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Preface to the Classics Edition

This is a revised edition of a book which appeared close to two decades ago.

Someone scrutinizing how the field has evolved in these two decades will make

two interesting observations. On the one hand the observer will be struck by the

staggering number of new developments in numerical linear algebra during this

period. The field has evolved in all directions: theory, algorithms, software, and

novel applications. Two decades ago there was essentially no publically available

software for large eigenvalue problems. Today one has a flurry to choose from,

and the activity in software development does not seem to be abating. A number

of new algorithms appeared in this period as well. I can mention at the outset the

Jacobi-Davidson algorithm and the idea of implicit restarts, both discussed in this

book, but there are a few others. The most interesting development to the numeri-

cal analyst may be the expansion of the realm of eigenvalue techniques into newer

and more challenging applications. Or perhaps, the more correct observation is

that these applications were always there, but they were not as widely appreciated

or understood by numerical analysts, or were not fully developed due to lack of

software.

The second observation to be made when comparing the state of the field now

and two decades ago is that at the same time the basic tools used to compute spec-

tra have essentially not changed much: Krylov subspaces are still omnipresent.

On the whole, the new methods that have been developed consist of enhance-

ments to these basic methods, sometimes major, in the form of preconditioners, or

other variations. One might say that the field has evolved even more from gain-

ing maturity than from the few important developments which took place. This

maturity has been brought about by the development of practical algorithms and

by software. Therefore, synergistic forces played a major role: new algorithms,

enhancements, and software packages were developed which enabled new interest

from practitioners, which in turn sparkled demand and additional interest from the

algorithm developers.

In light of this observation, I have grouped the 10 chapters of the first edition

into three categories. In the first group are those chapters that are of a theoreti-

cal nature (Chapters 1, 3, and 9). These have undergone small changes such as

correcting errors, improving the style, and adding references.

The second group includes a few chapters that describe basic algorithms or

concepts—for example, subspace iteration (Chapter 5) or the tools of spectral

xiii
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approximation (Chapter 4). These have been left unchanged or have received

small updates. Chapters 2 and 10 are also in this group which then consists of

Chapters 2, 4, 5, and 10.

Chapters in the third group (Chapters 6–8) underwent the biggest changes.

These describe algorithms and their implementations. Chapters 7 and 8 of the

first edition contained a mix of topics, some of which are less important today,

and so some reorganization was needed. I preferred to shorten or reorganize the

discussion of some of these topics rather than remove them altogether, because

most are not covered in other books. At the same time it was necessary to add a

few sections on topics of more recent interest. These include the implicit restart

techniques (included in Chapter 7) and the Jacobi-Davidson method (included as

part of Chapter 7 on preconditioning techniques). A section on AMLS (Auto-

matic Multi-Level Substructuring) which has had excellent success in Structural

Engineering has also been included with a goal to link it to other known methods.

Problems were left unchanged from the earlier edition, but the Notes and ref-

erences sections ending each chapter were systematically updated. Some notation

has also been altered from the previous edition to reflect more common usage.

For example, the term “null space” has been substituted for the less common term

“kernel.”

An on-line version of this book, along with a few resources such as tutorials

and MATLAB scripts, is posted on my web site; see

http://www.siam.org/books/cl66.

Finally, I am indebted to the National Science Foundation and to the Depart-

ment of Energy for their support of my research throughout the years.

Yousef Saad

Minneapolis, January 6, 2011

http://www.siam.org/books/cl66


Preface

Matrix eigenvalue problems arise in a large number of disciplines of sciences and

engineering. They constitute the basic tool used in designing buildings, bridges,

and turbines, that are resistent to vibrations. They allow to model queueing net-

works, and to analyze stability of electrical networks or fluid flow. They also allow

the scientist to understand local physical phenonema or to study bifurcation pat-

terns in dynamical systems. In fact the writing of this book was motivated mostly

by the second class of problems.

Several books dealing with numerical methods for solving eigenvalue prob-

lems involving symmetric (or Hermitian) matrices have been written and there

are a few software packages both public and commercial available. The book

by Parlett [148] is an excellent treatise of the problem. Despite a rather strong

demand by engineers and scientists there is little written on nonsymmetric prob-

lems and even less is available in terms of software. The 1965 book by Wilkinson

[223] still constitutes an important reference. Certainly, science has evolved since

the writing of Wilkinson’s book and so has the computational environment and

the demand for solving large matrix problems. Problems are becoming larger

and more complicated while at the same time computers are able to deliver ever

higher performances. This means in particular that methods that were deemed too

demanding yesterday are now in the realm of the achievable. I hope that this book

will be a small step in bridging the gap between the literature on what is avail-

able in the symmetric case and the nonsymmetric case. Both the Hermitian and

the non-Hermitian case are covered, although non-Hermitian problems are given

more emphasis.

This book attempts to achieve a good balance between theory and practice. I

should comment that the theory is especially important in the nonsymmetric case.

In essence what differentiates the Hermitian from the non-Hermitian eigenvalue

problem is that in the first case we can always manage to compute an approxi-

mation whereas there are nonsymmetric problems that can be arbitrarily difficult

to solve and can essentially make any algorithm fail. Stated more rigorously, the

eigenvalue of a Hermitian matrix is always well-conditioned whereas this is not

true for nonsymmetric matrices. On the practical side, I tried to give a general

view of algorithms and tools that have proved efficient. Many of the algorithms

described correspond to actual implementations of research software and have

been tested on realistic problems. I have tried to convey our experience from the

xv
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practice in using these techniques.

As a result of the partial emphasis on theory, there are a few chapters that

may be found hard to digest for readers inexperienced with linear algebra. These

are Chapter III and to some extent, a small part of Chapter IV. Fortunately, Chap-

ter III is basically independent of the rest of the book. The minimal background

needed to use the algorithmic part of the book, namely Chapters IV through VIII,

is calculus and linear algebra at the undergraduate level. The book has been used

twice to teach a special topics course; once in a Mathematics department and once

in a Computer Science department. In a quarter period representing roughly 12

weeks of 2.5 hours lecture per week, Chapter I, III, and IV, to VI have been cov-

ered without much difficulty. In a semester period, 18 weeks of 2.5 hours lecture

weekly, all chapters can be covered with various degrees of depth. Chapters II and

X need not be treated in class and can be given as remedial reading.

Finally, I would like to extend my appreciation to a number of people to

whom I am indebted. Françoise Chatelin, who was my thesis adviser, introduced

me to numerical methods for eigenvalue problems. Her influence on my way of

thinking is certainly reflected in this book. Beresford Parlett has been encouraging

throughout my career and has always been a real inspiration. Part of the motiva-

tion in getting this book completed, rather than ‘never finished’, is owed to L. E.

Scriven from the Chemical Engineering department and to many others in applied

sciences who expressed interest in my work. I am indebted to Roland Freund who

has read this manuscript with great care and has pointed out numerous mistakes.



Chapter 1

BACKGROUND IN MATRIX THEORY

AND LINEAR ALGEBRA

This chapter reviews basic matrix theory and introduces some of the elementary

notation used throughout the book. Matrices are objects that represent linear map-

pings between vector spaces. The notions that will be predominantly used in this

book are very intimately related to these linear mappings and it is possible to discuss

eigenvalues of linear operators without ever mentioning their matrix representations.

However, to the numerical analyst, or the engineer, any theory that would be de-

veloped in this manner would be insufficient in that it will not be of much help

in developing or understanding computational algorithms. The abstraction of linear

mappings on vector spaces does however provide very concise definitions and some

important theorems.

1.1 Matrices

When dealing with eigenvalues it is more convenient, if not more relevant, to

manipulate complex matrices rather than real matrices. A complex m× n matrix

A is an m× n array of complex numbers

aij , i = 1, . . . ,m, j = 1, . . . , n.

The set of all m × n matrices is a complex vector space denoted by C
m×n. The

main operations with matrices are the following:

• Addition: C = A+B, where A,B and C are matrices of size m× n and

cij = aij + bij ,

i = 1, 2, . . .m, j = 1, 2, . . . n.

• Multiplication by a scalar: C = αA, where cij = α aij .

• Multiplication by another matrix:

C = AB,

1



2 Chapter 1

where A ∈ C
m×n, B ∈ C

n×p, C ∈ C
m×p, and

cij =

n
∑

k=1

aikbkj .

A notation that is often used is that of column vectors and row vectors. The

column vector a.j is the vector consisting of the j-th column of A, i.e., a.j =
(aij)i=1,...,m. Similarly we will use the notation ai. to denote the i-th row of the

matrix A. For example, we may write that

A = (a.1, a.2, . . . , a.n) .

or

A =











a1.
a2.
.
.
am.











The transpose of a matrixA in C
m×n is a matrix C in C

n×m whose elements

are defined by cij = aji, i = 1, . . . , n, j = 1, . . . ,m. The transpose of a matrixA
is denoted by AT . It is more relevant in eigenvalue problems to use the transpose

conjugate matrix denoted by AH and defined by

AH = ĀT = AT

in which the bar denotes the (element-wise) complex conjugation.

Finally, we should recall that matrices are strongly related to linear mappings

between vector spaces of finite dimension. They are in fact representations of

these transformations with respect to two given bases; one for the initial vector

space and the other for the image vector space.

1.2 Square Matrices and Eigenvalues

A matrix belonging to C
n×n is said to be square. Some notions are only defined

for square matrices. A square matrix which is very important is the identity matrix

I = {δij}i,j=1,...,n

where δij is the Kronecker symbol. The identity matrix satisfies the equalityAI =
IA = A for every matrix A of size n. The inverse of a matrix, when it exists, is a

matrix C such that CA = AC = I . The inverse of A is denoted by A−1.

The determinant of a matrix may be defined in several ways. For simplicity

we adopt here the following recursive definition. The determinant of a 1×1 matrix

(a) is defined as the scalar a. Then the determinant of an n×n matrix is given by

det(A) =

n
∑

j=1

(−1)j+1a1jdet(A1j)
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where A1j is an (n − 1) × (n − 1) matrix obtained by deleting the 1-st row and

the j − th column of A. The determinant of a matrix determines whether or not

a matrix is singular since A is singular if and only if its determinant is zero. We

have the following simple properties:

• det(AB) = det(BA),

• det(AT ) = det(A),

• det(αA) = αndet(A),

• det(Ā) = det(A),

• det(I) = 1.

From the above definition of the determinant it can be shown by induction that

the function that maps a given complex value λ to the value pA(λ) = det(A−λI)
is a polynomial of degree n (Problem P-1.6). This is referred to as the character-

istic polynomial of the matrix A.

Definition 1.1 A complex scalar λ is called an eigenvalue of the square matrix

A if there exists a nonzero vector u of Cn such that Au = λu. The vector u is

called an eigenvector of A associated with λ. The set of all the eigenvalues of A
is referred to as the spectrum of A and is denoted by Λ(A).

An eigenvalue of A is a root of the characteristic polynomial. Indeed λ is an

eigenvalue of A iff det(A − λI) ≡ pA(λ) = 0. So there are at most n distinct

eigenvalues. The maximum modulus of the eigenvalues is called spectral radius

and is denoted by ρ(A):
ρ(A) = max

λ∈Λ(A)
|λ|.

The trace of a matrix is equal to the sum of all its diagonal elements,

tr(A) =

n
∑

i=1

aii.

It can be easily shown that this is also equal to the sum of its eigenvalues counted

with their multiplicities as roots of the characteristic polynomial.

Proposition 1.1 If λ is an eigenvalue of A then λ̄ is an eigenvalue of AH . An

eigenvector v of AH associated with the eigenvalue λ̄ is called left eigenvector of

A.

When a distinction is necessary, an eigenvector of A is often called a right eigen-

vector. Thus the eigenvalue λ and the right and left eigenvectors, u and v, satisfy

the relations

Au = λu , vHA = λvH

or, equivalently,

uHAH = λ̄uH , AHv = λ̄v .
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1.3 Types of Matrices

The properties of eigenvalues and eigenvectors of square matrices will sometimes

depend on special properties of the matrix A. For example, the eigenvalues or

eigenvectors of the following types of matrices will all have some special proper-

ties.

• Symmetric matrices: AT = A;

• Hermitian matrices: AH = A;

• Skew-symmetric matrices: AT = −A;

• Skew-Hermitian matrices: AH = −A;

• Normal matrices: AHA = AAH ;

• Nonnegative matrices: aij ≥ 0, i, j = 1, . . . , n (similar definition for

nonpositive, positive, and negative matrices);

• Unitary matrices: Q ∈ C
n×n and QHQ = I .

It is worth noting that a unitary matrix Q is a matrix whose inverse is its transpose

conjugate QH . Often, a matrix Q such that QHQ is diagonal (not necessarily

square) is called orthogonal.

1.3.1 Matrices with Special Srtuctures

Some matrices have particular structures that are often convenient for computa-

tional purposes and play important roles in numerical analysis. The following list

though incomplete, gives an idea of the most important special matrices arising in

applications and algorithms. They are mostly defined for square matrices.

• Diagonal matrices: aij = 0 for j 6= i. Notation for square diagonal

matrices:

A = diag (a11, a22, . . . , ann) .

• Upper triangular matrices: aij = 0 for i > j.

• Lower triangular matrices: aij = 0 for i < j.

• Upper bidiagonal matrices: aij = 0 for j 6= i and j 6= i+ 1.

• Lower bidiagonal matrices: aij = 0 for j 6= i and j 6= i− 1.

• Tridiagonal matrices: aij = 0 for any pair i, j such that |j − i| >1. Nota-

tion:

A = tridiag (ai,i−1, aii, ai,i+1) .
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• Banded matrices: there exist two integers ml and mu such that aij 6= 0
only if i − ml ≤ j ≤ i + mu. The number ml + mu + 1 is called the

bandwidth of A.

• Upper Hessenberg matrices: aij = 0 for any pair i, j such that i > j + 1.

One can define lower Hessenberg matrices similarly.

• Outer product matrices: A = uvH , where both u and v are vectors.

• Permutation matrices: the columns of A are a permutation of the columns

of the identity matrix.

• Block diagonal matrices: generalizes the diagonal matrix by replacing each

diagonal entry by a matrix. Notation:

A = diag (A11, A22, . . . , Ann) .

• Block tri-diagonal matrices: generalizes the tri-diagonal matrix by replac-

ing each nonzero entry by a square matrix. Notation:

A = tridiag (Ai,i−1, Aii, Ai,i+1) .

The above properties emphasize structure, i.e., positions of the nonzero ele-

ments with respect to the zeros, and assume that there are many zero elements or

that the matrix is of low rank. No such assumption is made for, say, orthogonal or

symmetric matrices.

1.3.2 Special Matrices

A number of matrices which appear in applications have even more special struc-

tures than the ones seen in the previous subsection. These are typically dense

matrices, but their entries depend on fewer parameters than n2.

Thus, Toeplitz matrices are matrices whose entries are constant along diago-

nals. A 5× 5 Toeplitz matrix will be as follows:

T =











t0 t1 t2 t3 t4
t−1 t0 t1 t2 t3
t−2 t−1 t0 t1 t2
t−3 t−2 t−1 t0 t1
t−4 t−3 t−2 t−1 t0











,

where t−4, t−3, · · · , t3, t4 are parameters. The entries of A are such that ai,i+k =
tk, a constant depending only on k, for k = −(m − 1),−(m − 2), · · · , 0, 1, 2,

· · · , n− 1. Indices (i, i+ k) outside the valid range of indices for the matrix are

ignored. Such matrices are determined by the m+ n− 1 values tk.
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Similarly, the entries of Hankel matrices are constant along anti-diagonals:

H =











h1 h2 h3 h4 h5
h2 h3 h4 h5 h6
h3 h4 h5 h6 h7
h4 h5 h6 h7 h8
h5 h6 h7 h8 h9











.

The entries of A are such that ai,k+1−i = hk, a constant which depends only on

k, for k = 1, 2, · · · ,m + n − 1. Again, indices (i, k + 1 − i) falling outside the

valid range of indices for A are ignored. Hankel matrices are determined by the

m+ n− 1 values hk.

A special case of Toplitz matrices is that of Circulant matrices which are

defined by n parameters η1, η2, · · · , ηn. In a circulant matrix, the entries in a row

are cyclically right-shifted to form next row as is shown in the following 5 × 5
example:

C =











η1 η2 η3 η4 η5
η5 η1 η2 η3 η4
η4 η5 η1 η2 η3
η3 η4 η5 η1 η2
η2 η3 η4 η5 η1











An important practical characteristic of these special matrices, is that fast

algorithms can often be devised for them. For example, one could hope that a

Toeplitz linear system can be solved faster than in the standard O(n3) operations

normally required, perhaps in order n2 operations. This is indeed the case, see

[77] for details.

Circulant matrices are strongly connected to the discrete Fourier transform.

The eigenvectors of a circulant matrix of a given size are the columns of the dis-

crete Fourier transform matrix of size n:

Fn = (fjk) with fjk = 1/
√
Ne−2jkπi/n, for 0 ≤ j, k < n.

More specifically, it can be shown that a circulant matrix C is of the form

C = Fndiag (Fnv)F
−1
n

where Fnv is the discrete Fourier transform of the vector v = [η1, η2, · · · , ηn]T
(the first column of C). For this reason matrix-vector products with circulant

matrices can be performed in O(n log2 n) operations via Fast Fourier Transforms

(FFTs) instead of the standard O(n2) operations.

1.4 Vector Inner Products and Norms

We define the Hermitian inner product of the two vectors x = (xi)i=1,...,m and

y = (yi)i=1,...,m of Cm as the complex number

(x, y) =

m
∑

i=1

xiȳi, (1.1)
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which is often rewritten in matrix notation as

(x, y) = yHx.

A vector norm on C
m is a real-valued function on C

m, which satisfies the

following three conditions,

‖x‖ ≥ 0 ∀ x, and ‖x‖ = 0 iff x = 0;

‖αx‖ = |α|‖x‖, ∀ x ∈ C
m, ∀α ∈ C ;

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ C
m .

Associated with the inner product (1.1) is the Euclidean norm of a complex

vector defined by

‖x‖2 = (x, x)1/2 .

A fundamental additional property in matrix computations is the simple relation

(Ax, y) = (x,AHy) ∀x ∈ C
n, y ∈ C

m (1.2)

the proof of which is straightforward. The following proposition is a consequence

of the above equality.

Proposition 1.2 Unitary matrices preserve the Hermitian inner product, i.e.,

(Qx,Qy) = (x, y)

for any unitary matrix Q.

Proof. Indeed (Qx,Qy) = (x,QHQy) = (x, y).

In particular a unitary matrix preserves the 2-norm metric, i.e., it is isometric with

respect to the 2-norm.

The most commonly used vector norms in numerical linear algebra are special

cases of the Hölder norms defined as follows for p ≥ 1

‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

. (1.3)

It can be shown that these do indeed define norms for p ≥ 1. Note that the limit of

‖x‖p when p tends to infinity exists and is equal to the maximum modulus of the

xi’s. This defines a norm denoted by ‖.‖∞. The cases p = 1, p = 2, and p = ∞
lead to the most important norms in practice,

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
‖x‖2 =

[

|x1|2 + |x2|2 + · · ·+ |xn|2
]1/2

‖x‖∞ = max
i=1,..,n

|xi| .
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A very important relation satisfied by the 2-norm is the so-called Cauchy-

Schwarz inequality:

|(x, y)| ≤ ‖x‖2‖y‖2.
This is a special case of the Hölder inequality:

|(x, y)| ≤ ‖x‖p‖y‖q,

for any pair p, q such that 1/p+ 1/q = 1 and p ≥ 1.

1.5 Matrix Norms

For a general matrix A in C
m×n we define a special set of norms of matrices as

follows

‖A‖pq = max
x∈Cn, x 6=0

‖Ax‖p
‖x‖q

. (1.4)

We say that the norms ‖.‖pq are induced by the two norms ‖.‖p and ‖.‖q . These

satisfy the usual properties of norms, i.e.,

‖A‖ ≥ 0 ∀A ∈ C
m×n and ‖A‖ = 0 iff A = 0 ;

‖αA‖ = |α|‖A‖, ∀A ∈ C
m×n, ∀α ∈ C ;

‖A+B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ C
m×n .

Again the most important cases are the ones associated with the cases p, q =
1, 2,∞. The case q = p is of particular interest and the associated norm ‖.‖pq is

simply denoted by ‖.‖p.

A fundamental property of these norms is that

‖AB‖p ≤ ‖A‖p‖B‖p,

which is an immediate consequence of the definition (1.4). Matrix norms that

satisfy the above property are sometimes called consistent. As a result of the

above inequality, for example, we have that for any square matrix A, and for any

non-negative integer k,

‖Ak‖p ≤ ‖A‖kp ,
which implies in particular that the matrix Ak converges to zero as k goes to

infinity, if any of its p-norms is less than 1.

The Frobenius norm of a matrix is defined by

‖A‖F =





n
∑

j=1

m
∑

i=1

|aij |2




1/2

. (1.5)

This can be viewed as the 2-norm of the column (or row) vector in C
m.n consisting

of all the columns (resp. rows) of A listed from 1 to n (resp. 1 to m). It can easily

be shown that this norm is also consistent, in spite of the fact that is not induced
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by a pair of vector norms, i.e., it is not derived from a formula of the form (1.4),

see Problem P-1.3. However, it does not satisfy some of the other properties of

the p-norms. For example, the Frobenius norm of the identity matrix is not unity.

To avoid these difficulties, we will only use the term matrix norm for a norm that

is induced by two norms as in the definition (1.4). Thus, we will not consider the

Frobenius norm to be a proper matrix norm, according to our conventions, even

though it is consistent.

It can be shown that the norms of matrices defined above satisfy the following

equalities which provide alternative definitions that are easier to use in practice.

‖A‖1 = max
j=1,..,n

m
∑

i=1

|aij | ; (1.6)

‖A‖∞ = max
i=1,..,m

n
∑

j=1

|aij | ; (1.7)

‖A‖2 =
[

ρ(AHA)
]1/2

=
[

ρ(AAH)
]1/2

; (1.8)

‖A‖F =
[

tr(AHA)
]1/2

=
[

tr(AAH)
]1/2

. (1.9)

It will be shown in Section 5 that the eigenvalues of AHA are nonnegative.

Their square roots are called singular values of A and are denoted by σi, i =
1, . . . , n. Thus, relation (1.8) shows that ‖A‖2 is equal to σ1, the largest singular

value of A.

Example 1.1. From the above properties, it is clear that the spectral radius

ρ(A) is equal to the 2-norm of a matrix when the matrix is Hermitian. How-

ever, it is not a matrix norm in general. For example, the first property of norms is

not satisfied, since for

A =

(

0 1
0 0

)

we have ρ(A) = 0 while A 6= 0. The triangle inequality is also not satisfied for

the pair A,B where A is defined above and B = AT . Indeed,

ρ(A+B) = 1 while ρ(A) + ρ(B) = 0.

1.6 Subspaces

A subspace of Cm is a subset of Cm that is also a complex vector space. The

set of all linear combinations of a set of vectors G = {a1, a2, ..., aq} of Cm is a

vector subspace called the linear span of G,

span{G} = span {a1, a2, . . . , aq}

=

{

z ∈ C
m | z =

q
∑

i=1

αiai ; {α}i=1,...,q ∈ C
q

}

.
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If the ai’s are linearly independent, then each vector of span{G} admits a unique

expression as a linear combination of the ai’s. The set G is then called a basis of

the subspace span{G}.
Given two vector subspaces S1 and S2, their sum S is a subspace defined as

the set of all vectors that are equal to the sum of a vector of S1 and a vector of S2.

The intersection of two subspaces is also a subspace. If the intersection of S1 and

S2 is reduced to {0} then the sum of S1 and S2 is called their direct sum and is

denoted by S = S1

⊕

S2. When S is equal to C
m then every vector x of Cm can

be decomposed in a unique way as the sum of an element x1 of S1 and an element

x2 of S2. In this situation, we clearly have dim (S1) + dim (S2) = m. The

transformation P that maps x into x1 is a linear transformation that is idempotent

(P 2 = P ). It is called a projector, onto S1 along S2.

Two important subspaces that are associated with a matrix A of Cm×n are its

range, defined by

Ran(A) = {Ax | x ∈ C
n}, (1.10)

and its null space or kernel:

Null(A) = {x ∈ C
n | Ax = 0 }.

The range of A, a subspace of C
m, is clearly equal to the linear span of its

columns. The column rank of a matrix is equal to the dimension of the range

of A, i.e., to the number of linearly independent columns. An important property

of matrices is that the column rank of a matrix is equal to its row rank, the number

of linearly independent rows of A. This common number is the rank of A and it

clearly satisfies the inequality

rank(A) ≤ min{m,n}. (1.11)

A matrix in C
m×n is of full rank when its rank is equal to the smallest of n and

m, i.e., when equality is achieved in (1.11).

A fundamental result of linear algebra is stated by the following relation

C
m = Ran(A)⊕Null(AT ) . (1.12)

The same result applied to the transpose of A yields:

C
n = Ran(AT )⊕Null(A). (1.13)

Taking the dimensions of both sides and recalling that dim (S1 ⊕ S2) equals

dim (S1)+dim (S2) shows that dim(Ran(AT ))+dim(Null(A)) = n. However,

since

dim (Ran(AT )) = dim (Ran(A)) = rank(A)

then (1.13) leads to the following equality

rank(A) + dim(Null(A)) = n. (1.14)
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The dimension of the null-space of A is often called the nullity or co-rank of A.

The above result is therefore often known as the Rank+Nullity theorem which

states that the rank and nullity of a matrix add up to its number of columns.

A subspace S is said to be invariant under a (square) matrix A whenever

AS ⊆ S. In particular, for any eigenvalue λ of A the subspace Null(A − λI)
is invariant under A. This subspace, which consists of all the eigenvectors of A
associated with λ (in addition to the zero-vector), is called the eigenspace of A
associated with λ.

1.7 Orthogonal Vectors and Subspaces

A set of vectors G = {a1, a2, . . . , ap} is said to be orthogonal if

(ai, aj) = 0 when i 6= j

It is orthonormal if in addition every vector of G has a 2-norm equal to unity. Ev-

ery subspace admits an orthonormal basis which is obtained by taking any basis

and “orthonormalizing” it. The orthonormalization can be achieved by an algo-

rithm referred to as the Gram-Schmidt orthogonalization process which we now

describe. Given a set of linearly independent vectors {x1, x2, . . . , xp}, we first

normalize the vector x1, i.e., we divide it by its 2-norm, to obtain the scaled vec-

tor q1. Then x2 is orthogonalized against the vector q1 by subtracting from x2 a

multiple of q1 to make the resulting vector orthogonal to q1, i.e.,

x2 ← x2 − (x2, q1)q1.

The resulting vector is again normalized to yield the second vector q2. The i-th

step of the Gram-Schmidt process consists of orthogonalizing the vector xi against

all previous vectors qj .

ALGORITHM 1.1 Gram-Schmidt

1. Start: Compute r11 := ‖x1‖2. If r11 = 0 stop, else q1 := x1/r11.

2. Loop: For j = 2, . . . , p do:

(a) Compute rij := (xj , qi) for i = 1, 2, . . . , j − 1,

(b) q̂ := xj −
j−1
∑

i=1

rijqi ,

(c) rjj := ‖q̂‖2 ,

(d) If rjj = 0 then stop, else qj := q̂/rjj .

It is easy to prove that the above algorithm will not break down, i.e., all r steps

will be completed, if and only if the family of vectors x1, x2, . . . , xp is linearly
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independent. From 2-(b) and 2-(c) it is clear that at every step of the algorithm the

following relation holds:

xj =

j
∑

i=1

rijqi .

If we let X = [x1, x2, . . . , xp], Q = [q1, q2, . . . , qp], and if R denotes the p × p
upper-triangular matrix whose nonzero elements are the rij defined in the algo-

rithm, then the above relation can be written as

X = QR . (1.15)

This is called the QR decomposition of the n× p matrix X . Thus, from what was

said above the QR decomposition of a matrix exists whenever the column vectors

of X form a linearly independent set of vectors.

The above algorithm is the standard Gram-Schmidt process. There are other

formulations of the same algorithm which are mathematically equivalent but have

better numerical properties. The Modified Gram-Schmidt algorithm (MGSA) is

one such alternative.

ALGORITHM 1.2 Modified Gram-Schmidt

1. Start: define r11 := ‖x1‖2. If r11 = 0 stop, else q1 := x1/r11.

2. Loop: For j = 2, . . . , p do:

(a) Define q̂ := xj ,

(b) For i = 1, . . . , j − 1, do

{

rij := (q̂, qi)
q̂ := q̂ − rijqi

(c) Compute rjj := ‖q̂‖2,
(d) If rjj = 0 then stop, else qj := q̂/rjj .

A vector that is orthogonal to all the vectors of a subspace S is said to be

orthogonal to that subspace. The set of all the vectors that are orthogonal to S is a

vector subspace called the orthogonal complement of S and denoted by S⊥. The

space C
n is the direct sum of S and its orthogonal complement. The projector

onto S along its orthogonal complement is called an orthogonal projector onto S.

If V = [v1, v2, . . . , vp] is an orthonormal matrix then V HV = I, i.e., V is or-

thogonal. However, V V H is not the identity matrix but represents the orthogonal

projector onto span{V }, see Section 1 of Chapter 3 for details.

1.8 Canonical Forms of Matrices

In this section we will be concerned with the reduction of square matrices into

matrices that have simpler forms, such as diagonal or bidiagonal, or triangular. By

reduction we mean a transformation that preserves the eigenvalues of a matrix.
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Definition 1.2 Two matrices A and B are said to be similar if there is a nonsin-

gular matrix X such that

A = XBX−1

The mapping B → A is called a similarity transformation.

It is clear that similarity is an equivalence relation. Similarity transformations

preserve the eigenvalues of matrix. An eigenvector uB of B is transformed into

the eigenvector uA = XuB of A. In effect, a similarity transformation amounts

to representing the matrix B in a different basis.

We now need to define some terminology.

1. An eigenvalue λ of A is said to have algebraic multiplicity µ if it is a root

of multiplicity µ of the characteristic polynomial.

2. If an eigenvalue is of algebraic multiplicity one it is said to be simple. A

nonsimple eigenvalue is said to be multiple.

3. An eigenvalue λ of A has geometric multiplicity γ if the maximum num-

ber of independent eigenvectors associated with it is γ. In other words the

geometric multiplicity γ is the dimension of the eigenspace Null (A− λI).
4. A matrix is said to be derogatory if the geometric multiplicity of at least

one of its eigenvalues is larger than one.

5. An eigenvalue is said to be semi-simple if its algebraic multiplicity is equal

to its geometric multiplicity. An eigenvalue that is not semi-simple is called

defective .

We will often denote by λ1, λ2, . . . , λp, (p ≤ n), all the distinct eigenvalues

of A. It is a simple exercise to show that the characteristic polynomials of two

similar matrices are identical, see Exercise P-1.7. Therefore, the eigenvalues of

two similar matrices are equal and so are their algebraic multiplicities. Moreover

if v is an eigenvector of B then Xv is an eigenvector of A and, conversely, if y is

an eigenvector of A then X−1y is an eigenvector of B. As a result the number of

independent eigenvectors associated with a given eigenvalue is the same for two

similar matrices, i.e., their geometric multiplicity is also the same.

The possible desired forms are numerous but they all have the common goal

of attempting to simplify the original eigenvalue problem. Here are some possi-

bilities with comments as to their usefulness.

• Diagonal: the simplest and certainly most desirable choice but it is not

always achievable.

• Jordan: this is an upper bidiagonal matrix with ones or zeroes on the super

diagonal. Always possible but not numerically trustworthy.

• Upper triangular: in practice this is the most reasonable compromise as the

similarity from the original matrix to a triangular form can be chosen to be

isometric and therefore the transformation can be achieved via a sequence

of elementary unitary transformations which are numerically stable.
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1.8.1 Reduction to the Diagonal Form

The simplest form in which a matrix can be reduced is undoubtedly the diagonal

form but this reduction is, unfortunately, not always possible. A matrix that can

be reduced to the diagonal form is called diagonalizable. The following theorem

characterizes such matrices.

Theorem 1.1 A matrix of dimension n is diagonalizable if and only if it has n
linearly independent eigenvectors.

Proof. A matrixA is diagonalizable if and only if there exists a nonsingular matrix

X and a diagonal matrix D such that A = XDX−1 or equivalently AX = XD,
where D is a diagonal matrix. This is equivalent to saying that there exist n
linearly independent vectors – the n column-vectors ofX – such thatAxi = dixi,
i.e., each of these column-vectors is an eigenvector of A.

A matrix that is diagonalizable has only semi-simple eigenvalues. Conversely, if

all the eigenvalues of a matrix are semi-simple then there exist n eigenvectors of

the matrix A. It can be easily shown that these eigenvectors are linearly indepen-

dent, see Exercise P-1.1. As a result we have the following proposition.

Proposition 1.3 A matrix is diagonalizable if and only if all its eigenvalues are

semi-simple.

Since every simple eigenvalue is semi-simple, an immediate corollary of the

above result is that when A has n distinct eigenvalues then it is diagonalizable.

1.8.2 The Jordan Canonical Form

From the theoretical viewpoint, one of the most important canonical forms of

matrices is the well-known Jordan form. In what follows, the main constructive

steps that lead to the Jordan canonical decomposition are outlined. For details, the

reader is referred to a standard book on matrix theory or linear algebra.

• For every integer l and each eigenvalue λi it is true that

Null(A− λiI)l+1 ⊃ Null(A− λiI)l .

• Because we are in a finite dimensional space the above property implies that

there is a first integer li such that

Null(A− λiI)li+1 = Null(A− λiI)li ,

and in fact Null(A − λiI)l = Null(A − λiI)li for all l ≥ li. The integer li is

called the index of λi.

• The subspace Mi = Null(A− λiI)li is invariant under A. Moreover, the space

C
n is the direct sum of the subspaces Mi, i = 1, 2, . . . , p. Let mi = dim(Mi).
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• In each invariant subspace Mi there are γi independent eigenvectors, i.e., ele-

ments of Null(A − λiI), with γi ≤ mi. It turns out that this set of vectors can

be completed to form a basis of Mi by adding to it elements of Null(A − λiI)2,
then elements of Null(A − λiI)3, and so on. These elements are generated by

starting separately from each eigenvector u, i.e., an element of Null(A − λiI),
and then seeking an element that satisfies (A−λiI)z1 = u. Then, more generally

we construct zi+1 by solving the equation (A−λiI)zi+1 = zi when possible. The

vector zi belongs to Null(A−λiI)i+1 and is called a principal vector (sometimes

generalized eigenvector). The process is continued until no more principal vectors

are found. There are at most li principal vectors for each of the γi eigenvectors.

• The final step is to represent the original matrixA with respect to the basis made

up of the p bases of the invariant subspaces Mi defined in the previous step.

The matrix representation J of A in the new basis described above has the

block diagonal structure,

X−1AX = J =



















J1
J2

. . .

Ji
. . .

Jp



















where each Ji corresponds to the subspace Mi associated with the eigenvalue λi.
It is of size mi and it has itself the following structure,

Ji =









Ji1
Ji2

. . .

Jiγi









with Jik =









λi 1
. . .

. . .

λi 1
λi









.

Each of the blocks Jik corresponds to a different eigenvector associated with the

eigenvalue λi. Its size is equal to the number of principal vectors found for the

eigenvector to which the block is associated and does not exceed li.

Theorem 1.2 Any matrix A can be reduced to a block diagonal matrix consisting

of p diagonal blocks, each associated with a distinct eigenvalue. Each diagonal

block number i has itself a block diagonal structure consisting of γi subblocks,

where γi is the geometric multiplicity of the eigenvalue λi. Each of the subblocks,

referred to as a Jordan block, is an upper bidiagonal matrix of size not exceed-

ing li, with the constant λi on the diagonal and the constant one on the super

diagonal.

We refer to the i-th diagonal block, i = 1, . . . , p as the i-th Jordan submatrix

(sometimes “Jordan Box”). The Jordan submatrix number i starts in column ji ≡
m1 + m2 + · · · + mi−1 + 1. From the above form it is not difficult to see that
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Mi = Null(A− λiI)li is merely the span of the columns ji, ji + 1, . . . , ji+1 − 1
of the matrix X . These vectors are all the eigenvectors and the principal vectors

associated with the eigenvalue λi.
Since A and J are similar matrices their characteristic polynomials are iden-

tical. Hence, it is clear that the algebraic multiplicity of an eigenvalue λi is equal

to the dimension of Mi:

µi = mi ≡ dim(Mi) .

As a result,

µi ≥ γi.
Because C

n is the direct sum of the subspaces Mi, i = 1, . . . , p each vector

x can be written in a unique way as

x = x1 + x2 + · · ·+ xi + · · ·+ xp,

where xi is a member of the subspace Mi. The linear transformation defined by

Pi : x→ xi

is a projector onto Mi along the direct sum of the subspaces Mj , j 6= i. The

family of projectors Pi, i = 1, . . . , p satisfies the following properties,

Ran(Pi) =Mi (1.16)

PiPj = PjPi = 0, if i 6= j (1.17)
p
∑

i=1

Pi = I (1.18)

In fact it is easy to see that the above three properties define a decomposition of

C
n into a direct sum of the images of the projectors Pi in a unique way. More pre-

cisely, any family of projectors that satisfies the above three properties is uniquely

determined and is associated with the decomposition of Cn into the direct sum of

the images of the Pi ’s.

It is helpful for the understanding of the Jordan canonical form to determine

the matrix representation of the projectors Pi. Consider the matrix Ĵi which is

obtained from the Jordan matrix by replacing all the diagonal submatrices by zero

blocks except the ith submatrix which is replaced by the identity matrix.

Ĵi =











0
0

I
0

0











In other words if each i-th Jordan submatrix starts at the column number ji, then

the columns of Ĵi will be zero columns except columns ji, . . . , ji+1−1 which are

the corresponding columns of the identity matrix. Let P̂i = XĴiX
−1. Then it is

not difficult to verify that P̂i is a projector and that,
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1. The range of P̂i is the span of columns ji, . . . , ji+1 − 1 of the matrix X .

This is the same subspace as Mi.

2. P̂iP̂j = P̂jP̂i = 0 whenever i 6= j

3. P̂1 + P̂2 + · · ·+ P̂p = I

According to our observation concerning the uniqueness of a family of projectors

that satisfy (1.16) - (1.18) this implies that

P̂i = Pi , i = 1, . . . , p

Example 1.2. Let us assume that the eigenvalue λi is simple. Then,

Pi = Xeie
H
i X

−1 ≡ uiwH
i ,

in which we have defined ui = Xei and wi = X−Hei. It is easy to show that

ui and wi are right and left eigenvectors, respectively, associated with λi and

normalized so that wH
i ui = 1.

Consider now the matrix D̂i obtained from the Jordan form of A by replac-

ing each Jordan submatrix by a zero matrix except the i-th submatrix which is

obtained by zeroing its diagonal elements, i.e.,

D̂i =





















0
0

. . .

Ji − λiI
. . .

0





















Define Di = XD̂iX
−1. Then it is a simple exercise to show by means of the

explicit expression for P̂i, that

Di = (A− λiI)Pi. (1.19)

Moreover, Dli
i = 0, i.e., Di is a nilpotent matrix of index li. We are now ready

to state the following important theorem which can be viewed as an alternative

mathematical formulation of Theorem 1.2 on Jordan forms.

Theorem 1.3 Every square matrix A admits the decomposition

A =

p
∑

i=1

(λiPi +Di) (1.20)

where the family of projectors {Pi}i=1,...,p satisfies the conditions (1.16), (1.17),

and (1.18), and where Di = (A− λiI)Pi is a nilpotent operator of index li.
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Proof. From (1.19), we have

APi = λiPi +Di i = 1, 2, . . . , p

Summing up the above equalities for i = 1, 2, . . . , p we get

A

p
∑

i=1

Pi =

p
∑

i=1

(λiPi +Di)

The proof follows by substituting (1.18) into the left-hand-side.

The projector Pi is called the spectral projector associated with the eigen-

value λi. The linear operator Di is called the nilpotent associated with λi. The

decomposition (1.20) is referred to as the spectral decomposition ofA. Additional

properties that are easy to prove from the various expressions of Pi and Di are the

following

PiDj = DjPi = δijPi (1.21)

APi = PiA = PiAPi = λiPi +Di (1.22)

AkPi = PiA
k = PiA

kPi =

Pi(λiI +Di)
k = (λiI +Di)

kPi (1.23)

APi = [xji , . . . , xji+1−1]Bi[yji , . . . , yji+1−1]
H (1.24)

where Bi is the i-th Jordan submatrix and where the columns yj are the columns

of the matrix X−H .

Corollary 1.1 For any matrix norm ‖.‖, the following relation holds

lim
k→∞

‖Ak‖1/k = ρ(A) . (1.25)

Proof. The proof of this corollary is the subject of exercise P-1.8.

Another way of stating the above corollary is that there is a sequence ǫk such that

‖Ak‖ = (ρ(A) + ǫk)
k

where limk→∞ ǫk = 0.

1.8.3 The Schur Canonical Form

We will now show that any matrix is unitarily similar to an upper-triangular ma-

trix. The only result needed to prove the following theorem is that any vector of

2-norm one can be completed by n− 1 additional vectors to form an orthonormal

basis of Cn.

Theorem 1.4 For any given matrix A there exists a unitary matrix Q such that

QHAQ = R is upper-triangular.
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Proof. The proof is by induction over the dimension n. The result is trivial for

n = 1. Let us assume that it is true for n− 1 and consider any matrix A of size n.

The matrix admits at least one eigenvector u that is associated with an eigenvalue

λ. We assume without loss of generality that ‖u‖2 = 1. We can complete the

vector u into an orthonormal set, i.e., we can find an n × (n − 1) matrix V such

that the n × n matrix U = [u, V ] is unitary. Then we have AU = [λu,AV ] and

hence,

UHAU =

[

uH

V H

]

[λu,AV ] =

(

λ uHAV
0 V HAV

)

(1.26)

We now use our induction hypothesis for the (n−1)×(n−1) matrixB = V HAV :

there exists an (n − 1) × (n − 1) unitary matrix Q1 such that QH
1 BQ1 = R1 is

upper-triangular. Let us define the n× n matrix

Q̂1 =

(

1 0
0 Q1

)

and multiply both members of (1.26) by Q̂H
1 from the left and Q̂1 from the right.

The resulting matrix is clearly upper triangular and this shows that the result is

true for A, with Q = Q̂1U which is a unitary n× n matrix.

A simpler proof that uses the Jordan canonical form and the QR decomposition

is the subject of Exercise P-1.5. Since the matrix R is triangular and similar to

A, its diagonal elements are equal to the eigenvalues of A ordered in a certain

manner. In fact it is easy to extend the proof of the theorem to show that we can

obtain this factorization with any order we want for the eigenvalues. One might

ask the question as to which order might be best numerically but the answer to

the question goes beyond the scope of this book. Despite its simplicity, the above

theorem has far reaching consequences some of which will be examined in the

next section.

It is important to note that for any k ≤ n the subspace spanned by the first k
columns of Q is invariant under A. This is because from the Schur decomposition

we have, for 1 ≤ j ≤ k,

Aqj =

i=j
∑

i=1

rijqi .

In fact, letting Qk = [q1, q2, . . . , qk] and Rk be the principal leading submatrix of

dimension k of R, the above relation can be rewritten as

AQk = QkRk

which we refer to as the partial Schur decomposition of A. The simplest case of

this decomposition is when k = 1, in which case q1 is an eigenvector. The vectors

qi are usually referred to as Schur vectors. Note that the Schur vectors are not

unique and in fact they depend on the order chosen for the eigenvalues.

A slight variation on the Schur canonical form is the quasi Schur form, also

referred to as the real Schur form. Here, diagonal blocks of size 2× 2 are allowed
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in the upper triangular matrixR. The reason for this is to avoid complex arithmetic

when the original matrix is real. A 2 × 2 block is associated with each complex

conjugate pair of eigenvalues of the matrix.

Example 1.3. Consider the 3× 3 matrix

A =





1 10 0
−1 3 1
−1 0 1





The matrix A has the pair of complex conjugate eigenvalues

2.4069..± i× 3.2110..

and the real eigenvalue 0.1863... The standard (complex) Schur form is given by

the pair of matrices

V =





0.3381− 0.8462i 0.3572− 0.1071i 0.1749
0.3193− 0.0105i −0.2263− 0.6786i −0.6214
0.1824 + 0.1852i −0.2659− 0.5277i 0.7637





and

S =





2.4069 + 3.2110i 4.6073− 4.7030i −2.3418− 5.2330i
0 2.4069− 3.2110i −2.0251− 1.2016i
0 0 0.1863



 .

