GRAPH LAPLACEANS AND THEIR APPLICATIONS

- Back to graphs define graph Laplaceans
- Properties of graph Laplaceans
- Graph partitioning –
- Introduction to clustering

Graph Laplaceans - Definition

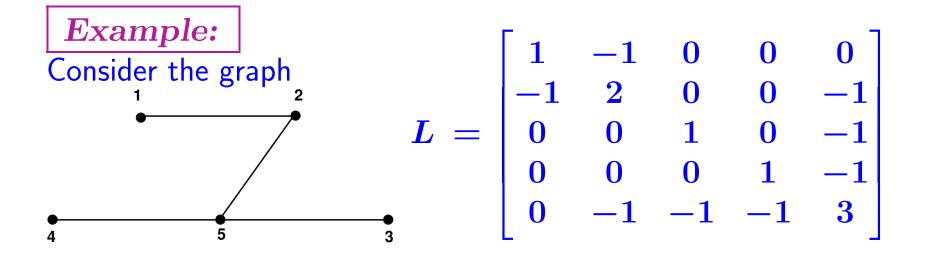
"Laplace-type" matrices associated with general undirected graphs
 useful in many applications

- > Given a graph G = (V, E) define
- A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0$,, $w_{ii} = 0$, and $w_{ij} = w_{ji} \ orall (i,j)$
- ullet The diagonal matrix $oldsymbol{D} = diag(d_i)$ with $d_i = \sum_{j
 eq i} w_{ij}$
- Corresponding graph Laplacean of G is:

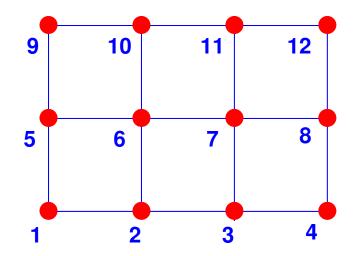
$$L = D - W$$

Gershgorin's theorem ightarrow L is positive semidefinite.

$$w_{ij} = egin{cases} 1 ext{ if } (i,j) \in E\&i
eq j \ 0 ext{ else} \end{bmatrix} D = ext{diag} \left[egin{array}{c} d_i = \sum_{j
eq i} w_{ij} \ p_{ij} \end{bmatrix}
ight]$$



Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?



Proposition:

(i) L is symmetric semi-positive definite. (ii) L is singular with 1 as a null vector. (iii) If G is connected, then $\operatorname{Null}(L) = \operatorname{span}\{1\}$ (iv) If G has k > 1 connected components G_1, G_2, \cdots, G_k , then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}, j = 1, \cdots, k$ defined by:

$$(oldsymbol{z}^{(j)})_i = egin{cases} 1 ext{ if } oldsymbol{i} \ \in G_j \ 0 ext{ if not.} \end{cases}$$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u = 1 is a null vector for L. The vector $D^{-1/2}u$ is an eigenvector for the matrix $D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1/2}WD^{-1/2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_1, \dots, G_k .

A few properties of graph Laplaceans

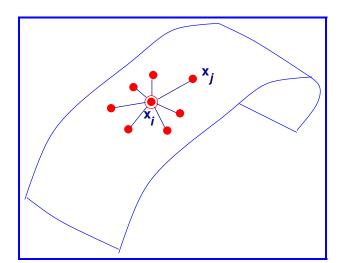
Define: oriented incidence matrix H: (1)First orient the edges $i \sim j$ into $i \rightarrow j$ or $j \rightarrow i$. (2) Rows of H indexed by vertices of G. Columns indexed by edges. (3) For each (i, j) in E, define the corresponding column in H as $\sqrt{w(i, j)}(e_i - e_j)$.

Example: In previous ex-		1	0	0	0
ample (P. 11-3) orient $i ightarrow j$		-1	1	0	0
so that $j > i$ [lower triangular	H =	0	0	1	0
matrix representation].		0	0	0	1
Then matrix H is: \longrightarrow		0	-1	-1	-1

Property 1
$$L = HH^T$$

Re-prove part (iv) of previous proposition by using this property.

A few properties of graph Laplaceans



Strong relation between $x^T L x$ and local distances between entries of x> Let L = any matrix s.t. L = D - W, with $D = diag(d_i)$ and

$$w_{ij} \geq 0, \qquad d_i \; = \; \sum_{j
eq i} w_{ij}$$

Property 2: for any $x \in \mathbb{R}^n$:

$$x^ op L x = rac{1}{2}\sum_{i,j} w_{ij} |x_i-x_j|^2$$

Property 3:(generalization) for any $Y \in \mathbb{R}^{d imes n}$: $\mathsf{Tr}[YLY^{ op}] = rac{1}{2} \sum_{i,j} w_{ij} \|y_i - y_j\|^2$

Note: $y_j = j$ -th column of Y. Usually d < n. Each column can represent a data sample.

