GRAPH LAPLACEANS AND THEIR APPLICATIONS

- Back to graphs define graph Laplaceans
- Properties of graph Laplaceans
- Graph partitioning -
- Introduction to clustering

Graph Laplaceans - Definition

- "Laplace-type" matrices associated with general undirected graphs useful in many applications
- \triangleright Given a graph G = (V, E) define
- ullet A matrix W of weights w_{ij} for each edge
- ullet Assume $w_{ij} \geq 0$,, $w_{ii} = 0$, and $w_{ij} = w_{ji} \ orall (i,j)$
- ullet The diagonal matrix $D=diag(d_i)$ with $d_i=\sum_{i
 eq i}w_{ij}$
- \triangleright Corresponding graph Laplacean of G is:

$$L = D - W$$

Gershgorin's theorem $\rightarrow L$ is positive semidefinite.

- Glaplacians

Simplest case:

$$w_{ij} = \left\{egin{array}{ll} 1 & ext{if } (i,j) \in E\&i
eq j \ 0 & ext{else} \end{array}
ight. egin{array}{ll} E\&i
eq j \ 0 \end{array} egin{array}{ll} D = ext{diag} \left[d_i = \sum_{j
eq i} w_{ij}
ight] \end{array}$$

Example: Consider the graph

the graph
$$L = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 2 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

✓ Define the graph Laplacean for the graph associated with the simple mesh shown next. [use the simple weights of 0 or 1]. What is the difference with the discretization of the Laplace operator for case when mesh is the same as this graph?

Proposition:

- (i) L is symmetric semi-positive definite.
- (ii) L is singular with 1 as a null vector.
- (iii) If G is connected, then $Null(L) = span\{1\}$
- (iv) If G has k > 1 connected components G_1, G_2, \cdots, G_k then the nullity of L is k and Null(L) is spanned by the vectors $z^{(j)}$, $j=1,\cdots,k$ defined by:

$$(z^{(j)})_i = \left\{egin{array}{l} 1 ext{ if } i \in G_j \ 0 ext{ if not.} \end{array}
ight.$$

Proof: (i) and (ii) seen earlier and are trivial. (iii) Clearly u=1 is a null vector for L. The vector $D^{-1/2}u$ is an eigenvector for the matrix $D^{-1/2}LD^{-1/2} = I - D^{-1/2}WD^{-1/2}$ associated with the smallest eigenvalue. It is also an eigenvector for $m{D}^{-1/2}m{W}m{D}^{-1/2}$ associated with the largest eigenvalue. By the Perron Frobenius theorem this is a simple eigenvalue... (iv) Can be proved from the fact that L can be written as a direct sum of the Laplacian matrices for G_1, \cdots, G_k .

A few properties of graph Laplaceans

Define: oriented incidence matrix H: (1) First orient the edges $i \sim j$ into $i \rightarrow j$ or $j \rightarrow i$. (2) Rows of H indexed by vertices of G. Columns indexed by edges. (3) For each (i, j) in E, define the corresponding column in H as $\sqrt{w(i,j)}(e_i-e_j)$.

Example:In previous example (P. 11-3) orient
$$i \rightarrow j$$
In previous example (P. 11-3) orient $i \rightarrow j$ In previous example (P. 11-3) orient $i \rightarrow j$ so that $j > i$ [lower triangular matrix representation]. $H = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 \end{bmatrix}$ Then matrix H is: H is:

Property 1

$$L = HH^T$$

Re-prove part (iv) of previous proposition by using this property.

A few properties of graph Laplaceans

Strong relation between x^TLx and local distances between entries of $oldsymbol{x}$

 \blacktriangleright Let L= any matrix s.t. L=D $oldsymbol{W}$, with $oldsymbol{D} = oldsymbol{diag}(oldsymbol{d}_i)$ and

$$w_{ij} \geq 0, \qquad d_i \ = \ \sum_{j
eq i} w_{ij}$$

Property 2: for any $x \in \mathbb{R}^n$:

$$x^ op Lx = rac{1}{2}\sum_{i,j}w_{ij}|x_i-x_j|^2$$

Property 3: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

$$\mathsf{Tr}\left[YLY^{ op}
ight] = rac{1}{2} \sum_{i,j} w_{ij} \|y_i - y_j\|^2$$

Note: $y_i = j$ -th column of Y. Usually d < n. Each column can represent a data sample.