It is possible to avoid complex arithmetic by using the quasi-Schur form which

consists of the pair of matrices

U =





−0.9768 0.1236 0.1749
−0.0121 0.7834 −0.6214
0.2138 0.6091 0.7637





and

R =





1.3129 −7.7033 6.0407
1.4938 3.5008 −1.3870

0 0 0.1863





We would like to conclude this section by pointing out that the Schur and the

quasi Schur forms of a given matrix are in no way unique. In addition to the de-

pendence on the ordering of the eigenvalues, any column of Q can be multiplied

by a complex sign eiθ and a new corresponding R can be found. For the quasi

Schur form there are infinitely many ways of selecting the 2 × 2 blocks, corre-

sponding to applying arbitrary rotations to the columns ofQ associated with these

blocks.
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1.9 Normal and Hermitian Matrices

In this section we look at the specific properties of normal matrices and Hermitian

matrices regarding among other things their spectra and some important optimal-

ity properties of their eigenvalues. The most common normal matrices that arise in

practice are Hermitian or skew-Hermitian. In fact, symmetric real matrices form

a large part of the matrices that arise in practical eigenvalue problems.

1.9.1 Normal Matrices

By definition a matrix is said to be normal if it satisfies the relation

AHA = AAH . (1.27)

An immediate property of normal matrices is stated in the following proposition.

Proposition 1.4 If a normal matrix is triangular then it is necessarily a diagonal

matrix.

Proof. Assume for example that A is upper-triangular and normal and let us com-

pare the first diagonal element of the left hand side matrix of (1.27) with the cor-

responding element of the matrix on the right hand side. We obtain that

|a11|2 =

n
∑

j=1

|a1j |2,

which shows that the elements of the first row are zeros except for the diagonal

one. The same argument can now be used for the second row, the third row, and

so on to the last row, to show that aij = 0 for i 6= j.

As a consequence of this we have the following important result.

Theorem 1.5 A matrix is normal if and only if it is unitarily similar to a diagonal

matrix.

Proof. It is straightforward to verify that a matrix which is unitarily similar to a

diagonal matrix is normal. Let us now show that any normal matrix A is unitarily

similar to a diagonal matrix. Let A = QRQH be the Schur canonical form of A
where we recall that Q is unitary and R is upper-triangular. By the normality of

A we have

QRHQHQRQH = QRQHQRHQH

or,

QRHRQH = QRRHQH

Upon multiplication byQH on the left andQ on the right this leads to the equality

RHR = RRH which means that R is normal, and according to the previous

proposition this is only possible if R is diagonal.
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Thus, any normal matrix is diagonalizable and admits an orthonormal basis of

eigenvectors, namely the column vectors of Q.

Clearly, Hermitian matrices are just a particular case of normal matrices.

Since a normal matrix satisfies the relation A = QDQH , with D diagonal and

Q unitary, the eigenvalues of A are the diagonal entries of D. Therefore, if these

entries are real it is clear that we will have AH = A. This is restated in the

following corollary.

Corollary 1.2 A normal matrix whose eigenvalues are real is Hermitian.

As will be seen shortly the converse is also true, in that a Hermitian matrix has

real eigenvalues.

An eigenvalue λ of any matrix satisfies the relation

λ =
(Au, u)

(u, u)

where u is an associated eigenvector. More generally one might consider the

complex scalars,

µ(x) =
(Ax, x)

(x, x)
(1.28)

defined for any nonzero vector in C
n. These ratios are referred to as Rayleigh

quotients and are important both from theoretical and practical purposes. The set

of all possible Rayleigh quotients as x runs over Cn is called the field of values of

A. This set is clearly bounded since each |µ(x)| is bounded by the the 2-norm of

A, i.e., |µ(x)| ≤ ‖A‖2 for all x.

If a matrix is normal then any vector x in C
n can be expressed as

n
∑

i=1

ξiqi

where the vectors qi form an orthogonal basis of eigenvectors, and the expression

for µ(x) becomes,

µ(x) =
(Ax, x)

(x, x)
=

∑n
k=1 λk|ξk|2
∑n

k=1 |ξk|2
≡

n
∑

k=1

βkλk (1.29)

where

0 ≤ βi =
|ξi|2

∑n
k=1 |ξk|2

≤ 1 , and

n
∑

i=1

βi = 1

From a well-known characterization of convex hulls due to Hausdorff, (Haus-

dorff’s convex hull theorem) this means that the set of all possible Rayleigh quo-

tients as x runs over all of Cn is equal to the convex hull of the λi’s. This leads to

the following theorem.

Theorem 1.6 The field of values of a normal matrix is equal to the convex hull of

its spectrum.
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The question that arises next is whether or not this is also true for non-normal

matrices and the answer is no, i.e., the convex hull of the eigenvalues and the field

of values of a non-normal matrix are different in general, see Exercise P-1.10 for

an example. As a generic example, one can take any nonsymmetric real matrix

that has real eigenvalues only; its field of values will contain imaginary values.

It has been shown (Hausdorff) that the field of values of a matrix is a convex

set. Since the eigenvalues are members of the field of values, their convex hull is

contained in the field of values. This is summarized in the following proposition.

Proposition 1.5 The field of values of an arbitrary matrix is a convex set which

contains the convex hull of its spectrum. It is equal to the convex hull of the

spectrum when the matrix in normal.

1.9.2 Hermitian Matrices

A first and important result on Hermitian matrices is the following.

Theorem 1.7 The eigenvalues of a Hermitian matrix are real, i.e., Λ(A) ⊂ R.

Proof. Let λ be an eigenvalue of A and u an associated eigenvector or 2-norm

unity. Then

λ = (Au, u) = (u,Au) = (Au, u) = λ

Moreover, it is not difficult to see that if, in addition, the matrix is real then the

eigenvectors can be chosen to be real, see Exercise P-1.16. Since a Hermitian ma-

trix is normal an immediate consequence of Theorem 1.5 is the following result.

Theorem 1.8 Any Hermitian matrix is unitarily similar to a real diagonal matrix.

In particular a Hermitian matrix admits a set of orthonormal eigenvectors that

form a basis of Cn.

In the proof of Theorem 1.6 we used the fact that the inner products (Au, u)
are real. More generally it is clear that any Hermitian matrix is such that (Ax, x)
is real for any vector x ∈ C

n. It turns out that the converse is also true, i.e., it

can be shown that if (Az, z) is real for all vectors z in C
n then the matrix A is

Hermitian, see Problem P-1.14.

Eigenvalues of Hermitian matrices can be characterized by optimality prop-

erties of the Rayleigh quotients (1.28). The best known of these is the Min-Max

principle. Let us order all the eigenvalues of A in descending order:

λ1 ≥ λ2 . . . ≥ λn.

Here the eigenvalues are not necessarily distinct and they are repeated, each ac-

cording to its multiplicity. In what follows, we denote by S a generic subspace of

C
n. Then we have the following theorem.
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Theorem 1.9 (Min-Max theorem) The eigenvalues of a Hermitian matrix A are

characterized by the relation

λk = min
S, dim(S)=n−k+1

max
x∈S,x 6=0

(Ax, x)

(x, x)
(1.30)

Proof. Let {qi}i=1,...,n be an orthonormal basis of Cn consisting of eigenvectors

of A associated with λ1, . . . , λn respectively. Let Sk be the subspace spanned by

the first k of these vectors and denote by µ(S) the maximum of (Ax, x)/(x, x)
over all nonzero vectors of a subspace S. Since the dimension of Sk is k, a well-

known theorem of linear algebra shows that its intersection with any subspace S
of dimension n−k+1 is not reduced to {0}, i.e., there is vector x in S

⋂

Sk. For

this x =
∑k

i=1 ξiqi we have

(Ax, x)

(x, x)
=

∑k
i=1 λi|ξi|2
∑k

i=1 |ξi|2
≥ λk

so that µ(S) ≥ λk .

Consider on the other hand the particular subspace S0 of dimension n−k+1
which is spanned by qk, . . . , qn. For each vector x in this subspace we have

(Ax, x)

(x, x)
=

∑n
i=k λi|ξi|2
∑n

i=k |ξi|2
≤ λk

so that µ(S0) ≤ λk. In other words, as S runs over all n − k + 1-dimensional

subspaces µ(S) is always ≥ λk and there is at least one subspace S0 for which

µ(S0) ≤ λk which shows the result.

This result is attributed to Courant and Fisher, and to Poincaré and Weyl. It is

often referred to as Courant-Fisher min-max principle or theorem. As a particular

case, the largest eigenvalue of A satisfies

λ1 = max
x 6=0

(Ax, x)

(x, x)
. (1.31)

Actually, there are four different ways of rewriting the above characterization.

The second formulation is

λk = max
S, dim(S)=k

min
x∈S,x 6=0

,
(Ax, x)

(x, x)
(1.32)

and the two other ones can be obtained from the above two formulations by simply

relabeling the eigenvalues increasingly instead of decreasingly. Thus, with our

labeling of the eigenvalues in descending order, (1.32) tells us that the smallest

eigenvalue satisfies,

λn = min
x 6=0

(Ax, x)

(x, x)
.

with λn replaced by λ1 if the eigenvalues are relabeled increasingly.
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In order for all the eigenvalues of a Hermitian matrix to be positive it is nec-

essary and sufficient that

(Ax, x) > 0, ∀ x ∈ C
n, x 6= 0.

Such a matrix is called positive definite. A matrix that satisfies (Ax, x) ≥ 0 for

any x is said to be positive semi-definite. In particular the matrix AHA is semi-

positive definite for any rectangular matrix, since

(AHAx, x) = (Ax,Ax) ≥ 0 ∀ x.

Similarly, AAH is also a Hermitian semi-positive definite matrix. The square

roots of the eigenvalues of AHA for a general rectangular matrix A are called the

singular values of A and are denoted by σi. In Section 1.5 we have stated without

proof that the 2-norm of any matrix A is equal to the largest singular value σ1 of

A. This is now an obvious fact, because

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

(Ax,Ax)

(x, x)
= max

x 6=0

(AHAx, x)

(x, x)
= σ2

1

which results from (1.31).

Another characterization of eigenvalues, known as the Courant characteriza-

tion, is stated in the next theorem. In contrast with the min-max theorem this

property is recursive in nature.

Theorem 1.10 The eigenvalue λi and the corresponding eigenvector qi of a Her-

mitian matrix are such that

λ1 =
(Aq1, q1)

(q1, q1)
= max

x∈Cn,x 6=0

(Ax, x)

(x, x)

and for k > 1:

λk =
(Aqk, qk)

(qk, qk)
= max

x 6=0,qH1 x=...=qH
k−1x=0

(Ax, x)

(x, x)
. (1.33)

In other words, the maximum of the Rayleigh quotient over a subspace that

is orthogonal to the first k − 1 eigenvectors is equal to λk and is achieved for the

eigenvector qk associated with λk. The proof follows easily from the expansion

(1.29) of the Rayleigh quotient.

1.10 Nonnegative Matrices

A nonnegative matrix is a matrix whose entries are nonnegative,

aij ≥ 0 .

Nonnegative matrices arise in many applications and play a crucial role in the the-

ory of matrices. They play for example a key role in the analysis of convergence of
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iterative methods for partial differential equations. They also arise in economics,

queuing theory, chemical engineering, etc..

A matrix is said to be reducible if, there is a permutation matrix P such that

PAPT is block upper-triangular. An important result concerning nonnegative

matrices is the following theorem known as the Perron-Frobenius theorem.

Theorem 1.11 Let A be a real n × n nonnegative irreducible matrix. Then λ ≡
ρ(A), the spectral radius of A, is a simple eigenvalue of A. Moreover, there exists

an eigenvector u with positive elements associated with this eigenvalue.

PROBLEMS

P-1.1 Show that two eigenvectors associated with two distinct eigenvalues are linearly

independent. More generally show that a family of eigenvectors associated with distinct

eigenvalues forms a linearly independent family.

P-1.2 Show that if λ is any eigenvalue of the matrix AB then it is also an eigenvalue of the

matrix BA. Start with the particular case where A and B are square and B is nonsingular

then consider the more general case where A,B may be singular or even rectangular (but

such that AB and BA are square).

P-1.3 Show that the Frobenius norm is consistent. Can this norm be associated to two

vector norms via (1.4)? What is the Frobenius norm of a diagonal matrix? What is the

p-norm of a diagonal matrix (for any p)?

P-1.4 Find the Jordan canonical form of the matrix:

A =





1 2 −4
0 1 2
0 0 2



 .

Same question for the matrix obtained by replacing the element a33 by 1.

P-1.5 Give an alternative proof of Theorem 1.4 on the Schur form by starting from the

Jordan canonical form. [Hint: write A = XJX−1 and use the QR decomposition of X .]

P-1.6 Show from the definition of determinants used in Section (1.2) that the characteris-

tic polynomial is a polynomial of degree n for an n× n matrix.

P-1.7 Show that the characteristic polynomials of two similar matrices are equal.

P-1.8 Show that

lim
k→∞

‖Ak‖1/k = ρ(A),

for any matrix norm. [Hint: use the Jordan canonical form or Theorem 1.3]

P-1.9 Let X be a nonsingular matrix and, for any matrix norm ‖.‖, define ‖A‖X =
‖AX‖. Show that this is indeed a matrix norm. Is this matrix norm consistent? Similar

questions for ‖XA‖ and ‖Y AX‖ where Y is also a nonsingular matrix. These norms are

not, in general, associated with any vector norms, i.e., they can’t be defined by a formula

of the form (1.4). Why? What about the particular case ‖A‖′ = ‖XAX−1‖?
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P-1.10 Find the field of values of the matrix

A =

(

0 1
0 0

)

and verify that it is not equal to the convex hull of its eigenvalues.

P-1.11 Show that any matrix can be written as the sum of a Hermitian and a skew-

Hermitian matrix (or the sum of a symmetric and a skew-symmetric matrix).

P-1.12 Show that for a skew-Hermitian matrix S, we have

ℜe(Sx, x) = 0 for any x ∈ C
n.

P-1.13 Given an arbitrary matrix S, show that if (Sx, x) = 0 for all x in C
n then we

must have

(Sy, z) + (Sz, y) = 0 ∀ y , z ∈ C
n.

[Hint: expand (S(y + z), y + z) ].

P-1.14 Using the result of the previous two problems, show that if (Ax, x) is real for all

x in C
n, then A must be Hermitian. Would this result be true if we were to replace the

assumption by: (Ax, x) is real for all real x? Explain.

P-1.15 The definition of a positive definite matrix is that (Ax, x) be real and positive for

all real vectors x. Show that this is equivalent to requiring that the Hermitian part of A,
namely 1

2
(A+AH), be (Hermitian) positive definite.

P-1.16 Let A be a real symmetric matrix and λ an eigenvalue of A. Show that if u is an

eigenvector associated with λ then so is ū. As a result, prove that for any eigenvalue of a

real symmetric matrix, there is an associated eigenvector which is real.

P-1.17 Show that a Hessenberg matrix H such that hj+1,j 6= 0, j = 1, 2, . . . , n − 1
cannot be derogatory.
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in the first edition of this book a few more texts have been added to the literature. These include

Demmel [44], Trefethen and Bau [214], Datta [40], and the introductory text by Gilbert Strang [209].

Details on matrix eigenvalue problems can be found in Gantmacher’s book [69] and Wilkinson [223].

Stewart and Sun’s book [206] devotes a separate chapter to matrix norms and contains a wealth of

information. Some of the terminology we use is borrowed from Chatelin [22, 23] and Kato [105].

For a good overview of the linear algebra aspects of matrix theory and a complete proof of Jordan’s

canonical form Halmos’ book [86] is highly recommended.





Chapter 2

SPARSE MATRICES

The eigenvalue problems that arise in practice often involve very large matrices. The

meaning of ‘large’ is relative and it is changing rapidly with the progress of computer

technology. A matrix of size a few tens of thousands can be considered large if one

is working on a workstation, while, similarly, a matrix whose size is in the hundreds

of millions can be considered large if one is using a high-performance computer. 1.

Fortunately, many of these matrices are also sparse, i.e., they have very few nonzeros.

Again, it is not clear how ‘few’ nonzeros a matrix must have before it can be called

sparse. A commonly used definition due to Wilkinson is to say that a matrix is sparse

whenever it is possible to take advantage of the number and location of its nonzero

entries. By this definition a tridiagonal matrix is sparse, but so would also be a

triangular matrix, which may not be as convincing. It is probably best to leave this

notion somewhat vague, since the decision as to whether or not a matrix should be

considered sparse is a practical one that is ultimately made by the user.

2.1 Introduction

The natural idea of taking advantage of the zeros of a matrix and their location

has been exploited for a long time. In the simplest situation, such as for banded or

tridiagonal matrices, special techniques are straightforward to develop. However,

the notion of exploiting sparsity for general sparse matrices, i.e., sparse matrices

with irregular structure, has become popular only after the 1960’s. The main issue,

and the first one to be addressed by sparse matrix technology, is to devise direct

solution methods for linear systems, that are economical both in terms of storage

and computational effort. These sparse direct solvers allow to handle very large

problems that could not be tackled by the usual ‘dense’ solvers. We will briefly

discuss the solution of large sparse linear systems in Section 2.4 of this Chapter.

There are basically two broad types of sparse matrices: structured and un-

structured. A structured sparse matrix is one whose nonzero entries, or square

blocks of nonzero entries, form a regular pattern, often along a small number of

1In support of this observation is the fact that in the first edition of this book, the numbers I used

were ‘a few hundreds’ and ’in the millions’, respectively

29
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diagonals. A matrix with irregularly located entries is said to be irregularly struc-

tured. The best example of a regularly structured matrix is that of a matrix that

consists only of a few diagonals. Figure 2.2 shows a small irregularly structured

sparse matrix associated with the finite element grid problem shown in Figure 2.1.

Figure 2.1: A finite element grid model

Although the difference between the two types of matrices may not matter

that much for direct solvers, it may be important for eigenvalue methods or iter-

ative methods for solving linear systems. In these methods, one of the essential

operations are matrix by vector products. The performance of these operations

on supercomputers can differ significantly from one data structure to another. For

example, diagonal storage schemes are ideal for vector machines, whereas more

general schemes, may suffer on such machines because of the need to use indirect

addressing.

In the next section we will discuss some of the storage schemes used for

sparse matrices. Then we will see how some of the simplest matrix operations

with sparse matrices can be performed. We will then give an overview of sparse

linear system solution methods. The last two sections discuss test matrices and a

set of tools for working with sparse matrices called SPARSKIT.

2.2 Storage Schemes

In order to take advantage of the large number of zero elements special schemes

are required to store sparse matrices. Clearly, the main goal is to represent only the

nonzero elements, and be able at the same time to perform the commonly needed

matrix operations. In the following we will denote by Nz the total number of
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Figure 2.2: Sparse matrix associated with the finite element grid of Figure 2.1

nonzero elements. We describe only the most popular schemes but additional

details can be found in the book by Duff, Erisman, and Reid [52].

The simplest storage scheme for sparse matrices is the so-called coordinate

format. The data structure consists of three arrays: a real array containing all the

real (or complex) values of the nonzero elements ofA in any order, an integer array

containing their row indices and a second integer array containing their column

indices. All three arrays are of length Nz. Thus the matrix

A =













1. 0. 0. 2. 0.
3. 4. 0. 5. 0.
6. 0. 7. 8. 9.
0. 0. 10. 11. 0.
0. 0. 0. 0. 12.













(2.1)

will be represented (for example) by

AA = 12. 9. 7. 5. 1. 2. 11. 3. 6. 4. 8. 10.

JR = 5 3 3 2 1 1 4 2 3 2 3 4

JC = 5 5 3 4 1 4 4 1 1 2 4 3

In the above example we have, on purpose, listed the elements in an arbi-

trary order. In fact it would have been more natural to list the elements by row

or columns. If we listed the elements row-wise, we would notice that the array
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JC contains redundant information, and may be replaced by an array that points

to the beginning of each row instead. This would entail non-negligible savings

in storage. The new data structure consists of three arrays with the following

functions.

• A real array AA contains the real values aij stored row by row, from row 1

to n. The length of AA is Nz.

• An integer array JA contains the column indices of the elements aij as

stored in the array AA. The length of JA is Nz.

• An integer array IA contains the pointers to the beginning of each row in

the arrays AA and JA. Thus, the content of IA(i) is the position in arrays

AA and JA where the i-th row starts. The length of IA is n + 1 with

IA(n + 1) containing the number IA(1) + Nz,i.e., the address in A and

JA of the beginning of a fictitious row n+ 1.

For example, the above matrix could be stored as follows.

AA = 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

JA = 1 4 1 2 4 1 3 4 5 3 4 5

IA = 1 3 6 10 12 13

This format is probably the most commonly used to store general sparse ma-

trices. We will refer to it as the Compressed Sparse Row (CSR) format. An advan-

tage of this scheme over the coordinate scheme is that it is often more amenable

to perform typical computations. On the other hand the coordinate scheme is at-

tractive because of its simplicity and its flexibility. For this reason it is used as the

‘entry’ format in software packages such as the Harwell library.

There are a number of variations to the Compressed Sparse Row format. The

most obvious variation is to store the columns instead of the rows. The corre-

sponding scheme will be called the Compressed Sparse Column (CSC) scheme

Another common variation exploits the fact that the diagonal elements of many

matrices are usually all nonzero and/or that they are accessed more often than the

rest of the elements. As a result they can be stored separately. In fact, what we

refer to as the Modified Sparse Row (MSR) format, consists of only two arrays: a

real array AA and an integer array JA. The first n positions in AA contain the

diagonal elements of the matrix, in order. The position n + 1 of the array AA is

not used, or may sometimes be used to carry some other information concerning

the matrix. Starting at position n + 2,the nonzero elements of AA,excluding its

diagonal elements, are stored row-wise. Corresponding to each element AA(k)
the integer JA(k) is the column index of the element A(k) in the matrix AA. The

n+1 first positions of JA contain the pointer to the beginning of each row in AA
and JA. Thus, for the above example the two arrays will be as follows.
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AA = 1. 4. 7. 11. 12. * 2. 3. 5. 6. 8. 9. 10.

JA = 7 8 10 13 14 14 4 1 4 1 4 5 3

The star denotes an unused location. Notice that JA(n) = JA(n+ 1) = 14,

indicating that the last row, is a zero row, once the diagonal element has been

removed.

There are a number of applications that lead to regularly structured matrices.

Among these matrices one can distinguish two different types: block matrices,

and diagonally structured matrices. Here we discuss only diagonally structured

matrices which are matrices whose nonzero elements are located along a small

number of diagonals. To store such matrices we may store the diagonals in a

rectangular array DIAG(1 : n, 1 : Nd) where Nd is the number of diagonals.

We also need to know the offsets of each of the diagonals with respect to the main

diagonal. These will be stored in an array IOFF (1 : Nd). Thus, in position (i, j)
of the array DIAG is located the element ai,i+IOFF(j) of the original matrix, i.e.,

DIAG(i, j)← ai,i+ioff(j).

The order in which the diagonals are stored in the columns of DIAG is unimpor-

tant in general. If many more operations are performed with the main diagonal

there may be a slight advantage in storing it in the first column. Note also that all

the diagonals except the main diagonal have fewer than n elements, so there are

positions in DIAG that will not be used.

For example the following matrix which has three diagonals

A =













1. 0. 2. 0. 0.
3. 4. 0. 5. 0.
0. 6. 7. 0. 8.
0. 0. 9. 10. 0.
0. 0. 0. 11. 12.













(2.2)

will be represented the two arrays

DIAG =

* 1. 2.

3. 4. 5.

6. 7. 8.

9. 10. *

11 12. *

IOFF = -1 0 2

A more general scheme that has been popular on vector machines is the so-

called Ellpack-Itpack format. The assumption in this scheme is that we have at

most Nd nonzero elements per row, where Nd is small. Then two rectangular

arrays of dimension n × Nd each are required, one real and one integer. The

first, COEF,is similar to DIAG and contains the nonzero elements of A. We

can store the nonzero elements of each row of the matrix in a row of the array
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COEF (1 : n, 1 : Nd) completing the row by zeros if necessary. Together with

COEF we need to store an integer array JCOEF (1 : n, 1 : Nd) which contains

the column positions of each entry in COEF . Thus, for the above matrix, we

would have,

COEF =

1. 2. 0.

3. 4. 5.

6. 7. 8.

9. 10. 0.

11 12. 0.

JCOEF =

1 3 1

1 2 4

2 3 5

3 4 4

4 5 5

.

Note that in the above JCOEF array we have put a column number equal

to the row number, for the zero elements that have been added to pad the rows

of DIAG that correspond to shorter rows in the matrix A. This is somewhat

arbitrary, and in fact any integer between 1 and n would be acceptable, except

that there may be good reasons for not putting the same integers too often, for

performance considerations.

2.3 Basic Sparse Matrix Operations

One of the most important operations required in many of the algorithms for com-

puting eigenvalues of sparse matrices is the matrix-by-vector product. We do not

intend to show how these are performed for each of the storage schemes consid-

ered earlier, but only for a few important ones.

The following Fortran 8-X segment shows the main loop of the matrix by

vector operation for matrices stored in the Compressed Sparse Row stored format.

DO I=1, N

K1 = IA(I)

K2 = IA(I+1)-1

Y(I) = DOTPRODUCT(A(K1:K2),X(JA(K1:K2)))

ENDDO

Notice that each iteration of the loop computes a different component of the

resulting vector. This has the obvious advantage that each of these iterations can

be performed independently. If the matrix is stored column-wise, then we would

use the following code instead.

DO J=1, N

K1 = IA(J)

K2 = IA(J+1)-1

Y(JA(K1:K2)) = Y(JA(K1:K2))+X(J)*A(K1:K2)

ENDDO

In each iteration of the loop a multiple of the j-th column is added to the re-

sult, which is assumed to have been set initially to zero. Notice now that the outer
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loop is no longer parallelizable. Barring the use of a different data structure, the

only alternative left to improve parallelization is to attempt to split the vector op-

eration in each inner loop, which has few operations, in general. The point of this

comparison is that we may have to change data structures to improve performance

when dealing with supercomputers.

We now consider the matrix-vector product in diagonal storage.

DO J=1, NDIAG

JOFF = IOFF(J)

DO I=1, N

Y(I) = Y(I) + DIAG(I,J)*X(JOFF+I)

ENDDO

ENDDO

Here, each of the diagonals is multiplied by the vector x and the result added

to the vector y. It is again assumed that the vector y has been filled with zero

elements before the start of the loop. From the point of view of parallelization

and/or vectorization the above code is probably the one that has the most to offer.

On the other hand, its drawback is that it is not general enough.

Another important ‘kernel’ in sparse matrix computations is that of solving a

lower or upper-triangular system. The following segment shows a simple routine

for solving a unit lower-triangular system.

X(1) = Y(1)

DO K = 2, N

K1 = IAL(K)

k2 = IAL(K+1)-1

X(K)=Y(K)-DOTPRODUCT(AL(K1:K2),X(JAL(K1:K2)))

ENDDO

2.4 Sparse Direct Solution Methods

Solution methods for large sparse linear systems of equations are important in

eigenvalue calculations mainly because they are needed in the context of the shift-

and-invert techniques, described in Chapter 4. In these techniques the matrix that

is used in the iteration process is (A − σI)−1 or (A − σB)−1B for the general-

ized eigenvalue problem. In this section we give a brief overview of sparse matrix

techniques for solving linear systems. The difficulty here is that we must deal

with problems that are not only complex, since complex shifts are likely to occur,

but also indefinite. There are two broad classes of methods that are commonly

used: direct and iterative. Direct methods are more commonly used in the con-

text of shift-and-invert techniques because of their robustness when dealing with

indefinite problems.

Most direct methods for sparse linear systems perform an LU factorization of

the original matrix and try to reduce cost by minimizing fill-ins, i.e., non-zero ele-

ments introduced during the elimination process in positions which were initially
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zeros. Typical codes in this category include MA28, see reference [50], from the

Harwell library and the Yale Sparse Matrix Package (YSMP), see reference [193].

For a detailed view of sparse matrix techniques we refer to the book by Duff,

Erisman, and Reid [52].

Currently, the most popular iterative methods are the preconditioned conju-

gate gradient type techniques. In these techniques an approximate factorization

A = LU + E of the original matrix is obtained and then the conjugate gradient

method is applied to a preconditioned system, a form of which is U−1L−1Ax =
U−1L−1b. The conjugate gradient method is a projection method related to the

Lanczos algorithm, which will be described in Chapter 4. One difficulty with

conjugate gradient-type methods is that they are designed for matrices that are

positive real, i.e., matrices whose symmetric parts are positive definite, and as a

result they will perform well for the types of problems that will arise in the context

of shift-and-invert.

2.5 Test Problems

When developing algorithms for sparse matrix computations it is desirable to be

able to use test matrices that are well documented and often used by other re-

searchers. There are many different ways in which these test matrices can be

useful but their most common use is for comparison purposes.

Two different ways of providing data sets consisting of large sparse matrices

for test purposes have been used in the past. The first one is to collect sparse

matrices in a well-specified format, from various applications. This approach has

is used in the well-known Harwell-Boeing collection of test matrices. The second

approach is to collect subroutines or programs that generate such matrices. This

approach is taken in the SPARSKIT package which we briefly describe in the next

section.

In the course of the book we will often use two test problems in the examples.

These are described in detail next. While these two examples are far from being

representative of all the problems that occur they have the advantage of being easy

to reproduce. They have also been extensively used in the literature.

2.5.1 Random Walk Problem

The first test problem is issued from a Markov model of a random walk on a

triangular grid. It was proposed by G. W. Stewart [202] and has been used in

several papers for testing eigenvalue algorithms. The problem models a random

walk on a (k + 1)× (k + 1) triangular grid as is shown in Figure 2.3.

We label by (i, j) the node of the grid with coordinates (ih, jh) where h is

the grid spacing, for i, j = 0, 1, ...k. A particle moves randomly on the grid by

jumping from a node (i, j) into either of its (at most 4) neighbors. The probability

of jumping from node (i, j) to either node (i − 1, j) or node (i, j − 1) (down
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Figure 2.3: Random walk on a triangular grid

transition) is given by

pd(i, j) =
i+ j

2k

this probability being doubled when either i or j is equal to zero. The probability

of jumping from node (i, j) to either node (i+1, j) or node (i, j+1) (up transition)

is given by

pu(i, j) =
1

2
− pd(i, j).

Note that there cannot be an up transition when i + j = k, i.e., for nodes on the

oblique boundary of the grid. This is reflected by the fact that in this situation

pu(i, j) = 0.

The problem is to compute the steady state probability distribution of the

chain, i.e., the probabilities that the particle be located in each grid cell after a

very long period of time. We number the nodes from the bottom up and from left

to right, i.e., in the order,

(0, 0), (0, 1), . . . , (0, k); (1, 0), (1, 1), . . . (1, k − 1); .....; (k, 0)

The matrix P of transition probabilities is the matrix whose generic element pk,q
is the probability that the particle jumps from node k to node q. This is a stochastic
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Figure 2.4: Sparsity pattern of the matrix Mark(15).

matrix, i.e., its elements are nonnegative and the sum of elements in the same row

is equal to one. The vector (1, 1, ...., 1)T is an eigenvector of P associated with

the eigenvalue unity. As is known the steady state probability distribution vector

is the appropriately scaled eigenvector of the transpose of P associated with the

eigenvalue one. Note that the number of different states is 1
2 (k+1)(k+2), which

is the dimension of the matrix. We will denote by Mark(k+1) the corresponding

matrix. Figure 2.4 shows the sparsity pattern of Mark(15) which is a matrix of

dimension n = 120 with nz = 420 nonzero elements.

2.5.2 Chemical Reactions

The second test example, models concentration waves in reaction and transport

interaction of some chemical solutions in a tubular reactor. The concentrations

x(τ, z), y(τ, z) of two reacting and diffusing components, where 0 ≤ z ≤ 1
represents a coordinate along the tube, and τ is the time, are modeled by the
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system:

∂x

∂τ
=

Dx

L2

∂2x

∂z2
+ f(x, y), (2.3)

∂y

∂τ
=

Dy

L2

∂2y

∂z2
+ g(x, y), (2.4)

with the initial condition

x(0, z) = x0(z), y(0, z) = y0(z), ∀ z ∈ [0, 1],

and the Dirichlet boundary conditions:

x(0, τ) = x(1, τ) = x̄

y(0, τ) = y(1, τ) = ȳ.

The linear stability of the above system is traditionally studied around the

steady state solution obtained by setting the partial derivatives of x and y with re-

spect to time to be zero. More precisely, the stability of the system is the same as

that of the Jacobian of (2.3) - (2.4) evaluated at the steady state solution. In many

problems one is primarily interested in the existence of limit cycles, or equiv-

alently the existence of periodic solutions to (2.3), (2.4). This translates into the

problem of determining whether the Jacobian of (2.3), (2.4) evaluated at the steady

state solution admits a pair of purely imaginary eigenvalues.

We consider in particular the so-called Brusselator wave model in which

f(x, y) = A− (B + 1)x+ x2y

g(x, y) = Bx− x2y.

Then, the above system admits the trivial stationary solution x̄ = A, ȳ = B/A.

A stable periodic solution to the system exists if the eigenvalues of largest real

parts of the Jacobian of the right-hand side of (2.3), (2.4) is exactly zero. To

verify this numerically, we first need to discretize the equations with respect to

the variable z and compute the eigenvalues with largest real parts of the resulting

discrete Jacobian.

For this example, the exact eigenvalues are known and the problem is ana-

lytically solvable. The following set of parameters have been commonly used in

previous articles,

Dx = 0.008, Dy =
1

2
Dx = 0.004,

A = 2, B = 5.45 .

The bifurcation parameter is L. For small L the Jacobian has only eigenvalues

with negative real parts. At L ≈ 0.51302 a purely imaginary eigenvalue appears.

We discretize the interval [0, 1] using n + 1 points, and define the mesh size

h ≡ 1/n. The discrete vector is of the form
(

x
y

)

where x and y are n-dimensional
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vectors. Denoting by fh and gh the corresponding discretized functions f and

g,the Jacobian is a 2 × 2 block matrix in which the diagonal blocks (1, 1) and

(2, 2) are the matrices

1

h2
Dx

L2
tridiag {1,−2, 1}+ ∂fh(x, y)

∂x

and
1

h2
Dy

L2
tridiag {1,−2, 1}+ ∂gh(x, y)

∂y

respectively, while the blocks (1, 2) and (2, 1) are

∂fh(x, y)

∂y
and

∂gh(x, y)

∂x

respectively. Note that because the steady state solution is a constant with respect

to the variable z,the Jacobians of either fh or gh with respect to either x or y are

scaled identity matrices. We denote by A the resulting 2n × 2n Jacobian matrix.

The matrix A has the following structure

A =

(

αT βI
γI δT

)

,

In which T = tridiag {1,−2, 1},and α,β,γ, and δ are scalars. The exact eigen-

values ofA are readily computable, since there exists a quadratic relation between

the eigenvalues of the matrix A and those of the classical difference matrix T .

2.5.3 The Harwell-Boeing Collection

This large collection of test matrices has been gathered over several years by I.

Duff (Harwell) and R. Grimes and J. Lewis (Boeing) [53]. The number of ma-

trices in the collection at the time of this writing is 292. The matrices have been

contributed by researchers and engineers in many different areas. The sizes of the

matrices vary from very small, such as counter example matrices, to very large.

One drawback of the collection is that it contains few non-Hermitian eigenvalue

problems. Many of the eigenvalue problems in the collection are from structural

engineering, which are generalized eigenvalue problems. One the other hand the

collection provides a data structure which constitutes an excellent medium of ex-

changing matrices.

The matrices are stored as ASCII files with a very specific format consisting

of a 4 or 5 line header and then the data containing the matrix stored in CSC

format together with any right-hand sides, initial guesses, or exact solutions.

The collection is available for public distribution from the authors.

2.6 SPARSKIT

SPARSKIT is a package aimed at providing subroutines and utilities for working

with general sparse matrices. Its purpose is not as much to solve particular prob-

lems involving sparse matrices (linear systems, eigenvalue problems) but rather
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to make available the little tools to manipulate and performs simple operations

with sparse matrices. For example there are tools for exchanging data structures,

e.g., passing from the Compressed Sparse Row format to the diagonal format and

vice versa. There are various tools for extracting submatrices or performing other

similar manipulations. SPARSKIT also provides matrix generation subroutines as

well as basic linear algebra routines for sparse matrices (such as addition, multi-

plication, etc...).

A short description of the contents of SPARSKIT follows. The package is

divided up in six modules, each having a different function. To refer to these

six parts we will use the names of the subdirectories where they are held in the

package in its current version.

FORMATS This module contains essentially two sets of routines. The first

set contained in the file formats.f consists of the routines needed to translate data

structures. Translations from the basic Compressed Sparse Row format to any

of the other formats supported is provided together with a routine for the reverse

transformation. This way one can translate from any of the data structures sup-

ported to any other one with two transformation at most. The formats currently

supported are the following.

DNS Dense format

BND Linpack Banded format

CSR Compressed Sparse Row format

CSC Compressed Sparse Column format

COO Coordinate format

ELL Ellpack-Itpack generalized diagonal format

DIA Diagonal format

BSR Block Sparse Row format

MSR Modified Compressed Sparse Row format

SSK Symmetric Skyline format

NSK Nonsymmetric Skyline format

JAD The Jagged Diagonal scheme

The second set of routines contains a number of routines, currently 27, called

‘unary’, to perform simple manipulation functions on sparse matrices, such as

extracting a particular diagonal or permuting a matrix, or yet for filtering out small

elements. For reasons of space we cannot list these routines here.
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BLASSM This module contains a number of routines for doing basic linear

algebra with sparse matrices. It is comprised of essentially two sets of routines.

Basically, the first one consists of matrix-matrix operations (e.g., multiplication

of matrices) and the second consists of matrix-vector operations. The first set

allows to perform the following operations with sparse matrices, where A,B,C
are sparse matrices, D is a diagonal matrix, and σ is a scalar. C = AB,C =
A+B,C = A+ σB,C = A±BT , C = A+ σBT ,A := A+ σI,C = A+D.

The second set contains various routines for performing matrix by vector

products and solving sparse triangular linear systems in different storage formats.

INOUT This module consists of routines to read and write matrices in the

Harwell-Boeing format. For more information on this format and the Harwell-

Boeing collection see the reference [53]. It also provides routines for plotting the

pattern of the matrix or simply dumping it in a nice format.

INFO There is currently only one subroutine in this module. Its purpose is to

provide as many statistics as possible on a matrix with little cost. About 33 lines

of information are written. For example, the code analyzes diagonal dominance

of the matrix (row and column), its degree of symmetry (structural as well as

numerical), its block structure, its diagonal structure, etc,...

MATGEN The set of routines in this module allows one to generate test matri-

ces. For now there are generators for 5 different types of matrices.

1. Five-point and seven point matrices on rectangular regions discretizing a

general elliptic partial differential equation.

2. Same as above but provides block matrices (several degrees of freedom per

grid point in the PDE).

3. Finite elements matrices for the heat condition problem, using various do-

mains (including user provided ones).

4. Test matrices from the paper by Z. Zlatev, K. Schaumburg, and J. Was-

niewski, [229].

5. Markov chain matrices arising from a random walk on a triangular grid. See

Section 2.5.1 for details.

UNSUPP As is suggested by its name this module contains various unsup-

ported software tools that are not necessarily portable or that do not fit in any

of the previous modules. For example software for viewing matrix patterns on

some workstations will be found here. For now UNSUPP contains subroutines

for visualizing matrices and a preconditioned GMRES package (with a ‘robust’

preconditioner based on Incomplete LU factorization with controlled fill-in).
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2.7 The New Sparse Matrix Repositories

The Harwell-Boeing collection project started in the 1980s [53]. As time went by,

matrices of this collection became too small relative to the capabilities of modern

computers. As a result several collections were added. The best known of these

in the sparse matrix computation communities are the matrix market located in

http://math.nist.gov/MatrixMarket

and the Florida collection:

http://www.cise.ufl.edu/research/sparse/matrices/

In addition, the old Harwell-Boeing format which was geared toward efficient

utilization from fortran 77, became unnecessarily rigid. This format was devel-

oped to save memory but with todays capabilities it is not worth it to avoid the

coordinate format to save a space. Recall that for square matrices that the require-

ments for these two schemes ia as follows: Nz*(1*float + 2*int) for the COO

format versus Nz*(1*float + 1*int) + n*int for the CSC/CSC format. In-

stead one can store matrix data in a file and an information header of arbitrary

length can be added. Separate files can be used for the right-hand sides and solu-

tions. This is the essence of the Matrix Market format (MM). The first line of the

file header if of the form (for example)

%%MatrixMarket matrix coordinate real general

which specifies the format, the class of storage used (here coordinate), the type of

data (real) and the type of storage (general, meaning symmetry is not exploited).

These new storage schemes made it necessary to develop additional tools to

deal with them. For example, the site

http://bebop.cs.berkeley.edu/smc/

offers a package named BeBop for converting matrices between various formats.

2.8 Sparse Matrices in MATLAB

MATLAB TM is a commercial interactive programming language 2 which was

developed initially as an interactive version to the Linpack[46] and Eispack [196]

packages, now both replaced by LAPACK. GNU Octave 3, is a rather similar prod-

uct based on a GNU-community effort, which is also publically available (under

the GPL license). MATLAB became more common for performing general com-

putations. As its use began to spread in the scientific computing community, there

was a need to provide support for sparse matrices. Starting in the mid 1990’s this

support became available. GNU Octave has also added support for sparse matrices

in recent years.

It is possible to generate sparse matrices, solve sparse linear systems, and

compute eigenvalues of large sparse matrices with MATLAB or Octave. The fol-

lowing descriptions is restricted to MATLAB but Octave can be invoked in essen-

tially an identical way. MATLAB scripts can be invoked to implement functions.

For example, the following few lines of code will generate the sparse matrix re-

2See: http://www.mathworks.com/
3See: http://www.gnu.org/software/octave/

http://math.nist.gov/MatrixMarket
http://www.cise.ufl.edu/research/sparse/matrices/
http://bebop.cs.berkeley.edu/smc/
http://www.mathworks.com/
http://www.gnu.org/software/octave/
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lated to the Markov Chain example seen in Section 2.5.1.

function [A] = mark(m)

%% [A] = mark(m)

%% generates a Markov chain matrix for a random walk

%% on a triangular ggrid --

%% The matrix is sparse -- and of size n= m*(m+1)/2

%%--------------------------------------------------

ix = 0;

cst = 0.5/(m-1) ;

n = (m*(m+1))/2;

A = sparse(n,n) ;

%%-------------------- sweep y coordinates;

for i=1:m

jmax = m-i+1;

%%-------------------- sweep x coordinates;

for j=1:jmax,

ix = ix + 1;

if (j<jmax)

pd = cst*(i+j-1) ;

%%-------------------- north move

jx = ix + 1;

jx = ix + 1;

A(ix,jx) = pd;

if (i == 1)

A(ix,jx) = A(ix,jx)+pd;

end

%%-------------------- east move

jx = ix + jmax;

A(ix,jx) = pd;

if (j == 1)

A(ix,jx) = A(ix,jx)+pd;

end

end

%%-------------------- south move

pu = 0.5 - cst*(i+j-3) ;

if ( j>1)

jx = ix-1;

A(ix,jx) = pu;

end

%%-------------------- west move

if ( i > 1)

jx = ix - jmax - 1 ;

A(ix,jx) = pu;

end
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end

Once MATLAB is launched in a directory where this script is available, then

we can issue the following commands for example

>> A = mark(15);

>> size(A)

ans =

120 120

>> spy(A);

The lines starting with >> are commands typed in and ans are responses (if any)

from MATLAB . The command spy(A) generated the plot used in Figure 2.4.

MATLAB enables one to compute eigenvalues of full matrices with the eig

command. In the test shown above the matrice is sparse so eig(A) will generate

an error. Instead the matrix must first converted to dense format:

>> eig(full(A))

ans =

-1.0000

1.0000

0.9042

0.9714

0.8571

-0.9042

-0.9714

-0.8571

.....

Only the first 8 eigenvalues are shown but the command generated 120 numbers,

all 120 eigenvalies. What if the matrix is too large to be converted to dense format

first? Then one can use the eigs command which computes a few eigenvalues

using some of the methods which will be covered later in this book. Specifically

the ARPACK package [118] is invoked.

PROBLEMS

P-2.1 Write a FORTRAN code segment to perform the matrix-vector product for matrices

stored in Ellpack-Itpack format.

P-2.2 Write a small subroutine to perform the following operations on a sparse matrix in

coordinate format, diagonal format, and in CSR format: a) count the number on nonzero

elements in the main diagonal; b) extract the diagonal whose offset is k (which may be

negative); c) add a nonzero element in position (i, j) of the matrix (assume that this position

may contain a zero or a nonzero element); d) add a given diagonal to the matrix. What is

the most convenient storage scheme for each of these operations?
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P-2.3 Generate explicitly the matrix Mark(4). Verify that it is a stochastic matrix. Verify

that 1 and -1 are eigenvalues.

NOTES AND REFERENCES. Two good sources of reading on sparse matrix computations are the

books by George and Liu [71] and by Duff, Erisman, and Reid [52]. Also of interest are [140] and

[159] and the early survey by Duff [49]. A notable recent addition to these is the volume by Davis [43],

which deals with sparse direct solution methods and contains a wealth of hepful details for dealing with

sparse matrices.

For applications related to eigenvalue problems, see [37] and [13]. For details on Markov Chain

modeling see [106, 192, 207].