Property 4:For the particular $L = I - \frac{1}{n} \ \mathbb{1} \ \mathbb{1}^{\top}$ $XLX^{\top} = \bar{X}\bar{X}^{\top} == n imes$ Covariance matrix

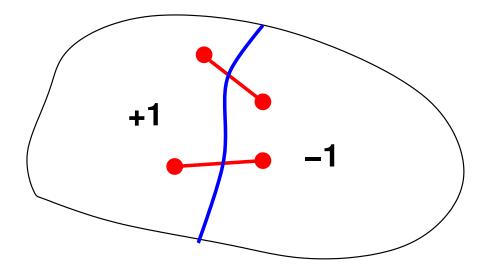
Property 5: L is singular and admits the null vector
1 =ones(n,1)

Property 6: (Graph partitioning) Consider situation when $w_{ij} \in \{0,1\}$. If x is a vector of signs (± 1) then

 $x^ op Lx = 4 imes$ ('number of edge cuts')

 $\mathsf{edge-cut} = \mathsf{pair}\;(i,j) \; \mathsf{with}\; x_i \neq x_j$

Consequence: Can be used to partition graphs



> Would like to minimize (Lx, x) subject to $x \in \{-1, 1\}^n$ and $e^T x = 0$ [balanced sets]

> WII solve a relaxed form of this problem

Multiply What if we replace x by a vector of ones (representing one partition) and zeros (representing the other)?

Let x be any vector and $y = x + \alpha$ 1 and L a graph Laplacean. Compare (Lx, x) with (Ly, y). $\blacktriangleright \quad \text{Consider any symmetric (real) matrix } A \text{ with eigenvalues } \lambda_1 \leq \\ \lambda_2 \leq \cdots \leq \lambda_n \text{ and eigenvectors } u_1, \cdots, u_n$

Recall that: $(\text{Min reached for } x = u_1)$ $\min_{x \in \mathbb{R}^n} \frac{(Ax, x)}{(x, x)} = \lambda_1$

In addition: $(\text{Min reached for } x = u_2)$ $\min_{x \perp u_1} \frac{(Ax, x)}{(x, x)} = \lambda_2$

For a graph Laplacean u₁ = 1 = vector of all ones and
 ...vector u₂ is called the Fiedler vector. It solves a relaxed form of the problem -

$$\min_{\substack{x \in \{-1,1\}^n; \ \mathbb{1}^T x = 0}} \frac{(Lx,x)}{(x,x)} \rightarrow \min_{\substack{x \in \mathbb{R}^n; \ \mathbb{1}^T x = 0}} \frac{(Lx,x)}{(x,x)}$$

▶ Define $v = u_2$ then lab = sign(v - med(v))

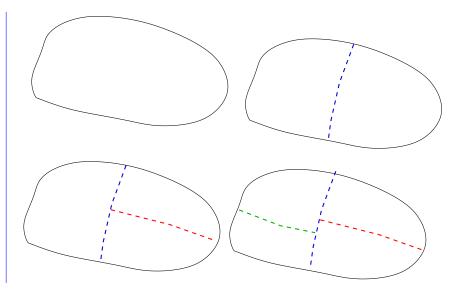
Recursive Spectral Bisection

1 Form graph Laplacean

2 Partition graph in 2 based on Fielder vector

3 Partition largest subgraph in two recursively ...

4 ... Until the desired number of partitions is reached



Three approaches to graph partitioning:

- 1. Spectral methods Just seen + add Recursive Spectral Bisection.
- 2. Geometric techniques. Coordinates are required. [Houstis & Rice et al., Miller, Vavasis, Teng et al.]
- 3. Graph Theory techniques multilevel,... [use graph, but no coordinates]
 - Currently best known technique is Metis (multi-level algorithm)
 - Simplest idea: Recursive Graph Bisection; Nested dissection (George & Liu, 1980; Liu 1992]
 - Advantages: simplicity no coordinates required

