GRAPH LAPLACEANS AND THEIR APPLICATIONS

- Back to graphs - define graph Laplaceans
- Properties of graph Laplaceans
- Graph partitioning -
- Introduction to clustering

Graph Laplaceans - Definition

> "Laplace-type" matrices associated with general undirected graphs - useful in many applications
$>$ Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ define

- A matrix \boldsymbol{W} of weights $\boldsymbol{w}_{i j}$ for each edge
- Assume $\boldsymbol{w}_{i j} \geq \mathbf{0}, \boldsymbol{w}_{i i}=\mathbf{0}$, and $\boldsymbol{w}_{i j}=\boldsymbol{w}_{\boldsymbol{j} i} \forall(i, j)$
- The diagonal matrix $D=\boldsymbol{\operatorname { d i a }} \boldsymbol{g}\left(\boldsymbol{d}_{i}\right)$ with $\boldsymbol{d}_{i}=\sum_{j \neq i} \boldsymbol{w}_{i j}$
- Corresponding graph Laplacean of G is:

$$
L=D-W
$$

$>$ Gershgorin's theorem $\rightarrow L$ is positive semidefinite.
\qquad 9-2

Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

Proposition:

(i) \boldsymbol{L} is symmetric semi-positive definite.
(ii) L is singular with $\mathbb{1}$ as a null vector.
(iii) If G is connected, then $\operatorname{Null}(L)=\operatorname{span}\{\mathbb{1}\}$
(iv) If G has $k>1$ connected components $G_{1}, G_{2}, \cdots, G_{k}$, then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}, j=1, \cdots, k$ defined by:

$$
\left(z^{(j)}\right)_{i}=\left\{\begin{array}{l}
1 \text { if } i \in G_{j} \\
0 \text { if not. }
\end{array}\right.
$$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly $\boldsymbol{u}=\mathbb{1}$ is a null vector for \boldsymbol{L}. The vector $\boldsymbol{D}^{-1 / 2} \boldsymbol{u}$ is an eigenvector for the matrix $\boldsymbol{D}^{-1 / 2} \boldsymbol{L} \boldsymbol{D}^{-1 / 2}=\boldsymbol{I}-\boldsymbol{D}^{-1 / 2} \boldsymbol{W} \boldsymbol{D}^{-1 / 2}$ associated with the smallest eigenvalue. It is also an eigenvector for $D^{-1 / 2} W D^{-1 / 2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_{1}, \cdots, G_{k}.

A few properties of graph Laplaceans

Strong relation between $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{L} \boldsymbol{x}$ and local distances between entries of \boldsymbol{x} $>$ Let $L=$ any matrix s.t. $L=D-$ W, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 2: for any $x \in \mathbb{R}^{n}$:

$$
x^{\top} L x=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

A few properties of graph Laplaceans

Define: oriented incidence matrix \boldsymbol{H} : (1)First orient the edges $\boldsymbol{i} \sim \boldsymbol{j}$ into $\boldsymbol{i} \rightarrow \boldsymbol{j}$ or $\boldsymbol{j} \boldsymbol{\rightarrow} \boldsymbol{i}$. (2) Rows of \boldsymbol{H} indexed by vertices of \boldsymbol{G}. Columns indexed by edges. (3) For each $(\boldsymbol{i}, \boldsymbol{j})$ in \boldsymbol{E}, define the corresponding column in H as $\sqrt{w(i, j)}\left(e_{i}-e_{j}\right)$.

Property $1 \quad L=\boldsymbol{H} \boldsymbol{H}^{T}$

Re-prove part (iv) of previous proposition by using this property.Property 3: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[\boldsymbol{Y} \boldsymbol{L} \boldsymbol{Y}^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

$>$ Note: $\boldsymbol{y}_{\boldsymbol{j}}=\boldsymbol{j}$-th colunm of \boldsymbol{Y}. Usually $\boldsymbol{d}<\boldsymbol{n}$. Each column can represent a data sample.
Property 4: For the particular $L=I-\frac{1}{n} \mathbb{1} \mathbb{1}^{\top}$ $\boldsymbol{X} \boldsymbol{L} \boldsymbol{X}^{\top}=\overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top}=\boldsymbol{n} \times$ Covariance matrix

Property 5: \boldsymbol{L} is singular and admits the null vector

 $\mathbb{1}=\operatorname{ones}(\mathrm{n}, 1)$Property 6: (Graph partitioning) Consider situation when $\boldsymbol{w}_{i j} \in$ $\{0,1\}$. If x is a vector of signs (± 1) then

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=4 \times \text { ('number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used to partition graphs