SPARSKIT [180] is now more than 20 years old. It is written in FORTRAN-77 and as such is

somewhat outdated. However, the many routines available therein remain useful, judging from the

requests I receive.
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PERTURBATION THEORY AND

ERROR ANALYSIS

This chapter introduces some elementary spectral theory for linear operators on

finite dimensional spaces as well as some elements of perturbation analysis. The

main question that perturbation theory addresses is: how does an eigenvalue and

its associated eigenvectors, spectral projector, etc.., vary when the original matrix

undergoes a small perturbation. This information is important both for theoretical

and practical purposes. The spectral theory introduced in this chapter is the main

tool used to extend what is known about spectra of matrices to general operators

on infinite dimensional spaces. However, it has also some consequences in analyzing

the behavior of eigenvalues and eigenvectors of matrices. The material discussed in

this chapter is probably the most theoretical of the book. Fortunately, most of it

is independent of the rest and may be skipped in a first reading. The notions of

condition numbers and some of the results concerning error bounds are crucial in

understanding the difficulties that eigenvalue routines may encounter.

3.1 Projectors and their Properties

A projector P is a linear transformation from C
n to itself which is idempotent,

i.e., such that

P 2 = P.

When P is a projector then so is (I − P ) and we have Null(P ) = Ran(I − P ).
The two subspaces Null(P ) and Ran(P ) have only the element zero in common.

This is because if a vector x is in Ran(P ) then Px = x and if it is also in Null(P )
then Px = 0 so that x = 0 and the intersection of the two subspaces reduces to

{0}. Moreover, every element of Cn can be written as x = Px+ (I − P )x. As a

result the space C
n can be decomposed as the direct sum

C
n = Null(P ) ⊕ Ran(P ).

Conversely, every pair of subspaces M and S that form a direct sum of Cn

define a unique projector such that Ran(P ) = M and Null(P ) = S. The cor-

responding transformation P is the linear mapping that maps any element x of

47
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C
n into the component x1 where x1 is the M -component in the unique decom-

position x = x1 + x2 associated with the direct sum. In fact, this association is

unique in that a projector is uniquely determined by its null space and its range,

two subspaces that form a direct sum of Cn.

3.1.1 Orthogonal Projectors

An important particular case is when the subspace S is the orthogonal complement

of M,i.e., when

Null(P ) = Ran(P )⊥.

In this case the projector P is said to be the orthogonal projector onto M . Since

Ran(P ) and Null(P ) from a direct sum of Cn,the decomposition x = Px+(I−
P )x is unique and the vector Px is uniquely defined by the set of equations

Px ∈M and (I − P )x⊥M (3.1)

or equivalently,

Px ∈M and ((I − P )x, y) = 0 ∀y ∈M .

Proposition 3.1 A projector is orthogonal if and only if it is Hermitian.

Proof. As a consequence of the equality

(PHx, y) = (x, Py) ∀x , ∀y (3.2)

we conclude that

Null(PH) = Ran(P )⊥ (3.3)

Null(P ) = Ran(PH)⊥ . (3.4)

By definition an orthogonal projector is one for which Null(P ) = Ran(P )⊥.

Therefore, by (3.3), if P is Hermitian then it is orthogonal.

To show that the converse is true we first note that PH is also a projector

since (PH)2 = (P 2)H = PH . We then observe that if P is orthogonal then (3.3)

implies that Null(P ) = Null(PH) while (3.4) implies that Ran(P ) = Ran(PH).
Since PH is projector this implies that P = PH ,because a projector is uniquely

determined by its range and its null space.

Given any unitary n × m matrix V whose columns form an orthonormal

basis of M = Ran(P ),we can represent P by the matrix P = V V H . Indeed,

in addition to being idempotent, the linear mapping associated with this matrix

satisfies the characterization given above, i.e.,

V V Hx ∈M and (I − V V H)x ∈ M⊥.
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It is important to note that this representation of the orthogonal projector P is not

unique. In fact any orthonormal basis V will give a different representation of P in

the above form. As a consequence for any two orthogonal bases V1, V2 of M , we

must have V1V
H
1 = V2V

H
2 ,an equality which can also be verified independently,

see Exercise P-3.2.

From the above representation it is clear that when P is an orthogonal pro-

jector then we have ‖Px‖2 ≤ ‖x‖2 for any x. As a result the maximum of

‖Px‖2/‖x‖2 for all x in C
n does not exceed one. On the other hand the value

one is reached for any element in Ran(P ) and therefore,

‖P‖2 = 1

for any orthogonal projector P .

Recall that the acute angle between two nonzero vectors of Cn is defined by

cos θ(x, y) =
|(x, y)|
‖x‖2‖y‖2

0 ≤ θ(x, y) ≤ π

2
.

We define the acute angle between a vector and a subspace S as the smallest acute

angle made between x and all vectors y of S,

θ(x, S) = min
y∈S

θ(x, y) . (3.5)

An optimality property of orthogonal projectors is the following.

Theorem 3.1 Let P be an orthogonal projector onto the subspace S. Then given

any vector x in C
n we have,

min
y∈S
‖x− y‖2 = ‖x− Px‖2 , (3.6)

or, equivalently,

θ(x, S) = θ(x, Px) . (3.7)

Proof. Let y any vector of S and consider the square of its distance from x. We

have,

‖x− y‖22 = ‖x− Px+ (Px− y)‖22 = ‖x− Px‖22 + ‖(Px− y)‖22 ,

because x−Px is orthogonal to S to which Px−y belongs. Therefore, ‖x−y‖2 ≥
‖x − Px‖2 for all y in S and this establishes the first result by noticing that the

minimum is reached for y = Px. The second equality is a simple reformulation

of the first.

It is sometimes important to be able to measure distances between two sub-

spaces. If Pi represents the orthogonal projector onto Mi,for i = 1, 2,a natural

measure of the distance between M1 and M2 is provided by their gap defined by:

ω(M1,M2) = max

{

min
x∈M2
‖x‖2=1

‖x− P1x‖2 , min
x ∈M1

‖x‖2 = 1
‖x− P2x‖2

}

.
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We can also redefine ω(M1,M2) as

ω(M1,M2) = max{‖(I − P1)P2‖2 , ‖(I − P2)P1‖2}

and it can even be shown that

ω(M1,M2) = ‖P1 − P2‖2. (3.8)

3.1.2 Oblique Projectors

A projector that is not orthogonal is said to be oblique. It is sometimes useful to

have a definition of oblique projectors that resembles that of orthogonal projectors,

i.e., a definition similar to (3.1). If we call L the subspace that is the orthogonal

complement to S = Null(P ),it is clear that L will have the same dimension as

M . Moreover, to say that (I − P )x belongs to Null(P ) is equivalent to saying

that it is in the orthogonal complement of L. Therefore, from the definitions seen

at the beginning of Section 1, the projector P can be characterized by the defining

equation

Px ∈M and (I − P )x ⊥ L . (3.9)

We say that P is a projector onto M and orthogonal to L or along the orthogonal

complement of L. This is illustrated in Figure 3.1.

M

L

❄

x

Px✠Qx

Px ∈ M, x− Px ⊥M
Qx ∈ M, x−Qx ⊥ L

Figure 3.1: Orthogonal and oblique projectors P and Q.

Matrix representations of oblique projectors require two bases: a basis V =
[v1, . . . , vm] of the subspace M = Ran(P ) and the other W = [w1, . . . , wm] for
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the subspace L,the orthogonal complement of Null(P ). We will say that these

two bases are biorthogonal if

(vi, wj) = δij (3.10)

Given any pair of biorthogonal bases V,W the projector P can be represented by

P = VWH (3.11)

In contrast with orthogonal projectors, the norm of P is larger than one in general.

It can in fact be arbitrarily large, which implies that the norms of P − Q,for two

oblique projectors P andQ,will not, in general, be a good measure of the distance

between the two subspaces Ran(P ) and Ran(Q). On the other hand, it may give

an idea on the difference between their rank as is stated in the next theorem.

Theorem 3.2 Let ‖.‖ be any matrix norm, and assume that two projectors P and

Q are such that ‖P −Q‖ < 1 then

rank(P ) = rank(Q) (3.12)

Proof. First let us show that rank(Q) ≤ rank(P ). Given a basis {xi}i=1,...,q of

Ran(Q) we consider the family of vectors G = {Pxi}i=1,...,q in Ran(P ) and

show that it is linearly independent. Assume that

q
∑

i=1

αiPxi = 0.

Then the vector y =
∑q

i=1 αixi is such that Py = 0 and therefore (Q − P )y =
Qy = y and ‖(Q− P )y‖ = ‖y‖. Since ‖Q− P‖ < 1 this implies that y = 0. As

a result the family G is linearly independent and so rank(P ) ≥ q = rank(Q). It

can be shown similarly that rank(P ) ≤ rank(Q).

The above theorem indicates that no norm of P −Q can be less than one if the two

subspaces have different dimensions. Moreover, if we have a family of projectors

P (t) that depends continuously on t then the rank of P (t) remains constant. In

addition, an immediate corollary is that if the gap between two subspaces is less

than one then they must have the same dimension.

3.1.3 Resolvent and Spectral Projector

For any given complex z not in the spectrum of a matrixA we define the resolvent

operator of A at z as the linear transformation

R(A, z) = (A− zI)−1 . (3.13)

The notation R(z) is often used instead of R(A, z) if there is no ambiguity. This

notion can be defined for operators on infinite dimensional spaces in which case
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the spectrum is defined as the set of all complex scalars such that the inverse of

(A− zI) does not exist, see reference [22, 105] for details.

The resolvent regarded as a function of z admits singularities at the eigenval-

ues of A. Away from any eigenvalue the resolvent R(z) is analytic with respect to

z. Indeed, we can write for any z around an element z0 not equal to an eigenvalue,

R(z) ≡ (A− zI)−1 = ((A− z0I)− (z − z0)I)−1

= R(z0)(I − (z − z0)R(z0))−1

The term (I−(z−z0)R(z0))−1 can be expanded into the Neuman series whenever

the spectral radius of (z − z0)R(z0) is less than unity. Therefore, the Taylor

expansion of R(z) in the open disk |z − z0| < 1/ρ(R(zo)) exists and takes the

form,

R(z) =

∞
∑

k=0

(z − z0)kR(z0)k+1. (3.14)

It is important to determine the nature of the singularity of R(z) at the eigen-

values λi, i = 1, . . . , p. By a simple application of Cramer’s rule it is easy to see

that these singularities are not essential. In other words, the Laurent expansion of

R(z)

R(z) =

+∞
∑

k=−∞

(z − λi)kCk

around each pole λi has only a finite number of negative powers. Thus, R(z) is a

meromorphic function.

The resolvent satisfies the following immediate properties.

First resolvent equality:

R(z1)−R(z2) = (z1 − z2)R(z1)R(z2) (3.15)

Second resolvent equality:

R(A1, z)−R(A2, z) = R(A1, z)(A2 −A1)R(A2, z) (3.16)

In what follows we will need to integrate the resolvent over Jordan curves

in the complex plane. A Jordan curve is a simple closed curve that is piecewise

smooth and the integration will always be counter clockwise unless otherwise

stated. There is not much difference between integrating complex valued func-

tions with values in C or in C
n×n. In fact such integrals can be defined over

functions taking their values in Banach spaces in the same way.

Consider any Jordan curve Γi that encloses the eigenvalue λi and no other

eigenvalue of A,and let

Pi =
−1
2πi

∫

Γi

R(z)dz (3.17)

The above integral is often referred to as the Taylor-Dunford integral.
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Γi•
λi

3.1.4 Relations with the Jordan form

The purpose of this subsection is to show that the operator Pi defined by (3.17)

is identical with the spectral projector defined in Chapter 1 by using the Jordan

canonical form.

Theorem 3.3 The linear transformations Pi, i = 1, 2, . . . , p, associated with the

distinct eigenvalues λi, i = 1, . . . , p, are such that

(1) P 2
i = Pi, i.e., each Pi is a projector.

(2) PiPj = PjPi = 0 if i 6= j .

(3)
∑p

i=1 Pi = I.

Proof. (1) Let Γ and Γ′ two curves enclosing λi with Γ′ enclosing Γ. Then

(2iπ)2P 2
i =

∫

Γ

∫

Γ′

R(z)R(z′)dzdz′

=

∫

Γ

∫

Γ′

1

z′ − z (R(z
′)−R(z))dz′dz

because of the first resolvent equality. We observe that

∫

Γ

dz

z′ − z = 0 and

∫

Γ′

dz′

z′ − z = 2iπ,

so that
∫

Γ

∫

Γ′

R(z′)

z′ − z dz
′dz =

∫

Γ′

R(z′)

(∫

Γ

dz

z′ − z

)

dz′ = 0

and,

∫

Γ

∫

Γ′

R(z)

z′ − z dz
′dz =

∫

Γ

R(z)

(∫

Γ′

dz′

z′ − z

)

dz = 2iπ

∫

Γ

R(z)dz
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from which we get P 2
i = Pi.

(2) The proof is similar to (1) and is left as an exercise.

(3) Consider

P =
−1
2iπ

p
∑

i=1

∫

Γi

R(z)dz .

Since R(z) has no poles outside of the p Jordan curves, we can replace the sum

of the integrals by an integral over any curve that contains all of the eigenvalues

of A. If we choose this curve to be a circle C of radius r and center the origin, we

get

P =
−1
2iπ

∫

C

R(z)dz .

Making the change of variables t = 1/z we find that

P =
−1
2iπ

∫

C′
−

(A− (1/t)I)−1

(

−dt
t2

)

=
−1
2iπ

∫

C′
+

(tA− I)−1 dt

t

where C ′
− ( resp. C ′

+ ) is the circle of center the origin, radius 1/r run clock-wise

(resp. counter-clockwise). Moreover, because r must be larger than ρ(A) we have

ρ(tA) < 1 and the inverse of I− tA is expandable into its Neuman series, i.e., the

series

(I − tA)−1 =

∞
∑

k=0

(tA)k

converges and therefore,

P =
1

2iπ

∫

C′
+

[

k=∞
∑

k=0

tk−1Ak

]

dt = I

by the residue theorem.

The above theorem shows that the projectors Pi satisfy the same properties

as those of the spectral projector defined in the previous chapter, using the Jordan

canonical form. However, to show that these projectors are identical we still need

to prove that they have the same range. Note that since A and R(z) commute

we get by integration that APi = PiA and this implies that the range of Pi is

invariant under A. We must show that this invariant subspace is the invariant

subspace Mi associated with the eigenvalue λi,as defined in Chapter 1. The next

lemma establishes the desired result.

Lemma 3.1 Let M̂i = Ran(Pi) and let Mi = Null(A − λiI)li be the invariant

subspace associated with the eigenvalue λi. Then we have Mi = M̂i for i =
1, 2, . . . , p.
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Proof. We first prove that Mi ⊆ M̂i. This follows from the fact that when

x ∈ Null(A− λiI)li ,we can expand R(z)x as follows:

R(z)x = (A− zI)−1x

= [(A− λiI)− (z − λi)I]−1x

= − 1

z − λi
[

I − (z − λi)−1(A− λiI)
]−1

x

=
−1

z − λi

li
∑

j=0

(z − λi)−j(A− λiI)jx .

The integral of this over Γi is simply −2iπx by the residue theorem, hence the

result.

We now show that M̂i ⊆Mi. From

(z − λi)R(z) = −I + (A− λiI)R(z) (3.18)

it is easy to see that

−1
2iπ

∫

Γ

(z − λi)R(z)dz =
−1
2iπ

(A− λiI)
∫

Γ

R(z)dz = (A− λiI)Pi

and more generally,

−1
2iπ

∫

Γ

(z − λi)kR(z)dz =
−1
2iπ

(A− λiI)k
∫

Γ

R(z)dz

= (A− λiI)kPi . (3.19)

Notice that the term in the left-hand side of (3.19) is the coefficient A−k−1 of the

Laurent expansion ofR(z) which has no essential singularities. Therefore, there is

some integer k after which all the left-hand sides of (3.19) vanish. This proves that

for every x = Pix in M̂i,there exists some l for which (A − λiI)kx = 0, k ≥ l.
It follows that x belongs to Mi.

This finally establishes that the projectors Pi are identical with those defined

with the Jordan canonical form and seen in Chapter 1. Each projector Pi is asso-

ciated with an eigenvalue λi. However, it is important to note that more generally

one can define a projector associated with a group of eigenvalues, which will be

the sum of the individual projectors associated with the different eigenvalues. This

can also be defined by an integral similar to (3.17) where Γ is a curve that encloses

all the eigenvalues of the group and no other ones. Note that the rank of P thus

defined is simply the sum of the algebraic multiplicities of the eigenvalue. In other

words, the dimension of the range of such a P would be the sum of the algebraic

multiplicities of the distinct eigenvalues enclosed by Γ.

3.1.5 Linear Perturbations of A

In this section we consider the family of matrices defined by

A(t) = A+ tH
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where t belongs to the complex plane. We are interested in the behavior of the

eigenelements of A(t) when t varies around the origin. Consider first the ‘param-

eterized’ resolvent,

R(t, z) = (A+ tH − zI)−1.

Noting that R(t, z) = R(z)(I + tR(z)H)−1 it is clear that if the spectral radius

of tR(z)H is less than one then R(t, z) will be analytic with respect to t. More

precisely,

Proposition 3.2 The resolventR(t, z) is analytic with respect to t in the open disk

|t| < ρ−1(HR(z)).

We wish to show by integration over a Jordan curve Γ that a similar result

holds for the spectral projector P (t),i.e., that P (t) is analytic for t small enough.

The result would be true if the resolvent R(t, z) were analytic with respect to t
for each z on Γi. To ensure this we must require that

|t| < inf
z∈Γ

ρ−1(R(z)H)) .

The question that arises next is whether or not the disk of all t ’s defined above is

empty. The answer is no as the following proof shows. We have

ρ(R(z)H) ≤ ‖R(z)H‖ ≤ ‖R(z)‖‖H‖.

The function ‖R(z)‖ is continuous with respect to z for z ∈ Γ and therefore it

reaches its maximum at some point z0 of the closed curve Γ and we obtain

ρ(R(z)H) ≤ ‖R(z)H‖ ≤ ‖R(z0)‖‖H‖ ≡ κ .

Hence,

inf
z∈Γ

ρ−1(R(z)H)) ≥ κ−1 .

Theorem 3.4 Let Γ be a Jordan curve around one or a few eigenvalues of A and

let

ρa = inf
z∈Γ

[ρ(R(z)H)]−1 .

Then ρa>0 and the spectral projector

P (t) =
−1
2πi

∫

Γ

R(t, z)dz

is analytic in the disk |t| < ρa.

We have already proved that ρa>0. The rest of the proof is straightforward.

As an immediate corollary of Theorem 3.4, we know that the rank of P (t) will

stay constant as long as t stays in the disk |t| < ρa.

Corollary 3.1 The numberm of eigenvalues ofA(t), counted with their algebraic

multiplicities, located inside the curve Γ, is constant provided that |t| < ρa.
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In fact the condition on t is only a sufficient condition and it may be too restrictive

since the real condition required is that P (t) be continuous with respect to t.
While individual eigenvalues may not have an analytic behavior, their average

is usually analytic. Consider the average

λ̂(t) =
1

m

m
∑

i=1

λi(t)

of the eigenvalues λ1(t), λ2(t), . . . , λm(t) of A(t) that are inside Γ where we

assume that the eigenvalues are counted with their multiplicities. Let B(t) be a

matrix representation of the restriction of A(t) to the invariant subspace M(t) =
Ran(P (t)). Note that since M(t) is invariant under A(t) then B(t) is the matrix

representation of the rank m transformation

A(t)|M(t) = A(t)P (t)|M(t) = P (t)A(t)|M(t) = P (t)A(t)P (t)|M(t)

and we have

λ̂(t) ≡ 1

m
tr[B(t)] =

1

m
tr[A(t)P (t)|M(t)]

=
1

m
tr[A(t)P (t)] (3.20)

The last equality in the above equation is due to the fact that for any x not inM(t)
we have P (t)x = 0 and therefore the extension of A(t)P (t) to the whole space

can only bring zero eigenvalues in addition to the eigenvalues λi(t), i = 1, . . . ,m.

Theorem 3.5 The linear transformation A(t)P (t) and its

weighted trace λ̂(t) are analytic in the disk |z| < ρa.

Proof. That A(t)P (t) is analytic is a consequence of the previous theorem. That

λ̂(t) is analytic, comes from the equivalent expression (3.20) and the fact that the

trace of an operator X(t) that is analytic with respect to t is analytic.

Therefore, a simple eigenvalue λ(t) of A(t) not only stays simple around a

neighborhood of t = 0 but it is also analytic with respect to t. Moreover, the vector

ui(t) = Pi(t)ui is an eigenvector of A(t) associated with this simple eigenvalue,

with ui = ui(0) being an eigenvector of A associated with the eigenvalue λi.
Clearly, the eigenvector ui(t) is analytic with respect to the variable t. However,

the situation is more complex for the case of a multiple eigenvalue. If an eigen-

value is of multiplicity m then after a small perturbation, it will split into at most

m distinct small branches λi(t). These branches taken individually are not ana-

lytic in general. On the other hand, their arithmetic average is analytic. For this

reason it is critical, in practice, to try to recognize groups of eigenvalues that are

likely to originate from the splitting of a perturbed multiple eigenvalue.
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Example 3.1. That an individual branch of them branches of eigenvalues λi(t)
is not analytic can be easily illustrated by the example

A =

(

0 1

0 0

)

, H =

(

0 0

1 0

)

.

The matrixA(t) has the eigenvalues±
√
twhich degenerate into the double eigen-

value 0 as t → 0. The individual eigenvalues are not analytic but their average

remains constant and equal to zero.

In the above example each of the individual eigenvalues behaves like the square

root of t around the origin. One may wonder whether this type of behavior can be

generalized. The answer is stated in the next proposition.

Proposition 3.3 Any eigenvalue λi(t) of A(t) inside the Jordan curve Γ satisfies

|λi(t)− λi| = O (|t|1/li)

where li is the index of λi.

Proof. Let f(z) = (z − λi)li . We have seen earlier (proof of Lemma 3.1) that

f(A)Pi = 0. For an eigenvector u(t) of norm unity associated with the eigenvalue

λi(t) we have

f(A(t))P (t)u(t) = f(A(t))u(t) = (A(t)− λiI)liu(t)
= (λ(t)− λi)liu(t) .

Taking the norms of both members of the above equation and using the fact that

f(A)Pi = 0 we get

|λi(t)− λi|li = ‖f(A(t))P (t)u(t)‖
≤ ‖f(A(t))P (t)‖ = ‖f(A(t))P (t)− f(A)Pi‖ .

Since f(A) = f(A(0)),Pi = P (0) and P (t), f(A(t)) are analytic the right-hand-

side in the above inequality is O(t) and therefore

|λi(t)− λi|li = O (|t|)

which shows the result.

Example 3.2. A standard illustration of the above result is provided by taking

A to be a Jordan block and H to be the rank one matrix H = ene
T
1 :

A =













0 1
0 1

0 1
0 1

0













H =













0
0

0
0

1 0













.



PERTURBATION THEORY 59

The matrix A has nonzero elements only in positions (i, i + 1) where they are

equal to one. The matrix H has its elements equal to zero except for the element

in position (n, 1) which is equal to one. For t = 0 the matrix A+ tH admits only

the eigenvalue λ = 0. The characteristic polynomial of A+ tH is equal to

pt(z) = det(A+ tH − zI) = (−1)n(zn − t)

and its roots are λj(t) = t1/ne
2ijπ
n j = 1, . . . , n. Thus, if n = 20 then for a

perturbation on A of the order of 10−16, a reasonable number if double precision

arithmetic is used, the eigenvalue will be perturbed by as much as 0.158. .

3.2 A-Posteriori Error Bounds

In this section we consider the problem of predicting the error made on an eigen-

value/eigenvector pair from some a posteriori knowledge on their approximations.

The simplest criterion used to determine the accuracy of an approximate eigenpair

λ̃, ũ , is to compute the norm of the so called residual vector

r = Aũ− λ̃ũ.

The aim is to derive error bounds that relate some norm of r,typically its 2-norm,

to the errors on the eigenpair. Such error bounds are referred to a posteriori er-

ror bounds. Such bounds may help determine how accurate the approximations

provided by some algorithm may be. This information can in turn be helpful in

choosing a stopping criterion in iterative algorithms, in order to ensure that the

answer delivered by the numerical method is within a desired tolerance.

3.2.1 General Error Bounds

In the non-Hermitian case there does not exist any ‘a posteriori’ error bounds in

the strict sense of the definition. The error bounds that exist are in general weaker

and not as easy to use as those known in the Hermitian case. The first error

bound which we consider is known as the Bauer-Fike theorem. We recall that the

condition number of a matrixX relative to the p-norm is defined by Condp(X) =
‖X‖p‖X−1‖p.

Theorem 3.6 (Bauer-Fike) Let λ̃, ũ be an approximate eigenpair ofAwith resid-

ual vector r = Aũ − λ̃ũ, where ũ is of 2-norm unity. Moreover, assume that the

matrixA is diagonalizable and letX be the matrix that transforms it into diagonal

form. Then, there exists an eigenvalue λ of A such that

|λ− λ̃| ≤ Cond2(X)‖r‖2 .

Proof. If λ̃ ∈ Λ(A) the result is true. Assume that λ̃ is not an eigenvalue. From

A = XDX−1,where D is the diagonal of eigenvalues and since we assume that

λ /∈ Λ(A), we can write

ũ = (A− λ̃I)−1r = X(D − λ̃I)−1X−1r
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and hence

1 = ‖X(D − λ̃I)−1X−1r‖2
≤ ‖X‖2‖X−1‖2‖(D − λ̃I)−1‖2 ‖r‖2 . (3.21)

The matrix (D − λ̃I)−1 is a diagonal matrix and as a result its 2-norm is the

maximum of the absolute values of its diagonal entries. Therefore,

1 ≤ Cond2(X)‖r‖2 max
λi∈Λ(A)

|λi − λ̃|−1

from which the result follows.

In case the matrix is not diagonalizable then the previous result can be gener-

alized as follows.

Theorem 3.7 Let λ̃, ũ an approximate eigenpair with residual vector r = Aũ −
λ̃ũ, where ũ has unit 2-norm. Let X be the matrix that transforms A into its

Jordan canonical form, A = XJX−1. Then, there exists an eigenvalue λ of A
such that

|λ− λ̃|l
1 + |λ− λ̃|+ · · ·+ |λ− λ̃|l−1

≤ Cond2(X)‖r‖2

where l is the index of λ.

Proof. The proof starts as in the previous case but here the diagonal matrix D is

replaced by the Jordan matrix J . Because the matrix (J − λ̃I) is block diagonal

its 2-norm is the maximum of the 2-norms of each block (a consequence of the

alternative formulation for 2-norms seen in Chapter 1). For each of these blocks

we have

(Ji − λ̃I)−1 = ((λi − λ̃)I + E)−1

where E is the nilpotent matrix having ones in positions (i, i+ 1) and zeros else-

where. Therefore,

(Ji − λ̃I)−1 =

li
∑

j=1

(λi − λ̃)−j(−E)j−1

and as a result, setting δi = |λi − λ̃| and noting that ‖E‖2 = 1,we get

‖(Ji − λ̃I)−1‖2 ≤
li
∑

j=1

|λi − λ̃|−j‖E‖j−1
2 =

li
∑

j=1

δ−j
i = δ−li

i

li−1
∑

j=0

δji .

The analogue of (3.21) is

1 ≤ Cond2(X)‖(J − λ̃I)−1‖2‖r‖2. (3.22)
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Since,

‖(J − λ̃I)−1‖2 = max
i=1,...,p

‖(Ji − λ̃I)−1‖2 ≤ max
i=1,...,p

δ−l
i

li−1
∑

j=0

δji

we get

min
i=1,...,p

{

δlii
∑li−1

j=0 δ
j
i

}

≤ Cond2(X)‖r‖2

which is essentially the desired result.

Corollary 3.2 (Kahan, Parlett, and Jiang, 1980). Under the same assumptions

as those of theorem 3.7, there exists an eigenvalue λ of A such that

|λ− λ̃|l
(1 + |λ− λ̃|)l−1

≤ Cond2(X)‖r‖2

where l is the index of λ.

Proof. Follows immediately from the previous theorem and the inequality,

l−1
∑

j=0

δji ≤ (1 + δi)
l−1.

For an alternative proof see [101]. Unfortunately, the bounds of the type

shown in the previous two theorems are not practical because of the presence of

the condition number of X . The second result even requires the knowledge of

the index of λi,which is not numerically viable. The situation is much improved

in the particular case where A is Hermitian because in this case Cond2(X) = 1.

This is taken up next.

3.2.2 The Hermitian Case

In the Hermitian case, Theorem 3.6 leads to the following corollary.

Corollary 3.3 Let λ̃, ũ be an approximate eigenpair of a Hermitian matrixA,with

‖u‖2 = 1 and let r be the corresponding residual vector. Then there exists an

eigenvalue of A such that

|λ− λ̃| ≤ ‖r‖2 . (3.23)

This is a remarkable result because it constitutes a simple yet general error

bound. On the other hand it is not sharp as the next a posteriori error bound, due

to Kato and Temple [104, 211], shows. We start by proving a lemma that will

be used to prove Kato-Temple’s theorem. In the next results it is assumed that the

approximate eigenvalue λ̃ is the Rayleigh quotient of the approximate eigenvector.
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Lemma 3.2 Let ũ be an approximate eigenvector of norm unity of A,and λ̃ =
(Aũ, ũ). Let (α, β) be an interval that contains λ̃ and no eigenvalue of A. Then

(β − λ̃)(λ̃− α) ≤ ‖r‖22.

Proof. This lemma uses the observation that the residual vector r is orthogonal to

ũ. Then we have

((A− αI)ũ, (A− βI)ũ)
= ((A− λ̃I)ũ+ (λ̃− αI)ũ, ((A− λ̃I)ũ+ (λ̃− βI)ũ)
= ‖r‖22 + (λ̃− αI)(λ̃− βI),

because of the orthogonality property mentioned above. On the other hand, one

can expand ũ in the orthogonal eigenbasis of A as

ũ = ξ1u1 + ξ2u2 + · · ·+ ξnun

to transform the left hand side of the expression into

((A− αI)ũ, (A− βI)ũ) =
n
∑

i=1

|ξi|2 (λi − α)(λi − β) .

Each term in the above sum is nonnegative because of the assumptions on α and

β. Therefore ‖r‖22 + (β − λ̃)(λ̃− α) ≥ 0 which is the desired result.

Theorem 3.8 (Kato and Temple [104, 211]) Let ũ be an approximate eigenvec-

tor of norm unity of A,and λ̃ = (Aũ, ũ). Assume that we know an interval (a, b)
that contains λ̃ and one and only one eigenvalue λ of A. Then

− ‖r‖
2
2

λ̃− a
≤ λ̃− λ ≤ ‖r‖22

b− λ̃
.

Proof. Let λ be the closest eigenvalue to λ̃. In the case where λ is located at left

of λ̃ then take α = λ and β = b in the lemma to get

0 ≤ λ̃− λ ≤ ‖r‖22
b− λ̃

.

In the opposite case where λ > λ̃,use α = a and β = λ to get

0 ≤ λ− λ̃ ≤ ‖r‖
2
2

λ̃− a
.

This completes the proof.

A simplification of Kato-Temple’s theorem consists of using a particular in-

terval that is symmetric about the approximation λ̃, as is stated in the next corol-

lary.
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Corollary 3.4 Let ũ be an approximate eigenvector of norm unity of A,and λ̃ =
(Aũ, ũ). Let λ be the eigenvalue closest to λ̃ and δ the distance from λ̃ to the rest

of the spectrum, i.e.,

δ = min
i
{|λi − λ̃|, λi 6= λ}.

Then,

|λ̃− λ| ≤ ‖r‖
2
2

δ
. (3.24)

Proof. This is a particular case of the previous theorem with a = λ̃ − δ and

b = λ̃+ δ.

It is also possible to show a similar result for the angle between the exact and

approximate eigenvectors.

Theorem 3.9 Let ũ be an approximate eigenvector of norm unity ofA,λ̃ = (Aũ, ũ)
and r = (A− λ̃I)ũ. Let λ be the eigenvalue closest to λ̃ and δ the distance from

λ̃ to the rest of the spectrum, i.e., δ = mini{|λi − λ̃|, λi 6= λ}. Then, if u is an

eigenvector of A associated with λ we have

sin θ(ũ, u) ≤ ‖r‖2
δ

. (3.25)

Proof. Let us write the approximate eigenvector ũ as ũ = u cos θ + z sin θ where

z is a vector orthogonal to u. We have

(A− λ̃I)ũ = cos θ (A− λ̃I)u+ sin θ (A− λ̃I)z
= cos θ (λ− λ̃I)u+ sin θ (A− λ̃I)z .

The two vectors on the right hand side are orthogonal to each other because,

(u, (A− λ̃I)z) = ((A− λ̃I)u, z) = (λ− λ̃)(u, z) = 0 .

Therefore,

‖r‖22 = ‖(A− λ̃I)ũ‖2 = sin2 θ ‖(A− λ̃I)z‖22 + cos2 θ |λ− λ̃|2 .

Hence,

sin2 θ ‖(A− λ̃I)z‖22 ≤ ‖r‖22 .
The proof follows by observing that since z is orthogonal to u then ‖(A−λ̃I)z‖2 is

larger than the smallest eigenvalue ofA− λ̃I restricted to the subspace orthogonal

to u,which is precisely δ.

Although the above bounds for the Hermitian case are sharp they are still not

computable since δ involves a distance from the ‘next closest’ eigenvalue of A
to λ̃ which is not readily available. In order to be able to use these bounds in

practical situations one must provide a lower bound for the distance δ. One might
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simply approximate δ by λ̃ − λ̃j where λ̃j is some approximation to the next

closest eigenvalue to λ̃. The result would no longer be an actual upper bound on

the error but rather an ‘estimate’ of the error. This may not be safe however. To

ensure that the computed error bound used is rigorous it is preferable to exploit

the simpler inequality provided by Corollary 3.3 in order to find a lower bound for

the distance δ,for example

δ = |λ̃− λj | ≥ |(λ̃− λ̃j) + (λj − λ̃j)|
≥ |λ̃− λ̃j | − |λj − λ̃j |
≥ |λ̃− λ̃j | − ‖rj‖2.

where ‖rj‖2 is the residual norm associated with the eigenvalue λj . Now the

above lower bound of δ is computable. In order for the resulting error bound to

have a meaning, ‖rj‖2 must be small enough to ensure that there are no other

potential eigenvalues λk that might be closer to λ than is λj . The above error

bounds when used cautiously can be quite useful.

Example 3.3. Let

A =













1.0 2.0
2.0 1.0 2.0

2.0 1.0 2.0
2.0 1.0 2.0

2.0 1.0













.

The eigenvalues of A are {3,−1, 1, 1− 2
√
3, 1 + 2

√
3}

An eigenvector associated with the eigenvalue λ = 3 is

u =













−0.5
−0.5
0.0
0.5
0.5













.

Consider the vector

ũ =













−0.49
−0.5
0.0
0.5
0.5













.

The Rayleigh quotient of ũ with respect to A is λ̃ = 2.9998... The closest eigen-

value is λ = 3.0 and the corresponding actual error is 2.02 × 10−4. The residual

norm is found to be

‖(A− λ̃I)ũ‖2 ≈ 0.0284 .

The distance δ here is

δ = |2.9998− 4.464101...| ≈ 1.46643 .
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So the error bound for the eigenvalue 2.9998 found is

(0.0284..)2

1.4643
≈ 5.5177× 10−4.

For the eigenvector, the angle between the exact and approximate eigenvector

is such that cos θ = 0.999962,giving an angle θ ≈ 0.0087 and the sine of the

angle is approximately sin θ ≈ 0.0087. The error as estimated by (3.9) is

sin θ ≤ 0.0284

1.4643
≈ 0.01939

which is about twice as large as the actual error.

We now consider a slightly more realistic situation. There are instances in

which the off-diagonal elements of a matrix are small. Then the diagonal elements

can be considered approximations to the eigenvalues of A and the question is how

good an accuracy can one expect? We illustrate this with an example.

Example 3.4. Let

A =













1.00 0.0055 0.10 0.10 0.00
0.0055 2.00 −0.05 0.00 −0.10

0.10 −0.05 3.00 0.10 0.05
0.10 0.00 0.10 4.00 0.00
0.00 −0.10 0.05 0.00 5.00













.

The eigenvalues of A rounded to 6 digits are

Λ(A) = {0.99195, 1.99443, 2.99507, 4.01386, 5.00466} .

A natural question is how accurate is each of the diagonal elements of A as an

approximate eigenvalue? We assume that we know nothing about the exact spec-

trum. We can take as approximate eigenvectors the ei’s, i = 1, · · · , 5 and the

corresponding residual norms are

0.141528 ; 0.1119386 ; 0.1581139 ; 0.1414214 ; 0.1118034

respectively. The simplest residual bound (3.23) tells us that

|λ− 1.0| ≤ 0.141528; |λ− 2.0| ≤ 0.111939;
|λ− 3.0| ≤ 0.158114; |λ− 4.0| ≤ 0.141421;
|λ− 5.0| ≤ 0.111803.

.

The intervals defined above are all disjoint. As a result, we can get a reasonable

idea of δi the distance of each of the approximations from the eigenvalues not in

the interval. For example,

δ1 ≡ |a11 − λ2| ≥ |1− (2.0− 0.1119386)| ≈ 0.88806
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and

δ2 = min{|a22 − λ3|, |a22 − λ1|}
≥ min{|2.0− (3.0− 0.15811)|, |2.0− (1.0 + 0.14153)|}
= 0.8419...

We find similarly δ3 ≥ 0.8585,δ4 ≥ 0.8419, and δ5 ≥ 0.8586.

We now get from the bounds (3.24) the following inequalities,

|λ− 1.0| ≤ 0.0226; |λ− 2.0| ≤ 0.0149;
|λ− 3.0| ≤ 0.0291; |λ− 4.0| ≤ 0.0238;
|λ− 5.0| ≤ 0.0146.

whereas the actual errors are

|λ− 1.0| ≈ 0.0080; |λ− 2.0| ≈ 0.0056; |λ− 3.0| ≈ 0.0049;
|λ− 4.0| ≈ 0.0139; |λ− 5.0| ≈ 0.0047.

3.2.3 The Kahan-Parlett-Jiang Theorem

We now return to the general non-Hermitian case. The results seen for the Her-

mitian case in the previous section can be very useful in practical situations. For

example they can help develop efficient stopping criteria in iterative algorithms.

In contrast, those seen in Section 3.2.1 for the general non-Hermitian case are not

too easy to exploit in practice. The question that one might ask is whether or not

any residual bounds can be established that will provide information similar to

that provided in the Hermitian case. There does not seem to exist any such result

in the literature. A result established by Kahan, Parlett and Jiang [101], which we

now discuss, seems to be the best compromise between generality and sharpness.

However, the theorem is of a different type. It does not guarantee the existence

of, say, an eigenvalue in a given interval whose size depends on the residual norm.

It only gives us the size of the smallest perturbation that must be applied to the

original data (the matrix), in order to transform the approximate eigenpair into an

exact one (for the perturbed problem).

To explain the nature of the theorem we begin with a very simple result which

can be regarded as a one-sided version of the one proved by Kahan, Parlett, and

Jiang in that it only considers the right eigenvalue – eigenvector pair instead of the

eigen-triplet consisting of the eigenvalue and the right and left eigenvectors.

Proposition 3.4 Let a square matrix A and a unit vector u be given. For any

scalar γ define the residual vector,

r = Au− γu,

and let E = {E : (A− E)u = γu}. Then

min
E∈E
‖E‖2 = ‖r‖2 . (3.26)
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Proof. From the assumptions we see that each E is in E if and only if it satisfies

the equality

Eu = r . (3.27)

Since ‖u‖2 = 1 the above equation implies that for any such E

‖E‖2 ≥ ‖r‖2,

which in turn implies that

min
E∈E
‖E‖2 ≥ ‖r‖2. (3.28)

Now consider the matrix E0 = ruH which is a member of E since it satisfies

(3.27). The 2-norm of E0 is such that

‖E0‖22 = σmax{ruHurH} = σmax{rrH} = ‖r‖22.

As a result the minimum in the left hand side of (3.28) is reached for E = E0 and

the value of the minimum is equal to ‖r‖2.

We now state a simple version of the Kahan-Parlett-Jiang theorem [101].

Theorem 3.10 (Kahan, Parlett, and Jiang) Let a square matrix A and two unit

vectors u,w with (u,w) 6= 0 be given. For any scalar γ define the residual

vectors,

r = Au− γu s = AHw − γ̄w
and let E = {E : (A− E)u = γu; (A− E)Hw = γ̄w}. Then

min
E∈E
‖E‖2 = max {‖r‖2, ‖s‖2} . (3.29)

Proof. We proceed in the same way as for the proof of the simpler result of the

previous proposition. The two conditions that a matrix E must satisfy in order to

belong to E translate into

Eu = r and EHw = s. (3.30)

By the same argument used in the proof of Proposition 3.4 any such E satisfies

‖E‖2 ≥ ‖r‖2 and ‖E‖2 ≥ ‖s‖2. (3.31)

which proves the inequality

min
E∈E
‖E‖2 ≥ max{‖r‖2, ‖s‖2}. (3.32)

We now define,

δ = sHu = wHr (3.33)

x = r − δ w
y = s− δ̄ u
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and consider the particular set of matrices of the form

E(β) = ruH + wsH − δ wuH − β xyH (3.34)

where β is a parameter. It is easy to verify that these matrices satisfy the con-

straints (3.30) for any β.

We distinguish two different cases depending on whether ‖s‖2 is larger or

smaller than ‖r‖2. When ‖s‖2>‖r‖2 we rewrite E(β) in the form

E(β) = x(u− β y)H + wsH (3.35)

and select β in such a way that

sH(u− β y) = 0 (3.36)

which leads to

β =
δ

‖s‖22 − |δ|2
.

We note that the above expression is not valid when ‖s‖2 = |δ|,which occurs

only when y = 0. In this situation E(β) = ruH for any β, and the following

special treatment is necessary. As in the proof of the previous propositionE(β) =
‖r‖2. On the other hand we have

‖s‖2 = |δ| = |wHr| ≤ ‖r‖2
which shows that max{‖r‖2, ‖s‖2} = ‖r‖2 and establishes the result that the

minimum in the theorem is reached for E(β) in this very special case.

Going back to the general case where ‖s‖2 6= |δ|, with the above choice of β
the two vectors x and w in the range of E(β) as defined by (3.35) are orthogonal

and similarly, the vectors u − βy and s are also orthogonal. In this situation the

norm of E(β) is equal to [See problem P-2.14]:

‖E(β)‖2 = max{‖s‖2, ‖x‖2‖‖uH − β y‖2}.

Because of the orthogonality of x and w,we have

‖x‖22 = ‖r‖22 − |δ|2 .

Similarly, exploiting the orthogonality of the pair u, y,and using the definition of

β we get

‖u− β y‖22 = 1 + β2‖y‖22
= 1 + β2[‖s‖22 − |δ|2]

=
‖s‖22

‖s‖22 − |δ|2
.

The above results yield

‖E(β)‖22 = max

{

‖s‖22, ‖s‖22
‖r‖22 − |δ|2
‖s‖22 − |δ|2

}

= ‖s‖22.
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This shows from (3.32) that the equality (3.29) is satisfied for the case when

‖s‖2>‖r‖2.

To prove the result for the case ‖s‖2<‖r‖2,we proceed in the same manner,

writing this time E(β) as

E(β) = ruH + (αw − β x)yH

and choosing β such that uH(w − β x) = 0. A special treatment will also be

necessary for the case where ‖r‖2 = |δ| which only occurs when x = 0.

The actual result proved by Kahan, Parlett and Jiang is essentially a block

version of the above theorem and includes results with other norms, such as the

Frobenius norm.

Example 3.5. Consider the matrix,

A =













1.0 2.1
1.9 1.0 2.1

1.9 1.0 2.1
1.9 1.0 2.1

1.9 1.0













.

which is obtained by perturbing the symmetric tridiagonal matrix of Example 3.3.

Consider the pair

γ = 3.0, v =













−0.5
−0.5
0.0
0.5
0.5













.

Then we have

‖r‖2 = ‖(A− γI)u‖2 ≈ 0.1414,

which tells us, using the one-sided result (Proposition 3.4), that we need to perturb

A by a matrix E of norm 0.1414 to make the pair γ, v an exact eigenpair of A.

Consider now v as defined above and

w = α (0.6, 0.6, 0.0, 0.4, 0.4)T ,

where α is chosen to normalize w to so that its 2-norm is unity. Then, still with

γ = 3,we find

‖r‖2 ≈ 0.1414 , ‖s‖2 ≈ 0.5004 .

As a result of the theorem, we now need a perturbationE whose 2-norm is roughly

0.5004 to make the triplet γ, v, w an exact eigentriplet of A,a much stricter re-

quirement than with the one-sided result.

The outcome of the above example was to be expected. If one of the left of

right approximate eigen-pair, for example the left pair (γ, v), is a poor approxima-

tion, then it will take a larger perturbation on A to make the triplet γ, v, w exact,
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than it would to make the pair γ, u exact. Whether one needs to use the one-sided

or the two-sided result depends on whether one is interested in the left and right

eigenvectors simultaneously or in the right (or left) eigenvector only.