Example of a graph theory approach

Level Set Expansion Algorithm

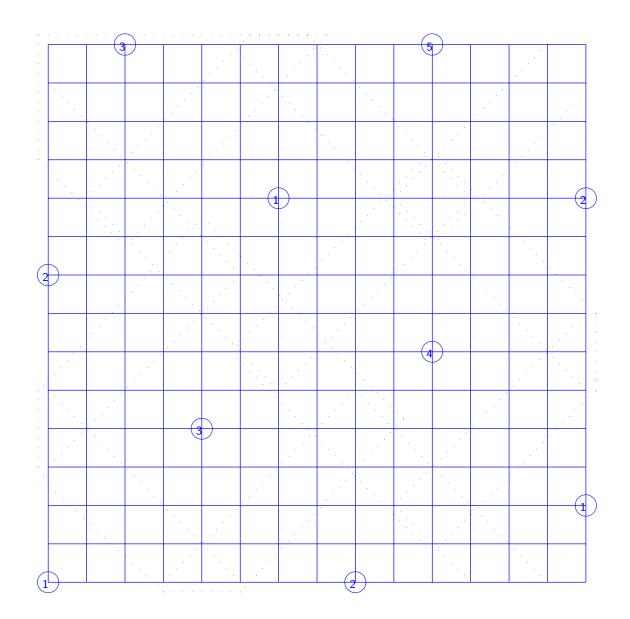
 \blacktriangleright Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).

Method: Perform a level-set traversal (BFS) from each node simultaneously.

> Best described for an example on a 15×15 five – point Finite Difference grid.

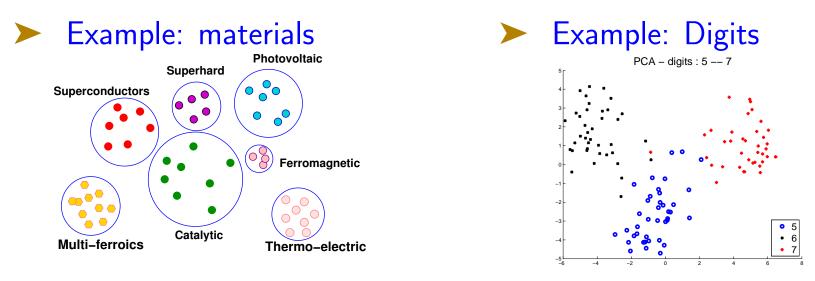
See [Goehring-Saad '94, See Cai-Saad '95]

Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]



Clustering

> Problem: we are given n data items: x_1, x_2, \dots, x_n . Would like to *'cluster'* them, i.e., group them so that each group or cluster contains items that are similar in some sense.



Refer to each group as a 'cluster' or a 'class'

'Unsupervised learning'

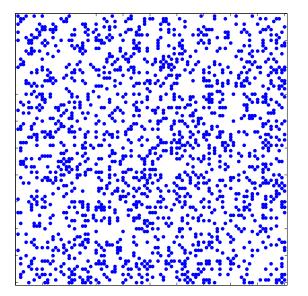
What is Unsupervised learning?

- "Unsupervised learning" : methods do not exploit labeled data
- Example of digits: perform a 2-D projection
- Images of same digit tend to cluster (more or less)
- Such 2-D representations are popular for visualization
- > Can also try to find natural clusters in data, e.g., in materials
- Basic clusterning technique: K-means

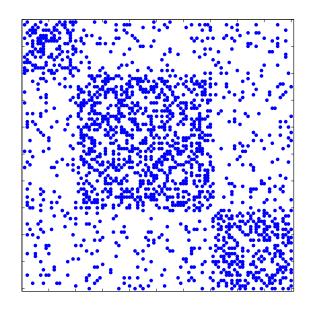
Example: Community Detection

 \blacktriangleright Communities modeled by an 'affinity' graph [e.g., 'user A sends frequent e-mails to user B']

Adjacency Graph represented by a sparse matrix



\leftarrow	Original		
matrix			
Goal:	Find		
orderin	g so		
blocks	are		
as de	ense as		
possible \rightarrow			



 Use 'blocking' techniques for sparse matrices Advantage of this viewpoint: need not know # of clusters.
 [data: www-personal.umich.edu/~mejn/netdata/] **Example of application** Data set from :

http://www-personal.umich.edu/~mejn/netdata/

Network connecting bloggers of different political orientations [2004 US presidentual election]

'Communities': liberal vs. conservative

► Graph: 1,490 vertices (blogs) : first 758: liberal, rest: conservative.

 \blacktriangleright Edge: $i \rightarrow j$: a citation between blogs i and j

▶ Blocking algorithm (Density theshold=0.4): subgraphs [note: density = $|E|/|V|^2$.]

Smaller subgraph: conservative blogs, larger one: liberals