Consider any symmetric (real) matrix \boldsymbol{A} with eigenvalues $\boldsymbol{\lambda}_{1} \leq$ $\lambda_{2} \leq \cdots \leq \lambda_{n}$ and eigenvectors u_{1}, \cdots, u_{n}
> Recall that:
(Min reached for $\boldsymbol{x}=\boldsymbol{u}_{1}$)

$$
\min _{x \in \mathbb{R}^{n}} \frac{(A x, x)}{(x, x)}=\lambda_{1}
$$

$>$ In addition:
(Min reached for $\boldsymbol{x}=\boldsymbol{u}_{2}$)

$$
\min _{x \perp u_{1}} \frac{(A x, x)}{(x, x)}=\lambda_{2}
$$

$>$ For a graph Laplacean $\boldsymbol{u}_{1}=\mathbb{1}=$ vector of all ones and
$>$...vector \boldsymbol{u}_{2} is called the Fiedler vector. It solves a relaxed form of the problem -
$>$ Would like to minimize $(\boldsymbol{L x}, \boldsymbol{x})$ subject to $\boldsymbol{x} \in\{-1,1\}^{n}$ and $e^{T} x=0$ [balanced sets]
$>$ WII solve a relaxed form of this problemWhat if we replace \boldsymbol{x} by a vector of ones (representing one partition) and zeros (representing the other)?Let \boldsymbol{x} be any vector and $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{\alpha} \mathbb{1}$ and \boldsymbol{L} a graph Laplacean. Compare ($L \boldsymbol{x}, \boldsymbol{x}$) with $(\boldsymbol{L} \boldsymbol{y}, \boldsymbol{y})$.

$$
\min _{x \in\{-1,1\}^{n} ; \mathbb{1}^{T} x=0} \frac{(L x, x)}{(x, x)} \rightarrow \quad \min _{x \in \mathbb{R}^{n} ; \mathbb{1}^{T} x=0} \frac{(L x, x)}{(x, x)}
$$

$>$ Define $v=u_{2}$ then $l a b=\operatorname{sign}(v-\operatorname{med}(v))$

Recursive Spectral Bisection

Three approaches to graph partitioning:

1 Form graph Laplacean 2 Partition graph in 2 based on Fielder vector
3 Partition largest subgraph in two recursively ...
4 ... Until the desired number of partitions is reached

1. Spectral methods - Just seen + add Recursive Spectral Bisection.
2. Geometric techniques. Coordinates are required. [Houstis \& Rice et al., Miller, Vavasis, Teng et al.]
3. Graph Theory techniques - multilevel,,.. [use graph, but no coordinates]

- Currently best known technique is Metis (multi-level algorithm)
- Simplest idea: Recursive Graph Bisection; Nested dissection (George \& Liu, 1980; Liu 1992]
- Advantages: simplicity - no coordinates required

Example of a graph theory approach

> Level Set Expansion Algorithm
> Given: \boldsymbol{p} nodes 'uniformly' spread in the graph (roughly same distance from one another).
> Method: Perform a level-set traversal (BFS) from each node simultaneously.
$>$ Best described for an example on a 15×15 five - point Finite Difference grid.
$>$ See [Goehring-Saad '94, See Cai-Saad '95]
> Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]

Clustering

Problem: we are given n data items: $x_{1}, x_{2}, \cdots, x_{n}$. Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

$>$ Refer to each group as a 'cluster' or a 'class'
> 'Unsupervised learning'

Example: Community Detection

> Communities modeled by an 'affinity' graph [e.g., 'user \boldsymbol{A} sends frequent e-mails to user \boldsymbol{B}^{\prime}]
> Adjacency Graph represented by a sparse matrix

\leftarrow	Original
matrix	
Goal:	Find
ordering	so
blocks	are
as dense	as
possible \rightarrow	

Use 'blocking' techniques for sparse matrices
> Advantage of this viewpoint: need not know \# of clusters.
[data: www-personal. umich.edu/~mejn/netdata/]

What is Unsupervised learning?

"Unsupervised learning" : methods do not exploit labeled data
$>$ Example of digits: perform a 2-D projection
$>$ Images of same digit tend to cluster (more or less)
> Such 2-D representations are popular for visualization
> Can also try to find natural clusters in data, e.g., in materials
> Basic clusterning technique: K-means

Example of application Data set from :

http://www-personal.umich.edu/~mejn/netdata/

Network connecting bloggers of different political orientations [2004 US presidentual election]
> 'Communities': liberal vs. conservative
> Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.
$>$ Edge: $\boldsymbol{i} \rightarrow \boldsymbol{j}:$ a citation between blogs \boldsymbol{i} and \boldsymbol{j}
> Blocking algorithm (Density theshold=0.4): subgraphs [note: density $=|\boldsymbol{E}| /|\boldsymbol{V}|^{2}$.]
> Smaller subgraph: conservative blogs, larger one: liberals