3.3 Conditioning of Eigen-problems

When solving a linear system Ax = b,an important question that arises is how

sensitive is the solution x to small variations of the initial data, namely to the

matrix A and the right-hand side b. A measure of this sensitivity is called the

condition number of A defined by

Cond(A) = ‖A‖‖A−1‖

relative to some norm.

For the eigenvalue problem we raise a similar question but we must now

define similar measures for the eigenvalues as well as for the eigenvectors and the

invariant subspaces.

3.3.1 Conditioning of Eigenvalues

Let us assume that λ is a simple eigenvalue and consider the family of matrices

A(t) = A + tE. We know from the previous sections that there exists a branch

of eigenvalues λ(t) of A(t) that is analytic with respect to t, when t belongs to a

small enough disk centered at the origin. It is natural to call conditioning of the

eigenvalue λ of A relative to the perturbation E the modulus of the derivative of

λ(t) at the origin t = 0. Let us write

A(t)u(t) = λ(t)u(t) (3.37)

and take the inner product of both members with a left eigenvector w of A associ-

ated with λ to get

((A+ tE)u(t), w) = λ(t)(u(t), w)

or,

λ(t)(u(t), w) = (Au(t), w) + t(Eu(t), w)

= (u(t), AHw) + t(Eu(t), w)

= λ(u(t), w) + t(Eu(t), w).

Hence,
λ(t)− λ

t
(u(t), w) = (Eu(t), w)

and therefore by taking the limit at t = 0,

λ′(0) =
(Eu,w)

(u,w)
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Here we should recall that the left and right eigenvectors associated with a simple

eigenvalue cannot be orthogonal to each other. The actual conditioning of an

eigenvalue, given a perturbation “in the direction ofE”is the modulus of the above

quantity. In practical situations, one often does not know the actual perturbation

E but only its magnitude, e.g., as measured by some matrix norm ‖E‖. Using the

Cauchy-Schwarz inequality and the 2-norm, we can derive the following upper

bound,

|λ′(0)| ≤ ‖Eu‖2‖w‖2|(u,w)| ≤ ‖E‖2
‖u‖2‖w‖2
|(u,w)|

In other words the actual condition number of the eigenvalue λ is bounded from

above by the norm of E divided by the cosine of the acute angle between the left

and the right eigenvectors associated with λ. Hence the following definition.

Definition 3.1 The condition number of a simple eigenvalue λ of an arbitrary

matrix A is defined by

Cond(λ) =
1

cos θ(u,w)

in which u and w are the right and left eigenvectors, respectively, associated with

λ.

Example 3.6. Consider the matrix

A =





−149 −50 −154
537 180 546
−27 −9 −25



 .

The eigenvalues ofA are {1, 2, 3}. The right and left eigenvectors ofA associated

with the eigenvalue λ1 = 1 are approximately

u =





0.3162
−0.9487

0.0



 and w =





0.6810
0.2253
0.6967



 (3.38)

and the corresponding condition number is approximately

Cond(λ1) ≈ 603.64

A perturbation of order 0.01 may cause perturbations of magnitude up to 6.

Perturbing a11 to −149.01 yields the spectrum:

{0.2287, 3.2878, 2.4735}.

For Hermitian, or more generally normal, matrices every simple eigenvalue

is well-conditioned, since Cond(λ) = 1. On the other hand the condition number

of a non-normal matrix can be excessively high, in fact arbitrarily high.
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Example 3.7. As an example simply consider the matrix











λ1 −1
λ2 −1

. .
. −1

λn











(3.39)

with λ1 = 0 and λi = 1/(i − 1) for i > 1. A right eigenvector associated with

the eigenvalue λ1 is the vector e1. A left eigenvector is the vector w whose i-th

component is equal to (i− 1)! for i = 1, . . . , n. A little calculation shows that the

condition number of λ1 satisfies

(n− 1)! ≤ Cond(λ1) ≤ (n− 1)!
√
n.

Thus, this example shows that the condition number can be quite large even for

modestly sized matrices.

An important comment should be made concerning the above example. The

eigenvalues of A are explicitly known in terms of the diagonal entries of the ma-

trix, whenever the structure of A stays the same. One may wonder whether it is

sensible to discuss the concept of condition number in such cases. For example, if

we perturb the (1,1) entry by 0.1 we know exactly that the eigenvalue λ1 will be

perturbed likewise. Is the notion of condition number useless in such situations?

The answer is no. First, the argument is only true if perturbations are applied in

specific positions of the matrix, namely its upper triangular part. If perturbations

take place elsewhere then some or all of the eigenvalues of the perturbed matrix

may not be explicitly known. Second, one can think of applying an orthogonal

similarity transformation to A. If Q is orthogonal then the eigenvalues of the ma-

trix B = QHAQ have the same condition number as those of the original matrix

A,(see Problem P-3.15). The resulting matrixB may be dense and the dependence

of its eigenvalues with respect to its entries is no longer explicit.

3.3.2 Conditioning of Eigenvectors

To properly define the condition number of an eigenvector we need to use the no-

tion of reduced resolvent. Although the resolvent operator R(z) has a singularity

at an eigenvalue λ it can still be defined on the restriction to the invariant subspace

Null(P ). More precisely, consider the restriction of the mapping A − λI to the

subspace (I−P )Cn = Null(P ),where P is the spectral projector associated with

the eigenvalue λ. This mapping is invertible because if x is an element of Null(P )
then (A− λI)x = 0,i.e., x is in Null(A− λI) which is included in Ran(P ) and

this is only possible when x = 0. We will call reduced resolvent at λ the inverse

of this linear mapping and we will denote it by S(λ) . Thus,

S(λ) =
[

(A− λI)|Null(P )

]−1

.
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The reduced resolvent satisfies the relation,

S(λ)(A− λI)x = S(λ)(A− λI)(I − P )x = (I − P )x ∀ x (3.40)

which can be viewed as an alternative definition of S(λ).
We now consider a simple eigenvalue λ of a matrix A with an associated

eigenvector u, and write that a pair λ(t), u(t) is an eigenpair of the matrixA+tE,

(A+ tE)u(t) = λ(t)u(t) . (3.41)

Subtracting Au = λu from both sides we have,

A(u(t)− u) + tEu(t) = λ(t)u(t)− λu = λ(u(t)− u) + (λ(t)− λ)u(t)

or,

(A− λI)(u(t)− u) + tEu(t) = (λ(t)− λ)u(t) .
We then multiply both sides by the projector I − P to obtain

(I − P )(A− λI)(u(t)− u) + t(I − P )Eu(t)
= (λ(t)− λ)(I − P )u(t)
= (λ(t)− λ)(I − P )(u(t)− u)

The last equality holds because (I − P )u = 0 since u is in Ran(P ). Hence,

(A− λI)(I − P )(u(t)− u) =
(I − P ) [−tEu(t) + (λ(t)− λ)(u(t)− u)] .

We now multiply both sides by S(λ) and use (3.40) to get

(I − P )(u(t)− u) =
S(λ)(I − P ) [−tEu(t) + (λ(t)− λ)(u(t)− u)] (3.42)

In the above development we have not scaled u(t) in any way. We now do so by

requiring that its projection onto the eigenvector u be exactly u,i.e., Pu(t) = u
for all t. With this scaling, we have

(I − P )(u(t)− u) = u(t)− u.

As a result, equality (3.42) becomes

u(t)− u = S(λ) [−t(I − P )Eu(t) + (λ(t)− λ)(u(t)− u), ]

from which we finally get, after dividing by t and taking the limit,

u′(0) = −S(λ)(I − P )Eu . (3.43)

Using the same argument as before, we arrive at the following general definition

of the condition number of an eigenvector.
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Definition 3.2 The condition number of an eigenvector u associated with an eigen-

value λ of an arbitrary matrix A is defined by

Cond(u) = ‖S(λ)(I − P )‖2. (3.44)

in which S(λ) is the reduced resolvent of A at λ.

In the case where the matrix A is Hermitian it is easy to verify that the condi-

tion number simplifies to the following

Cond(u) =
1

dist[λ,Λ(A)− {λ}] . (3.45)

In the general non-Hermitian case, it is difficult to assess the size of Cond(u).
To better understand the nature of the operator S(λ)(I−P ), consider its spec-

tral expansion in the particular case where A is diagonalizable and the eigenvalue

λi of interest is simple.

S(λi)(I − Pi) =

p
∑

j=1
j 6=i

1

λj − λi
Pj

Since we can write each projector as a sum of outer product matrices Pj =
∑µi

k=1 ukw
H
k where the left and right eigenvectors uk and wk are normalized such

that (uj , wj) = 1,the expression (2.9) can be rewritten as

u′(0) =

n
∑

j=1
j 6=i

1

λj − λi
ujw

H
j Eui =

n
∑

j=1
j 6=i

wH
j Eui

λj − λi
uj

which is the standard expression developed in Wilkinson’s book [223].

What the above expression reveals is that when eigenvalues get close to one

another then the eigenvectors are not too well defined. This is predictable since

a multiple eigenvalue has typically several independent eigenvectors associated

with it, and we can rotate the eigenvector arbitrarily in the eigenspace while keep-

ing it an eigenvector of A. As an eigenvalue gets close to being multiple, the

condition number for its associated eigenvector deteriorates. In fact one question

that follows naturally is whether or not one can define the notion of condition

number for eigenvectors associated with multiple eigenvalues. The above obser-

vation suggests that a more realistic alternative is to try to analyze the sensitivity

of the invariant subspace. This is taken up in the next section.

Example 3.8. Consider the matrix seen in example 3.6

A =





−149 −50 −154
537 180 546
−27 −9 −25



 .
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The matrix is diagonalizable since it has three distinct eigenvalues and

A = X





1 0 0
0 2 0
0 0 3



 X−1 .

One way to compute the reduced resolvent associated with λ1 = 1 is to replace in

the above equality the diagonal matrix D by the ‘inverse’ of D−λ1I obtained by

inverting the nonzero entries (2, 2) and (3, 3) and placing a zero in entry (1, 1),i.e.,

S(λ1) = X





0 0 0
0 1 0

0 0 1
2



 X−1 =





−118.5 −39.5 −122.5
316.5 105.5 325.5
13.5 4.5 14.5



 .

We find that the 2-norm of ‖S(λ1)‖2 is ‖S(λ1)‖2 = 498.27. Thus, a pertur-

bation of order 0.01 may cause changes of magnitude up to 4.98 on the eigen-

vector. This turns out to be a pessimistic overestimate. If we perturb a11 from

−149.00 to −149.01 the eigenvector u1 associated with λ1 is perturbed from

u1 = (−1/3, 1, 0)T to ũ1 = (−0.3170, 1,−0.0174)T . A clue as to why we

have a poor estimate is provided by looking at the norms of X and X−1.

‖X‖2 = 1.709 and ‖X−1‖2 = 754.100 ,

which reveals that the eigenvectors are poorly conditioned.

3.3.3 Conditioning of Invariant Subspaces

Often one is interested in the invariant subspace rather than the individual eigen-

vectors associated with a given eigenvalue. In these situations the condition num-

ber for eigenvectors as defined before is not sufficient. We would like to have an

idea on how the whole subspace behaves under a given perturbation.

We start with the simple case where the multiplicity of the eigenvalue under

consideration is one, and we define some notation. Referring to (3.41), let Q(t)
be the orthogonal projector onto the invariant subspace associated with the sim-

ple eigenvalue λ(t) and Q(0) ≡ Q be the orthogonal projector onto the invariant

subspace of A associated with λ. The orthogonal projector Q onto the invari-

ant subspace associated with λ has different properties from those of the spectral

projector. For example A and Q do not commute. All we can say is that

AQ = QAQ or (I −Q)AQ = 0 ,

leading to

(I −Q)A = (I −Q)A(I −Q) (3.46)

(I −Q)(A− λI) = (I −Q)(A− λI)(I −Q)

Note that the linear operator (A − λI) when restricted to the range of I − Q is

invertible. This is because if (A − λI)x = 0 then x belongs to Ran(Q) whose
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intersection with Ran(I −Q) is reduced to {0}. We denote by S+(λ) the inverse

of (A − λI) restricted to Ran(I −Q). Note that although both S(λ) and S+(λ)
are inverses of (A−λI) restricted to complements of Null(A−λI),these inverses

are quite different.

Starting from (3.41), we subtract λu from each side to get,

(A− λI)u(t) = −tEu(t) + (λ(t)− λ)u(t).

Now multiply both sides by the orthogonal projector I −Q,

(I −Q)(A− λI)u(t) = −t(I −Q)Eu(t) + (λ(t)− λ)(I −Q)u(t).

to obtain from (3.46),

[(I −Q)(A− λI)(I −Q)](I −Q)u(t)

= −t(I −Q)Eu(t) + (λ(t)− λ)(I −Q)u(t).

Therefore,

(I −Q)u(t) = S+(λ) [−t(I −Q)Eu(t) + (λ(t)− λ)(I −Q)u(t)] .

We now write the vector u(t) as u(t) = Q(t)x for an arbitrary vector x,

(I −Q)Q(t)x = S+(λ) [−t(I −Q)EQ(t)x+

(λ(t)− λ)(I −Q)Q(t)x] .

The above equation yields an estimate of the norm of (I − Q)Q(t), which is the

sine of the angle between the invariant subspaces M = Ran(Q) and M(t) =
Ran(Q(t)).

Proposition 3.5 Assume that λ is a simple eigenvalue of A. When the matrix A
is perturbed by the matrix tE,then the sine of the angle between the invariant

subspaces M and M(t) of A and A + tE associated with the eigenvalues λ and

λ(t) is approximately,

sin θ(M,M(t)) ≈ |t|‖S+(λ)(I −Q)EQ(t)‖

the approximation being of second order with respect to t.

Thus, we can define the condition number for invariant subspaces as being the

(spectral) norm of S+(λ).
The more interesting situation is when the invariant subspace is associated

with a multiple eigenvalue. What was just done for one-dimensional invariant

subspaces can be generalized to multiple-dimensional invariant subspaces. The

notion of condition numbers here will require some knowledge about generalized

solutions to Sylvester’s equations. A Sylvester equation is a matrix equation of

the form

AX −XR = B, (3.47)
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where A is n× n,X and B are n× r and R is r × r. The important observation

which we would like to exploit is that (3.47) is nothing but a linear system of

equations with n r unknowns. It can be shown that the mapping X → AX −XR
is invertible under the simple condition that the spectra of A and R have no point

in common.

We now proceed in a similar manner as for simple eigenvalues and write,

AU = UR

(A+ tE)U(t) = U(t)R(t),

in which U and U(t) are n × r unitary matrices and R and R(t) are r × r upper

triangular. Subtracting U(t)R from the second equation we obtain

AU(t)− U(t)R = −tEU(t) + U(t)(R(t)−R).
Multiplying both sides by I −Q and using again the relation (3.46),

(I −Q)A(I −Q)U(t)− (I −Q)U(t)R

= (I −Q)[−tEU(t) + U(t)(R(t)−R)].
Observe that the operator

X → (I −Q)A(I −Q)X −XR,
is invertible because the eigenvalues of (I − Q)A(I − Q) and those of R form

disjoint sets. Therefore, we can define its inverse which we call S+(λ), and we

have

(I −Q)U(t) = S+(λ) [t(I −Q)EU(t) + (I −Q)U(t)(R(t)−R)] .
As a result, up to lower order terms, the sine of the angle between the two sub-

spaces is |t|‖S+(λ)(I−Q)EU(t)‖,a result that constitutes a direct generalization

of the previous theorem.

3.4 Localization Theorems

In some situations one wishes to have a rough idea of where the eigenvalues lie

in the complex plane, by directly exploiting some knowledge on the entries of the

matrixA. We already know a simple localization result that uses any matrix norm,

since we have

|λi| ≤ ‖A‖
i.e., any eigenvalue belongs to the disc centered at the origin and of radius ‖A‖.
A more precise localization result is provided by Gerschgorin’s theorem.

Theorem 3.11 (Gerschgorin [73]) Any eigenvalue λ of a matrix A is located in

one of the closed discs of the complex plane centered at aii and having the radius

j=n
∑

j=1
j 6=i

|aij | .
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In other words,

∀ λ ∈ Λ(A), ∃ i such that |λ− aii| ≤
j=n
∑

j=1
j 6=i

|aij | . (3.48)

Proof. The proof is by contradiction. Assume that (3.48) does not hold. Then

there is an eigenvalue λ such that for i = 1, 2, . . . , n we have

|λ− aii| >
j=n
∑

j=1,j 6=i

|aij | . (3.49)

We can write A − λI = D − λI + H,where D = diag {aii} and H is the

matrix obtained from A by replacing its diagonal elements by zeros. Since D− λ
is invertible we have

A− λI = (D − λI)(I + (D − λI)−1H) . (3.50)

The elements in row i of the matrix C = (D − λI)−1H are cij = aij/(aii − λ)
for j 6= i and cii = 0, and so the sum of their moduli are less than unity by (3.49).

Hence

ρ((D − λI)−1H) ≤ ‖(D − λI)−1H‖∞ < 1

and as a result the matrix I+C = (I+(D−λI)−1H) is nonsingular. Therefore,

from (3.50) (A− λI) would also be nonsingular which is a contradiction.

Since the result also holds for the transpose of A,we can formulate a version

of the theorem based on column sums instead of row sums,

∀ λ ∈ Λ(A), ∃ j such that |λ− ajj | ≤
i=n
∑

i=1
i 6=j

|aij | . (3.51)

The discs defined in the theorem are called Gerschgorin discs. There are n Ger-

schgorin discs and their union contains the spectrum of A. The above results

can be especially useful when the matrix is almost diagonal, as is often the case

when an algorithm is used to diagonalize a matrix and the process is nearing con-

vergence. However, in order to better exploit the theorem, we need to show the

following additional result.

Theorem 3.12 . Suppose that there are m Gerschgorin discs whose union S is

disjoint from all other discs. Then S contains exactly m eigenvalues, (counted

with their multiplicities).
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Proof. Let A(t) = D + tH where 0 ≤ t ≤ 1, and D,H are defined in the proof

of Gerschgorin’s theorem. Initially when t = 0 all eigenvalues of A(t) are at

the discs of radius 0,centered at aii. By a continuity argument, as t increases to

1, the branches of eigenvalues λi(t) will stay in their respective discs as long as

these discs stay disjoint. This is because the image of the connected interval [0,1]

by λi(t) must be connected. More generally, if the union of m of the discs are

disjoint from the other discs, the union S(t) of the corresponding discs as t varies,

will contain m eigenvalues.

An important particular case is that when one disc is disjoint from the others then

it must contain exactly one eigenvalue.

There are other ways of estimating the error of aii regarded as an eigenvalue

of A. For example, if we take as approximate eigenvector the i-th column of

the identity matrix we get the following result from a direct application of Kato-

Temple’s theorem in the Hermitian case.

Proposition 3.6 Let i be any integer between 1 and n and let λ be the eigenvalue

of A closest to aii,and µ the next closest eigenvalue to aii. Then if we call ǫi the

2-norm of the (n− 1)-vector obtained from the i− th column of A by deleting the

entry aii we have

|λ− aii| ≤
ǫ2i

|µ− aii|
.

Proof. The proof is a direct application of Kato-Temple’s theorem.

Thus, in the Hermitian case, the Gerschgorin bounds are not tight in general

since the error is of the order of the square of the vector of the off-diagonal el-

ements in a row (or column), whereas Gerschgorin’s result will provide an error

estimate of the same order as the 1-norm of the same vector (in the ideal situation

when the discs are disjoint). However, we note that the isolated application of

the above proposition in practice may not be too useful since we may not have an

estimate of |µ − aii|. A simpler, though less powerful, bound is |λ − aii| ≤ ǫi.
These types of results are quite different in nature from those of Gerschgorin’s

theorem. They simply tell us how accurate an approximation a diagonal element

can be when regarded as an approximate eigenvalue. It is an isolated result and

does not tell us anything on the other eigenvalues. Gerschgorin’s result on the

other hand is a global result, in that it tells where all the eigenvalues are located,

as a group. This distinction between the two types of results, namely the (local)

a-posteriori error bounds on the one hand, and the global localizations results such

as Gerschgorin’s theorem on the other, is often misunderstood.

3.5 Pseudo-eigenvalues

As was seen in earlier sections, eigenvalues can be very sensitive to perturbations

for non-normal matrices. Roughly speeking pseudo-eigenvalues are sets of eigen-

values of all perturbed matrices within a radius of the original matrix. These sets

can be very large when the eigenvalue is ill-conditioned.
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One can define the spectrum of a matrixA as the set of values z for which the

resolvent R(z) has infinite 2-norm. The formal definition of the pseudo-spectrum

is derived from this by using a parameter ǫ.

Definition 3.3 Let A ∈ C
n×n. For ǫ > 0 the ǫ-pseudospectrum of A is the set

Λǫ(A) = {z ∈ C | ‖R(z)‖2 > ǫ−1}. (3.52)

Note that one can also say Λǫ(A) = {z ∈ C | [‖R(z)‖2]−1
< ǫ}. Therefore, re-

calling that for a given matrix B, we have (‖B−1‖2)−1 = σmin(B), the smallest

singular value of B, we can restate the above definition as

Λǫ(A) = {z ∈ C | σmin(A− zI) < ǫ}. (3.53)

There is an interesting connection with perturbation theory via Proposition 3.4.

First, it is easy to see that

z ∈ Λǫ(A) iff ∃ v ∈ C
n, ‖(A− zI)−1v‖2 > ǫ−1 and ‖v‖2 = 1. (3.54)

If we define the vector t = (A− zI)−1v then clearly,

‖(A− zI)t‖2
‖t‖2

=
‖v‖2
‖t‖2

< ǫ.

Setting w = t/‖t‖2, we arrive at this characterization of the pseudo-spectrum:

z ∈ Λǫ(A) iff ∃ w ∈ C
n, ‖(A− zI)w‖2 < ǫ and ‖w‖2 = 1. (3.55)

The following proposition summarizes the above equivalences and adds one more.

Proposition 3.7 The following five properties are equivalent:

(i) z ∈ Λǫ(A) .

(ii) σmin(A− zI) < ǫ.

(iii) There exist a unit vector v such that ‖(A− zI)−1v‖2 > ǫ−1.

(iv) There exist a unit vector w such that ‖(A− zI)w‖2 < ǫ.

(v) There exist a matrixE, with ‖E‖2 ≤ ǫ such that z is an eigenvalue ofA−E.

Proof. For the equivalences of (i), (ii), (iii), and (iv) see equations (3.53–3.55). To

show that (iv)↔ (v) we invoke Proposition 3.4 with r = (A− zI)w. If (iv) holds

then the proposition implies that there is a matrix E with ‖E‖2 = ‖r‖ < ǫ and

z ∈ Λ(A−E). If (v) holds then there is a unit vectorw such that (A−E)w = zw.

Hence, (A − zI)w = Ew and ‖(A − zI)w‖2 = ‖Ew‖2 ≤ ‖E‖2‖w‖2 < ǫ
showing that (iv) holds.



PERTURBATION THEORY 81

Pseudo-spectra are useful to analyze transient behavior of operators when the

usual asymptotic analysis fails. Consider for example the powers of a given non-

normal matrixG. Sequences of the formwk = Gkw0 are commonly studied when

considering so-called stationary iterative methods for solving linear systems. As

is well-known these methods amount to an iteration of the form

xk+1 = Gxk + f, (3.56)

starting with some initial guess x0. The above is a fixed point iteration which

attempts to reach the fixed point for which x∗ = Gx∗ + f . The error ‖xk − x∗‖2
at the k-th step, satisfies:

‖xk − x∗‖2 = ‖Gk(xk − x0)‖2 ≤ ‖Gk‖2‖xk − x0‖2. (3.57)

As a result the scheme will converge when ρ(G) < 1. We have seen in Chapter

1 (Corollary 1.1) that for any matrix norm ‖Gk‖1/k tends to ρ(G), so we may

infer that asymptotically, the above error behaves like ‖xk−x∗‖2 ≈ ρ(G)k‖xk−
x0‖2. While this a reasonable assumption, what is often observed in practice is

a long stage of big increases of the norm of the error before it finally reaches an

‘asymptotic’ phase where it declines steadily to zero. Such a behavior is only

characteristic of non-normal matrices. For normal matrices ‖Gk‖2 cannot stray

too far away from its approximation ρ(G)k.

In other words, while the spectral radius gives a good idea of the asymptotic

behavior of Gk, the spectrum of G does not help analyze its transient behavior.

This can be understood if one considers the power of G using the Taylor-

Dunford integral:

Gk =
−1
2πi

p
∑

j=1

∫

Γj

R(z)zkdz (3.58)

where the Jordan curves around each distinct eigenvalue λ1, · · · , λp, were defined

at the end of Section 3.1.3. In the normal case, R(z) can be expanded into a sum

of terms of the form

R(z) =

p
∑

j=1

Pj

λj − z

and the above expression will simply integrate to Gk =
∑

λkjPj . In the non-

normal case, the situation is more complicated because the expansion of G will

now involve a nilpotent, see Theorem 1.3 in Chapter 1. WritingG−zI =
∑

(λj−
zI)Pj +Dj , it is possible to expand R(z):

(G− zI)−1 =

p
∑

j=1

Pj

λj − z

(

k
∑

l=0

(−1)l
(λj − z)l

Dl
j

)

. (3.59)

Due to the nilpotence of the operators Dj each inner sum is limited to the power

lj − 1 where lj is the index of λj . Substituting (3.59) into the integral (3.58), and

writing

zk = (λj + (z − λj))k =

k
∑

m=0

(

k

m

)

λk−m
j (z − λj)m
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one arrives at the following expression:

Gk =

p
∑

j=1

min(k,li−1)
∑

l=0

k!

l!(k − l)!λ
k−l
j PjD

l
j . (3.60)

If the dominant eigenvalue is λ1 then clearly the dominating term will be the one

corresponding to l = 0 in the sum associated with j = 1. This term is λk1P1.

In other words, asymptotically, the sum will behave like λk1P1. However, it is

clear that the intermediate terms, i.e., those of the first few powers, can grow to

become very large, due to binomial coefficient, as well as the nilpotent Dl
j . This

behavior is typically indicated by large pseudo-spectra. Indeed, the expansion

(3.59) suggests that ‖R(z)‖2 can be large when z is in a big region surrounding

λ1 in the highly non-normal case.

PROBLEMS

P-3.1 If P is a projector onto M along S then PH is a projector onto S⊥ along M⊥.

[Hint: see proof of Proposition 3.1].

P-3.2 Show that for two orthogonal bases V1, V2 of the same subspace M of Cn we have

V1V
H
1 x = V2V

H
2 x ∀x.

P-3.3 What are the eigenvalues of a projector? What about its eigenvectors?

P-3.4 Let P be a projector and V = [v1, v2, · · · , vm] a basis of Ran(P ). Why does there

always exist a basis W = [w1, w2, · · · , wm] of L = Null(P )⊥ such that the two sets form

a biorthogonal basis? In general given two subspaces M and S of the same dimension m,
is there always a biorthogonal pair V,W such that V is a basis of M and W a basis of S?

P-3.5 Let P be a projector, V = [v1, v2, · · · , vm] a basis of Ran(P ), and U a matrix the

columns of which form a basis of Null(P ). Show that the system U, V forms a basis of

C
n. What is the matrix representation of P with respect to this basis?

P-3.6 Show that if two projectors P1 and P2 commute then their product P = P1P2 is a

projector. What are the range and null space of P ?

P-3.7 Consider the matrix seen in Example 3.6. We perturb the term a33 to −25.01. Give

an estimate in the changes of the eigenvalues of the matrix. Use any FORTRAN library or

interactive tool to compute the eigenvectors/ eigenvalues of the perturbed matrix.

P-3.8 Let

δ(X,Y ) ≡ max
x ∈ X,‖x‖2=1

dist(u, Y ).

Show that

ω(M1,M2) = max{δ(M1,M2), δ(M2,M1)} .

P-3.9 Given two subspaces M and S with two orthogonal bases V and W show that

the singular values of V HW are between zero and one. The canonical angles between

M and S are defined as the acutes angles whose cosines are the singular values σi,i.e.,

cos θi = σi(V
HW ). The angles are labeled in descending order. Show that this definition
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does not depend on the order of the pair M,S (in other words that the singular values of

WHV are identical with those of V HW ).

P-3.10 Show that the largest canonical angle between two subspaces (see previous prob-

lem) is π/2 iff the intersection of M and the orthogonal of S is not reduced to {0}.

P-3.11 Let P1, P2 be two orthogonal projectors with ranges M1 and M2 respectively of

the same dimension m ≤ n/2 and let Vi, i = 1, 2 be an orthogonal basis of Mi, i = 1, 2.

Assuming at first that the the columns of the system [V1, V2] are linearly independent what

is the matrix representation of the projector P1 − P2 with respect to the basis obtained

by completing V1, V2 into a basis of C
n? Deduce that the eigenvalues of P1 − P2 are

± sin θi,where the θi’s are the canonical angles between M1 and M2 as defined in the

previous problems. How can one generalize this result to the case where the columns of

[V1, V2] are not linearly independent?

P-3.12 Use the previous result to show that

ω(M1,M2) = sin θmax

where θmax is the largest canonical angle between the two subspaces.

P-3.13 Prove the second equality in equation (3.33) of the proof of Theorem 3.10.

P-3.14 Let E = xpH + yqH where x ⊥ y and p ⊥ q. What is the 2-norm of E? [Hint:

Compute EHE and then find the singular values of E.]

P-3.15 Show that the condition number of a simple eigenvalue λ of a matrix A does not

change if A is transformed by an orthogonal similarity transformation. Is this true for any

similarity transformation? What can be said of the condition number of the corresponding

eigenvector?

P-3.16 Consider the matrix obtained from that of example 3.7 in which the elements −1
above the diagonal are replaced by −α, where α is a constant. Find bounds similar to those

in Example 3.7 for the condition number of the eigenvalue λ1 of this matrix.

P-3.17 Under the same assumptions as those of Theorem 3.6, establish the improved error

sin θ(ũ, u) ≤
√

‖r‖22 − ǫ2

δ2 − ǫ2

in which ǫ ≡ |λ− λ̃|. [Hint: Follow proof of theorem 3.6]

NOTES AND REFERENCES. Some of the material in this chapter is based on [105] and [22]. A broader

and more detailed view of perturbation analysis for matrix problems is the recent book by Stewart

and Sun [206]. The treatment of the equivalence between the projectors as defined from the Jordan

canonical form and the one defined from the Dunford integral does not seem to have been discussed

earlier in the literature. The results of Section 3.2.3 are simpler versions of those found in [101],

which should be consulted for more detail. The notion of condition number for eigenvalue problems

is discussed in detail in Wilkinson [223] who seems to be at the origin of the notion of condition

numbers for eigenvalues and eigenvectors. The notion of pseudo-spectra and pseudo-eigenvalues has

been known for some time in the Russian literature, see for example, references in the book by S.

Godunov [76], where they are termed spectral portraits. They were promoted as a tool to replace

the common spectra in practical applications in a number of papers by Trefethen au co-workers, see
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e.g., [212, 213, 215]. Kato in his seminal treatise [105], also refers to pseudo-eigenvalues and pseudo-

eigenvectors but these are defined only in the context of sequences of operators, Ak: The pair wk, zk
such that (Ak − zkI)uk‖2 = ǫk , with lim ǫk = 0 is termed a sequence of pseudo-eigenvalue /

pseudo-eigenvector pair.



Chapter 4

THE TOOLS OF SPECTRAL

APPROXIMATION

Many of the algorithms used to approximate spectra of large matrices consist of a

blend of a few basic mathematical or algorithmic tools, such as projection methods,

Chebyshev acceleration, deflation, shift-and-invert strategies, to name just a few. We

have grouped together these tools and techniques in this chapter. We start with some

background on well-known procedures based on single vector iterations. These have

historically provided the starting point of many of the more powerful methods. Once

an eigenvalue-eigenvector pair is computed by one of the single vector iterations, it

is often desired to extract another pair. This is done with the help of a standard

technique known as deflation which we discuss in some detail. Finally, we will present

the common projection techniques which constitute perhaps the most important of

the basic techniques used in approximating eigenvalues and eigenvectors.

4.1 Single Vector Iterations

One of the oldest techniques for solving eigenvalue problems is the so-called

power method. Simply described this method consists of generating the sequence

of vectors Akv0 where v0 is some nonzero initial vector. A few variants of the

power method have been developed which consist of iterating with a few sim-

ple functions of A. These methods involve a single sequence of vectors and we

describe some of them in this section.

4.1.1 The Power Method

The simplest of the single vector iteration techniques consists of generating the

sequence of vectors Akv0 where v0 is some nonzero initial vector. This se-

quence of vectors when normalized appropriately, and under reasonably mild con-

ditions, converges to a dominant eigenvector, i.e., an eigenvector associated with

the eigenvalue of largest modulus. The most commonly used normalization is to

ensure that the largest component of the current iterate is equal to one. This yields

the following algorithm.

85
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ALGORITHM 4.1 (The Power Method.)

• 1. Start: Choose a nonzero initial vector v0.

• 2. Iterate: for k = 1, 2, . . . until convergence, compute

vk =
1

αk
Avk−1

where αk is a component of the vector Avk−1 which has the maximum

modulus.

The following theorem establishes a convergence result for the above algo-

rithm.

Theorem 4.1 Assume that there is one and only one eigenvalue λ1 ofA of largest

modulus and that λ1 is semi-simple. Then either the initial vector v0 has no com-

ponent in the invariant subspace associated with λ1 or the sequence of vectors

generated by Algorithm 4.1 converges to an eigenvector associated with λ1 and

αk converges to λ1.

Proof. Clearly, vk is nothing but the vector Akv0 normalized by a certain scalar

α̂k in such a way that its largest component is unity. Let us decompose the initial

vector v0 as

v0 =

p
∑

i=1

Piv0 (4.1)

where the Pi’s are the spectral projectors associated with the distinct eigenvalues

λi, i = 1, . . . , p. Recall from (1.23) of Chapter 1, that APi = Pi(λiPi + Di)
where Di is a nilpotent of index li, and more generally, by induction we have

AkPi = Pi(λiPi +Di)
k. As a result we obtain,

vk =
1

α̂k
Ak

p
∑

i=1

Piv0 =
1

α̂k

p
∑

i=1

AkPiv0 =
1

α̂k

p
∑

i=1

Pi(λiI +Di)
kv0 .

Hence, noting that D1 = 0 because λ1 is semi-simple,

vk =
1

α̂k

p
∑

i=1

Pi(λiPi +Di)
kv0

=
1

α̂k

(

λk1P1v0 +

p
∑

i=2

Pi(λiPi +Di)
kv0

)

=
λk1
α̂k

(

P1v0 +

p
∑

i=2

1

λk1
(λiPi +Di)

kPiv0 .

)

(4.2)

The spectral radius of each operator (λiPi+Di)/λ1 is less than one since |λi/λ1| <
1 and therefore, its k-th power will converge to zero. If P1v0 = 0 the theorem is
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true. Assume that P1v0 6= 0. Then it follows immediately from (4.2) that vk con-

verges to P1v0 normalized so that its largest component is one. That αk converges

to the eigenvalue λ1 is an immediate consequence of the relation Avk−1 = αkvk
and the fact the sequence of vectors vk converges.

The proof suggests that the convergence factor of the method is given by

ρD =
|λ2|
|λ1|

where λ2 is the second largest eigenvalue in modulus. This ratio represents the

spectral radius of the linear operator 1
λ1
A restricted to the subspace that excludes

the invariant subspace associated with the dominant eigenvalue. It is a common

situation that the eigenvalues λ1 and λ2 are very close from one another. As a

result convergence may be extremely slow.

Example 4.1. Consider the Markov Chain matrix Mark(10) which has been

described in Chapter 2. This is a matrix of size n = 55 which has two dominant

eigenvalues of equal modulus namely λ = 1 and λ = −1. As is to be expected the

power method applied directly to A does not converge. To obtain convergence we

can for example consider the matrix I+Awhose eigenvalues are those ofA shifted

to the right by one. The eigenvalue λ = 1 is then transformed into the eigenvalue

λ = 2 which now becomes the (only) dominant eigenvalue. The algorithm then

converges and the convergence history is shown in Table 4.1. In the first column

of the table we show the iteration number. The results are shown only every 20

steps and at the very last step when convergence has taken place. The second

column shows the 2-norm of the difference between two successive iterates, i.e.,

‖xi+1−xi‖2 at iteration i, while the third column shows the residual norm ‖Ax−
µ(x)x‖2, in which µ(x) is the Rayleigh quotient of x and x is normalized to have

a unit 2-norm. The algorithm is stopped as soon at the 2-norm of the difference

between two successive iterates becomes less than ǫ = 10−7. Finally, the last

column shows the corresponding eigenvalue estimates. Note that what is shown is

simply the coefficient αk, shifted by−1 to get an approximation to the eigenvalue

of Mark(10) instead of Mark(10) + I . The initial vector in the iteration is the

vector x0 = (1, 1, . . . , 1)T .

If the eigenvalue is multiple, but semi-simple, then the algorithm provides

only one eigenvalue and a corresponding eigenvector. A more serious difficulty

is that the algorithm will not converge if the dominant eigenvalue is complex and

the original matrix as well as the initial vector are real. This is because for real

matrices the complex eigenvalues come in complex pairs and as result there will

be (at least) two distinct eigenvalues that will have the largest modulus in the

spectrum. Then the theorem will not guarantee convergence. There are remedies

to all these difficulties and some of these will be examined later.
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Iteration Norm of diff. Res. norm Eigenvalue

20 0.639D-01 0.276D-01 1.02591636

40 0.129D-01 0.513D-02 1.00680780

60 0.192D-02 0.808D-03 1.00102145

80 0.280D-03 0.121D-03 1.00014720

100 0.400D-04 0.174D-04 1.00002078

120 0.562D-05 0.247D-05 1.00000289

140 0.781D-06 0.344D-06 1.00000040

161 0.973D-07 0.430D-07 1.00000005

Table 4.1: Power iteration with A = Mark(10) + I .

4.1.2 The Shifted Power Method

In Example 4.1 we have been lead to use the power method not on the original

matrix but on the shifted matrix A + I . One observation is that we could also

have iterated with a matrix of the form B(σ) = A+ σI for any positive σ and the

choice σ = 1 is a rather arbitrary choice. There are better choices of the shift as

is suggested by the following example.

Example 4.2. Consider the same matrix as in the previous example, in which

the shift σ is replaced by σ = 0.1. The new convergence history is shown in

Table 4.1, and indicates a much faster convergence than before.

Iteration Norm of diff. Res. Norm Eigenvalue

20 0.273D-01 0.794D-02 1.00524001

40 0.729D-03 0.210D-03 1.00016755

60 0.183D-04 0.509D-05 1.00000446

80 0.437D-06 0.118D-06 1.00000011

88 0.971D-07 0.261D-07 1.00000002

Table 4.1 Power iteration on A =Mark(10) + 0.1× I.

More generally, when the eigenvalues are real it is not too difficult to find

the optimal value of σ, i.e., the shift that maximizes the asymptotic convergence

rate, see Problem P-4.5. The scalars σ are called shifts of origin. The important

property that is used is that shifting does not alter the eigenvectors and that it does

change the eigenvalues in a simple known way, it shifts them by σ.

4.1.3 Inverse Iteration

The inverse power method, or inverse iteration, consists simply of iterating with

the matrixA−1 instead of the original matrixA. In other words, the general iterate
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vk is defined by

vk =
1

αk
A−1vk−1 . (4.3)

Fortunately it is not necessary to compute the matrix A−1 explicitly as this could

be rather expensive for large problems. Instead, all that is needed is to carry out

the LU factorization ofA prior to starting the vector iteration itself. Subsequently,

one must solve an upper and lower triangular system at each step. The vector vk
will now converge to the eigenvector associated with the dominant eigenvalue of

A−1. Since the eigenvalues of A and A−1 are the inverses of each other while

their eigenvectors are identical, the iterates will converges to the eigenvector of

A associated with the eigenvalue of smallest modulus. This may or may not be

what is desired but in practice the method is often combined with shifts of origin.

Indeed, a more common problem in practice is to compute the eigenvalue of A
that is closest to a certain scalar σ and the corresponding eigenvector. This is

achieved by iterating with the matrix (A − σI)−1. Often, σ is referred to as the

shift. The corresponding algorithm is as follows.

ALGORITHM 4.2 : Inverse Power Method

1. Start: Compute the LU decomposition A−σI = LU and choose an initial

vector v0.

2. Iterate: for k = 1, 2, . . . , until convergence compute

vk =
1

αk
(A− σI)−1vk−1 =

1

αk
U−1L−1vk−1 (4.4)

where αk is a component of the vector (A − σI)−1vk−1 which has the

maximum modulus.

Note that each of the computations of y = L−1vk−1 and then v = U−1y can

be performed by a forward and a backward triangular system solve, each of which

costs only O(n2/2) operations when the matrix is dense. The factorization in step

1 is much more expensive whether the matrix is dense or sparse.

If λ1 is the eigenvalue closest to σ then the eigenvalue of largest modulus

of (A − σI)−1 will be 1/(λ1 − σ) and so αk will converge to this value. An

important consideration that makes Algorithm 4.2 quite attractive is its potentially

high convergence rate. If λ1 is the eigenvalue of A closest to the shift σ and λ2 is

the next closet one then the convergence factor is given by

ρI =
|λ1 − σ|
|λ2 − σ|

(4.5)

which indicates that the convergence can be very fast if σ is much closer to the

desired eigenvalue λ1 than it is to λ2.

From the above observations, one can think of changing the shift σ occasion-

ally into a value that is known to be a better approximation of λ1 than the previous

σ. For example, one can replace occasionally σ by the estimated eigenvalue of A
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that is derived from the information that αk converges to 1/(λ1 − σ), i.e., we can

take

σnew = σold +
1

αk
.

Strategies of this sort are often referred to as shift-and-invert techniques.

Another possibility, which may be very efficient in the Hermitian case, is to

take the new shift to be the Rayleigh quotient of the latest approximate eigenvector

vk. One must remember however, that the LU factorization is expensive so it is

desirable to keep such shift changes to a minimum. At one extreme where the

shift is never changed, we obtain the simple inverse power method represented by

Algorithm 4.2. At the other extreme, one can also change the shift at every step.

The algorithm corresponding to this case is called Rayleigh Quotient Iteration

(RQI) and has been extensively studied for Hermitian matrices.

ALGORITHM 4.3 Rayleigh Quotient Iteration

1. Start: Choose an initial vector v0 such that ‖v0‖2 = 1.

2. Iterate: for k = 1, 2, . . . , until convergence compute

σk = (Avk−1, vk−1) ,

vk =
1

αk
(A− σkI)−1vk−1,

where αk is chosen so that the 2-norm of the vector vk is one.

It is known that this process is globally convergent for Hermitian matrices, in

the sense that αk converges and the vector vk either converges to an eigenvector

or alternates between two eigenvectors. Moreover, in the first case αk converges

cubically towards an eigenvalue, see Parlett [148]. In the case where vk oscillates,

between two eigenvectors, then αk converges towards the mid-point of the corre-

sponding eigenvalues. In the non-Hermitian case, the convergence can be at most

quadratic and there are no known global convergence results except in the normal

case. This algorithm is not much used in practice despite these nice properties,

because of the high cost of the frequent factorizations.

4.2 Deflation Techniques

Suppose that we have computed the eigenvalue λ1 of largest modulus and its cor-

responding eigenvector u1 by some simple algorithm, say algorithm (A), which

always delivers the eigenvalue of largest modulus of the input matrix, along with

an eigenvector. For example, algorithm (A) can simply be one of the single vector

iterations described in the previous section. It is assumed that the vector u1 is

normalized so that ‖u1‖2 = 1. The problem is to compute the next eigenvalue λ2
of A. An old technique for achieving this is what is commonly called a deflation

procedure. Typically, a rank one modification is applied to the original matrix so

as to displace the eigenvalue λ1, while keeping all other eigenvalues unchanged.
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The rank one modification is chosen so that the eigenvalue λ2 becomes the one

with largest modulus of the modified matrix and therefore, algorithm (A) can now

be applied to the new matrix to extract the pair λ2, u2.

4.2.1 Wielandt Deflation with One Vector

In the general procedure known as Wielandt’s deflation only the knowledge of the

right eigenvector is required. The deflated matrix is of the form

A1 = A− σu1vH (4.6)

where v is an arbitrary vector such that vHu1 = 1, and σ is an appropriate shift.

It can be shown that the eigenvalues of A1 are the same as those of A except for

the eigenvalue λ1 which is transformed into the eigenvalue λ1 − σ.

Theorem 4.2 (Wielandt) The spectrum of A1 as defined by (4.6) is given by

Λ(A1) = {λ1 − σ, λ2, λ3, . . . , λp} .

Proof. For i 6= 1 the left eigenvectors of A satisfy

(AH − σ̄vuH1 )wi = λiwi

because wi is orthogonal to u1. On the other hand for i = 1, we have A1u1 =
(λ1 − σ)u1.