Property 4: For the particular $L = I - \frac{1}{n} \mathbb{1} \mathbb{1}^{\top}$

$$XLX^ op = ar{X}ar{X}^ op == n imes \mathsf{Covariance}$$
 matrix

Property 5: L is singular and admits the null vector 1 = ones(n,1)

Property 6: (Graph partitioning) Consider situation when $w_{ii} \in$ $\{0,1\}$. If x is a vector of signs (± 1) then

$$x^ op Lx = 4 imes$$
 ('number of edge cuts')

edge-cut = pair (i, j) with $x_i \neq x_i$

- ➤ Consequence: Can be used to partition graphs

 $e^T x = 0$ [balanced sets]

> WII solve a relaxed form of this problem

partition) and zeros (representing the other)?

Compare (Lx, x) with (Ly, y).

- \triangleright Consider any symmetric (real) matrix A with eigenvalues $\lambda_1 < 1$ $\lambda_2 \leq \cdots \leq \lambda_n$ and eigenvectors u_1, \cdots, u_n
- ➤ Recall that: (Min reached for $x = u_1$)

$$\min_{x\in\mathbb{R}^n}rac{(Ax,x)}{(x,x)}=\lambda_1$$

- ➤ In addition: (Min reached for $x=u_2$)
- \blacktriangleright For a graph Laplacean $u_1=1$ = vector of all ones and
- \blacktriangleright ...vector u_2 is called the Fiedler vector. It solves a relaxed form of the problem -

min $x \in \{-1,1\}^n$; $1^T x = 0$ (x,x)

ightharpoonup Would like to minimize (Lx,x) subject to $x\in\{-1,1\}^n$ and

Let x be any vector and y=x+lpha 1 and L a graph Laplacean.

What if we replace x by a vector of ones (representing one

ightharpoonup Define $v=u_2$ then lab=sign(v-med(v))

Recursive Spectral Bisection

- 1 Form graph Laplacean
- 2 Partition graph in 2 based on Fielder vector
- **3** Partition largest subgraph in two recursively ...
- 4 ... Until the desired number of partitions is reached

-13 — Glaplacians

Three approaches to graph partitioning:

- 1. Spectral methods Just seen + add Recursive Spectral Bisection.
- 2. Geometric techniques. Coordinates are required. [Houstis & Rice et al., Miller, Vavasis, Teng et al.]
- 3. Graph Theory techniques multilevel,... [use graph, but no coordinates]
 - Currently best known technique is Metis (multi-level algorithm)
 - Simplest idea: Recursive Graph Bisection; Nested dissection (George & Liu, 1980; Liu 1992]
 - Advantages: simplicity no coordinates required

_____ - Glaplacians

Example of a graph theory approach

- ➤ Level Set Expansion Algorithm
- ightharpoonup Given: p nodes 'uniformly' spread in the graph (roughly same distance from one another).
- Method: Perform a level-set traversal (BFS) from each node simultaneously.
- ightharpoonup Best described for an example on a 15 imes 15 five point Finite Difference grid.
- > See [Goehring-Saad '94, See Cai-Saad '95]
- Approach also known under the name 'bubble' algorithm and implemented in some packages [Party, DibaP]

– Glanlacian

— Glaplacians

Clustering

Problem: we are given n data items: x_1, x_2, \cdots, x_n . Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.

Example: materials

Example: Digits

- Refer to each group as a 'cluster' or a 'class'
- 'Unsupervised learning'

What is Unsupervised learning?

"Unsupervised learning": methods do not exploit labeled data

- Example of digits: perform a 2-D projection
- Images of same digit tend to cluster (more or less)
- Such 2-D representations are popular for visualization
- Can also try to find natural clusters in data, e.g., in materials
- Basic clusterning technique: K-means

Example: Community Detection

- \triangleright Communities modeled by an 'affinity' graph [e.g., 'user A sends frequent e-mails to user B'
- ➤ Adjacency Graph represented by a sparse matrix

Original matrix Goal: Find ordering blocks are as dense possible \rightarrow

Use 'blocking' techniques for sparse matrices Advantage of this viewpoint: need not know # of clusters.

[data: www-personal.umich.edu/~mejn/netdata/]

Example of application Data set from :

http://www-personal.umich.edu/~mejn/netdata/

- Network connecting bloggers of different political orientations [2004 US presidentual election]
- 'Communities': liberal vs. conservative
- Graph: 1,490 vertices (blogs): first 758: liberal, rest: conservative.
- Edge: $i \rightarrow j$: a citation between blogs i and j
- Blocking algorithm (Density the shold = 0.4): subgraphs [note: density = $|E|/|V|^2$.]
- Smaller subgraph: conservative blogs, larger one: liberals