemented in some packages [Party, DibaP]
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Clustering

ä Problem: we are given n data items: x1, x2, · · · , xn. Would
like to ‘cluster’ them, i.e., group them so that each group or cluster
contains items that are similar in some sense.

ä Example: materials
Superhard

Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Example: Digits
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ä Refer to each group as a ‘cluster’ or a ‘class’

ä ‘Unsupervised learning’
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What is Unsupervised learning?

“Unsupervised learning” : methods do not exploit labeled data

ä Example of digits: perform a 2-D projection

ä Images of same digit tend to cluster (more or less)

ä Such 2-D representations are popular for visualization

ä Can also try to find natural clusters in data, e.g., in materials

ä Basic clusterning technique: K-means
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Example: Community Detection

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A sends
frequent e-mails to user B’]
ä Adjacency Graph represented by a sparse matrix

← Original
matrix
Goal: Find

ordering so
blocks are
as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
[data: www-personal.umich.edu/∼mejn/netdata/]
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Example of application Data set from :

http://www-personal.umich.edu/∼mejn/netdata/

ä Network connecting bloggers of different political orientations
[2004 US presidentual election]

ä ‘Communities’: liberal vs. conservative

ä Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conser-
vative.

ä Edge: i→ j : a citation between blogs i and j

ä Blocking algorithm (Density theshold=0.4): subgraphs [note:
density = |E|/|V |2.]

ä Smaller subgraph: conservative blogs, larger one: liberals
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