The above proof reveals that the left eigenvectors w2, . . . , wp are preserved

by the deflation process. Similarly, the right eigenvector u1 is preserved. It is also

important to see what becomes of the other right eigenvectors. For each i, we seek

a right eigenvector of A1 in the form of ûi = ui − γiu1. We have,

A1ûi = (A− σu1vH)(ui − γiu1)
= λiui − [γiλ1 + σvHui − σγi]u1. (4.7)

Taking γ1 = 0 shows, as is already indicated by the proposition, that any eigen-

vector associated with the eigenvalue λ1 remains an eigenvector of A1, associated

with the eigenvalue λ1 − σ. For i 6= 1, it is possible to select γi so that the vector

ûi is an eigenvector of A1 associated with the eigenvalue λi,

γi(v) ≡
vHui

1− (λ1 − λi)/σ
. (4.8)

Observe that the above expression is not defined when the denominator vanishes.

However, it is known in this case that the eigenvalue λi = λ1 − σ is already an

eigenvalue ofA1, i.e., the eigenvalue λ1−σ becomes multiple, and we only know

one eigenvector namely u1.

There are infinitely many different ways of choosing the vector v. One of the

most common choices is to take v = w1 the left eigenvector. This is referred to as
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Hotelling’s deflation. It has the advantage of . preserving both the left and right

eigenvectors of A as is seen from the fact that γi = 0 in this situation. Another

simple choice is to take v = u1. In the next section we will consider these different

possibilities and try to make a rational choice between them.

Example 4.3. As a test we consider again the matrix Mark(10) seen is Exam-

ple 4.1. For u1 we use the vector computed from the shifted power method with

shift 0.1. If we take v to be a random vector and x0 to be a random vector, then

the algorithm converges in 135 steps and yields λ2 ≈ 0.93715016. The stopping

criterion is identical with the one used in Example 4.1. If we take v = u1 or

v = (1, 1, . . . , 1)T , then the algorithm converges in 127 steps.

4.2.2 Optimality in Wieldant’s Deflation

An interesting question that we wish to answer is: among all the possible choices

of v, which one is likely to yield the best possible condition number for the next

eigenvalue λ2 to be computed? This is certainly a desirable goal in practice. We

will distinguish the eigenvalues and eigenvectors associated with the matrix A1

from those of A by denoting them with a tilde. The condition number of the next

eigenvalue λ̃2 to be computed is, by definition,

Cond(λ̃2) =
‖ũ2‖2‖w̃2‖2
|(ũ2, w̃2)|

where ũ2, w̃2 are the right and left eigenvectors of A1 associated with the eigen-

value λ̃2. From what we have seen before, we know that w̃2 = w2 while ũ2 =
u2 − γ2(v)u1 where γ2(v) is given by (4.8). Assuming that ‖w2‖2 = 1 we get,

Cond(λ̃2) =
‖u2 − γ2(v)u1‖2
|(u2, w2)|

(4.9)

where we have used the fact that (u1, w2) = 0. It is then clear from (4.9) that the

condition number of λ2 is minimized whenever

γ2(v) = uH1 u2 ≡ cos θ(u1, u2) . (4.10)

Substituting this result in (4.8) we obtain the equivalent condition

vHu2 =

(

1− λ1 − λ2
σ

)

uH1 u2 , (4.11)

to which we add the normalization condition,

vHu1 = 1. (4.12)

There are still infinitely many vectors v that satisfy the above two conditions.

However, we can seek a vector v which is spanned by two specific vectors. There

are two natural possibilities; we can either take v in the span of (u1, w1) or in the
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span of (u1, u2). The second choice does not seem natural since the eigenvector

u2 is not assumed to be known; it is precisely what we are trying to compute.

However, it will illustrate an interesting point, namely that the choice v = u1
may be nearly optimal in realistic situations. Thus, we will now consider the case

v ∈ span{u1, u2}. The other interesting case, namely v ∈ span{u1, w1}, is left

as an exercise, see Exercise P-4.3.

We can write v as v = αu1 + βz in which z is obtained by orthonormalizing

u2 against u1, i.e., z = ẑ/‖ẑ‖2, ẑ = u2 − uH1 u2u1. From (4.12) we immediately

get α = 1 and from (4.11) we obtain

β = −λ1 − λ2
σ

uH1 u2
zHu2

,

which leads to the expression for the optimal v,

vopt = u1 −
λ1 − λ2

σ
cotan θ(u1, u2)z . (4.13)

We also get that

Cond(λ̃2) = Cond(λ2) sin θ(u1, u2) . (4.14)

Interestingly enough, when (λ2−λ1) is small with respect to σ or when θ is close

to π/2 , the choice v = u1 is nearly optimal.

This particular choice has an interesting additional property: it preserves the

Schur vectors.

Proposition 4.1 Let u1 be an eigenvector of A of norm 1, associated with the

eigenvalue λ1 and let A1 ≡ A − σu1uH1 . Then the eigenvalues of A1 are λ̃1 =
λ1 − σ and λ̃j = λj , j = 2, 3 . . . , n. Moreover, the Schur vectors associated with

λ̃j , j = 1, 2, 3 . . . , n are identical with those of A.

Proof. LetAU = UR be the Schur factorization ofA,whereR is upper triangular

and U is orthonormal. Then we have

A1U = [A− σu1uH1 ]U = UR− σu1eH1 = U [R− σe1eH1 ] .

The result follows immediately.

Example 4.4. We take again as a test example the matrix Mark(10) seen is

Example 4.1 and Example 4.3. We use the approximate eigenvectors u1 and u2
as computed from Example 4.3. We then compute the left eigenvector ŵ2 using

again the power method on the deflated and transposed matrix AH − σuH1 v. This

is done fpur times: first with v = w1 = (1, 1, ..., 1)T , then v = u1,

v = (1,−1, 1,−1, 1, . . . , (−1)n)T ,

and finally v = a random vector. The condition numbers obtained for the second

eigenvalue for each of these choices are shown in Table 4.2. See Problem P-4.7

for additional facts concerning this example.
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v Cond(λ2)

w1 1.85153958

u1 1.85153958

(1,−1, . . .)T 9.87049400

Random 2.27251031

Table 4.2 Condition numbers of the second eigenvalue for dif-
ferent v’s.

As is observed here the best condition numbers are obtained for the first two

choices. Note that the vector (1, 1, . . . , 1) is a left eigenvector associated with

the eigenvalue λ1. Surprisingly, these best two condition numbers are equal. In

fact computing the inner product of u1 and u2 we find that it is zero, a result that

is probably due to the symmetries in the physical problem. The relation (4.14)

indicates that in this situation the two condition numbers are equal to the condition

number for the undeflated matrix.

4.2.3 Deflation with Several Vectors.

Let q1, q2, . . . qj be a set of Schur vectors associated with the eigenvalues λ1, λ2, . . . λj .

We denote by Qj the matrix of column vectors q1, q2, . . . qj . Thus,

Qj ≡ [q1, q2, . . . , qj ]

is an orthonormal matrix whose columns form a basis of the eigenspace associ-

ated with the eigenvalues λ1, λ2, . . . λj . We do not assume here that these eigen-

values are real, so the matrix Qj may be complex. An immediate generalization

of Proposition 4.1 is the following.

Proposition 4.2 Let Σj be the j × j diagonal matrix

Σj = diag (σ1, σ2, . . . σj),

andQj an n×j orthogonal matrix consisting of the Schur vectors ofA associated

with λ1, . . . , λj . Then the eigenvalues of the matrix

Aj ≡ A−QjΣjQ
H
j ,

are λ̃i = λi − σi for i ≤ j and λ̃i = λi for i>j. Moreover, its associated Schur

vectors are identical with those of A.

Proof. Let AU = UR be the Schur factorization of A. We have

AjU = [A−QjΣjQ
H
j ]U = UR−QjΣjE

H
j ,

where Ej = [e1, e2, . . . ej ]. Hence

AjU = U [R− EjΣjE
H
j ]

and the result follows.
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Clearly, it is not necessary that Σj be a diagonal matrix. We can for example

select it to be a triangular matrix. However, it is not clear how to select the non-

diagonal entries in such a situation. An alternative technique for deflating with

several Schur vectors is described in Exercise P-4.6.

4.2.4 Partial Schur Decomposition.

It is interesting to observe that the preservation of the Schur vectors is analogous

to the preservation of the eigenvectors under Hotelling’s deflation in the Hermitian

case. The previous proposition suggests a simple incremental deflation procedure

consisting of building the matrix Qj one column at a time. Thus, at the j-th step,

once the eigenvector ũj+1 of Aj is computed by the appropriate algorithm (A) we

can orthonormalize it against all previous qi’s to get the next Schur vector qj+1

which will be appended to qj to form the new deflation matrixQj+1. It is a simple

exercise to show that the vector qj+1 thus computed is a Schur vector associated

with the eigenvalue λj+1 and therefore at every stage of the process we have the

desired decomposition

AQj = QjRj , (4.15)

where Rj is some j × j upper triangular matrix.

More precisely we may consider the following algorithm, in which the suc-

cessive shifts σi are chosen so that for example σi = λi.

ALGORITHM 4.4 Schur Wielandt Deflation

For i = 0, 1, 2, . . . , j − 1 do:

1. Define Ai ≡ Ai−1 − σi−1qi−1q
H
i−1 (initially define A0 ≡ A) and compute

the dominant eigenvalue λi of Ai and the corresponding eigenvector ũi.

2. Orthonormalize ũi against q1, q2, . . . , qi−1 to get the vector qi.

With the above implementation, we may have to perform most of the compu-

tation in complex arithmetic even when A is real. Fortunately, when the matrix A
is real, this can be avoided. In this case the Schur form is traditionally replaced

by the quasi-Schur form, in which one still seeks for the factorization (4.2) but

simply requires that the matrix Rj , be quasi-triangular, i.e. one allows for 2 × 2
diagonal blocks. In practice, if λj+1 is complex, most algorithms do not compute

the complex eigenvector yj+1 directly but rather deliver its real and imaginary

parts yR, yI separately. Thus, the two eigenvectors yR ± iyI associated with the

complex pair of conjugate eigenvalues λj+1, λj+2 = λ̄j+1 are obtained at once.

Thinking in terms of bases of the invariant subspace instead of eigenvectors,

we observe that the real and imaginary parts of the eigenvector generate the same

subspace as the two conjugate eigenvectors and therefore we can work with these

two real vectors instead of the (complex) eigenvectors. Hence if a complex pair

occurs, all we have to do is orthogonalize the two vectors yR, yI against all previ-

ous qi’s and pursue the algorithm in the same way. The only difference is that the

size of Qj increases by two instead of just one in these instances.
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4.2.5 Practical Deflation Procedures

To summarize, among all the possible deflation procedures we can use to compute

the next pair λ2, u2, the following ones are the most useful in practice.

1. v = w1 the left eigenvector. This has the disadvantage of requiring the left

and right eigenvector. On the other hand both right and left eigenvectors of

A1 are preserved.

2. v = u1 which is often nearly optimal and preserves the Schur vectors.

3. Use a block of Schur vectors instead of a single vector.

From the point of view of the implementation an important consideration is

that we never need to form the matrix A1 explicitly. This is important because in

general A1 will be a full matrix. In many algorithms for eigenvalue calculations,

the only operation that is required is an operation of the form y := A1x. This

operation can be performed as follows:

1. Compute the vector y := Ax;

2. Compute the scalar t = σ vHx;

3. Compute y := y − t u1.

The above procedure requires only that the vectors u1, and v be kept in memory

along with the matrix A. It is possible to deflate A1 again into A2 , and then into

A3 etc. At each step of the process we have

Ai = Ai−1 − σũivHi .

Here one only needs to save the vectors ũi and vi along with the matrix A. How-

ever, one should be careful about the usage of deflation in general. It should not

be used to compute more than a few eigenvalues and eigenvectors. This is espe-

cially true in the non Hermitian case because of the fact that the matrix Ai will

accumulate errors from all previous computations and this could be disastrous if

the currently computed eigenvalue is poorly conditioned.

4.3 General Projection Methods

Most eigenvalue algorithms employ in one way or another a projection technique.

The projection process can be the body of the method itself or it might simply

be used within a more complex algorithm to enhance its efficiency. A simple

illustration of the necessity of resorting to a projection technique is when one uses

the power method in the situation when the dominant eigenvalue is complex but

the matrix A is real. Although the usual sequence xj+1 = αjAxj where αj is a

normalizing factor, does not converge a simple analysis shows that the subspace

spanned by the last two iterates xj+1, xj will contain converging approximations
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to the complex pair of eigenvectors. A simple projection technique onto those

vectors will extract the desired eigenvalues and eigenvectors, see Exercise P-4.2

for details.

A projection method consists of approximating the exact eigenvector u, by

a vector ũ belonging to some subspace K referred to as the subspace of approx-

imants or the right subspace, by imposing the so-called Petrov-Galerkin method

that the residual vector of ũ be orthogonal to some subspace L, referred to as

the left subspace. There are two broad classes of projection methods: orthogonal

projection methods and oblique projection methods. In an orthogonal projection

technique the subspace L is the same as K. In an oblique projection method L is

different from K and can be totally unrelated to it.

Not surprisingly, if no vector of the subspace K comes close to the exact

eigenvector u, then it is impossible to get a good approximation ũ to u from K
and therefore the approximation obtained by any projection process based on K
will be poor. If, on the other hand, there is some vector in K which is at a small

distance ǫ from u then the question is: what accuracy can we expect to obtain?

The purpose of this section is to try to answer this question.

4.3.1 Orthogonal Projection Methods

LetA be an n×n complex matrix andK be anm-dimensional subspace of Cn. As

a notational convention we will denote by the same symbol A the matrix and the

linear application in C
n that it represents. We consider the eigenvalue problem:

find u belonging to C
n and λ belonging to C such that

Au = λu. (4.16)

An orthogonal projection technique onto the subspace K seeks an approxi-

mate eigenpair λ̃, ũ to the above problem, with λ̃ in C and ũ in K, such that the

following Galerkin condition is satisfied:

Aũ− λ̃ũ ⊥ K , (4.17)

or, equivalently,

(Aũ− λ̃ũ, v) = 0 , ∀ v ∈ K. (4.18)

Assume that some orthonormal basis {v1, v2, . . . , vm} of K is available and

denote by V the matrix with column vectors v1, v2, . . . , vm. Then we can solve

the approximate problem numerically by translating it into this basis. Letting

ũ = V y, (4.19)

equation (4.19) becomes

(AV y − λ̃V y, vj) = 0, j = 1, . . . ,m.

Therefore, y and λ̃ must satisfy

Bmy = λ̃y (4.20)
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with

Bm = V HAV.

If we denote byAm the linear transformation of rankm defined byAm = P
K
AP

K

then we observe that the restriction of this operator to the subspace K is repre-

sented by the matrix Bm with respect to the basis V . The following is a pro-

cedure for computing numerically the Galerkin approximations to the eigenval-

ues/eigenvectors of A known as the Rayleigh-Ritz procedure.

ALGORITHM 4.5 Rayleigh-Ritz Procedure:

1. Compute an orthonormal basis {vi}i=1,...,m of the subspace K. Let V =
[v1, v2, . . . , vm].

2. Compute Bm = V HAV ;

3. Compute the eigenvalues of Bm and select the k desired ones λ̃i, i =
1, 2, . . . , k, where k ≤ m.

4. Compute the eigenvectors yi, i = 1, . . . , k, of Bm associated with λ̃i, i =
1, . . . , k, and the corresponding approximate eigenvectors of A, ũi = V yi,
i = 1, . . . , k.

The above process only requires basic linear algebra computations. The numeri-

cal solution of the m ×m eigenvalue problem in steps 3 and 4 can be treated by

standard library subroutines such as those in EISPACK. Another important note

is that in step 4 one can replace eigenvectors by Schur vectors to get approximate

Schur vectors ũi instead of approximate eigenvectors. Schur vectors yi can be ob-

tained in a numerically stable way and, in general, eigenvectors are more sensitive

to rounding errors than are Schur vectors.

We can reformulate orthogonal projection methods in terms of projection op-

erators as follows. Defining P
K

to be the orthogonal projector onto the subspace

K, then the Galerkin condition (4.17) can be rewritten as

P
K
(Aũ− λ̃ũ) = 0 , λ̃ ∈ C , ũ ∈ K

or,

P
K
Aũ = λ̃ũ , λ̃ ∈ C , ũ ∈ K . (4.21)

Note that we have replaced the original problem (4.16) by an eigenvalue problem

for the linear transformation P
K
A|K which is from K to K. Another formulation

of the above equation is

P
K
AP

K
ũ = λ̃ũ , λ̃ ∈ C , ũ ∈ C

n (4.22)

which involves the natural extension

Am = P
K
AP

K
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of the linear operator A′
m = P

K
A|K to the whole space. In addition to the eigen-

values and eigenvectors of A′
m, Am has zero as a trivial eigenvalue with every

vector of the orthogonal complement of K, being an eigenvector. Equation (4.21)

will be referred to as the Galerkin approximate problem.

The following proposition examines what happens in the particular case when

the subspace K is invariant under A.

Proposition 4.3 If K is invariant under A then every approximate eigenvalue /

(right) eigenvector pair obtained from the orthogonal projection method onto K
is exact.

Proof. An approximate eigenpair λ̃, ũ is defined by

P
K
(Aũ− λ̃ũ) = 0 ,

where ũ is a nonzero vector in K and λ̃ ∈ C. If K is invariant under A then Aũ
belongs to K and therefore P

K
Aũ = Aũ. Then the above equation becomes

Aũ− λ̃ũ = 0 ,

showing that the pair λ̃, ũ is exact.

An important quantity for the convergence properties of projection methods

is the distance ‖(I − P
K
)u‖2 of the exact eigenvector u, supposed of norm 1,

from the subspace K. This quantity plays a key role in the analysis of projection

methods. First, it is clear that the eigenvector u cannot be well approximated from

K if ‖(I − P
K
)u‖2 is not small because we have

‖ũ− u‖2 ≥ ‖(I − PK
)u‖2.

The fundamental quantity ‖(I − P
K
)u‖2 can also be interpreted as the sine of

the acute angle between the eigenvector u and the subspace K. It is also the gap

between the space K and the linear span of u. The following theorem establishes

an upper bound for the residual norm of the exact eigenpair with respect to the

approximate operator Am, using this angle.

Theorem 4.3 Let γ = ‖P
K
A(I − P

K
)‖2. Then the residual norms of the pairs

λ,P
K
u and λ, u for the linear operator Am satisfy respectively

‖(Am − λI)PK
u‖2 ≤ γ‖(I − PK

)u‖2 (4.23)

‖(Am − λI)u‖2 ≤
√

λ2 + γ2 ‖(I − P
K
)u‖2 . (4.24)

Proof. For the first inequality we use the definition of Am to get

‖(Am − λI)PK
u‖2 = ‖P

K
(A− λI)(u− (I − P

K
)u)‖2

= ‖P
K
(A− λI)(I − P

K
)u‖2

= ‖P
K
(A− λI)(I − P

K
)(I − P

K
)u‖2

≤ γ‖(I − P
K
)u‖2 .
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As for the second inequality we simply notice that

(Am − λI)u = (Am − λI)PK
u+ (Am − λI)(I − PK

)u

= (Am − λI)PK
u− λ(I − P

K
)u .

Using the previous inequality and the fact that the two vectors on the right hand

side are orthogonal to each other we get

‖(Am − λI)u‖22 = ‖(Am − λI)PK
u‖22 + |λ|2‖(I − PK

)u‖22
≤ (γ2 + |λ|2)‖(I − P

K
)u‖22

which completes the proof.

Note that γ is bounded from above by ‖A‖2. A good approximation can

therefore be achieved by the projection method in case the distance ‖(I−P
K
)u‖2

is small, provided the approximate eigenproblem is well conditioned. Unfortu-

nately, in contrast with the Hermitian case the fact that the residual norm is small

does not in any way guarantee that the eigenpair is accurate, because of potential

difficulties related to the conditioning of the eigenvalue.

If we translate the inequality (4.23) into matrix form by expressing everything

in an orthonormal basis V of K, we would write P
K

= V V H and immediately

obtain

‖(V HAV − λI)V Hu‖2 ≤ γ‖(I − V V H)u‖2,
which shows that λ can be considered as an approximate eigenvalue for Bm =
V HAV with residual of the order of (I − P

K
)u. If we scale the vector V Hu to

make it of 2-norm unity, and denote the result by yu we can rewrite the above

equality as

‖(V HAV − λI)yu‖2 ≤ γ
‖(I − P

K
)u‖2

‖P
K
u‖2

≡ γ tan θ(u,K).

The above inequality gives a more explicit relation between the residual norm and

the angle between u and the subspace K.

4.3.2 The Hermitian Case

The approximate eigenvalues computed from orthogonal projection methods in

the particular case where the matrixA is Hermitian, satisfy strong optimality prop-

erties which follow from the Min-Max principle and the Courant characterization

seen in Chapter 1. These properties follow by observing that (Amx, x) is the

same as (Ax, x) when x runs in the subspace K. Thus, if we label the eigenvalues

decreasingly, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn, we have

λ̃1 = max
x∈K,x 6=0

(P
K
AP

K
x, x)

(x, x)
= max

x∈K,x 6=0

(P
K
Ax,P

K
x)

(x, x)

= max
x∈K, x 6=0

(Ax, x)

(x, x)
(4.25)
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This is because P
K
x = x for any element in K. Similarly, we can show that

λ̃m = min
x∈K,x 6=0

(Ax, x)

(x, x)
.

More generally, we have the following result.

Proposition 4.4 The i−th largest approximate eigenvalue of a Hermitian matrix

A, obtained from an orthogonal projection

method onto a subspace K, satisfies,

λ̃i = max
S⊆K

dim(S)=i

min
x∈S,x 6=0

(Ax, x)

(x, x)
. (4.26)

As an immediate consequence we obtain the following corollary.

Corollary 4.1 For i = 1, 2, . . . ,m the following inequality holds

λi ≥ λ̃i . (4.27)

Proof. This is because,

λ̃i = max
S⊆K

dim(S)=i

min
x∈S,x 6=0

(Ax, x)

(x, x)
≤ max

S⊆C
n

dim(S)=i

min
x∈S,x 6=0

(Ax, x)

(x, x)
= λi .

A similar argument based on the Courant characterization results in the fol-

lowing theorem.

Theorem 4.4 The approximate eigenvalue λ̃i and the corresponding eigenvector

ũi are such that

λ̃1 =
(Aũ1, ũ1)

(ũ1, ũ1)
= max

x∈K,x 6=0

(Ax, x)

(x, x)
.

and for i > 1:

λ̃i =
(Aũi, ũi)

(ũi, ũi)
= max

x∈K,x 6=0,

ũH
1 x=...=ũH

i−1x=0

(Ax, x)

(x, x)
(4.28)

One may suspect that the general bounds seen earlier for non-Hermitian ma-

trices may be improved for the Hermitian case. This is indeed the case. We begin

by proving the following lemma.

Lemma 4.1 Let A be a Hermitian matrix and u an eigenvector of A associated

with the eigenvalue λ. Then the Rayleigh quotient µ ≡ µA(PK
u) satisfies the

inequality

|λ− µ| ≤ ‖A− λI‖‖(I − PK
)u‖22

‖P
K
u‖22

. (4.29)
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Proof. From the equality

(A− λI)P
K
u = (A− λI)(u− (I − P

K
)u) = −(A− λI)(I − P

K
)u

and the fact that A is Hermitian we get,

|λ− µ| = | ((A− λI)PK
u,P

K
u)

(P
K
u,P

K
u)

|

= | ((A− λI)(I − PK
)u, (I − P

K
)u)

(P
K
u,P

K
u)

| .

The result follows from a direct application of the Cauchy-Schwarz inequality

Assuming as usual that the eigenvalues are labeled decreasingly, and letting

µ1 = µA(PK
u1), we can get from (4.25) that

0 ≤ λ1 − λ̃1 ≤ λ1 − µ1 ≤ ‖A− λ1I‖2
‖(I − P

K
)u1‖22

‖P
K
u1‖22

.

A similar result can be shown for the smallest eigenvalue. We can extend this

inequality to the other eigenvalues at the price of a little complication in the equa-

tions. In what follows we will denote by Q̃i the sum of the spectral projectors

associated with the approximate eigenvalues λ̃1, λ̃2, . . . , λ̃i−1. For any given vec-

tor x, (I − Q̃i)x will be the vector obtained by orthogonalizing x against the

first i − 1 approximate eigenvectors. We consider a candidate vector of the form

(I − Q̃i)PK
ui in an attempt to use an argument similar to the one for the largest

eigenvalue. This is a vector obtained by projecting ui onto the subspace K and

then stripping it off its components in the first i− 1 approximate eigenvectors.

Lemma 4.2 Let Q̃i be the sum of the spectral projectors associated with the ap-

proximate eigenvalues λ̃1, λ̃2, . . . , λ̃i−1 and define µi = µA(xi), where

xi =
(I − Q̃i)PK

ui

‖(I − Q̃i)PK
ui‖2

.

Then

|λi − µi| ≤ ‖A− λiI‖2
‖Q̃iui‖22 + ‖(I − PK

)ui‖22
‖(I − Q̃i)PK

ui‖22
. (4.30)

Proof. To simplify notation we set α = 1/‖(I − Q̃i)PK
ui‖2. Then we write,

(A− λiI)xi = (A− λiI)(xi − αui) ,

and proceed as in the previous case to get,

|λi − µi| = |((A− λiI)xi, xi))| = |((A− λiI)(xi − αui), (xi − αui))| .
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Applying the Cauchy-Schwarz inequality to the above equation, we get

|λi − µi| = ‖A− λiI‖2‖xi − αui‖22 .

We can rewrite ‖xi − αui‖22 as

‖xi − αui‖22 = α2‖(I − Q̃i)PK
ui − ui‖22

= α2‖(I − Q̃i)(PK
ui − ui)− Q̃iui‖22 .

Using the orthogonality of the two vectors inside the norm bars, this equality

becomes

‖xi − αui‖22 = α2
(

‖(I − Q̃i)(PK
ui − ui)‖22 + ‖Q̃iui‖22

)

≤ α2
(

‖(I − P
K
)ui‖22 + ‖Q̃iui‖22

)

.

This establishes the desired result.

The vector xi has been constructed in such a way that it is orthogonal to all previ-

ous approximate eigenvectors ũ1, . . . , ũi−1. We can therefore exploit the Courant

characterization (4.28) to prove the following result.

Theorem 4.5 Let Q̃i be the sum of the spectral projectors associated with the

approximate eigenvalues λ̃1, λ̃2, . . . , λ̃i−1. Then the error between the i-th exact

and approximate eigenvalues λi and λ̃i is such that

0 ≤ λi − λ̃i ≤ ‖A− λiI‖2
‖Q̃iui‖22 + ‖(I − PK

)ui‖22
‖(I − Q̃i)PK

ui‖22
. (4.31)

Proof. By (4.28) and the fact that xi belongs to K and is orthogonal to the first

i− 1 approximate eigenvectors we immediately get

0 ≤ λi − λ̃i ≤ λi − µi.

The result follows from the previous lemma.

We point out that the above result is valid for i = 1, provided we define Q̃1 = 0.

The quantities ‖Q̃iui‖2 represent the cosines of the acute angle between ui and the

span of the previous approximate eigenvectors. In the ideal situation this should

be zero. In addition, we should mention that the error bound is semi-a-priori, since

it will require the knowledge of previous eigenvectors in order to get an idea of

the quantity ‖Q̃iui‖2.

We now turn our attention to the eigenvectors.

Theorem 4.6 Let γ = ‖P
K
A(I − P

K
)‖2, and consider any eigenvalue λ of A

with associated eigenvector u. Let λ̃ be the approximate eigenvalue closest to λ
and δ the distance between λ and the set of approximate eigenvalues other than

λ̃. Then there exists an approximate eigenvector ũ associated with λ̃ such that

sin [θ(u, ũ)] ≤
√

1 +
γ2

δ2
sin [θ(u,K)] (4.32)
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Proof.

K

u

z

ũ

v cosφ

w sinφ

θ

ω

φ

Figure 4.1: Projections of the eigenvector u onto K and then onto ũ.

Let us define the two vectors

v =
P

K
u

‖P
K
u‖2

and w =
(I − P

K
)u

‖(I − P
K
)u‖2

(4.33)

and denote by φ the angle between u and P
K
u, as defined by cosφ = ‖P

K
u‖2.

Then, clearly

u = v cosφ+ w sinφ,

which, upon multiplying both sides by (A− λI) leads to

(A− λI)v cosφ+ (A− λI)w sinφ = 0 .

We now project both sides onto K, and take the norms of the resulting vector to

obtain

‖P
K
(A− λI)v‖2 cosφ = ‖P

K
(A− λI)w‖2 sinφ . (4.34)

For the-right-hand side note that

‖P
K
(A− λI)w‖2 = ‖P

K
(A− λI)(I − P

K
)w‖2

= ‖P
K
A(I − P

K
)w‖2 ≤ γ . (4.35)

For the left-hand-side, we decompose v further as

v = ũ cosω + z sinω,

in which ũ is a unit vector from the eigenspace associated with λ̃, z is a unit vector

in K that is orthogonal to ũ, and ω is the acute angle between v and ũ. We then

obtain,

P
K
(A− λI)v = P

K
(A− λI)[cosωũ+ sinωz]

= ũ(λ̃− λ) cosω + P
K
(A− λI)z sinω. (4.36)
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The eigenvalues of the restriction of P
K
(A−λI) to the orthogonal of ũ are λ̃j−λ,

for j = 1, 2, . . .m, and λ̃j 6= λ̃. Therefore, since z is orthogonal to ũ, we have

‖P
K
(A− λI)z‖2 ≥ δ>0. (4.37)

The two vectors in the right hand side of (4.36) are orthogonal and by (4.37),

‖P
K
(A− λI)v‖22 = |λ̃− λ|2 cos2 ω + sin2 ω‖P

K
(A− λI)z‖22

≥ δ2 sin2 ω (4.38)

To complete the proof we refer to Figure 4.1. The projection of u onto ũ is

the projection onto ũ of the projection of u onto K. Its length is cosφ cosω and

as a result the sine of the angle θ between u and ũ is given by

sin2 θ = 1− cos2 φ cos2 ω

= 1− cos2 φ (1− sin2 ω)

= sin2 φ+ sin2 ω cos2 φ . (4.39)

Combining (4.34), (4.35), (4.38) we obtain that

sinω cosφ ≤ γ

δ
sinφ

which together with (4.39) yields the desired result.

This is a rather remarkable result given that it is so general. It tells us among

other things that the only condition we need in order to guarantee that a projection

method will deliver a good approximation in the Hermitian case is that the angle

between the exact eigenvector and the subspace K be sufficiently small.

As a consequence of the above result we can establish bounds on eigenval-

ues that are somewhat simpler than those of Theorem 4.5. This results from the

following proposition.

Proposition 4.5 The eigenvalues λ and λ̃ in Theorem 4.6 are such that

|λ− λ̃| ≤ ‖A− λI‖2 sin2 θ(u, ũ) . (4.40)

Proof. We start with the simple observation that λ̃−λ = ((A−λI)ũ, ũ). Letting

α = (u, ũ) = cos θ(u, ũ) we can write

λ̃− λ = ((A− λI)(ũ− αu), ũ) = ((A− λI)(ũ− αu), ũ− αu)

The result follows immediately by taking absolute values, exploiting the Cauchy-

Schwarz inequality, and observing that ‖ũ− αu‖2 = sin θ(u, ũ).
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4.3.3 Oblique Projection Methods

In an oblique projection method we are given two subspaces L and K and seek

an approximation ũ ∈ K and an element λ̃ of C that satisfy the Petrov-Galerkin

condition,

((A− λ̃I)ũ, v) = 0 ∀ v ∈ L . (4.41)

The subspaceKwill be referred to as the right subspace andL as the left subspace.

A procedure similar to the Rayleigh-Ritz procedure can be devised by again trans-

lating in matrix form the approximate eigenvector ũ in some basis and expressing

the Petrov-Galerkin condition (4.41). This time we will need two bases, one which

we denote by V for the subspace K and the other, denoted by W, for the subspace

L. We assume that these two bases are biorthogonal, i.e., that (vi, wj) = δij , or

WHV = I

where I is the identity matrix. Then, writing ũ = V y as before, the above Petrov-

Galerkin condition yields the same approximate problem as (4.20) except that the

matrix Bm is now defined by

Bm = WHAV.

We should however emphasize that in order for a biorthogonal pair V,W to exist

the following additional assumption for L and K must hold.

For any two bases V and W of K and L respectively,

det(WHV ) 6= 0 . (4.42)

In order to interpret the above condition in terms of operators we will define

the oblique projector QL
K

onto K and orthogonal to L. For any given vector x in

C
n, the vector QL

K
x is defined by

{

QL
K
x ∈ K

x−QL
K
x ⊥ L.

Note that the vector QL
K
x is uniquely defined under the assumption that no vector

of the subspace L is orthogonal to K. This fundamental assumption can be seen

to be equivalent to assumption (4.42). When it holds the Petrov-Galerin condition

(4.18) can be rewritten as

QL
K
(Aũ− λ̃ũ) = 0 (4.43)

or

QL
K
Aũ = λ̃ũ .

Thus, the eigenvalues of the matrixA are approximated by those ofA′ = QL
K
A|K.

We can define an extension Am of A′
m analogous to the one defined in the pre-

vious section, in many different ways. For example introducing QL
K

before the



TOOLS OF SPECTRAL APPROXIMATION 107

occurrences of ũ in the above equation would lead to Am = QL
K
AQL

K
. In order to

be able to utilize the distance ‖(I−P
K
)u‖2 in a-priori error bounds a more useful

extension is

Am = QL
K
AP

K
.

With this notation, it is trivial to extend the proof of Proposition 4.3 to the

oblique projection case. In other words, whenK is invariant, then no matter which

left subspaceLwe choose, the oblique projection method will always extract exact

eigenpairs.

We can establish the following theorem which generalizes Theorem 4.3 seen

for the orthogonal projection case.

Theorem 4.7 Let γ = ‖QL
K
(A−λI)(I−P

K
)‖2. Then the following two inequal-

ities hold:

‖(Am − λI)PK
u‖2 ≤ γ‖(I − PK

)u‖2 (4.44)

‖(Am − λI)u‖2 ≤
√

|λ|2 + γ2 ‖(I − P
K
)u‖2 . (4.45)

Proof. For the first inequality, since the vectorP
K
y belongs toKwe haveQL

K
P

K
=

P
K

and therefore

(Am − λI)PK
u = QL

K
(A− λI)P

K
u

= QL
K
(A− λI)(P

K
u− u)

= −QL
K
(A− λI)(I − P

K
)u .

Since (I − P
K
) is a projector we now have

(Am − λI)PK
u = −QL

K
(A− λI)(I − P

K
)(I − P

K
)u.

Taking Euclidean norms of both sides and using the Cauchy-Schwarz inequality

we immediately obtain the first result.

For the second inequality, we write

(Am − λI)u = (Am − λI) [PK
u+ (I − P

K
)u]

= (Am − λI)PK
u+ (Am − λI)(I − PK

)u .

Noticing that Am(I − P
K
) = 0 this becomes

(Am − λI)u = (Am − λI)PK
u− λ(I − P

K
)u .

Using the orthogonality of the two terms in the right hand side, and taking the

Euclidean norms we get the second result.

In the particular case of orthogonal projection methods, QL
K

is identical with

P
K
, and we have ‖QL

K
‖2 = 1. Moreover, the term γ can then be bounded from

above by ‖A‖2. It may seem that since we obtain very similar error bounds for

both the orthogonal and the oblique projection methods, we are likely to obtain

similar errors when we use the same subspace. This is not the case in general.
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One reason is that the scalar γ can no longer be bounded by ‖A‖2 since we have

‖QL
K
‖2 ≥ 1 and ‖QL

K
‖2 is unknown in general. In fact the constant γ can be quite

large. Another reason which was pointed out earlier is that residual norm does not

provide enough information. The approximate problem can have a much worse

condition number if non-orthogonal transformations are used, which may lead to

poorer results. This however is only based on intuition as there are no rigorous

results in this direction.

The question arises as to whether there is any need for oblique projection

methods since dealing with oblique projectors may be numerically unsafe. Meth-

ods based on oblique projectors can offer some advantages. In particular they

may allow to compute approximations to left as well as right eigenvectors simul-

taneously. There are methods based on oblique projection techniques that require

also far less storage than similar orthogonal projections methods. This will be

illustrated in Chapter 4.

4.4 Chebyshev Polynomials

Chebyshev polynomials are crucial in the study of the Lanczos algorithm and

more generally of iterative methods in numerical linear algebra, such as the conju-

gate gradient method. They are useful both in theory, when studying convergence,

and in practice, as a means of accelerating single vector iterations or projection

processes.

4.4.1 Real Chebyshev Polynomials

The Chebyshev polynomial of the first kind of degree k is defined by

Ck(t) = cos[k cos−1(t)] for − 1 ≤ t ≤ 1 . (4.46)

That this is a polynomial with respect to t can be easily shown by induction from

the trigonometric relation

cos[(k + 1)θ] + cos[(k − 1)θ] = 2 cos θ cos kθ,

and the fact that C1(t) = t, C0(t) = 1. Incidentally, this also shows the important

three-term recurrence relation

Ck+1(t) = 2 tCk(t)− Ck−1(t) .

It is important to extend the definition (4.46) to cases where |t| > 1 which is done

with the following formula,

Ck(t) = cosh [k cosh−1(t)], |t| ≥ 1 . (4.47)

This is readily seen by passing to complex variables and using the definition

cos θ = (eiθ + e−iθ)/2. As a result of (4.47) we can derive the expression,

Ck(t) =
1

2

[

(

t+
√

t2 − 1
)k

+
(

t+
√

t2 − 1
)−k

]

, (4.48)
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which is valid for |t| ≥ 1 but can also be extended to the case |t|<1. As a result,

one may use the following approximation for large values of k

Ck(t)
≥
∼

1

2

(

t+
√

t2 − 1
)k

for |t| ≥ 1 . (4.49)

In what follows we denote by Pk the set of all polynomials of degree k. An

important result from approximation theory, which we state without proof, is the

following theorem.

Theorem 4.8 Let [α, β] be a non-empty interval in R and let γ be any real scalar

such with γ ≥ β. Then the minimum

min
p∈Pk,p(γ)=1

max
t∈[α,β]

|p(t)|

is reached by the polynomial

Ĉk(t) ≡
Ck

(

1 + 2 t−β
β−α

)

Ck

(

1 + 2 γ−β
β−α

) .

For a proof see [26]. The maximum of Ck for t in [−1, 1] is 1 and as a

corollary we have

min
p∈Pk, p(γ)=1

max
t∈[α,β]

|p(t)| = 1

|Ck(1 + 2 γ−β
β−α )|

=
1

|Ck(2
γ−µ
β−α )|

.

in which µ ≡ (α + β)/2 is the middle of the interval. Clearly, the results can be

slightly modified to hold for the case where γ ≤ α, i.e., when γ is to the left of

the interval.

4.4.2 Complex Chebyshev Polynomials

The standard definition given in the previous section for Chebyshev polynomi-

als of the first kind, see equation (4.46), extends without difficulty to complex

variables. First, as was seen before, when t is real and |t| > 1 we can use the al-

ternative definition, Ck(t) = cosh[k cosh−1(t)], 1 ≤ |t| . More generally, one

can unify these definitions by switching to complex variables and writing

Ck(z) = cosh(kζ), where cosh(ζ) = z .

Defining the variable w = eζ , the above formula is equivalent to

Ck(z) =
1

2
[wk + w−k] where z =

1

2
[w + w−1]. (4.50)

We will use the above definition for Chebyshev polynomials in C. Note that the

equation 1
2 (w + w−1) = z has two solutions w which are inverses of each other,

and as a result the value of Ck(z) does not depend on which of these solutions is
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chosen. It can be verified directly that the Ck’s defined by the above equations are

indeed polynomials in the z variable and that they satisfy the three term recurrence

Ck+1(z) = 2 zCk(z)− Ck−1(z), (4.51)

with C0(z) ≡ 1 and C1(z) ≡ z.

As is now explained, Chebyshev polynomials are intimately related to ellipses

in the complex plane. Let Cρ be the circle of center the origin and radius ρ. Then

the so-called Joukowski mapping

J(w) =
1

2
[w + w−1]

transforms Cρ into an ellipse of center the origin, foci −1, 1 and major semi-axis
1
2 [ρ+ ρ−1] and minor semi-axis 1

2 |ρ− ρ−1|. This is illustrated in Figure 4.2.

✲

✻

ℜe(w)

ℑm(w)

w = ρeiθ•

✲
J(w)

✲

✻

ℜe(z)

ℑm(z)

z = w+w−1

2•

Figure 4.2: The Joukowski mapping transforms a circle into an ellipse in the com-

plex plane.

There are two circles which have the same image by the mapping J(w), one

with the radius ρ and the other with the radius ρ−1. So it suffices to consider those

circles with ρ ≥ 1. Note that the case ρ = 1 is a degenerate case in which the

ellipse E(0, 1,−1) reduces the interval [−1, 1] traveled through twice.

One important question we now ask is whether or not a min-max result similar

to the one of Theorem 4.8 holds for the complex case. Here the maximum of |p(z)|
is taken over the ellipse boundary and γ is some point not enclosed by the ellipse.

A 1963 paper by Clayton [29] was generally believed for quite some time to have

established the result, at least for the special case where the ellipse has real foci

and γ is real. It was recently shown by Fischer and Freund that in fact Clayton’s

result was incorrect in general [60]. On the other hand, Chebyshev polynomials

are asymptotically optimal and in practice that is all that is needed.

To show the asymptotic optimality, we start by stating a lemma due to Zaran-

tonello, which deals with the particular case where the ellipse reduces to a circle.

This particular case is important in itself.
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Lemma 4.3 (Zarantonello) Let C(0, ρ) be a circle of center the origin and ra-

dius ρ and let γ a point of C not enclosed by C(0, ρ). Then,

min
p∈Pk, p(γ)=1

max
z ∈ C(0,ρ)

|p(z)| =
(

ρ

|γ|

)k

, (4.52)

the minimum being achieved for the polynomial (z/γ)k.

Proof. See reference [162] for a proof.

Note that by changing variables, shifting and rescaling the polynomial, we

also get for any circle centered at c and for any scalar γ such that |γ| > ρ,

min
p∈Pk p(γ)=1

max
z ∈ C(c,ρ)

|p(z)| =
(

ρ

|γ − c|

)k

We now consider the general case of an ellipse centered at the origin, with

foci 1,−1 and semi-major axis a, which can be considered as mapped by J from

the circle C(0, ρ), with the convention that ρ ≥ 1. We denote by Eρ such an

ellipse.

Theorem 4.9 Consider the ellipse Eρ mapped from C(0, ρ) by the mapping J
and let γ any point in the complex plane not enclosed by it. Then

ρk

|wγ |k
≤ min

p∈Pk p(γ)=1
max
z ∈ Eρ

|p(z)| ≤ ρk + ρ−k

|wk
γ + w−k

γ |
(4.53)

in which wγ is the dominant root of the equation J(w) = γ.

Proof. We start by showing the second inequality. Any polynomial p of degree k
satisfying the constraint p(γ) = 1 can be written as,

p(z) =

∑k
j=0 ξjz

j

∑k
j=0 ξjγ

j
.

A point z on the ellipse is transformed by J from a certainw inC(0, ρ). Similarly,

let wγ be one of the two inverse transforms of γ by the mapping, namely the one

with largest modulus. Then, p can be rewritten as

p(z) =

∑k
j=0 ξj(w

j + w−j)
∑k

j=0 ξj(w
j
γ + w−j

γ )
. (4.54)

Consider the particular polynomial obtained by setting ξk = 1 and ξj = 0 for

j 6= k,

p∗(z) =
wk + w−k

wk
γ + w−k

γ
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which is a scaled Chebyshev polynomial of the first kind of degree k in the variable

z. It is not too difficult to see that the maximum modulus of this polynomial is

reached in particular when w = ρeiθ is real, i.e., when w = ρ. Thus,

max
z∈Eρ

|p∗(z)| = ρk + ρ−k

|wk
γ + w−k

γ |

which proves the second inequality.

To prove the left inequality, we rewrite (4.54) as

p(z) =

(

w−k

w−k
γ

)

∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

and take the modulus of p(z),

|p(z)| = ρ−k

|wγ |−k

∣

∣

∣

∣

∣

∑k
j=0 ξj(w

k+j + wk−j)
∑k

j=0 ξj(w
k+j
γ + wk−j

γ )

∣

∣

∣

∣

∣

.

The polynomial of degree 2k in w inside the large modulus bars in the right-

hand-side is such that its value at wγ is one. By Lemma 4.3, the modulus of

this polynomial over the circle C(0, ρ) is not less than (ρ/|wγ |)2k, i.e., for any

polynomial, satisfying the constraint p(γ) = 1 we have,

max
z∈ Eρ

|p(z)| ≥ ρ−k

|wγ |−k

ρ2k

|wγ |2k
=

ρk

|wγ |k
.

This proves that the minimum over all such polynomials of the maximum modulus

on the ellipse Eρ is ≥ (ρ/|wγ |)k.

The difference between the left and right bounds in (4.53) tends to zero as k
increases to infinity. Thus, the important point made by the theorem is that, for

large k, the Chebyshev polynomial

p∗(z) =
wk + w−k

wk
γ + w−k

γ

, where z =
w + w−1

2

is close to the optimal polynomial. In other words these polynomials are asymp-

totically optimal.

For a more general ellipse centered at c, and with focal distance d, a simple

change of variables shows that the near-best polynomial is given by

Ck

(

z − c
d

)

.

We should point out that an alternative result, which is more complete, has

been proven by Fischer and Freund in [59].
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PROBLEMS

P-4.1 What are the eigenvalues and eigenvectors of (A − σI)−1. What are all the shifts

σ that will lead to a convergence towards a given eigenvalue λ?

P-4.2 Consider a real nonsymmetric matrix A. The purpose of this exercise is to develop a

generalization of the power method that can handle the case where the dominant eigenvalue

is complex (i.e., we have a complex conjugate pair of dominant eigenvalues). Show that

by a projection process onto two successive iterates of the power method one can achieve

convergence towards the dominant pair of eigenvalues [Consider the diagonalizable case

only]. Without giving a proof, state what the rate of convergence toward the pair of complex

conjugate eigenvectors should be. Develop a simple version of a corresponding algorithm

and then a variation of the algorithm that orthonormalizes two successive iterates at every

step, i.e., starting with a vector x of 2-norm unity, the iterates are as follows,

xnew :=
x̂

‖x̂‖2
where x̂ := Axold − (Axold, xold)xold .

Does the orthogonalization have to be done at every step?

P-4.3 By following a development similar to that subsection 4.2, find the v vector for

Wielandt deflation, which minimizes the condition number for A1, among all vectors in

the span of u1, w1. Show again that the choice v = u1 is nearly optimal when λ1 − λ2 is

small relative to σ.

P-4.4 Consider the generalized eigenvalue problem Ax = λBx. How can one generalize

the power method? The shifted power method? and the shift-and-invert power method?

P-4.5 Assume that all the eigenvalues of a matrix A are real and that one uses the shifted

power method for computing the largest, i.e., the rightmost eigenvalue of a given matrix.

What are all the admissible shifts, i.e., those that will lead to convergence toward the right-

most eigenvalue? Among all the admissible choices which one leads to the best conver-

gence rate?

P-4.6 Consider a deflation technique which would compute the eigenvalues of the matrix

A1 = (I −QjQ
H
j )A

in which Qj = [q1, q2, . . . , qj ] are previously computed Schur vectors. What are the

eigenvalues of the deflated matrix A1? Show that an eigenvector of A1 is a Schur vector

for A. The advantage of this technique is that there is no need to select shifts σj . What are

the disadvantages if any?

P-4.7 Show that in example 4.4 any linear combination of the vectors u1 and w1 is in fact

optimal.

P-4.8 Nothing was said about the left eigenvector w̃1 of the deflated matrix A1 in Sec-

tion 4.2. Assuming that the matrix A is diagonalizable find an eigenvector w̃1 of A1 asso-

ciated with the eigenvalue λ1 − σ. [Hint: Express the eigenvector in the basis of the left

eigenvectors of A.] How can this be generalized to the situation where A is not diagonal-

izable?

P-4.9 Assume that the basis V of the subspace K used in an orthogonal projection pro-

cess is not orthogonal. What matrix problem do we obtain if we translate the Galerkin
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conditions using this basis. Same question for the oblique projection technique, i.e., as-

suming that V,W does not form a bi-orthogonal pair. Ignoring the cost of the small m-

dimensional problems, how do the computational costs compare? What if we include the

cost of the orthonormalization (by modified Gram-Schmidt) for the approach which uses

orthogonal bases (Assuming that the basis V is obtained from orthonormalizing a set of m
basis vectors).

P-4.10 Let A be Hermitian and let ũi, ũj two Ritz eigenvectors associated with two dif-

ferent eigenvalues λ̃i, λ̃j respectively. Show that (Aũi, ũj) = λ̃jδij .

P-4.11 Prove from the definition (4.50) that the Ck’s are indeed polynomials in z and that

they satisfy the three-term recurrence (4.51).

NOTES AND REFERENCES. Much of the material on projection methods presented in this chapter is

based on the papers [171, 168] and the section on deflation procedures is from [176] and some well-

known results in Wilkinson [223]. Suggested additional reading on projection methods are Chatelin

[22] and Krasnoselskii et al. [110]. A good discussion of Chebyshev polynomials in the complex

plane is given in the book by Rivlin [162]. Deflation for non Hermitian eigenvalue problems is not

that much used in the literature. I found Schur-Wielandt and related deflation procedures (based on

Schur vectors rather than eigenvectors) to be essential in the design of robust eigenvalue algorithms.

Theorem (4.6) has been extended to the nonsymmetric case by Stewart [204].
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SUBSPACE ITERATION

Among the best known methods for solving large sparse eigenvalue problems, the

subspace iteration algorithm is undoubtedly the simplest. This method can be viewed

as a block generalization of the power method. Although the method is not com-

petitive with other projections methods to be covered in later chapters, it still is one

of the most important methods used in structural engineering. It also constitutes a

good illustration of the material covered in the previous chapter.

5.1 Simple Subspace Iteration

The original version of subspace iteration was introduced by Bauer under the

name of Treppeniteration (staircase iteration). Bauer’s method consists of starting

with an initial system of m vectors forming an n×m matrix X0 = [x1, . . . , xm]
and computing the matrix

Xk = AkX0. (5.1)

for a certain power k. If we normalized the column vectors separately in the

same manner as for the power method, then in typical cases each of these vectors

will converge to the same eigenvector associated with the dominant eigenvalue.

Thus the system Xk will progressively loose its linear independence. The idea of

Bauer’s method is to reestablish linear independence for these vectors by a process

such as the LR or the QR factorization. Thus, if we use the more common QR

option, we get the following algorithm.

ALGORITHM 5.1 Simple Subspace Iteration

1. Start: Choose an initial system of vectors X0 = [x1, . . . , xm].

2. Iterate: Until convergence do,

(a) Compute Xk := AXk−1

(b) Compute Xk = QR the QR factorization of Xk, and set Xk := Q.

115
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This algorithm can be viewed as a direct generalization of the power method

seen in the previous Chapter. Step 2-(b) is a normalization process that is much

similar to the normalization used in the power method, and just as for the power

method there are many possible normalizations that can be used. An important

observation is that the subspace spanned by the vectors Xk is the same as that

spanned by AkX0. Since the cost of 2-(b) can be high, it is natural to orthonor-

malize as infrequently as possible, i.e. to perform several steps at once before

performing an orthogonalization. This leads to the following modification.

ALGORITHM 5.2 Multiple Step Subspace Iteration

1. Start: Choose an initial system of vectors X = [x1, . . . , xm]. Choose an

iteration parameter iter.

2. Iterate: Until convergence do:

(a) Compute Z := AiterX .

(b) Orthonormalize Z. Copy resulting matrix onto X .

(c) Select a new iter.

We would like to make a few comments concerning the choice of the param-

eter iter. The best iter will depend on the convergence rate. If iter is too large

then the vectors of Z in 2-(a) may become nearly linear dependent and the orthog-

onalization in 2-(b) may cause some difficulties. Typically an estimation on the

speed of convergence is used to determine iter. Then iter is defined in such a way

that, for example, the fastest converging vector, which is the first one, will have

converged to within a certain factor, e.g., the square root of the machine epsilon,

i.e., the largest number ǫ that causes rounding to yield 1 + ǫ == 1 on a given

computer.

Under a few assumptions the column vectors of Xk will converge “in direc-

tion” to the Schur vectors associated with them dominant eigenvalues λ1, . . . , λm.

To formalize this peculiar notion of convergence, a form of which was seen in the

context of the power method, we will say that a sequence of vectors xk converges

essentially to a vector x if there exists a sequence of signs eiθk such that the se-

quence eiθkxk converges to x.

Theorem 5.1 Let λ1, . . . , λm be the m dominant eigenvalues of A labeled in de-

creasing order of magnitude and assume that |λi| > |λi+1|, 1 ≤ i ≤ m. Let

Q = [q1, q2, . . . , qm] be the Schur vectors associated with λj , j = 1, . . . ,m and

Pi be the spectral projector associated with the eigenvalues λ1, . . . , λi. Assume

that

rank (Pi[x1, x2, . . . , xi]) = i, for i = 1, 2, . . . ,m .

Then the i-th column of Xk converges essentially to qi, for i = 1, 2, · · · ,m.
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Proof. Let the initial system X0 be decomposed as

X0 = PmX0 + (I − Pm)X0 = QG1 +WG2 (5.2)

where W is an n× (n−m) matrix whose column vectors form some basis of the

invariant basis (I − Pm)Cn and G2 is a certain (n −m) ×m matrix. We know

that there exists an m×m upper triangular matrix R1 and an (n−m)× (n−m)
matrix R2 such that

AQ = QR1 , AW =WR2 . (5.3)

The column vectors of Xk are obtained by orthonormalizing the system Zk =
AkX0. By assumption, the system of column vectors PmX0 is nonsingular and

therefore G1 is nonsingular. Applying (5.3) we get

AkX0 = Ak[QG1 +WG2]

= QRk
1G1 +WRk

2G2

= [Q+WRk
2G2G

−1
1 R−k

1 ]Rk
1G1

The term Ek ≡ WRk
2G2G

−1
1 R−k tends to zero because the spectral radius of

R−1
1 is equal to 1/|λm| while that of R2 is |λm+1|. Hence,

AkX0G
−1
1 = [Q+ Ek]R

k
1

with limk→∞Ek = 0. Using the QR decomposition of the matrix Q+ Ek,

Q+ Ek = Q(k)R(k),

we obtain

AkX0G
−1
1 = Q(k)R(k)Rk

1 .

Since Ek converges to zero, it is clear that R(k) converges to the identity matrix

while Q(k) converges to Q, and because the QR decomposition of a matrix is

unique up to scaling constants, we have established that the Q matrix in the QR

decomposition of the matrix AkX0G
−1
1 converges essentially to Q. Notice that

the span of AkX0G
−1
1 is identical with that of Xk. As a result the orthogonal

projector P(k)
m onto span{Xk} will converge to the orthogonal projector Pm onto

span{Q}.
In what follows we denote by [X]j the matrix of the first j vector columns

of X . To complete the proof, we need to show that each column converges to

the corresponding column vector of Q. To this end we observe that the above

proof extends to the case where we consider only the first j columns of Xk, i.e.,

the j first columns of Xk converge to a matrix that spans the same subspace as

[Q]j . In other words, if we let Pj be the orthogonal projector on span{[Q]j}
and P(k)

j the orthogonal projector on span{[Xk]j} then we have P(k)
j → Pj for

j = 1, 2, . . . ,m. The proof is now by induction. When j = 1, we have the

obvious result that the first column of Xk converges essentially to q1. Assume
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that the columns 1 through i of Xk converge essentially to q1, . . . , qi. Consider

the last column x
(k)
i+1 of [Xk]i+1, which we express as

x
(k)
i+1 = P(k)

i+1x
(k)
i+1 = P(k)

i x
(k)
i+1 + (P(k)

i+1 − P
(k)
i )x

(k)
i+1 .

The first term in the right hand side is equal to zero because by construction x
(k)
i+1

is orthogonal to the first i columns of [Xk]i+1. Hence,

x
(k)
i+1 = (P(k)

i+1 − P
(k)
i )x

(k)
i+1

and by the above convergence results on the projectors P(k)
j we see that P(k)

i+1 −
P(k)
i converges to the orthogonal projector onto the span of the single vector qi+1.

This is because

Pi+1 − Pi = Qi+1Q
H
i+1 −QiQ

H
i = qi+1q

H
i+1 .

Therefore we may write x
(k)
i+1 = qi+1q

H
i+1x

(k)
i+1 + ǫk where ǫk converges to zero.

Since the vector x
(k)
i+1 is of norm unity, its orthogonal projection onto qi+1 will

essentially converge to qi+1.

The proof indicates that the convergence of each column vector to the cor-

responding Schur vector is governed by the convergence factor |λi+1/λi|. In ad-

dition, we have also proved that each orthogonal projector P(k)
i onto the first i

columns of Xk converges under the assumptions of the theorem.

5.2 Subspace Iteration with Projection

In the subspace iteration with projection method the column vectors obtained from

the previous algorithm are not directly used as approximations to the Schur vec-

tors. Instead they are employed in a Rayleigh-Ritz process to get better approxi-

mations. In fact as was seen before, the Rayleigh-Ritz approximations are optimal

in some sense in the Hermitian case and as a result it is sensible to use a projection

process whenever possible. This algorithm with projection is as follows.

ALGORITHM 5.3 Subspace Iteration with Projection

1. Start: Choose an initial system of vectors X = [x0, . . . , xm] and an initial

iteration parameter iter.

2. Iterate: Until convergence do:

(a) Compute Ẑ = AiterXold.

(b) Orthonormalize Ẑ into Z.

(c) ComputeB = ZHAZ and use the QR algorithm to compute the Schur

vectors Y = [y1, . . . , ym] of B.

(d) Compute Xnew = ZY .
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(e) Test for convergence and select a new iteration parameter iter.

There are many implementation details which are omitted for the sake of

clarity. Note that there is another version of the algorithm which uses eigenvec-

tors instead of Schur vectors (in Step 2-(c)). These two versions are obviously

equivalent when A is Hermitian.

Let Sk be the subspace spanned by Xk and let us denote by Pk the orthog-

onal projector onto the subspace Sk. Assume that the eigenvalues are ordered in

decreasing order of magnitude and that,

|λ1| ≥ |λ2| ≥ |λ3| · · · ≥ |λm| > |λm+1| ≥ · · · ≥ |λn| .

Again ui denotes an eigenvector of A of norm unity associated with λi. The spec-

tral projector associated with the invariant subspace associated with λ1, . . . , λm
will be denoted by P . We will now prove the following theorem.

Theorem 5.2 Let S0 = span{x1, x2, . . . , xm} and assume that S0 is such that

the vectors {Pxi}i=1,...,m are linearly independent. Then for each eigenvector ui
of A, i = 1, . . . ,m, there exists a unique vector si in the subspace S0 such that

Psi = ui. Moreover, the following inequality is satisfied

‖(I − Pk)ui‖2 ≤ ‖ui − si‖2
(∣

∣

∣

∣

λm+1

λi

∣

∣

∣

∣

+ ǫk

)k

, (5.4)

where ǫk tends to zero as k tends to infinity.

Proof. By their assumed linear independence, the vectors Pxj , form a basis of the

invariant subspace PCn and so the vector ui, which is a member of this subspace,

can be written as

ui =
m
∑

j=1

ηjPxj = P
m
∑

j=1

ηjxj ≡ Psi.

The vector si is such that

si = ui + w, (5.5)

wherew = (I−P )si. Next consider the vector y of Sk defined by y = ( 1
λi
)kAksi.

We have from (5.5) that

y − ui =
(

1

λi

)k

Akw . (5.6)

Denoting by W the invariant subspace corresponding to the eigenvalues λm+1,
. . . , λn, and noticing that w is in W, we clearly have

y − ui =
(

1

λi

)k

[A|W ]kw.
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Hence,

‖ui − y‖2 ≤
∥

∥

∥

∥

∥

[

1

λi
A|W

]k
∥

∥

∥

∥

∥

2

‖w‖2 . (5.7)

Since the eigenvalues of A|W are λm+1, λm+2, . . . , λn the spectral radius of

[ 1
λi
A|W ] is simply |λm+1/λi| and from Corollary 1.1 of Chapter 1, we have,

∥

∥

∥

∥

∥

[

1

λi
A|W

]k
∥

∥

∥

∥

∥

2

=

[∣

∣

∣

∣

λm+1

λi

∣

∣

∣

∣

+ ǫk

]k

, (5.8)

where ǫk tends to zero as k →∞. Using the fact that

‖(I − Pk)ui‖2 = min
y∈Sk

‖y − ui‖2

together with inequality (5.7) and equality (5.8) yields the desired result (5.4).

We can be a little more specific about the sequence ǫk of the theorem by using

the inequality

‖Bk‖2 ≤ αρkkη−1, (5.9)

where B is any matrix, ρ its spectral radius, η the dimension of its largest Jor-

dan block, and α some constant independent on k, see Exercise P-5.6 as well as

Householder’s book [91]. Without loss of generality we assume that α ≥ 1.

Initially, consider the case where A is diagonalizable. Then η = 1, and by

replacing (5.9) in (5.8) we observe that (5.4) simplifies into

‖(I − Pk)ui‖2 ≤ α‖ui − si‖2
∣

∣

∣

∣

λm+1

λi

∣

∣

∣

∣

k

. (5.10)

Still in the diagonalizable case, it is possible to get a more explicit result by ex-

panding the vector si in the eigenbasis of A as

si = ui +

n
∑

i=m+1

ξjuj .

Letting β =
∑n

i=m+1 |ξj |, we can reproduce the proof of the above theorem to

obtain

‖(I − Pk)ui‖2 ≤ αβ
∣

∣

∣

∣

λm+1

λi

∣

∣

∣

∣

k

. (5.11)

When A is not diagonalizable, then from comparing (5.9) and (5.8) we can bound

ǫk from above as follows:

ǫk ≤
∣

∣

∣

∣

λm+1

λi

∣

∣

∣

∣

(α1/kk(η−1)/k − 1)

which confirms that ǫk tends to zero as k tends to infinity.



Subspace Iteration 121

Finally, concerning the assumptions of the theorem, it can be easily seen that

the condition that {Pxj}j=1,...,r form an independent system of vectors is equiv-

alent to the condition that

det[UHS0] 6= 0,

in which U is any basis of the invariant subspace PCn. This condition constitutes

a generalization of a similar condition required for the convergence of the power

method.

5.3 Practical Implementations

There are a number of implementation details that enhance the performance of the

simple methods described above. The first of these is the use of locking, a form

of deflation, which exploits the unnequal convergence rates of the different eigen-

vectors. In addition, the method is rarely used without some form of acceleration.

Similarly to the power method the simplest form of acceleration, is to shift the

matrix to optimize the convergence rate for the eigenvalue being computed. How-

ever, there are more elaborate techniques which will be briefly discussed later.

5.3.1 Locking

Because of the different rates of convergence of each of the approximate eigenval-

ues computed by the subspace iteration, it is a common practice to extract them

one at a time and perform a form of deflation. Thus, as soon as the first eigenvec-

tor has converged there is no need to continue to multiply it by A in the subse-

quent iterations. Indeed we can freeze this vector and work only with the vectors

q2, . . . , ...qm. However, we will still need to perform the subsequent orthogonal-

izations with respect to the frozen vector q1 whenever such orthogonalizations are

needed. The term used for this strategy is locking. It was introduced by Jennings

and Stewart [97]. Note that acceleration techniques and other improvements to

the basic subspace iteration described in Section 5.3 can easily be combined with

locking.

The following algorithm describes a practical subspace iteration with defla-

tion (locking) for computing the nev dominant eigenvalues.

ALGORITHM 5.4 Subspace Iteration with Projection and Deflation

1. Start: Choose an initial system of vectors X := [x0, . . . , xm] and an initial

iteration parameter iter. Set j := 1.

2. Eigenvalue loop: While j ≤ nev do:

(a) Compute Ẑ = [q1, q2, . . . , qj−1, A
iterX] .

(b) Orthonormalize the column vectors of Ẑ (starting at column j) into Z.

(c) UpdateB = ZHAZ and compute the Schur vectors Y = [yj , . . . , ym]
of B associated with the eigenvalues λj , . . . , λm.
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(d) Test the eigenvalues λj , . . . , λm for convergence. Let iconv the num-

ber of newly converged eigenvalues. Append the iconv corresponding

Schur vectors to Q = [q1, ...., qj−1] and set j := j + iconv .

(e) Compute X := Z[yj , yj+1, . . . , ym].

(f) Compute a new iteration parameter iter.

Example 5.1. Consider the matrix Mark(10) described in Chapter 2 and used

in the test examples of Chapter 4. We tested a version of the algorithm just de-

scribed to compute the three dominant eigenvalues of Mark(10). In this test we

took m = 10 and started with an initial set of vectors obtained from orthogonal-

izing v,Av, ..., Amv, in which v is a random vector. Table 5.1 shows the results.

Each horizontal line separates an outer loop of the algorithm (corresponding to

step (2) in algorithm 5.4). Thus, the algorithm starts with iter = 5 and in the first

iteration (requiring 63 matrix-vector products) no new eigenvalue has converged.

We will need three more outer iterations (requiring each 113 matrix-vector prod-

ucts) to achieve convergence for the two dominant eigenvalues −1, 1. Another

outer iteration is needed to compute the third eigenvalue. Note that each projec-

tion costs 13 additional matrix by vector products, 10 for computing the C matrix

and 3 for the residual vectors.

Mat-vec’s ℜe(λ) ℑm(λ) Res. Norm

63 0.1000349211D+01 0.0 0.820D-02

-0.9981891280D+00 0.0 0.953D-02

-0.9325298611D+00 0.0 0.810D-02

176 -0.1000012613D+01 0.0 0.140D-03

0.9999994313D+00 0.0 0.668D-04

0.9371856730D+00 0.0 0.322D-03

289 -0.1000000294D+01 0.0 0.335D-05

0.1000000164D+01 0.0 0.178D-05

0.9371499768D+00 0.0 0.177D-04

402 -0.1000000001D+01 0.0 0.484D-07

0.1000000001D+01 0.0 0.447D-07

0.9371501017D+00 0.0 0.102D-05

495 -0.1000000001D+01 0.0 0.482D-07

0.1000000000D+01 0.0 0.446D-07

0.9371501543D+00 0.0 0.252D-07

Table 5.1: Convergence of subspace iteration with projection for computing the

three dominant eigenvalues of A = Mark(10).
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5.3.2 Linear Shifts

Similarly to the power method, there are advantages in working with the shifted

matrix A− σI instead of A, where σ is a carefully chosen shift. In fact since the

eigenvalues are computed one at a time, the situation is very similar to that of the

power method. Thus, when the spectrum is real, and the eigenvalues are ordered

decreasingly, the best possible σ is

σ =
1

2
(λm+1 + λn)

which will put the middle of the unwanted part of the spectrum at the origin. Note

that when deflation is used this is independent of the eigenvalue being computed.

In addition, we note one important difference with the power method, namely

that eigenvalue estimates are now readily available. In fact, it is common practice

to take m > nev, the number of eigenvalues to be computed, in order to be

able to obtain valuable estimates dynamically. These estimates can be used in

various ways to accelerate convergence, such as when selecting shifts as indicated

above, or when using some of the more sophisticated preconditioning techniques

mentioned in the next section.

5.3.3 Preconditioning

Preconditioning is especially important for subspace iteration, since the unpre-

conditioned iteration may be unacceptably slow in some cases. Although we will

cover preconditioning in more detail in Chapter 8, we would like to mention here

the main ideas used to precondition the subspace iteration.

• Shift-and-invert. This consists of working with the matrix (A − σI)−1

instead of A. The eigenvalues near σ will converge fast.

• Polynomial acceleration. The standard method used is to replace the power

Aiter in the usual subspace iteration algorithm by a polynomial Tm[(A −
σI)/ρ] in which Tm is the Chebyshev polynomial of the first kind of degree

m.

With either type of preconditioning subspace iteration may be a reasonably

efficient method that has the advantage of being easy to code and understand.

Some of the methods to be seen in the next Chapter are often preferred however,

because they tend to be more economical.

PROBLEMS

P-5.1 In Bauer’s original Treppeniteration, the linear independence of the vectors in AkX0

are preserved by performing its LU decomposition. Thus,

X̂ = AkX , X̂ = LkUk, X := Lk,
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in which Lk is an n×m matrix with its upper m×m corner being a unit lower triangular

matrix, and Uk is an m×m upper triangular matrix. Extend the main convergence theorem

of the corresponding algorithm, for this case.

P-5.2 Assume that the matrix A is real and the eigenvalues λm, λm+1 forms a complex

conjugate pair. If subspace iteration with deflation (Algorithm 5.4) is used, there will be a

difficulty when computing the last eigenvalue. Provide a few possible modifications to the

algorithm to cope with this case.

P-5.3 Write a modification of Algorithm 5.4 which incorporates a dynamic shifting strat-

egy. Assume that the eigenvalues are real and consider both the case where the rightmost

or the leftmost eigenvalues are wanted.

P-5.4 Let A be a matrix whose eigenvalues are real and assume that the subspace iteration

algorithm (with projection) is used to compute some of the eigenvalues with largest real

parts of A. The question addressed here is how to get the best possible iteration parameter

iter. We would like to choose iter in such a way that in the worst case, the vectors of X
will loose a factor of

√
ǫ in their linear dependence, in which ǫ is the machine accuracy.

How can we estimate such an iteration parameter iter from quantities derived from the

algorithm? You may assume that m is sufficiently large compared with nev (how large

should it be?).

P-5.5 Generalize the result of the previous exercise to the case where the eigenvalues are

not necessarily real.

P-5.6 Using the Jordan Canonical form, show that for any matrix B,

‖Bk‖2 ≤ αρkkη−1, (5.12)

where ρ is the spectral radius of B, η the dimension of its largest Jordan block, and α some

constant.

P-5.7 Implement a subspace iteration with projection to compute the eigenvalues with

largest modulus of a large sparse matrix. Implement locking and linear shifts.

NOTES AND REFERENCES. An early reference on Bauer’s Treppeniteration, in addition to the

original paper by Bauer [4], is Householder’s book [91]. See also the paper by Rutishauser [167]

and by Clint and Jennings [31] as well as the book by Bathé and Wilson [3] which all specialize to

symmetric matrices. A computer code for the symmetric real case was published in Wilkinson and

Reinsch’s handbook [224] but unlike most other codes in the handbook, never became part of the

Eispack library. Later, some work was done to develop computer codes for the non-Hermitian case.

Thus, a ‘lop-sided’ version of Bauer’s treppeniteration based on orthogonal projection method rather

than oblique projection was introduced by Jennings and Stewart [96] and a computer code was also

made available [97]. However, the corresponding method did not incorporate Chebyshev acceleration,

which turned out to be so useful in the Hermitian case. Chebyshev acceleration was later incorporated

in [173] and some theory was proposed in [171]. G. W. Stewart [201, 202] initiated the idea of using

Schur vectors as opposed to eigenvectors in subspace iteration. The motivation is that Schur vectors are

easier to handle numerically. A convergence theory of Subspace Iteration was proposed in [201]. The

convergence results of Section 5.2 follow the paper [171] and a modification due to Chatelin (private

communication).
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KRYLOV SUBSPACE METHODS

This chapter will examine one of the most important classes of methods available

for computing eigenvalues and eigenvectors of large matrices. These techniques are

based on projections methods, both orthogonal and oblique, onto Krylov subpaces,

i.e., subspaces spanned by the iterates of the simple power method. What may

appear to be a trivial extension of a very slow algorithm turns out to be one of the

most successful methods for extracting eigenvalues of large matrices, especially in the

Hermitian case.

6.1 Krylov Subspaces

An important class of techniques known as Krylov subspace methods extracts ap-

proximations from a subspace of the form

Km ≡ span {v,Av,A2v, ...Am−1v} (6.1)

referred to as a Krylov subspace. If there is a possibility of ambiguity, Km is

denoted by Km(A, v). In contrast with subspace iteration, the dimension of the

subspace of approximants increases by one at each step of the approximation pro-

cess. A few well-known of these Krylov subspace methods are:

(1) The Hermitian Lanczos algorithm;

(2) Arnoldi’s method and its variations;

(3) The non-Hermitian Lanczos algorithm.

There are also block extensions of each of these methods termed Block Krylov

Subspace methods, which we will discuss only briefly. Arnoldi’s method and

Lanczos’ method are orthogonal projection methods while the nonsymmetric Lanc-

zos algorithm is an oblique projection method. Before we pursue with the analysis

of these methods, we would like to emphasize an important distinction between

implementation of a method and the method itself . There are several distinct im-

plementations of Arnoldi’s method, which are all mathematically equivalent. For

125
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example the articles [55, 169, 217] all propose some different versions of the same

mathematical process.

In this section we start by establishing a few elementary properties of Krylov

subspaces, many of which need no proof. Recall that the minimal polynomial of a

vector v is the nonzero monic polynomial p of lowest degree such that p(A)v = 0.

Proposition 6.1 The Krylov subspace Km is the subspace of all vectors in C
n

which can be written as x = p(A)v, where p is a polynomial of degree not ex-

ceeding m− 1.

Proposition 6.2 Let µ be the degree of the minimal polynomial of v. Then Kµ is

invariant under A and Km = Kµ for all m ≥ µ.

The degree of the minimal polynomial of v is often referred to as the grade of v
with respect to A. Clearly, the grade of v does not exceed n.

Proposition 6.3 The Krylov subspace Km is of dimension m if and only if the

grade of v with respect to A is larger than m− 1.

Proof. The vectors v,Av, . . . Am−1v form a basis of Km if and only if for any

complex m−tuple αi, i = 0, . . . ,m − 1, where at least one αi is nonzero, the

linear combination
∑m−1

i=0 αiA
iv is nonzero. This condition is equivalent to the

condition that there be no polynomial of degree ≤ m − 1 for which p(A)v = 0.

This proves the result.

Proposition 6.4 Let Qm be any projector onto Km and let Am be the section of

A to Km, that is, Am = QmA|Km
. Then for any polynomial q of degree not

exceeding m − 1, we have q(A)v = q(Am)v, and for any polynomial of degree

≤ m, we have Qmq(A)v = q(Am)v.

Proof. We will first prove that q(A)v = q(Am)v for any polynomial q of degree

≤ m − 1. It suffices to prove the property for the monic polynomials qi(t) ≡
ti, i = 0, . . .m − 1. The proof is by induction. The property is clearly true for

the polynomial q0(t) ≡ 1. Assume that it is true for qi(t) ≡ ti:

qi(A)v = qi(Am)v.

Multiplying the above equation by A on both sides we get

qi+1(A)v = Aqi(Am)v.

If i+ 1 ≤ m− 1 the vector on the left hand-side belongs to Km and therefore if

we multiply the above equation on both sides by Qm we get

qi+1(A)v = QmAqi(Am)v.

Looking at the right hand side we observe that qi(Am)v belongs to Km. Hence

qi+1(A)v = QmA|Km
qi(Am)v = qi+1(Am)v,
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which proves that the property is true for i+1 provided i+1 ≤ m−1. For the case

i + 1 = m it remains only to show that Qmqm(A)v = qm(Am)v, which follows

from qm−1(A)v = qm−1(Am)v by simply multiplying both sides by QmA.

An interesting characterization of orthogonal Krylov projection methods can

be formulated in terms of the characteristic polynomial of the approximate prob-

lem. In the orthogonal projection case, we define the characteristic polynomial

of the approximate problem as that of the matrix V H
m AVm where Vm is a matrix

whose column vectors form an orthonormal basis of Km. It is a simple exercise

to show that this definition is independent of the choice of Vm, the basis of the

Krylov subspace.

Theorem 6.1 Let p̄m be the characteristic polynomial of the approximate prob-

lem resulting from an orthogonal projection method onto the Krylov subspace

Km. Then p̄m minimizes the norm ‖p(A)v‖2 over all monic polynomials p of

degree m.

Proof. We denote by Pm the orthogonal projector onto Km and Am the corre-

sponding section of A. By Cayley Hamilton’s theorem we have p̄m(Am) = 0 and

therefore

(p̄m(Am)v, w) = 0, ∀ w ∈ Km . (6.2)

By the previous proposition p̄m(Am)v = Pmp̄m(A)v. Hence (6.2) becomes

(Pmp̄m(A)v, w) = 0, ∀ w ∈ Km,

or, since orthogonal projectors are self adjoint,

(p̄m(A)v,Pmw) = 0 = (p̄m(A)v, w) ∀ w ∈ Km,

which is equivalent to

(p̄m(A)v,Ajv) = 0 , j = 0, . . .m− 1.

Writing p̄m(t) = tm − q(t), where q is of degree ≤ m− 1, we obtain

(Amv − q(A)v,Ajv) = 0 , j = 0, . . .m− 1.

In the above system of equations we recognize the normal equations for minimiz-

ing the Euclidean norm ofAmv−s(A)v over all polynomials s of degree≤ m−1.

The proof is complete.

The above characteristic property is not intended to be used for computational

purposes. It is useful for establishing mathematical equivalences between seem-

ingly different methods. Thus, a method developed by Erdelyi in 1965 [55] is

based on precisely minimizing ‖p(A)v‖2 over monic polynomials of some degree

and is therefore mathematically equivalent to any orthogonal projection method on

a Krylov subspace. Another such method was proposed by Manteuffel [126, 127]
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for the purpose of estimating acceleration parameters when solving linear systems

by Chebyshev method. His method named the Generalized Power Method, was

essentially Erdelyi’s method with a special initial vector.

An important point is that this characteristic property seems to be the only

known optimality property that is satisfied by the approximation process in the

nonsymmetric case. Other optimality properties, such as the mini-max theorem

which are fundamental both in theory and in practice for symmetric problems are

no longer valid. This results in some significant difficulties in understanding and

analyzing these methods for nonsymmetric eigenvalue problems.

6.2 Arnoldi’s Method

Arnoldi’s method is an orthogonal projection method onto Km for general non-

Hermitian matrices. The procedure was introduced in 1951 as a means of reducing

a dense matrix into Hessenberg form. Arnoldi introduced this method precisely

in this manner and he hinted that the process could give good approximations to

some eigenvalues if stopped before completion. It was later discovered that this

strategy yields a good technique for approximating eigenvalues of large sparse

matrices. We first describe the method without much regard to rounding errors,

and then give a few implementation details.

6.2.1 The Basic Algorithm

The procedure introduced by Arnoldi in 1951 starts by building an orthogonal

basis of the Krylov subspaceKm. In exact arithmetic, one variant of the algorithm

is as follows.

ALGORITHM 6.1 Arnoldi

1. Start: Choose a vector v1 of norm 1.

2. Iterate: for j = 1, 2, . . . ,m compute:

hij = (Avj , vi), i = 1, 2, . . . , j, (6.3)

wj = Avj −
j
∑

i=1

hijvi, (6.4)

hj+1,j = ‖wj‖2 , if hj+1,j = 0 stop (6.5)

vj+1 = wj/hj+1,j . (6.6)

The algorithm will stop if the vector wj computed in (6.4) vanishes. We

will come back to this case shortly. We now prove a few simple but important

properties of the algorithm. A first observation is that the algorithm is a form of

classical Gram-Schmidt orthogonalization process whereby a new vector (Avj) is

formed and then orthogonalized against all previous vi’s. As the next proposition

shows, the resulting basis is a basis of the Krylov subspace Km.
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Proposition 6.5 The vectors v1, v2, . . . , vm form an orthonormal basis of the sub-

space Km = span{v1, Av1, . . . , Am−1v1}.

Proof. The vectors vj , i = 1, 2, . . .m are orthonormal by construction. That

they span Km follows from the fact that each vector vj is of the form qj−1(A)v1
where qj−1 is a polynomial of degree j − 1. This can be shown by induction on

j as follows. Clearly, the result is true when j = 1, since v1 = q0(A)v1 with

q0(t) ≡ 1. Assume that the result is true for all integers ≤ j and consider vj+1.

We have

hj+1vj+1 = Avj −
j
∑

i=1

hijvi = Aqj−1(A)v1 −
j
∑

i=1

hijqi−1(A)v1 (6.7)

which shows that vj+1 can be expressed as qj(A)v1 where qj is of degree j and

completes the proof.

Proposition 6.6 Denote by Vm the n×m matrix with column vectors v1, . . . , vm
and by Hm the m ×m Hessenberg matrix whose nonzero entries are defined by

the algorithm. Then the following relations hold:

AVm = VmHm + hm+1,mvm+1e
H
m, (6.8)

V H
m AVm = Hm . (6.9)

Proof. The relation (6.8) follows from the following equality which is readily

derived from (6.6) and (6.4):

Avj =

j+1
∑

i=1

hijvi, j = 1, 2, . . . ,m . (6.10)

Relation (6.9) follows by multiplying both sides of (6.8) by V H
m and making use

of the orthonormality of {v1, . . . , vm}.

The situation is illustrated in Figure 6.1. As was noted earlier the algorithm

may break down in case the norm of wj vanishes at a certain step j. In this

situation the vector vj+1 cannot be computed and the algorithm stops. There

remains to determine the conditions under which this situation occurs.

Proposition 6.7 Arnoldi’s algorithm breaks down at step j (i.e., wj = 0 in (6.4))

if and only if the minimal polynomial of v1 is of degree j. Moreover, in this case

the subspace Kj is invariant and the approximate eigenvalues and eigenvectors

are exact.

Proof. If the degree of the minimal polynomial is j, then wj must be equal to

zero. Indeed, otherwise vj+1 can be defined and as a result Kj+1 would be of

dimension j + 1, and from Proposition 6.3, this would mean that µ ≥ j + 1,
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Vm + wme
H
m=A

Hm

Vm

Figure 6.1: The action of A on Vm gives VmHm plus a rank one matrix.

which is not true. To prove the converse, assume that wj = 0. Then the degree

µ of the minimal polynomial of v1 is such that µ ≤ j. Moreover, we cannot

have µ < j otherwise by the previous proof the vector wµ would be zero and the

algorithm would have stopped at the earlier step number µ. The rest of the result

follows from Proposition 4.3 seen in Chapter 4.

The approximate eigenvalues λ
(m)
i provided by the projection process onto

Km are the eigenvalues of the Hessenberg matrix Hm. The Ritz approximate

eigenvector associated with λ
(m)
i is defined by u

(m)
i = Vmy

(m)
i where y

(m)
i is an

eigenvector associated with the eigenvalue λ
(m)
i . A number of the Ritz eigenval-

ues, typically a small fraction of m, will usually constitute good approximations

of corresponding eigenvalues λi of A and the quality of the approximation will

usually improve as m increases. We will examine these ‘convergence’ properties

in detail in later sections. The original algorithm consists of increasing m until all

desired eigenvalues of A are found. This is costly both in terms of computation

and storage. For storage, we need to keep m vectors of length n plus an m ×m
Hessenberg matrix, a total of approximately nm +m2/2. Considering the com-

putational cost of the j-th step, we need to multiply vj by A, at the cost of 2×Nz,
where Nz is number of nonzero elements in A, and then orthogonalize the result

against j vectors at the cost of 4(j+1)n, which increases with the step number j.
On the practical side it is crucial to be able to estimate the residual norm

inexpensively as the algorithm progresses. This turns out to be quite easy to do

for Arnoldi’s method and, in fact, for all the Krylov subspace methods described

in this chapter. The result is given in the next proposition.

Proposition 6.8 Let y
(m)
i be an eigenvector ofHm associated with the eigenvalue

λ
(m)
i and u

(m)
i the Ritz approximate eigenvector u

(m)
i = Vmy

(m)
i . Then,

(A− λ(m)
i I)u

(m)
i = hm+1,m eHmy

(m)
i vm+1
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and, therefore,

‖(A− λ(m)
i I)u

(m)
i ‖2 = hm+1,m|eHmy

(m)
i | .

Proof. This follows from multiplying both sides of (6.8) by y
(m)
i :

AVmy
(m)
i = VmHmy

(m)
i + hm+1,m eHmy

(m)
i vm+1

= λ
(m)
i Vmy

(m)
i + hm+1,me

H
my

(m)
i vm+1 .

Hence,

AVmy
(m)
i − λ(m)

i Vmy
(m)
i = hm+1,m eHmy

(m)
i vm+1 .

In simpler terms, the proposition states that the residual norm is equal to the last

component of the eigenvector y
(m)
i multiplied by hm+1,m. In practice, the residual

norms, although not always indicative of actual errors, are quite helpful in deriving

stopping procedures.

6.2.2 Practical Implementations

The description of the Arnoldi process given earlier assumed exact arithmetic. In

reality, much is to be gained by using the Modified Gram-Schmidt or the House-

holder algorithm in place of the standard Gram-Schmidt algorithm. With the mod-

ified Gram-Schmidt alternative the algorithm takes the following form.

ALGORITHM 6.2 Arnoldi - Modified Gram-Schmidt

1. Start. Choose a vector v1 of norm 1.

2. Iterate. For j = 1, 2, . . . ,m do:

(a) w := Avj ;

(b) For i = 1, 2, . . . , j do:

hij = (w, vi),

w := w − hijvi;

(c) hj+1,j = ‖w‖2 ;

(d) vj+1 = w/hj+1,j .

There is no difference in exact arithmetic between this algorithm and Al-

gorithm 6.1. Although this formulation is numerically superior to the standard

Gram Schmidt formulation, we do not mean to imply that the above Modified

Gram-Schmidt is sufficient for all cases. In fact there are two alternatives that

are implemented to guard against large cancellations during the orthogonalization

process.
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The first alternative is to resort to double orthogonalization. Whenever the

final vector obtained at the end of the second loop in the above algorithm has

been computed, a test is performed to compare its norm with the norm of the

initial w (which is ‖Avj‖2). If the reduction falls below a certain threshold, an

indication that sever cancellation might have occurred, a second orthogonalization

is made. It is known from a result by Kahan that additional orthogonalizations are

superfluous (see for example Parlett [148]).

The second alternative is to resort to a different technique altogether. In fact

one of the most reliable orthogonalization techniques, from the numerical point of

view, is the Householder algorithm. This has been implemented for the Arnoldi

process by Walker [221]. We do not describe the Householder algorithm here but

we would like to compare the cost of each of the three versions.

In the table shown below, GS stands for Gram-Schmidt, MGS for Modified

Gram-Schmidt, MGSR for Modified Gram-Schmidt with Reorthogonalization,

and HO for Householder.

GS MGS MGSR HO

Flops m2n m2n 2m2n 2m2n− 2
3m

3

Storage (m+ 1)n (m+ 1)n (m+ 1)n (m+ 1)n− 1
2m

2

A few comments are in order. First, the number of operations shown for

MGSR are for the worst case situation when a second orthogonalization is needed

every time. This is unlikely to take place and in practice the actual number of

operations is much more likely to be close to that of the simple MGS. Concerning

storage, the little gain in storage requirement in the Householder version comes

from the fact that the Householder transformation requires vectors whose length

diminishes by 1 at every step of the process. However, this difference is negligible

relative to the whole storage requirement given that usually m ≪ n. Moreover,

the implementation to take advantage of this little gain may become rather com-

plicated. In spite of this we do recommend implementing Householder orthog-

onalization for developing general purpose reliable software packages. A little

additional cost in arithmetic may be more than offset by the gains in robustness in

these conditions.

Example 6.1. Consider the matrix Mark(10) used in the examples in the pre-

vious two Chapters. Table 6.1 shows the convergence of the rightmost eigenvalue

obtained by Arnoldi’s method. Comparing the results shown in Table 6.1 with

those of the examples seen in Chapter 4, it is clear that the convergence is much

faster than the power method or the shifted power method.

As was mentioned earlier the standard implementations of Arnoldi’s method

are limited by their high storage and computational requirements as m increases.

Suppose that we are interested in only one eigenvalue/eigenvector of A, namely
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m ℜe(λ) ℑm(λ) Res. Norm

5 0.9027159373 0.0 0.316D+00

10 0.9987435899 0.0 0.246D-01

15 0.9993848488 0.0 0.689D-02

20 0.9999863880 0.0 0.160D-03

25 1.000000089 0.0 0.135D-05

30 0.9999999991 0.0 0.831D-08

Table 6.1: Convergence of rightmost eigenvalue computed from a simple Arnoldi

algorithm for A = Mark(10).

m ℜe(λ) ℑm(λ) Res. Norm

10 0.9987435899D+00 0.0 0.246D-01

20 0.9999523324D+00 0.0 0.144D-02

30 0.1000000368D+01 0.0 0.221D-04

40 0.1000000025D+01 0.0 0.508D-06

50 0.9999999996D+00 0.0 0.138D-07

Table 6.2: Convergence of rightmost eigenvalue computed from a restarted

Arnoldi procedure for A = Mark(10).

the eigenvalue of largest real part of A. Then one way to circumvent the diffi-

culty is to restart the algorithm. After a run with m Arnoldi vectors, we compute

the approximate eigenvector and use it as an initial vector for the next run with

Arnoldi’s method. This process, which is the simplest of this kind, is iterated to

convergence.

ALGORITHM 6.3 Iterative Arnoldi

1. Start: Choose an initial vector v1 and a dimension m.

2. Iterate: Perform m steps of Arnoldi’s algorithm.

3. Restart: Compute the approximate eigenvector u
(m)
1 associated with the

rightmost eigenvalue λ
(m)
1 .

If satisfied stop, else set v1 ≡ u(m)
1 and go to 2.

Example 6.2. Consider the same matrix Mark(10) as above. We now use a

restarted Arnoldi procedure for computing the eigenvector associated with the

eigenvalue with algebraically largest real part. We use m = 10. Comparing
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the results of Table 6.2 with those of the previous example indicates a loss in

performance, in terms of total number of matrix-vector products. However, the

number of vectors used here is 10 as opposed to 50, so the memory requirement

is much less.

6.2.3 Incorporation of Implicit Deflation

We now consider the following implementation which incorporates a deflation

process. The previous algorithm is valid only for the case where only one eigen-

value/eigenvector pair must be computed. In case several such pairs must be com-

puted, then there are two possible options. The first, is to take v1 to be a linear

combination of the approximate eigenvectors when we restart. For example, if we

need to compute the p rightmost eigenvectors, we may take

v̂1 =

p
∑

i=1

ρiũi,

where the eigenvalues are numbered in decreasing order of their real parts. The

vector v1 is then obtained from normalizing v̂1. The simplest choice for the co-

efficients ρi is to take ρi = 1, i = 1, . . . , p. There are several drawbacks to this

approach, the most important of which being that there is no easy way of choosing

the coefficients ρi in a systematic manner. The result is that for hard problems,

convergence is difficult to achieve.

An alternative is to compute one eigenpair at a time and use deflation. We can

use deflation on the matrix A explicitly as was described in Chapter 4. This en-

tails constructing progressively the first k Schur vectors. If a previous orthogonal

basis [u1, . . . , uk−1] of the invariant subspace has already been computed, then,

to compute the eigenvalue λk, we work with the matrix A− UΣUH , in which Σ
is a diagonal matrix.

Another implementation, which we now describe, is to work with a sin-

gle basis v1, v2, ..., vm whose first vectors are the Schur vectors that have al-

ready converged. Suppose that k − 1 such vectors have converged and call them

v1, v2, ..., vk−1. Then we start by choosing a vector vk which is orthogonal to

v1, ...., vk−1 and of norm 1. Next we perform m − k steps of an Arnoldi pro-

cess in which orthogonality of the vector vj against all previous v′is, including

v1, ..., vk−1 is enforced. This generates an orthogonal basis of the subspace

span{v1, . . . , vk−1, vk, Avk, . . . , A
m−kvk} . (6.11)

Thus, the dimension of this modified Krylov subspace is constant and equal to m
in general. A sketch of this implicit deflation procedure combined with Arnoldi’s

method is the following.
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ALGORITHM 6.4 Deflated Iterative Arnoldi

A. Start: Choose an initial vector v1 of norm unity. Set k := 1.

B. Eigenvalue loop:

1. Arnoldi Iteration. For j = k, k + 1, ...,m do:

• Compute w := Avj .

• Compute a set of j coefficients hij so that w := w −∑j
i=1 hijvi

is orthogonal to all previous vi’s, i = 1, 2, ..., j.

• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j .

2. Compute approximate eigenvector ofA associated with the eigenvalue

λ̃k and its associated residual norm estimate ρk.

3. Orthonormalize this eigenvector against all previous vj’s to get the

approximate Schur vector ũk and define vk := ũk.

4. If ρk is small enough then (accept eigenvalue):

• Compute hi,k = (Avk, vi) , i = 1, .., k,

• Set k := k + 1,

• If k ≥ nev then stop else goto B.

5. Else go to B-1.

Note that in the B-loop, the Schur vectors associated with the eigenvalues

λ1, ..., λk−1 are frozen and so is the corresponding upper triangular matrix corre-

sponding to these vectors. As a new Schur vector has converged, step B.4 com-

putes the k-th column ofR associated with this new basis vector. In the subsequent

steps, the approximate eigenvalues are the eigenvalues of the m×m Hessenberg

matrix Hm defined in the algorithm and whose k× k principal submatrix is upper

triangular For example when m = 6 and after the second Schur vector, k = 2, has

converged, the matrix Hm will have the form

Hm =















∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗















. (6.12)

Therefore, in the subsequent steps, we will consider only the eigenvalues that are

not associated with the 2× 2 upper triangular matrix.

It can be shown that, in exact arithmetic, the (n − k) × (n − k) Hessenberg

matrix in the lower (2× 2) block is the same matrix that would be obtained from

an Arnoldi run applied to the matrix (I−Pk)A in which Pk is the orthogonal pro-

jector onto the (approximate) invariant subspace that has already been computed,

see Exercise P-6.3. The above algorithm although not competitive with the more
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elaborate versions that use some form of preconditioning, will serve as a good

model of a deflation process combined with Arnoldi’s projection.

Eig. Mat-Vec’s ℜe(λ) ℑm(λ) Res. Norm

2 60 0.9370509474 0.0 0.870D-03

69 0.9371549617 0.0 0.175D-04

78 0.9371501442 0.0 0.313D-06

87 0.9371501564 0.0 0.490D-08

3 96 0.8112247133 0.0 0.210D-02

104 0.8097553450 0.0 0.538D-03

112 0.8096419483 0.0 0.874D-04

120 0.8095810281 0.0 0.181D-04

128 0.8095746489 0.0 0.417D-05

136 0.8095721868 0.0 0.753D-06

144 0.8095718575 0.0 0.231D-06

152 0.8095717167 0.0 0.444D-07

Table 6.3: Convergence of the three rightmost eigenvalues computed from a de-

flated Arnoldi procedure for A = Mark(10).

Example 6.3. We will use once more the test matrix Mark(10) for illustration.

Here we test our restarted and deflated Arnoldi procedure for computing the three

eigenvalues with algebraically largest real part. We use m = 10 as in the previous

example. We do not show the run corresponding to the first eigenvalue since the

data is already listed in Table 6.2. The first column shows the eigenvalue being

computed. Thus, it takes five outer iterations to compute the first eigenvalue (see

example 6.2), 4 outer iterations to compute the second one, and finally 8 outer

iterations to get the third one. The convergence towards the last eigenvalue is

slower than for the first two. This could be attributed to poorer separation of λ3
from the other eigenvalues but also to the fact that m has implicitly decreased

from m = 10 when computing the first eigenvalue to m = 8 when computing the

third one.

6.3 The Hermitian Lanczos Algorithm

The Hermitian Lanczos algorithm can be viewed as a simplification of Arnoldi’s

method for the particular case when the matrix is Hermitian. The principle of

the method is therefore the same in that it is a projection technique on a Krylov

subspace. However, there are a number of interesting properties that will cause

the algorithm to simplify. On the theoretical side there is also much more that can

be said on the Lanczos algorithm than there is on Arnoldi’s method.
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6.3.1 The Algorithm

To introduce the algorithm we start by making the observation stated in the fol-

lowing theorem.

Theorem 6.2 Assume that Arnoldi’s method is applied to a Hermitian matrix A.

Then the coefficients hij generated by the algorithm are real and such that

hij = 0, for 1 ≤ i < j − 1 , (6.13)

hj,j+1 = hj+1,j , j = 1, 2, . . . ,m. (6.14)

In other words the matrix Hm obtained from the Arnoldi process is real, tridiag-

onal, and symmetric.

Proof. The proof is an immediate consequence of the fact that Hm = V H
m AVm

is a Hermitian matrix which is also a Hessenberg matrix by construction. There-

fore, Hm must be a Hermitian tridiagonal matrix. In addition, observe that by

its definition the scalar hj+1,j is real and that hjj = (Avj , vj) is also real if A
is Hermitian. Therefore, since the matrix Hm is of Hessenberg form, it is real,

tridiagonal and symmetric.

The standard notation used to describe the Lanczos algorithm, is obtained by

setting

αj ≡ hjj ,

βj ≡ hj−1,j ,

which leads to the following form of the Modified Gram Schmidt variant of Arnoldi’s

method, namely Algorithm 6.2.

ALGORITHM 6.5 The Lanczos Algorithm

1. Start: Choose an initial vector v1 of norm unity. Set β1 ≡ 0, v0 ≡ 0.

2. Iterate: for j = 1, 2, . . . ,m do

wj := Avj − βjvj−1 (6.15)

αj := (wj , vj) (6.16)

wj := wj − αjvj (6.17)

βj+1 := ‖wj‖2 (6.18)

vj+1 := wj/βj+1 (6.19)

An important and rather surprising property is that the above simple algo-

rithm guarantees, at least in exact arithmetic, that the vectors vi, i = 1, 2, . . . , are

orthogonal. In reality, exact orthogonality of these vectors is only observed at the
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beginning of the process. Ultimately, the vi’s start losing their global orthogonal-

ity very rapidly. There has been much research devoted to finding ways to either

recover the orthogonality, or to at least diminish its effects by partial or selective

orthogonalization, see Parlett [148].

The major practical differences with Arnoldi’s method are that the matrixHm

is tridiagonal and, more importantly, that we only need to save three vectors, at

least if we do not resort to any form of reorthogonalization.

6.3.2 Relation with Orthogonal Polynomials

In exact arithmetic the equation (6.17) in the algorithm takes the form

βj+1vj+1 = Avj − αjvj − βjvj−1.

This three term recurrence relation is reminiscent of the standard three term recur-

rence relation of orthogonal polynomials. In fact as we will show in this section,

there is indeed a strong relationship between the Lanczos algorithm and orthog-

onal polynomials. We start by recalling that if the grade of v1 is ≥ m then the

subspace Km is of dimension m and consists of all vectors of the form q(A)v1
with degree(q) ≤ m− 1. In this case there is even an isomorphism between Km

and Pm−1, the space of polynomials of degree ≤ m− 1, which is defined by

q ∈ Pm−1 → x = q(A)v1 ∈ Km

Moreover, we can consider that the subspace Pm−1 is provided with the inner

product

< p, q >v1
= (p(A)v1, q(A)v1) (6.20)

which is indeed a nondegenerate bilinear form under the assumption that m does

not exceed µ, the grade of v1. Now observe that the vectors vi are of the form

vi = qi−1(A)v1

and the orthogonality of the vi’s translates into the orthogonality of the polyno-

mials with respect to the inner product (6.20). Moreover, the Lanczos procedure

is nothing but the Stieltjes algorithm (see, for example, Gautschi [70]) for com-

puting a sequence of orthogonal polynomials with respect to the inner product

(6.20). From Theorem 6.1 the characteristic polynomial of the tridiagonal ma-

trix produced by the Lanczos algorithm minimizes the norm ‖.‖v1
over the monic

polynomials. It is easy to prove by using a well-known recurrence for determi-

nants of tridiagonal matrix, that the Lanczos recurrence computes the characteris-

tic polynomial of Hm times the initial vector v1. This is another way of relating

the vi’s to the orthogonal polynomials.

6.4 Non-Hermitian Lanczos Algorithm

This is an extension of the algorithm seen in the previous section to the non-

Hermitian case. We already know of one such extension namely Arnoldi’s pro-

cedure which is an orthogonal projection method. However, the non-Hermitian
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Lanczos algorithm is an oblique projection technique and is quite different in con-

cept from Arnoldi’s method.

6.4.1 The Algorithm

The algorithm proposed by Lanczos for non-Hermitian matrices differs from Arnoldi’s

method in one essential way: instead of building an orthogonal basis of Km, it

builds a pair of biorthogonal bases for the two subspaces

Km(A, v1) = span{v1, Av1, . . . , Am−1v1}

and

Km(AH , w1) = span{w1, A
Hw1, . . . , (A

H)m−1w1}.
The algorithm to achieve this is as follows.

ALGORITHM 6.6 The non-Hermitian Lanczos Algorithm

1. Start: Choose two vectors v1, w1 such that (v1, w1) = 1. Set β1 ≡ 0, w0 =
v0 ≡ 0.

2. Iterate: for j = 1, 2, . . . ,m do

αj = (Avj , wj) (6.21)

v̂j+1 = Avj − αjvj − βjvj−1 (6.22)

ŵj+1 = AHwj − ᾱjwj − δjwj−1 (6.23)

δj+1 = |(v̂j+1, ŵj+1)|1/2 (6.24)

βj+1 = (v̂j+1, ŵj+1)/δj+1 (6.25)

wj+1 = ŵj+1/βj+1 (6.26)

vj+1 = v̂j+1/δj+1 (6.27)

We should point out that there is an infinity of ways of choosing the scalars

δj+1, βj+1 in (6.24)–(6.25). These two parameters are scaling factors for the

two vectors vj+1 and wj+1 and can be selected in any manner to ensure that

(vj+1, wj+1) = 1. As a result of (6.26), (6.27) all that is needed is to choose two

scalars βj+1, δj+1 that satisfy the equality

δj+1βj+1 = (v̂j+1, ŵj+1) (6.28)

The choice made in the above algorithm attempts to scale the two vectors so that

they are divided by two scalars having the same modulus. Thus, if initially v1 and

w1 have the same norm, all of the subsequent vi’s will have the same norms as the

wi’s. As was advocated in [154], on can scale both vectors by their 2-norms. In

this case the inner product of vi and wi is no longer equal to one but a modified

algorithm can be written with these constraints. In this situation a generalized

eigenvalue problem Tmz = λDmz must be solved to compute the Ritz values
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where Dm is a diagonal matrix, whose entries are the inner products (vi, wi). The

modified algorithm is the subject of Exercise P-6.9.

In what follows we will place ourselves in the situation where the pair of

scalars δj+1, βj+1 is any pair that satisfies the relation (6.28), instead of restrict-

ing ourselves to the particular case defined by (6.24) – (6.25). A consequence is

that δj can be complex and in fact the formula defining ŵj+1 in (6.23) should then

be modified to

ŵj+1 = AHwj − ᾱjwj − δ̄jwj−1 .

We will denote by Tm the tridiagonal matrix

Tm =



















α1 β2

δ2 α2 β3

. . .

δm−1 αm−1 βm

δm αm



















.

Note that in the particular case whereA is real as well as the initial vectors v1, w1,
and if (6.24) – (6.25) are used then the δj’s are real positive and βj = ±δj .

Our first observation from the algorithm is that the vectors vi belong toKm(A, v1)
while the wj ’s are in Km(AH , w1). In fact we can show the following proposi-

tion.

Proposition 6.9 If the algorithm does not break down before step m then the

vectors vi, i = 1, . . . ,m, and wj , j = 1, . . . ,m, form a biorthogonal system, i.e.,

(vj , wi) = δij 1 ≤ i, j ≤ m .

Moreover, {vi}i=1,2,...,m is a basis of Km(A, v1) and {wi}i=1,2,...,m is a basis of

Km(AH , w1) and we have the relations,

AVm = VmTm + δm+1vm+1e
H
m, (6.29)

AHWm =WmT
H
m + β̄m+1wm+1e

H
m, (6.30)

WH
mAVm = Tm . (6.31)

Proof. The biorthogonality of the vectors vi, wi will be shown by induction. By

assumption (v1, w1) = 1. Assume now that the vectors v1, . . . vj and w1, . . . wj

are biorthogonal, and let us establish that the vectors v1, . . . vj+1 andw1, . . . wj+1

are biorthogonal.

We show first that (vj+1, wi) = 0 for i ≤ j. When i = j we have

(vj+1, wj) = δ−1
j+1[(Avj , wj)− αj(vj , wj)− βj(vj−1, wj)] .

The last inner product in the above expression vanishes by the induction hypothe-

sis. The two other terms cancel each other by the definition of αj and the fact that

(vj , wj) = 1. Consider now

(vj+1, wj−1) = δ−1
j+1[(Avj , wj−1)− αj(vj , wj−1)− βj(vj−1, wj−1)] .
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Again from the induction hypothesis the middle term in the right hand side van-

ishes. The first term can be rewritten as

(Avj , wj−1) = (vj , A
Hwj−1)

= (vj , β̄jwj + ᾱj−1wj−1 + δ̄j−1wj−2)

= βj(vj , wj) + αj−1(vj , wj−1) + δj−1(vj , wj−2)

= βj

and as a result,

(vj+1, wj−1) = δ−1
j+1[(Avj , wj−1)− βj(vj−1, wj−1)] = 0 .

More generally, consider an inner product (vj+1, wi) with i < j − 1,

(vj+1, wi) = δ−1
j+1[(Avj , wi)− αj(vj , wi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , A

Hwi)− αj(vj , wi)− βj(vj−1, wi)]

= δ−1
j+1[(vj , β̄i+1wi+1 + ᾱiwi + δ̄iwi−1)− αj(vj , wi)

−βj(vj−1, wi)] .

By the induction hypothesis, all of the inner products in the above expression

vanish. We can show in the same way that (vi, wj+1) = 0 for i ≤ j. Finally, we

have by construction (vj+1, wj+1) = 1. This completes the induction proof.

The proof of the other matrix relations is identical with the proof of the similar

relations in Arnoldi’s method.

The relation (6.31) is key to understanding the nature of the method. From

what we have seen in Chapter 4 on general projection methods, the matrix Tm
is exactly the projection of A obtained from an oblique projection process onto

Km(A, v1) and orthogonally to Km(AH , w1). The approximate eigenvalues λ
(m)
i

provided by this projection process are the eigenvalues of the tridiagonal matrix

Tm. A Ritz approximate eigenvector of A associated with λ
(m)
i is defined by

u
(m)
i = Vmy

(m)
i where y

(m)
i is an eigenvector associated with the eigenvalue

λ
(m)
i of Tm. Similarly to Arnoldi’s method, a number of the Ritz eigenvalues, typ-

ically a small fraction ofm,will constitute good approximations of corresponding

eigenvalues λi of A and the quality of the approximation will improve as m in-

creases.

We should mention that the result of Proposition 6.8, which gives a simple and

inexpensive way to compute residual norms can readily be extended as follows:

(A− λ(m)
i I)u

(m)
i = δm+1e

H
my

(m)
i vm+1 (6.32)

and, as a result ‖(A− λ(m)
i I)u

(m)
i ‖2 = |δm+1e

H
my

(m)
i | .

An interesting new feature here is that the operators A and AH play a dual

role in that we perform similar operations with them. We can therefore expect

that if we get good approximate eigenvectors for A we should in general get as
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good approximations for the eigenvectors of AH . In fact we can also view the

non-Hermitian Lanczos procedure as a method for approximating eigenvalues and

eigenvectors of the matrixAH by a projection method ontoLm = K(AH , w1) and

orthogonally to Km(A, v1). As a consequence, the left and right eigenvectors of

A will both be well approximated by the process. In contrast Arnoldi’s method

only computes approximations to the right eigenvectors. The approximations to

the left eigenvectors are of the form Wmz
(m)
i where z

(m)
i is a left eigenvector

of Tm associated with the eigenvalue λ
(m)
i . This constitutes one of the major

differences between the two methods. There are applications where both left and

right eigenvectors are needed. In addition, when estimating errors and condition

numbers of the computed eigenpair it might be crucial that both the left and the

right eigenvectors be available.

From the practical point of view, another big difference between the non-

Hermitian Lanczos procedure and the Arnoldi methods is that we now only need

to save a few vectors in memory to execute the algorithm if no reorthogonalization

is performed. More precisely, we need 6 vectors of length n plus some storage

for the tridiagonal matrix, no matter how large m is. This is clearly a significant

advantage.

On the other hand there are more risks of breakdown with the non-Hermitian

Lanczos method. The algorithm will break down whenever (v̂j+1, ŵj+1) = 0
which can be shown to be equivalent to the existence of a vector inKm(A, v1) that

is orthogonal to the subspaceKm(AH , w1). In fact this was seen to be a necessary

and sufficient condition for the oblique projector onto Km(A, v1) orthogonally to

Km(AH , w1) not to exist. In the case of Arnoldi’s method a breakdown is actually

a favorable situation since we are guaranteed to obtain exact eigenvalues in this

case as was seen before. The same is true in the case of the Lanczos algorithm

when either v̂j+1 = 0 or ŵj+1 = 0. However, when v̂j+1 6= 0 and ŵj+1 6= 0
then this is non-longer true. In fact the serious problem is not as much caused

by the exact occurrence of this phenomenon which Wilkinson [223] calls serious

breakdown, , as it is its near occurrence. A look at the algorithm indicates that we

may have to scale the Lanczos vectors by small quantities when this happens and

the consequence after a number of steps may be serious. This is further discussed

in the next subsection.

Since the subspace from which the approximations are taken is identical

with that of Arnoldi’s method, we have the same bounds for the distance ‖(I −
Pm)ui‖2. However, this does not mean in any way that the approximations ob-

tained by the two methods are likely to be of similar quality. One of the weak-

nesses of the method is that it relies on oblique projectors which may suffer from

poor numerical properties. Moreover, the theoretical bounds shown in Chapter 4

do indicate that the norm of the projector may play a significant role. The method

has been used successfully by Cullum and Willoughby [34, 33] to compute eigen-

values of very large matrices. We will discuss these implementations in the next

section.
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6.4.2 Practical Implementations

There are various ways of improving the standard non-Hermitian Lanczos algo-

rithm which we now discuss briefly. A major focus of researchers in this area is to

find ways of circumventing the potential breakdowns or ‘near breakdowns’ in the

algorithm. Other approaches do not attempt to deal with the breakdown but rather

try to live with it. We will weigh the pros and cons of both approaches after we

describe the various existing scenarios.

Look-Ahead Lanczos Algorithms. As was already mentioned, a problem

with the Lanczos algorithm is the potential of breakdown in the normalization

steps (6.26) and (6.27). Such a break down will occur whenever

(v̂j+1, ŵj+1) = 0, (6.33)

which can arise in two different situations. Either one of the two vectors v̂j+1 or

ŵj+1 vanishes or they are both nonzero but their inner product is zero. In the first

case, we have again the ‘lucky breakdown’ scenario which we have seen in the

case of Hermitian matrices. Thus, if v̂j+1 = 0 then span{Vj} is invariant and all

approximate eigenvalues and associated right eigenvectors will be exact, while if

ŵj+1 = 0 then span{Wj} will be invariant and the approximate eigenvalues and

associated left eigenvectors will be exact. The second case, when neither of the

two vectors is zero but their inner product is zero is termed serious breakdown by

Wilkinson (see [223], p. 389). Fortunately, there are some cures, that will allow

one to continue the algorithm in most cases. The corresponding modifications of

the algorithm are often put under the denomination Look-Ahead Lanczos algo-

rithms . There are also rare cases of ‘incurable’ breakdowns which will not be

discussed here (see [154] and [210]). The main idea of Look-Ahead variants of

the Lanczos algorithm is that even though the pair vj+1, wj+1 cannot be defined

it is often the case that the pair vj+2, wj+2 can be defined. The algorithm can then

be pursued from that iterate as before until a new breakdown is encountered. If

the pair vj+2, wj+2 cannot be defined then one can try the pair vj+3, wj+3 and so

on.

To be more precise on why this is possible, we need to go back to the con-

nection with orthogonal polynomials mentioned earlier for the Hermitian case.

We can extend the relationship to the non-Hermitian case by defining the bilinear

form on the subspace Pm−1

< p, q >= (p(A)v1, q(A
H)w1). (6.34)

Unfortunately, this can constitute an ‘indefinite inner product’ since < p, p >
can now be zero or even negative. We note that there is a polynomial pj of de-

gree j such that v̂j+1 = pj(A)v1 and in fact the same polynomial intervenes in

the equivalent expression of wj+1. More precisely, there is a scalar γj such that

ŵj+1 = γjpj(A
H)v1. Similarly to the Hermitian case the non-Hermitian Lanc-

zos algorithm attempts to compute a sequence of polynomials that are orthogonal
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with respect to the indefinite inner product defined above. If we define the moment

matrix

Mk = {< xi−1, xj−1 >}i,j=1...k

then this process is mathematically equivalent to finding a factorization

Mk = LkUk

of the moment matrix Mk, in which Uk is upper triangular and Lk is lower

triangular. Note that this matrix is a Hankel matrix, i.e., aij is constant for

i+ j = constant.
Because

< pj , pj >= γ̄j(pj(A)v1, pj(A
H)w1)

we observe that there is a serious breakdown at step j if and only if the indefinite

norm of the polynomial pj at step j vanishes. The main idea of the Look-Ahead

Lanczos algorithms is that if we skip this polynomial it may still be possible to

compute pj+1 and continue to generate the sequence. To explain this simply, we

consider

qj(x) = xpj−1 and qj+1(x) = x2pj−1(x) .

It is easy to verify that both qj and qj+1 are orthogonal to the polynomials p1,
· · · , pj−2. We can, for example, define (somewhat arbitrarily) pj = qj , and get

pj+1 by orthogonalizing qj+1 against pj−1 and pj . It is clear that the resulting

polynomial will then be orthogonal against all polynomials of degree ≤ j, see

Exercise P-6.11. Therefore we can continue the algorithm from step j + 1 in

the same manner. Exercise P-6.11 generalizes this to the case where we need

to skip k polynomials rather than just one. This simplistic description gives the

main mechanism that lies behind the different versions of Look-Ahead Lanczos

algorithms proposed in the literature. In the Parlett-Taylor-Liu implementation

[154], it is observed that the reason for the break down of the algorithm is that the

pivots encountered during the LU factorization of the moment matrix Mk vanish.

Divisions by zero are then avoided by implicitly performing a pivot with a 2 × 2
matrix rather than a using a 1× 1 pivot.

The drawback of Look-Ahead implementations is its substantial additional

complexity. In addition to the difficulty of deciding when to consider that one has

a near break-down situation, one must cope with the fact that the matrix Tm is no

longer tridiagonal. It is easy to see that whenever a step is skipped, we introduce

a ‘bump’, as it it termed in [154], above the superdiagonal element. This further

complicates the issue of the computation of the eigenvalues of the Ritz values.

The Issue of Reorthogonalization. Just as in the Hermitian case, the vec-

tors wj and vi will tend to lose their bi-orthogonality. Techniques that perform

some form of ‘partial’ or ‘selective’ reorthogonalization can be developed for

non-Hermitian Lanczos algorithm as well. One difficulty here is that selective

orthogonalization, which typically requires eigenvectors, will suffer from the fact
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that eigenvectors may be inaccurate. Another problem is that we now have to keep

two sets of vectors, typically in secondary storage, instead of only one.

An alternative to reorthogonalization is to live with the loss of orthogonality.

Although the theory is not as well understood in the non-Hermitian case as it is

in the Hermitian case, it has been observed that despite the loss of orthogonality,

convergence is still observed in general, at the price of a few practical difficulties.

More precisely, a converged eigenvalue may appear several times, and monitoring

extraneous eigenvalues becomes important. Cullum and Willoughby [36] suggest

precisely such a technique based on a few heuristics. The technique is based on a

comparison of the eigenvalues of the successive tridiagonal matrices Tk.

6.5 Block Krylov Methods

In many circumstances it is desirable to work with a block of vectors instead

of a single vector. For example, in out-of core finite-element codes it is a good

strategy to exploit the presence of a block of the matrixA in fast memory, as much

as possible. This can easily done with a method such as the subspace iteration for

example, but not the usual Arnoldi/Lanczos algorithms. In essence, the block

Arnoldi method is to the Arnoldi method what the subspace iteration is to the

usual power method. Thus, the block Arnoldi can be viewed as an acceleration of

the subspace iteration method. There are several possible implementations of the

algorithm three of which are described next.

ALGORITHM 6.7 Block Arnoldi

1. Start: Choose a unitary matrix V1 of dimension n× r.

2. Iterate: for j = 1, 2, . . . ,m compute:

Hij = V H
i AVj i = 1, 2, . . . , j, (6.35)

Wj = AVj −
j
∑

i=1

ViHij , (6.36)

Wj = Vj+1Hj+1,j Q-R decomposition of Wj . (6.37)

The above algorithm is a straightforward block analogue of Algorithm 6.1. By

construction, the blocks constructed by the algorithm will be orthogonal blocks

that are orthogonal to each other. In what follows we denote by Ik the k × k
identity matrix and use the following notation

Um = [V1, V2, . . . , Vm] ,

Hm = (Hij)1≤i,j≤m, Hij ≡ 0, i>j + 1 ,

Em = matrix of the last r columns of Inr.

Then, the analogue of the relation (6.8) is

AUm = UmHm + Vm+1Hm+1,mE
H
m .
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Thus, we obtain a relation analogous to the one we had before except that the

matrix Hm is no longer Hessenberg but band-Hessenberg, in that we have r − 1
additional diagonals below the subdiagonal.

A second version of the algorithm would consist of using a modified block

Gram-Schmidt procedure instead of the simple Gram-Schmidt procedure used

above. This leads to a block generalization of Algorithm 6.2, the Modified Gram-

Schmidt version of Arnoldi’s method.

ALGORITHM 6.8 Block Arnoldi – MGS version

1. Start: Choose a unitary matrix V1 of size n× r.

2. Iterate: For j = 1, 2, . . . ,m do:

• Compute Wj := AVj

• For i = 1, 2, . . . , j do:

Hij := V H
i Wj

Wj :=Wj − VjHij .

• Compute the Q-R decomposition Wj = Vj+1Hj+1,j

Again, in practice the above algorithm is more viable than its predecessor.

Finally, a third version, developed by A. Ruhe, see reference [164], for the sym-

metric case (Block Lanczos algorithm), yields an algorithm that is quite similar to

the original Arnoldi algorithm.

ALGORITHM 6.9 Block Arnoldi - Ruhe’s variant

1. Start: Choose r initial orthonormal vectors {vi}i=1,...,r.

2. Iterate: for j = r, r + 1, , . . . ,m× r do:

(a) Set k := j − r + 1;

(b) Compute w := Avk;

(c) For i = 1, 2, . . . , j do

• hi,k := (w, vi)

• w := w − hi,kvi
(d) Compute hj+1,k := ‖w‖2 and vj+1 := w/hj+1,k.

Observe that the particular case r = 1 coincides with the usual Arnoldi process.

That the two algorithms 6.8 and 6.9 are mathematically equivalent is straightfor-

ward to show. The advantage of the above algorithm, is its simplicity. On the

other hand a slight disadvantage is that we give up some potential for parallelism.

In the original version the columns of the matrix AVj can be computed in parallel

whereas in the new algorithm, we must compute them in sequence.
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Generally speaking, the block methods are of great practical value in some

applications but they are not as well studied from the theoretical point of view.

One of the reasons is possibly the lack of any convincing analogue of the relation-

ship with orthogonal polynomials established in Subsection 6.3.2 for the single

vector Lanczos algorithm. We have not covered the block versions of the two

Lanczos algorithms (Hermitian and non-Hermitian) but these generalizations are

straightforward.

6.6 Convergence of the Lanczos Process

In this section we examine the convergence properties of the Hermitian Lanczos

algorithm, from a theoretical point of view. Well-known results from approxi-

mation theory will be used to derive a convergence analysis of the method. In

particular Chebyshev polynomials play an important role and we refer the readers

to the end of Chapter 4 for some background on these polynomials.

6.6.1 Distance between Km and an Eigenvector

In the following we will assume that the eigenvalues of the Hermitian matrix A
are labeled in decreasing order, i.e.,

λ1 ≥ λ2 ≥ · · · ≥ λn ,

and that the approximate eigenvalues are labeled similarly. We will now state the

main result of this section, starting with the following lemma.

Lemma 6.1 Let Pi be the spectral projector associated with the eigenvalue λi.
Then, if Piv1 6= 0, we have

tan θ(ui,Km) = min
p∈Pm−1, p(λi)=1

‖p(A)yi‖2 tan θ(ui, v1) (6.38)

in which

yi =

{

(I−Pi)v1

‖(I−Pi)v1‖2
if (I − Pi)v1 6= 0 ,

0 otherwise.

Proof. The subspace Km consists of all vectors of the form x = q(A)v1 where q
is any polynomial of degree ≤ m− 1. We have the orthogonal decomposition

x = q(A)v1 = q(A)Piv1 + q(A)(I − Pi)v1

and the angle between x and ui is defined by

tan θ(x, ui) =
‖q(A)(I − Pi)v1‖2
‖q(A)Piv1‖2

=
‖q(A)yi‖2
|q(λi)|

‖(I − Pi)v1‖2
‖Piv1‖2

.
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If we let p(λ) ≡ q(λ)/q(λi) we get

tan θ(x, ui) = ‖p(A)yi‖2 tan θ(v1, ui)

which shows the result by taking the minimum over all x’s in Km.

Theorem 6.3 Let the eigenvalues λi ofA be ordered decreasingly. Then the angle

θ(ui,Km) between the exact eigenvector ui associated with λi and the m − th
Krylov subspace Km satisfies the inequality,

tan θ(ui,Km) ≤ κi
Cm−i(1 + 2γi)

tan θ(v1, ui) , (6.39)

where

κ1 = 1, κi =
i−1
∏

j=1

λj − λn
λj − λi

for i > 1 (6.40)

and,

γi =
λi − λi+1

λi+1 − λn
. (6.41)

Proof. To prove the theorem for the case i = 1 we start by expanding the vector

yi defined in the previous lemma in the eigenbasis {uj} as

y1 =

n
∑

j=2

αjuj

where the αj’s are such that
n
∑

j=2

|αj |2 = 1. From this we get,

‖p(A)y1‖22 =
n
∑

j=2

|p(λj)αj |2 ≤ max
j=2,...,n

|p(λj)|2 ≤ max
λ∈[λn,λ2]

|p(λ)|2 .

The result follows by a direct use of theorem 4.8 stated in Chapter 4. For the

general case (i 6= 1), we can use the upper bound obtained by restricting the

polynomials to be of the form

p(λ) =
(λ1 − λ) · · · (λi−1 − λ)
(λ1 − λi) · · · (λi−1 − λi)

q(λ)

where q is now any polynomial of degree k − i such that q(λi) = 1. Proceeding

as for the case i = 1, we arrive at the inequality,

‖p(A)yi‖2 ≤ max
λ∈[λi+1,λn]

∣

∣

∣

∣

∣

∣

i−1
∏

j=1

λj − λ
λj − λi

q(λ)

∣

∣

∣

∣

∣

∣

≤
i−1
∏

j=1

λj − λn
λj − λi

max
λ∈[λi+1,λn]

|q(λ)| .

The result follows by minimizing this expression over all polynomials q satisfying

thr constraint q(λi) = 1.
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6.6.2 Convergence of the Eigenvalues

We now turn our attention to the approximate eigenvalues. The following error

bounds concerning the approximate eigenvalues λ
(m)
i actually show that these

converge to the corresponding eigenvalues of A if exact arithmetic were used.

Theorem 6.4 The difference between the i−th exact and approximate eigenvalues

λi and λ
(m)
i satisfies the double inequality,

0 ≤ λi − λ(m)
i ≤ (λ1 − λn)

(

κ
(m)
i tan θ(v1, ui)

Cm−i(1 + 2γi)

)2

(6.42)

where γi is defined in the previous theorem and κ
(m)
i is given by

κ
(m)
1 ≡ 1, κ

(m)
i =

i−1
∏

j=1

λ
(m)
j − λn
λ
(m)
j − λi

, i > 1 .

Proof. We prove the result only for the case i = 1. The first inequality is one of

the properties proved for general projection methods when applied to Hermitian

matrices. For the second, we note that

λ
(m)
1 = max

x 6=0,x∈Km−1

(Ax, x)/(x, x)

and hence,

λ1 − λ(m)
1 = min

x 6=0∈Km−1

((λ1I −A)x, x)/(x, x) .

Remembering that Km−1 is the set of all vectors of the form q(A)v1 where q runs

in the space Pm−1 of polynomials of degree not exceeding m− 1 this becomes

λ1 − λ(m)
1 = min

0 6=q∈Pm−1

((λ1 −A)q(A)v1, q(A)v1)
(q(A)v1, q(A)v1)

. (6.43)

Expanding the initial vector v1 in an orthonormal eigenbasis {uj} as

v1 =

n
∑

j=1

αjuj

we find that

λ1 − λ(m)
1 = min

0 6=q∈Pm−1

n
∑

j=2

(λ1 − λj)|αjq(λj)|2

n
∑

j=1

|αjq(λj)|2
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from which we obtain the upper bound

λ1 − λ(m)
1 ≤ (λ1 − λn) min

0 6=q∈Pm−1

∑n
j=2 |αjq(λj)|2

∑n
j=1 |αjq(λj)|2

≤ (λ1 − λn) min
0 6=q∈Pm−1

n
∑

j=2

|αjq(λj)|2

|α1q(λ1)|2

≤ (λ1 − λn) min
0 6=q∈Pm−1

max
j=2,3,...,n

|q(λj)|2
|q(λ1)|2

n
∑

j=2

|αj |2

|α1|2

Defining p(λ) = q(λ)/q(λ1) and observing that the set of all p’s when q runs

in the space Pm−1 is the set of all polynomials of degree not exceeding m − 1
satisfying the constraint p(λ1) = 1, we obtain

λ1 − λ(m)
1 ≤ (λ1 − λn) min

p∈Pm−1,p(λ1)=1
max

λ∈[λn,λ2]
|p(λ)|2 tan2 θ(u1, v1) .

The result follows by expressing the min-max quantity in the above expression

using Chebyshev polynomials according to Theorem 4.8.

The general case i > 1 can be proved by using the Courant-Fisher characteri-

zation of λ
(m)
i . The i-th eigenvalue is the maximum of the Rayleigh quotient over

the subspace of Km that is orthogonal to the first i− 1 approximate eigenvectors.

This subspace can be shown to be the same as the subspace of all vectors of the

form q(A)v1 where q is a polynomial of degree not exceeding m − 1 such that

q(λ
(m)
1 ) = q(λ

(m)
2 ) = · · · = q(λ

(m)
i−1) = 0.

6.6.3 Convergence of the Eigenvectors

To get a bound for the angle between the exact and approximate eigenvectors

produced by the Lanczos algorithm, we exploit the general result of Theorem 4.6

seen in Chapter 4. The theorem tells us that for any eigenpair λi, ui of A there is

an approximate eigenpair λ̃, ũi such that,

sin [θ(ui, ũi)] ≤
√

1 +
γ2

δ2i
sin [θ(ui,Km)] (6.44)

were δi is the distance between λi and the set of approximate eigenvalues other

than λ̃i and γ = ‖PmA(I − Pm)‖2. We notice that in the present situation we

have

(I − Pm)APm = (I − VmV H
m )AVmV

H
m

= (I − VmV H
m )(VmHm + βm+1vm+1e

H
m)V H

m

= βm+1vm+1v
H
m ,

in which we used the relation (6.8). As a result

γ = ‖PmA(I − Pm)‖2 = ‖(I − Pm)APm‖2 = βm+1 .
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Since the angle between ui and the Krylov subspace has been majorized in The-

orem 6.3, a bound on the angle θ(ui, ũi) can be readily obtained by combining

these two results. For example, we can write

sin [θ(ui, ũi)] ≤
√

1 + β2
m+1/δ

2
i sin [θ(ui,Km)]

≤
√

1 + β2
m+1/δ

2
i tan [θ(ui,Km)]

≤
κi

√

1 + β2
m+1 / δ

2
i

Cm−i(1 + 2γi)
tan θ(v1, ui)

where the constants κi and γi are defined in Theorem 6.3.

6.7 Convergence of the Arnoldi Process

In this section we will analyze the speed of convergence of an approximate eigen-

value/ eigenvector obtained by Arnoldi’s method to the exact pair. This will be

done by considering the distance of a particular eigenvector ui from the subspace

Km. We will assume for simplicity that A is diagonalizable and define

ǫ
(m)
i ≡ min

p∈P∗
m−1

max
λ∈Λ(A)−λi

|p(λ)|, (6.45)

where P
∗
m−1 represents the set of all polynomials of degree not exceeding m− 1

such that p(λi) = 1. The following lemma relates the distance ‖(I − Pm)ui‖2 to

the above quantity.

Lemma 6.2 Assume that A is diagonalizable and that the initial vector v1 in

Arnoldi’s method has the expansion v1 =
∑k=n

k=1 αkuk with respect to the eigen-

basis {uk}k=1,...,n in which ‖uk‖2 = 1, k = 1, 2, . . . , n and αi 6= 0. Then the

following inequality holds:

‖(I − Pm)ui‖2 ≤ ξiǫ(m)
i

where

ξi =
n
∑

k=1
k 6=i

|αj |
|αi|

.

Proof. From the relation between Km and Pm−1 we have

‖(I − Pm)αiui‖2 = min
q∈Pm−1

‖αiui − q(A)v1‖2
≤ min

q∈Pm−1, q(λi)=1
‖αiui − q(A)v1‖2,

and therefore, calling p the polynomial realizing the minimum on the right-hand-

side

‖(I − Pm)αiui‖2 ≤ ‖
n
∑

j=1
j 6=i

αjp(λj)uj‖2 ≤ max
j 6=i
|p(λj)|

n
∑

j=1
j 6=i

|αj |
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which follows by using the triangle inequality and the fact that the component in

the eigenvector u1 is zero. The result is then established by dividing both members

by |αi|.

The question has been therefore converted into that of estimating the quantity

(6.45) on which we will now focus.

Once an estimate for ǫ
(m)
1 is available, the above lemma can be invoked to

give an idea on the residual of the exact eigenpair with respect to the approximate

(projected) problem. See also [205, th. 3.10] for an alternative approach which

exploits the spectral decomposition.

What is left to do is to estimate ǫ
(m)
1 . For the sake of notational convenience,

we will consider estimating ǫ
(m+1)
1 instead of ǫ

(m)
1 . The underlying problem is

one of approximation theory. For any continuous function f defined on a compact

set Ω, denote the uniform norm:

‖f‖∞ = max
z ∈ Ω

|f(z)| . (6.46)

The set Ω will later be taken to be the spectrum of A excluding λ1. Estimating

ǫ
(m+1)
1 amounts to finding an upper bound for the distance, in the sense of the

inf-norm just defined, between the function f(z) = 1 and polynomials of degree

≤ m of the form p(z) = (z − λ1)q(z), or, equivalently:

ǫ
(m+1)
1 = min

q ∈ Pm−1

‖1− (z − λ1)q(z)‖∞ .

We recall that a subspace S of continuous functions on Ω, generated by k functions

φ1, · · · , φk satisfies the Haar condition if each function in S has at most k − 1
distinct roots. This means that any linear combination of the φi’s vanishes iff it

has k distinct roots in Ω. Let f be a continuous function and let p∗ be the best

uniform approximation of f over Ω. The difference f − p∗ reaches its maximum

modulus at a number of extremal points. The characteristic property [162] of the

best approximation states the following.

Theorem 6.5 Let f be a continuous function and S a k-dimensional subspace

of the space of continuous functions on Ω, which satisfies the Haar condition.

Then p∗ ∈ S is the best uniform approximation of f over Ω, iff there exist

r extremal points zi, i = 1, · · · , r in Ω, and positive numbers µ1, · · · , µr, with

k + 1 ≤ r ≤ 2k + 1 such that

r
∑

i=1

µi[f(zi)− p∗(zi)]φ(zi) = 0 ∀ φ ∈ S. (6.47)

One important point here is that the number of extremal points is only known to be

between k+1 and 2k+1 in the general complex case. That r must be ≥ k+1 is

a consequence of the Haar condition and can be readily verified. When Ω is real,

then r = k+1. The fact that r is only known to be ≤ 2k+1 in the complex case,

comes from Caratheodory’s characterization of convex hulls which expresses a
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point in co(Ω), the convex hull of Ω, as a convex combination of k + 1 points of

Ω in real spaces and 2k + 1 points of Ω in complex spaces.

We will now translate the above result for our situation. Let Ω = Λ(A)\{λ1}
and S = span{φj(z)}j=1,··· ,m where φj(z) = (z − λ1)zj−1. Then, the dimen-

sion of S is m and therefore the theorem states that there are r eigenvalues from

the set Ω, with m+ 1 ≤ r ≤ 2m+ 1 such that

r
∑

k=1

µk[1− (λk+1 − λ1)q∗(λk+1)]φj(λk+1) = 0 j = 1, . . . ,m .

Although we do not know how many extremal points there are we can still express

the best polynomial by selecting any set of m extremal points. Assume without

loss of generality that these points are labeled from 2 to m + 1. Let p∗(z) =
(z − λ1)q∗(z). We can write 1− p∗(λk) at each of the extremal points λk as

1− p∗(λk) = ρeiθk

where θk is a real number and ρ is real and positive. Then it is easily seen that

1− p∗(z) =

m+2
∑

k=2

eiθk lk(z)

m+2
∑

k=2

eiθk lk(λ1)

, (6.48)

where each lk(z) is the Lagrange polynomial:

lk(z) =

m+2
∏

j=2
j 6=k

z − λj
λk − λj

. (6.49)

Indeed, 1−p∗(z), which is of degreem, takes the values ρeiθk at them+1 points

λ2, . . . , λm+2. Therefore it is uniquely determined by the Lagrange formula

1− p∗(z) =
m+2
∑

k=2

ρeiθk lk(z) .

In addition 1−p∗(λ1) = 1 and this determines ρ as the inverse of
m+2
∑

k=2

eiθk lk(λ1),

yielding the relation (6.48). This establishes the following theorem.

Theorem 6.6 There are r eigenvalues in Ω = Λ(A)\{λ1}, where m + 1 ≤ r ≤
2m+1, at which the optimal polynomial 1−p∗(z) = 1−(z−λ1)q∗(z) reaches its

maximum value. In addition, given any subset ofm+1 among these r eigenvalues,

which can be labeled λ2, λ3, . . . , λm+2, the polynomial can be represented by

(6.48). In particular,

ǫ
(m+1)
1 =

1
m+2
∑

k=2

eiθk
m+2
∏

j=2
j 6=k

λ1−λj

λk−λj

. (6.50)
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Proof. The result was proved above. Note that ǫ
(m+1)
1 is equal to ρ which is the

inverse of the denominator in (6.48).

In the first edition of this book, it was shown that when r = m + 1, then the

sign eiθk in the denominator of (6.50) becomes equal to the conjugate of the sign

of lk(λ1), which is the product term in the denominator of (6.50). In this case,

(6.50) simplifies to

ǫ
(m+1)
1 =

1
m+2
∑

k=2

m+2
∏

j=2
j 6=k

∣

∣

∣

λ1−λj

λk−λj

∣

∣

∣

. (6.51)

The result in the first edition of this book was stated incorrectly for the general

complex case, because the lemma on which it was based is only valid for real

functions. The result holds true only for the situation when the spectrum is real or

when it is known that r = m+ 1 (e.g., when N = m+ 1).

We denote by P
∗
m the set of polynomials p of degree ≤ m such that p(λ1) =

0. We seek the best uniform approximation of the function f(z) = 1 by poly-

nomials of degree ≤ m in P
∗
m. Note that P∗

m is of dimension m. Let the set

of r extremal points be λ2, . . . , λr+1 (See theorem 6.5). According to Theo-

rem 6.6, given any subset of m + 1 among these r extremal points, which we

label λ2, λ3, . . . , λm+2, the best polynomial can be represented by (6.48) in which

eiθk = sign(1− p∗(λk)).
Not much can be said from this result in the general situation. However, when

r = m+1, then we can determine max |1−p∗(z)|. In this situation the necessary

and sufficient conditions of Theorem 6.5 express the extremal points as follows.

Let us set ξj ≡ µj [f(zj)− p∗(zj)] for j = 1, · · ·m + 1, and select any basis

φ1, · · · , φm of the polynomial subspace P∗
m. Then, the condition (6.47) translates

to
m+1
∑

k=1

ξkφj(λk) = 0 for j = 1, . . . ,m. (6.52)

The above equations constitute an under-determined system of linear equations

with the unknowns ξk. In fact, since the ξk’s are all nonzero, we can fix any one

component, and the rest will then be determined uniquely. This is best done in a

more convenient basis of polynomials given by:

ωj(z) = (z − λ1)l̂j(z), j = 2, . . . ,m+ 1, (6.53)

where l̂j is the Lagrange polynomial of degree m− 1,

l̂j(z) =
m+1
∏

k=2
k 6=j

z − λk
λj − λk

, j = 2, . . . ,m+ 1. (6.54)

With this we can prove the following lemma.
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Lemma 6.3 The under-determined linear system of m equations and m + 1 un-

knowns ξk, k = 2, . . . ,m+ 2

m+2
∑

k=2

ωj(λk)ξk = 0, j = 2, 3, . . . ,m+ 1 (6.55)

admits the nontrivial solution

ξk =
m+2
∏

j=2
j 6=k

λ1 − λj
λk − λj

, k = 2, . . . ,m+ 2. (6.56)

Proof. Because of the Haar condition, the system of polynomials {ωj}j=2,...,m+1,

forms a basis and therefore there exists a nontrivial solution to the above linear

system. By the definition of the Lagrange polynomials, all the terms in the i−th

equation vanish except those corresponding to j = i and to j = m+ 2. Thus, the

ith equation can be rewritten as

(λi − λ1)zi + zm+2(λm+2 − λ1)
m+1
∏

k=2
k 6=i

λm+2 − λk
λi − λk

= 0.

The unknown zm+2 can be assigned an arbitrary nonzero value (since the system

is under-determined) and then the other unknowns are determined uniquely by:

zi
zm+2

= − (λm+2 − λ1)
(λi − λ1)

m+1
∏

k=2,
k 6=i

λm+2 − λk
λi − λk

= −
m+1
∏

k=1
k 6=i

(λm+2 − λk)
(λi − λk)

.

Multiplying numerator and denominator by (λi − λm+2) we get

zi =
C

λ1 − λi

m+2
∏

k=2
k 6=i

1

λi − λk

where C is the following constant, which depends on the choice of zm+2,

C ≡ zm+2

m+2
∏

k=1

(λm+2 − λk) .

The result follows by choosing zm+2 so that,

C =

m+2
∏

k=2

(λ1 − λk).

We can now prove the desired result.
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Theorem 6.7 Let p∗ be the (unique) polynomial of degree m satisfying the con-

straint p(λ1) = 0, and which is the best uniform approximation to the function

f(z) = 1 on a compact set Ω consisting of at leastm+1 points. Assume that there

are m+ 1 extremal points labeled λ2, . . . , λm+2 and let ξk, k = 2, . . . ,m+ 2 be

any solution of the linear system (6.55). Write each ξk in the form ξk = δke
−iθk

where δk is real and positive and θk is real. Then, p∗ can be expressed as

1− p∗(z) =

m+2
∑

k=2

eiθk lk(z)

m+2
∑

k=2

|lk(λ1)|
, (6.57)

where lk is the Lagrange polynomial of degree m

lk(z) =

m+2
∏

j=2
j 6=k

z − λj
λk − λj

.

As a consequence,

ǫ
(m+1)
1 =





m+1
∑

j=2

m+1
∏

k=2,k 6=j

|λk − λ1|
|λk − λj |





−1

. (6.58)

Proof. Equation (6.47) states that

1− p∗(z) = ρ

m+2
∑

k=2

eiθk lk(z) with ρ =
1

∑m+2
k=2 e

iθk lk(λ1)
. (6.59)

We now apply Theorem 6.5 which states that at the extremal points (now known

to be unique) there are m+ 1 positive coefficients µj such that

ξk ≡ µk[1− p∗(λk)] = ρµke
−iθk (6.60)

satisfy the system (6.52). As was already mentioned, the solution to (6.52) is

uniquely determined if we set any one of its components. Set ξm+2 = lm+2(λ1).
Then, according to Lemma 6.3, we must have ξk = lk(λ1), for k = 2, . . . ,m+2.

Since ρ and µk are positive, (6.60) shows that

e−iθk = sign(lk(λ1)) → eiθk =
lk(λ1)

|lk(λ1)|
→ ρ =

1
∑m+2

k=2 |lk(λ1)|
.

The result (6.58) is an expanded version of the above expression for ρ.

For the case where the eigenvalue is in the outermost part of the spectrum, the

above expression can be interpreted as follows. In general, the distances |λk−λ1|
are larger than the corresponding distances |λk − λj | of the denominator. This
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is illustrated in Figure (6.2). Therefore, many of the products will be large when

m is large and the inverse of their sum will be small. This is independent of the

actual locations of the critical points which are not known. The conclusion is that

the eigenvalues that are in the outermost part of the spectrum are likely to be well

approximated.

We can illustrate the above theorem with a few examples.

Example 6.4. Assume that

λk =
k − 1

n− 1
, k = 1, 2, . . . n,

and consider the special case when m = n− 1. Then,

ǫ
(m)
1 =

1

2m − 1
.

Indeed, since m = n − 1 there is no choice for the λj’s in the theorem but to be

the remaining eigenvalues and (6.58) yields,

(ǫ
(m)
1 )−1 =

m+1
∑

j=2

m+1
∏

k=2
k 6=j

|k − 1|
|k − j|

=
m+1
∑

j=2

m!

(j − 1)!(m+ j − 1)!

=

m
∑

j=1

(

j

m

)

= 2m − 1

✲

✻

ℜe(z)

ℑm(z)

• λ1

•λk

•
λj

•λk′

Figure 6.2: Illustration of Theorem 6.7 for λ1 in the outermost part of the spectrum

of A.
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Example 6.5. Consider now a uniform distribution of eigenvalues over a circle

instead of a real line,

λk = ei
2(k−1)π

n , k = 1, 2, . . . , n .

We assume once more that m = n− 1. Then we have

ǫ
(m)
1 =

1

m
.

To prove the above formula, we utilize again the fact that the eigenvalues involved

in the theorem are known to be λ2, λ3, ..., λn. We define ω = e2iπ/n and write

each product term in the formula (6.58) as

m+1
∏

k=2
k 6=j

|ωk−1 − 1|
|ωk−1 − ωj−1| =

m
∏

k=1
k 6=j

|ωk − 1|
|ωk − ωj |

=

[

m
∏

k=1

|ωk − 1|
]






|1− ωj |

m
∏

k=1
k 6=j

|ωk − ωj |







−1

.

Recalling that the ωk’s are the powers of the n-th root of 1, a simple renumbering

of the products in the denominator will show that the numerator and denominator

have the same modulus. Hence the above product term is equal to one and by

summing these products and inverting, we will get the desired result.

The above two examples show a striking difference in behavior between two

seemingly similar situations. The complex uniform distribution of eigenvalues

over a circle is a much worse situation than that of the uniform distribution over a

line segment. It indicates that there are cases where the eigenvalues will converge

extremely slowly. Note that this poor convergence scenario may even occur if the

matrix A is normal, since it is only the distribution of the eigenvalues that cause

the difficulty.

Apart from the qualitative interpretation given above, it is also possible to

give a simple explicit upper bounds for ǫ
(m)
i .

Proposition 6.10 Let C(c, ρ) be a circle of center c and radius ρ that encloses all

the eigenvalues of A except λ1. Then,

ǫ
(m)
1 ≤

(

ρ

|λ1 − c|

)m−1

.

Proof. An upper bound is obtained by using the particular polynomial q(z) =
(z − c)m−1/(λ1 − c)m−1 from which we get

ǫ
(m)
1 ≤ max

j=2,3,...,n

( |λj − c|
|λ1 − c|

)m−1

≤ ρm−1/|λ1 − c|m−1 .
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✲

✻

ℜe(z)

ℑm(z)

c c+ec-e c+ac-a

Figure 6.3: Ellipse containing the spectrum of A.

It was seen in Chapter 4 (Lemma 4.3) that the polynomial used in the proof is

actually optimal.

Still from what was seen on Chebyshev polynomials in Chapter 4. we may

be able to get a better estimate of ǫ
(m)
1 if we can enclose the eigenvalues of the

matrix A in an ellipse centered at c with focal distance e and major semi-axis

a, as is illustrated in Figure 6.3. In this situation the results on the Chebyshev

polynomials of the first kind allow us to state the following theorem.

Theorem 6.8 Assume that all the eigenvalues of A expect λ1 lie inside the ellipse

centered at c, with foci c+ e, c− e and with major semi axis a. Then,

ǫ
(m)
1 ≤ Cm−1

(

a
e

)

|Cm−1

(

λ1−c
e

)

|
(6.61)

where Cm−1 is the Chebyshev polynomial of degree m − 1 of the first kind. In

addition, the relative difference between the left and the right hand sides tends to

zero as m tends to infinity.

PROBLEMS

P-6.1 To measure the degree of invariance of a subspace X with respect to a matrix A, we

define the measure v(X,A) = ‖(I − P )AP‖2 where P is the orthogonal projector onto

the subspace. (1) Show that if X is invariant then v(X,A) = 0. (2) Show that when X is

the m-th Krylov subspace generated from some initial vector v, then v(X,A) = βm+1. (3)

Let ri, i = 1, . . . ,m be the residual vectors associated with the approximate eigenvalues

obtained from an orthogonal projection process onto X, and let R = [r1, ..., rm]. Show

that v(X,A) = ‖R‖2.
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P-6.2 Consider the matrix

A =























0 1
1 0

1 0

1
...

. . .
...

1 0























(1) What are eigenvalues of A? (2) What is the m-th Krylov subspace associated with

A when v1 = e1, the first column of the identity matrix? (3) What are the approximate

eigenvalues obtained from Arnoldi’s method in this case? How does this relate to Example

6.5?

P-6.3 Assume that k Schur vectors have already been computed and let P be an orthogo-

nal projector associated with the corresponding invariant subspace. Assume that Arnoldi’s

method is applied to the matrix (I − P )A starting with a vector that is orthogonal to the

invariant subspace. Show that the Hessenberg matrix thus obtained is the same as the lower

(m − k) × (m − k) principal submatrix obtained from an implicit deflation procedure.

Show that an approximate Schur vector associated with the corresponding projection pro-

cedure is an approximate Schur vector for A. This suggests another implementation of the

implicit deflation procedure seen in Section 6.2.3 in which only the (m − k) × (m − k)
Hessenberg matrix is used. Give a corresponding new version of Algorithm 6.4. What are

the advantages and disadvantages of this approach?

P-6.4 Show that for the Lanczos algorithm one has the inequality

max
i=1,2,...,m

[β2
i+1 + α2

i + β2
i−1]

1/2 ≤ max
j=1,...,n

|λj |

Show a similar result in which max is replaced by min.

P-6.5 Consider a matrix A that is skew-Hermitian. (1) Show that the eigenvalues of

A are purely imaginary. What additional property do they satisfy in the particular case

when A is real skew-symmetric? [Hint: eigenvalues of real matrices come in complex

conjugate pairs...] What can you say of a real skew-symmetric matrix of odd dimension n?

(2) Assume that Arnoldi’s procedure is applied to A starting with some arbitrary vector v1.

Show that the algorithm will produce scalars hij such that

hij = 0, for i < j − 1

ℜe[hjj ] = 0, j = 1, 2, ...,m

hj,j+1 = −hj+1,jj = 1, 2, ...,m

(3) From the previous result show that in the particular where A is real skew-symmetric

and v1 is real, then the Arnoldi vectors vj satisfy a two term recurrence of the form

βj+1vj+1 = Avj + βjvj−1

(4) Show that the approximate eigenvalues of A obtained from the Arnoldi process are also

purely imaginary. How do the error bounds of the Lanczos algorithm (Hermitian case)

extend to this case?
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P-6.6 How do the results of the previous problem extend to the case where A = αI + S
where α is a real scalar and S is skew-Hermitian or skew symmetric real?

P-6.7 We consider the following tridiagonal matrix An of size n× n

An =











2 1
1 2 .

1 . 1
. 2 1

1 2











.

(1) Consider the vector z of length n whose j − th component is sin jθ where θ is a real

parameter such that 0 < θ ≤ π/2. Show that

(2(1 + cos θ)I −An)z = sin((n+ 1)θ)en

where en = (0, 0, ...0, 1)H . (2) Using the previous question find all the eigenvalues and

corresponding eigenvectors of An. (3) Assume now that m steps of the Lanczos algorithm

are performed on An with the starting vector v1 = e1 = (1, 0, ..., 0)H . (3.a) Show that

the Lanczos vectors vj are such that vj = ej , j = 1, 2, ...,m. (3.b) What is the matrix

Tm obtained from the Lanczos procedure? What are the approximate eigenvalues and

eigenvectors? (Label all the eigenvalues in decreasing order). (3.c) What is the residual

vector and the residual norm associated with the first approximate eigenvalue λ
(m)
1 ? [Hint:

It will be admitted that

sin2 π

(m+ 1)
+ sin2 2π

(m+ 1)
+ ...+ sin2 mπ

(m+ 1)
=

m+ 1

2
]

How would you explain the fact that convergence is much slower than expected?

P-6.8 Show that the vector vm+1 obtained at the last step of Arnoldi’s method is of the

form vm+1 = γpm(A)v1, in which γ is a certain normalizing scalar and pm is the charac-

teristic polynomial of the Hessenberg matrix Hm.

P-6.9 Develop a modified version of the non-Hermitian Lanczos algorithm that produces

a sequence of vectors vi, wi that are such that each vi is orthogonal to every wj with j 6= i
and ‖vi‖2 = ‖wi‖2 = 1 for all i. What does the projected problem become?

P-6.10 Develop a version of the non-Hermitian Lanczos algorithm that produces a se-

quence of vectors vi, wi which satisfy (vi, vj) = ±δij , but such that the matrix Tm is

Hermitian tridiagonal. What does the projected problem become in this situation? How

can this version be combined with the version defined in the previous exercise?

P-6.11 Using the notation of Section 6.3.2 prove that qj+k(x) = xkpj(x) is orthogonal

to the polynomials p1, p2, . . . , pj−k, assuming that k ≤ j. Show that if we orthogonalized

qj+k against p1, p2, . . . , pj−k, we would obtain a polynomial that is orthogonal to all poly-

nomials of degree <j + k. Derive a general look-ahead non-Hermitian Lanczos procedure

based on this observation.

P-6.12 It was stated after the proof of Lemma (6.3) that the solution of the linear system

(6.55) is independent of the basis chosen to establish the result in the proof of the lemma.

1) Prove that this is the case. 2) Compute the solution directly using the power basis, and

exploiting Vandermonde determinants.
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NOTES AND REFERENCES. Several papers have been published on Arnoldi’s method and its variants

for solving eigenproblems. The original paper by Arnoldi [1] came out about one year after Lanczos’

breakthrough paper [112] and is quite different in nature. The author hints that his method can be

viewed as a projection method and that it might be used to approximate eigenvalues of large matrices.

Note that the primary goal of the method is to reduce an arbitrary (dense) matrix to Hessenberg form.

At the time, the QR algorithm was not yet invented, so the Hessenberg form was desired only because

it leads to a simlpe recurrence for the characteristic polynomial. The 1980 paper by Saad [169] showed

that the method could indeed be quite useful as a projection method to solve large eigenproblems, and

gave a few variations of it. Later, sophisticated versions have been developed and used in realistic

applications, see [27, 133, 134, 144, 152, 183], among others. During roughly the same period, much

work was devoted to exploiting the basic non-Hermitian Lanczos algorithm by Parlett and co-workers

[154] and by Cullum and Willoughby [34, 35] and Cullum, Kerner and Willoughby [33]. The first

successful application of the code in a real life problem seems to be in the work by Carnoy and

Geradin [19] who used a version of the algorithm in a finite element model.

The block Lanczos algorithm seems to have been developed first by Golub and Underwood [79].

The equivalent Block Arnoldi algorithm, has not been given much attention, except in control problems

where it is closely associated with the notion of controllability for the multiple-input case [11]. In fact

Arnoldi’s method (single input case) and its block analogue (multiple input case) are useful in many

areas in control, see for example [178, 179].

The error bounds on the Hermitian Lanczos algorithm are from [168]. Bounds of a different type

have been proposed by Kaniel [103] (however there were a few errors for the case i>1 in Kaniel’s

original paper and some of these errors were later corrected by Paige [141]). We have omitted to

discuss similar bounds for the Block Lanczos algorithm but these were also developed in Saad [168].

The convergence theory for the Arnoldi process is adapted from Saad [171].

The various implementations of the Lanczos algorithm in the Hermitian case are covered in detail

in Parlett’s book [148]. Implementations on massively parallel machines have recently been discussed

by Petiton [156] on the CM-2 and by Scott [191] on the iPSC/2.

These notes stated the following in the first edition of this book: “Concerning software, there is

little that is publically available. Cullum and Willoughby offer a FORTRAN code for the Hermitian

case in their book [36] based on the Lanczos algorithm without any form of reorthogonalization. A

similar (research) code was also developed by Parlett and Reid [151].” An implementation of the

Look-Ahead Lanczos algorithm was also mentioned [64]. The situation has changed subtantially

since then. ARPACK, a package developed by Lehoucq, Sorensen, and Yang [118] and based on

implicitly restarted Arnoldi method has become a de-facto standard now for Krylov subspace methods

for eigenvalue problems. ARPACK is used in particular under MATLAB to implement the eigs

function. A number of other packages have appeared, see e.g., [198, 107, 14] to cite just a few, and it

is likely that others will follow suite.

As was mentioned earlier, the first edition of this book contained an incorrect statement for

theorem 6.7, which was corrected in [7] (see also the expanded version [6].)
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FILTERING AND RESTARTING

TECHNIQUES

The early algorithms for eigenvalue extraction were often based on exploiting the

powers of the matrix A. The prototype of these techniques is the power method, a

technique that is attractive because of its simplicity but whose convergence rate may

be unacceptably slow.

In this chapter we will present a number of techniques that are commonly termed

polynomial ’acceleration’ or ’filtering’ techniques. These techniques exploit polyno-

mial iterations of the form zq = pq(A)z0 where pq is a polynomial of degree q which

is often determined from some knowledge on the distribution of the eigenvalues of

A. A fundamental problem, which will utilize ideas from approximation theory, lies

in computing a good polynomial pq. Filtering methods can be valuable tools for

speeding up the convergence of standard algorithms for computing eigenvalue and

eigenvectors. They have had a great success as a means to accelerate the subspace

iteration algorithm in the past. More recently, filtering techniques have been nicely

blended with the Arnoldi procedure and gave rise to the important class of so-called

‘implicit restarting schemes’.

7.1 Polynomial Filtering

Polynomial filtering techniques aim at enhancing basic projection schemes, such

as the Arnoldi or Lanczos, or Subspace iteration procedures, by pre-processing

candidate approximate eigenvectors or subspaces. The goal is to reduce compo-

nents of these vectors or subspaces in the unwanted parts of the spectrum relative

to those in the wanted parts.

We begin with the simplest way of using filters starting with a case of Hermi-

tian matrix A with eigenvalues

λ1 > λ2 ≥ · · · ≥ λn,

and associated (orthonormal) eigenvectors u1, · · · , un. If we are interested in the

largest eigenvalue, λ1, we could use the power method (assuming |λ1| > |λi| for

i > 1). This amounts to using the polynomial pq(t) = tq . However, we can ask

163
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ourselves if we can do better than the power series, or, more specifically, what is

the best polynomial that can be used if we want convergence to be the fastest?

Ignoring implementation for now, we are interested in an iteration of the form

xq = pq(A)x0.

If x0 is expanded in the eigenbasis as

x0 =

n
∑

i=1

γiui,

then

xq = pq(A)x0 =
n
∑

i=1

pq(λi)γiui

= pq(λ1)γ1u1 +

n
∑

i=2

pq(λi)γiui. (7.1)

If the goal is to extract the first eigenpair, then we would like the component

pq(λ1)γ1 in (7.1) to be much larger than the other components, pq(λi)γi, i > 1.

Within this setting some scaling should be applied to the polynomial pq and we

can, for example, require that pq(λ1) = 1. In practice λ1 is not known but the

scaling will be based on an approximate eigenvalue λ̃1.

The γi’s are usually not known, so we might seek a polynomial pq whose

maximum absolute value over the λi’s for i > 1 is the smallest possible. Since

these λi’s are again not known, a more realistic problem to solve is to seek a

polynomial pq whose value at λ1 is one and whose maximum absolute value in

some interval [α β] containing all other eigenvalues is the smallest possible. A

mathematical formulation of this problem is

min






pq ∈ Pq

pq(λ1) = 1

max
t∈ [α, β]

|pq(t)| .

We have encountered this problem and discussed its solution in Chapter 4. The

optimal polynomial, as stated by Theorem 4.8, is the shifted and scaled Chebyshev

polynomial of the first kind of degree q:

Ĉq(t) ≡
Cq

(

1 + 2 t−β
β−α

)

Cq

(

1 + 2λ1−β
β−α

) .

Because of the attractive 3-term recurrence of Chebyshev polynomials, it is easy

to write a simple vector recurrence for updating xq = Ĉq(A)x0. This will be dis-

cussed in detail for the more general situation of complex Chebyshev polynomials,

see Section 7.4.

Chebyshev polynomials can now be combined with projection-type methods

in a number of ways. The next two sections discusses two options.
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7.2 Explicitly Restarted Arnoldi’s Method

An important property of Arnoldi’s method seen in Chapter 4, is that if the initial

vector v1 is exactly in an invariant subspace of dimension r and not in any invari-

ant subspace of smaller dimension, i.e., if the grade of v1 is r, then the algorithm

stops at stepm = r, because we will obtain ‖v̂r+1‖ = 0. However, as Proposition

6.2 shows, in this case Kr will be invariant, which implies by Proposition 4.3 that

the r computed eigenvalues are all exact.

This suggests that a good choice for the initial vector v1 in Arnoldi’s method

would be to take a vector which is close to being in an invariant subspace of

small dimension. Polynomial filtering can help construct such vectors. A filter

polynomial can be selected so that after the filtering step is applied to some initial

vector v the resulting vector will have small components in any eigenvalue that is

inside a ‘wanted’ region and large components for eigenvalues outside this region.

If there is a small number of such eigenvalues in addition to the wanted ones

λ1, λ2, ..., λr, then the Arnoldi projection process will compute them with a good

accuracy and they will be used to compute the next filter polynomial.

A possible approach is to select a vector z0 which is a certain linear com-

bination of approximate eigenvectors or Schur vectors obtained from a previous

iteration and apply to it a certain polynomial filter. The result is then normalized to

yield the initial vector for the next Arnoldi loop. This ‘enhanced initial vector ap-

proach’ does not work too well in practice and the reasons for this were explained

by Morgan [131]. The process can be slow of even diverge in some cases when

the eigenvalues are poorly separated. An alternative which works better is to tar-

get one eigenvalue-eigenvector pair at a time and proceed just as for the restarted

Arnoldi method with deflation described in Chapter 4..

The algorithm is in fact very similar in structure to Algorithm 6.4. The only

difference is that the initial vector in the outer loop is now pre-processed by a

filtering acceleration. The implementation uses a single basis v1, v2, ..., vm whose

first vectors are the Schur vectors of A that have already converged. If the ν −
1 vectors v1, v2, ..., vν−1 have converged then we start by choosing a vector vν
which is orthogonal to v1, ...., vν−1 and of norm 1. We then perform m − ν
steps of an Arnoldi process, orthogonalizing the vector vj against all previous vi’s
including v1, ..., vν−1. Finally, we restart as in the previous algorithm, taking v1
to be pq(A)z0, where z0 is the approximate Schur vector produced by the Arnoldi

process. The algorithm is sketched below.

ALGORITHM 7.1 (Deflated Arnoldi with filtering)

A. Start: Choose an initial vector v1, with ‖v1‖2 = 1.

B. Eigenvalue Loop: For l = 1, 2, ..., p do:

1. Arnoldi Iteration. For j = l, l + 1, ...,m do:

• Compute w := Avj ;

• Compute a set of j coefficients hij such thatw := w−
∑j

i=1 hijvi
is orthogonal to all previous vi’s, i = 1, 2, ..., j;
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• Compute hj+1,j = ‖w‖2 and vj+1 = w/hj+1,j .

2. Compute a desired Ritz pair ũl, ũl, and corresponding residual norm

ρl.

3. Using the approximate Ritz values obtain a new filter polynomial pq .

4. Compute zq = pq(A)z0, with z0 = ũ.

5. Orthonormalize zq against all previous vj’s to get the approximate

Schur vector ũl and define vl := ũl.

6. If ρj is small enough then accept ṽl as the next Schur vector, compute

hi,l = (Avl, vi) i = 1, .., l. Else go to (B.1).

Recall that in the B-loop, the Schur vectors associated with the eigenvalues

λ1, ..., λl−1 are frozen and so is the corresponding upper triangular matrix corre-

sponding to these vectors.

The new polynomial pq in Step B-3 can be chosen in a number of ways. One

can compute a new Chebyshev polynomial for example, and this is described in

detail in Section 7.4. Another option is simply to use a polynomial of the form

pq(t) = (t− θ1)(t− θ2) . . . (t− θq). (7.2)

where the θi’s are a set (possibly all) of the unwanted values among the computed

Ritz values. This has the effect of making pq small on the unwanted set and large

elsewhere. An elegant way to implement this idea is described in the next section.

7.3 Implicitly Restarted Arnoldi’s Method

In the discussion of the Arnoldi process we saw that restarting was necessary in

practice because as m increases, cost becomes prohibitive. The goal of implic-

itly restarted Arnoldi’s method is to devise a procedure which is equivalent to

applying a polynomial filter to the initial vector of the Arnoldi process. The idea

blends three ingredients: polynomial filtering, the Arnoldi (or Lanczos) proce-

dure, and the QR algorithm for computing eigenvalues. We consider a polynomial

filter which is factored in the form (7.2). Assume that we have obtained from the

Arnoldi procedure the Arnoldi decomposition

AVm = VmHm + βmvm+1e
T
m (7.3)

and consider applying the first factor: (t− θ1) to all the basis vectors vi:

(A− θ1I)Vm = Vm(Hm − θ1I) + βmvm+1e
T
m

Let Hm − θ1I = Q1R1. Then,

(A− θ1I)Vm = VmQ1R1 + βmvm+1e
T
m (7.4)

(A− θ1I)(VmQ1) = (VmQ1)R1Q1 + βmvm+1e
T
mQ1 (7.5)

A(VmQ1) = (VmQ1)(R1Q1 + θ1I) + βmvm+1e
T
mQ1 (7.6)
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We now introduce the notation:

H(1)
m ≡ R1Q1 + θ1I;

(b
(1)
m+1)

T ≡ eTmQ1;

V (1)
m ≡ VmQ1.

With this notation the relation (7.6) translates to

AV (1)
m = V (1)

m H(1)
m + vm+1(b

(1)
m+1)

T . (7.7)

We now examine the result of Equation (7.7) in further detail. Our first ob-

servation is that R1Q1 + θ1I is the matrix that would result from one step of the

standard QR algorithm with shift θ1 applied to Hm. In particular, from what is

known about the QR algorithm, the matrix H
(1)
m remains an upper Hessenberg

matrix. As a result, (7.6) resembles an ordinary Arnoldi decomposition such as

the one of Equation (7.3), except that the vector eTm is now replaced by the vector

(b
(1)
m+1)

T .

A second observation is that the first column of V
(1)
m is a multiple of (A −

θ1I)v1. This follows from multiplying (7.4) by the column e1, and recalling that

R1 is upper triangular (with entries denoted by rij)

(A− θ1I)Vme1 = (VmQ1)R1e1 + βmvm+1e
T
me1 → (A− θ1I)v1 = r11v

(1)
1 .

Our third and final observation is that the columns of V
(1)
m are orthonormal be-

cause they result from applying rotations to the columns of Vm, an operation

which maintains orthonormality.

We can now apply the second shift in the same way:

(A− θ2I)V (1)
m = V (1)

m (H(1)
m − θ2I) + vm+1(b

(1)
m+1)

T

By a similar process (H
(1)
m − θ2I) = Q2R2 and upon multiplying by Q2 to the

right we obtain:

(A− θ2I)V (1)
m Q2 = (V (1)

m Q2)(R2Q2) + vm+1(b
(1)
m+1)

TQ2

leading to the following analogue of (7.7)

AV (2)
m = V (2)

m H(2)
m + vm+1(b

(2)
m+1)

T , (7.8)

where, H
(2)
m ≡ R2Q2 + θ2I , and V

(2)
m ≡ V (1)

m Q2.

The same argument as above will show that the first column of V
(2)
m is a

multiple of (A− θ2I)v(1)1 . Hence,

V (2)
m e1 = scalar× (A− θ2I)v(1)1

= scalar× (A− θ2I)(A− θ1I)v1.
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Note that Q1 and Q2 are both Hessenberg matrices and that

(b
(2)
m+1)

T = (b
(1)
m+1)

TQ2 = eTmQ1Q2 = [0, 0, · · · , 0, η1, η2, η3]

Consider the matrix V̂m−2 = [v̂1, . . . , v̂m−2] consisting of the firstm−2 columns

of V
(2)
m and the matrix Ĥm−2 the leading (m− 2)× (m− 2) principal submatrix

of Hm. Then,

AV̂m−2 = V̂m−2Ĥm−2 + β̂m−1v̂m−1e
T
m with

β̂m−1v̂m−1 ≡ η1vm+1 + h
(2)
m−1,m−2v

(2)
m−1

Note that ‖v̂m−1‖2 = 1. The remarkable result is that the above decomposition

is identical with one that would have been obtained from performing (m − 2)
steps of the Arnoldi process starting with the filtered vector v̂1 = w/‖w‖2, where

w = (A − θ2I)(A − θ1I)v1. This means we know how to implicitly apply poly-

nomial filtering, in this case of degree 2, to the initial vector of an (m − 2)-step

Arnoldi procedure. The procedure exploits the QR algorithm within the Arnoldi

procedure. The process can now be continued from stepm−2, e.g., by performing

two additional steps to perform the full m steps of an m-step Arnoldi procedure if

desired. In terms of cost we have not gained or lost anything when matrix-vector

products are counted: We started with m Arnoldi steps, performed two basis rota-

tions and added two more Arnoldi steps to complete m full steps of Arnoldi. The

total is (m+2) matvecs the same as if we just started by computing v̂1 (2 matvecs)

and the m additional matvecs for the m-step Arnoldi procedure. Of course im-

plicit restarts presents a number of advantages over explicit restarting. First, it is

a very stable procedure, consisting mostly of plane rotations. Second, it blends

nicely with the Arnoldi process and allows one to get the desired shifts θi as the

procedure progresses.

We have described the process for a degree 2 filter but clearly this can be ex-

tended to higher degrees. Notation is somewhat simplified by setting k ≡ m− q,

where q is the degree. To describe the algorithm in a succinct way, we need to re-

call the implicit-shift QR procedure which is a major ingredient of the procedure.

ALGORITHM 7.2 q-step Shifted QR

For j = 1, · · · , q Do

(H − θjI) = QR
H := RQ+ θjI

EndDo

Each instance of the above loop performs one step of the QR algorithm and the

resulting matrix H̃ is similar to the original matrix since,

QH̃QH = Q(RQ+ θjI)Q
H = QR+ θjI = H.

The implicit-Q theorem allows to perform these q steps in an effective way with

plane rotations, a procedure known as bulge-chasing. Details are beyond the scope
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of this book and can be found in standard text such as [77] or [205]. We will denote

by

[Ĥ,Q] = QR(H, θ1, · · · , θq)
the results of this operation, where Q is the unitary matrix which transforms H to

Ĥ . Using the usual notation we then end up with the following algorithm.

ALGORITHM 7.3 Implicitly Restarted Arnoldi Algorithm

Perform an m-step Arnoldi procedure to get the factorization:

AVm = VmHm + v̂m+1e
T
m

Select the q shifts θ1, · · · , θq from the eigenvalues of Hm

Perform a q-step QR with these shifts:

[Hm, Q] := QR(Hm, θ1, · · · , θk)
Set k = m− q, Hk = Hm(1 : k, 1 : k), Vk := VkQ
Set v̂k+1 := v̂k+1 + ηkv̂m+1 with ηk = Qm,k;

Continue the resulting Arnoldi factorization

AVk = VkHk + v̂k+1e
T
k

with q additional Arnoldi steps.

Recall our notation : v̂k+1 ≡ hk+1,kvk+1 is the unscaled Arnoldi vector of

the k-th step. As discussed above, a common implementation consists of keeping

m, the dimension of the Krylov subspace, constant, and q, the degree of the filter,

fixed.

7.3.1 Which Filter Polynomials?

Any polynomial can be used in the procedure just described as long as it is pro-

vided in the factored form (7.2). However, common implementations of the im-

plicitly restarted Arnoldi algorithm, use for the ’shifts’ θi approximate eigenvalues

obtained from the Hessenberg matrix, i.e., Ritz values. The Ritz values are divided

in two groups: ‘wanted’ and ‘unwanted’. For example if our goal is to compute

the ten eigenvalues of A with the smallest (algebraic) real parts we can set the

ten leftmost Ritz values as wanted and the rest as unwanted. The θi’s are selected

among the unwanted Ritz values. The resulting filter polynomial will be zero on

these roots, and so it likely to be small on the unwanted part of the spectrum, and

it will have larger values on the wanted part of the spectrum.

The reader familiar with the QR algorithm may have noticed that exact eigen-

values of Hk are used as shifts in the QR algorithm and in this situation the output

matrix Ĥk from the q-step QR procedure will have a partial upper triangular form.

7.4 Chebyshev Iteration

Chebyshev filters where among the first to be used for solving large eigenvalue

problems, as well as linear systems of equations. Let A be a real nonsymmetric

(or non Hermitian complex) matrix of dimension n and consider the eigenvalue

problem, Au = λu. Let λ1, · · · , λn be the eigenvalues of A labeled in decreasing
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order of their real parts, and suppose that we are interested in λ1 which is initially

assumed to be real.

We consider a polynomial iteration of the form: zk = pk(A)z0, where z0 is

some initial vector and where pk is a polynomial of degree k. We would like to

choose pk in such a way that the vector zk converges rapidly towards an eigenvec-

tor of A associated with λ1 as k tends to infinity. Assuming for simplicity that A
is diagonalizable, we expand z0 in the eigenbasis {ui} as,

z0 =
n
∑

i=1

θiui,

which leads to the following expression for zk = pk(A)z0:

zk =

n
∑

i=1

θipk(λi)ui = θ1pk(λ1)u1 +

n
∑

i=2

θipk(λi)ui. (7.9)

The above expansion shows that if zk is to be a good approximation of the eigen-

vector u1, then the second term must be much smaller that the first and this can be

achieved by making every pk(λj), with j 6= 1, small in comparison with pk(λ1).
This leads us to seek a polynomial which takes ‘small’ values on the discrete set

R = {λ2, λ3, · · · , λn},

and which satisfies the normalization condition

pk(λ1) = 1. (7.10)

An ideal such polynomial would be one which minimizes the (discrete) uniform

norm on the discrete set R over all polynomials of degree k satisfying (7.10).

However, this polynomial is impossible to compute without the knowledge of all

eigenvalues of A and as a result this approach has little practical value. A simple

and common alternative, is to replace the discrete min-max polynomial by the

continuous one on a domain containing R but excluding λ1. Let E be such a

domain in the complex plane, and let Pk denote the space of all polynomials of

degree not exceeding k. We are thus seeking a polynomial pk which achieves the

minimum

min
p∈Pk, p(λ1)=1

max
λ∈E
|p(λ)|. (7.11)

For an arbitrary domain E, it is difficult to solve explicitly the above min-max

problem. Iterative methods can be used, however, and the exploitation of the re-

sulting min-max polynomials for solving eigenvalue problems constitutes a promis-

ing research area. A preferred alternative is to restrict E to be an ellipse having its

center on the real line, and containing the unwanted eigenvalues λi, i = 2, · · · , n.

Let E(c, e, a) be an ellipse containing the set

R = {λ2, λ3, · · · , λn},
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Figure 7.1: Ellipse containing the spectrum of A with e real.

and having (real) center c, foci c + e, c − e, and major semi-axis a. When A is

real the spectrum ofA is symmetric with respect to the real axis, so we can restrict

E(c, e, a) to being symmetric as well. In other words, the main axis of the ellipse

is either the real axis or a line parallel to the imaginary axis. Therefore, a and e
are either both real or both purely imaginary. These two cases are illustrated in

Figure 7.1 and Figure 7.2 respectively.

A result that is known in approximation theory and shown in Section 4.4 of

Chapter 4, is that when E is the ellipse E(c, e, a) in (7.11), an asymptotically best

min-max polynomial is the polynomial

pk(λ) =
Ck[(λ− c)/e]
Ck[(λ1 − c)/e]

, (7.12)

where Ck is the Chebyshev polynomial of degree k of the first kind.

The computation of zk = pk(A)z0, k = 1, 2, · · · , is simplified by the three–

term recurrence for the Chebyshev polynomials,

C1(λ) = λ, C0(λ) = 1,

Ck+1(λ) = 2λCk(λ)− Ck−1(λ), k = 1, 2, · · · .
Letting ρk = Ck[(λ1 − c)/e], k = 0, 1, · · · , we obtain

ρk+1pk+1(λ) = Ck+1[
λ− c
e

] = 2
λ− c
e

ρkpk(λ)− ρk−1pk−1(λ).

We can simplify this further by defining σk+1 ≡ ρk/ρk+1,

pk+1(λ) = 2σk+1
λ− c
e

pk(λ)− σkσk+1pk+1(λ).

A straightforward manipulation using the definitions of σi, ρi and the three–term

recurrence relation of the Chebyshev polynomials shows that σi, i = 1, 2, · · · ,
can be obtained from the recurrence,

σ1 =
e

λ1 − c
;

σk+1 =
1

2
σ1
− σk

, k = 1, 2, · · · .



172 Chapter 7

✲

✻

ℜe(z)

ℑm(z)

c

c+e

c-e

c+a

c-a

Figure 7.2: Ellipse containing the spectrum of A, with e purely imaginary.

The above two recursions defining zk and σk can now be assembled together to

yield a basic algorithm for computing zk = pk(A)z0, k ≥ 1. Although λ1 is not

known, recall that it is used in the denominator of (7.12) for scaling purposes only,

so we may replace it by some approximation ν in practice.

ALGORITHM 7.4 Chebyshev Iteration

1. Start: Choose an arbitrary initial vector z0 and compute

σ1 =
e

λ1 − c
, (7.13)

z1 =
σ1
e
(A− cI)z0. (7.14)

2. Iterate: For k = 1, 2, · · · , until convergence do:

σk+1 =
1

2/σ1 − σk
, (7.15)

zk+1 = 2
σk+1

e
(A− cI)zk − σkσk+1zk−1 . (7.16)

An important detail, which we have not considered for the sake of clarity,

concerns the case when e is purely imaginary. It can be shown quite easily that

even in this situation the above recursion can still be carried out in real arithmetic.

The reason for this is that the scalars σk+1/e and σk+1σk in the above algorithm
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are real numbers. The primary reason for scaling by Ck[(λ1 − c)/e] in (7.12) is

to avoid overflow but we have just given another reason, namely avoid complex

arithmetic when e is purely imaginary.

7.4.1 Convergence Properties.

In order to understand the convergence properties of the sequence of approxima-

tions zk we consider its expansion (7.9) and examine the behavior of each coeffi-

cient of ui, for i 6= 1. By the definition of pk we have:

pk(λi) =
Ck[(λi − c)/e]
Ck[(λ1 − c)/e]

.

From the standard definition of the Chebyshev polynomials in the complex plane

seen in Chapter 4, the above expression can be rewritten as

pk(λi) =
wk

i + w−k
i

wk
1 + w−k

1

, (7.17)

where wi represents the root of largest modulus of the equation in w:

1

2
(w + w−1) =

λi − c
e

. (7.18)

From (7.17), pk(λi) is asymptotic to [wi/w1]
k, hence the following definition.

Definition 7.1 We will refer to κi = |wi/w1| as the damping coefficient of λi
relative to the parameters c, e. The convergence ratio τ(λ1) of λ1 is the largest

damping coefficient κi for i 6= 1.

The meaning of the definition is that each coefficient in the eigenvector ui of the

expansion (7.9) behaves like κki , as k tends to infinity. The damping coefficient

κ(λ) can obviously be also defined for any value λ in the complex plane, not

necessarily an eigenvalue. Given a set of r wanted eigenvalues, λ1, λ2, . . . , λr, the

definition 7.1 can be extended for an eigenvalue λj j ≤ r as follows. The damping

coefficient for any ‘unwanted’ eigenvalue λi, i > r must simply be redefined as

|wi/wj | and the convergence ratio τ(λj) with respect to the given ellipse is the

largest damping coefficient κl, for l = r + 1, . . . , n.

One of the most important features in Chebyshev iteration lies in the ex-

pression (7.18). There are infinitely many points λ in the complex plane whose

damping coefficient κ(λ) has the same value κ. These points λ are defined by

(λ− c)/e = (w+w−1)/2 and |w/w1| = κ where κ is some constant, and belong

to the same confocal ellipse E(c, e, a(κ)). Thus a great deal of simplification can

be achieved by locating those points that are real as it is preferable to deal with

real quantities than imaginary ones in the above expression defining κi. As was

seen in Section 4-4.4 the mapping J(w) = 1
2 (w + w−1), transforms a circle into

an ellipse in the complex plane. More precisely, for w = ρeiθ, J(w) belongs to an

ellipse of center the origin, focal distance 1, and major semi-axis ρ = 1
2 (ρ+ρ

−1).
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Moreover, given the major semi-axis α of the ellipse, the radius ρ is determined

by ρ = 1
2 [α+(α2−1)1/2]. As a consequence the damping coefficient κi is simply

ρi/ρ1 where ρi ≡ 1
2 [αi+(α2

i −1)1/2] and αi is the major semi-axis of the ellipse

centered at the origin, with focal distance one and passing through (λj − c)/e.
Since α1 > αi, i = 2, 3, · · · , n, it is easy to see that ρ1 > ρi, i > 1, and hence

that the process will converge. Note that there is a further mapping between λj
and (λj−c)/ewhich transforms the ellipseE(c, e, aj) into the ellipseE(0, 1, αj)
where aj and αj are related by αj = aj/e. Therefore, the above expression for

the damping coefficient can be rewritten as:

κi =
ρi
ρ1

=
ai + (a2i − 1)1/2

a1 + (a21 − 1)1/2
, (7.19)

where ai is the major semi-axis of the ellipse of center c, focal distance e, passing

through λi. From the expansion (7.9), the vector zk converges to θ1u1, and the

error behaves like τ(λ1)
k.

The algorithm described above does not address a certain number of prac-

tical issues. For example, the parameters c and e will not generally be known

beforehand, and their estimation is required. The estimation is typically done in

a dynamic manner. In addition, the algorithm does not handle the computation of

more than one eigenvalue. In particular what can we do in case λ1 is complex,

i.e., when λ1 and λ2 = λ̄1 form a complex pair?

7.4.2 Computing an Optimal Ellipse

We would like to find the ‘best’ ellipse enclosing the set R of unwanted eigenval-

ues, i.e., the eigenvalues other than the ones with the r algebraically largest real

parts. We must begin by clarifying what is meant by ‘best’ in the present context.

Consider Figure 7.3 representing a spectrum of some matrix A and suppose that

we are interested in the r rightmost eigenvalues, i.e., r = 4 in the figure.

ℜe(z)

ℑm(z)

✲

✻ *

*

*

*

*

*

*

*

*

*

*

*

λ1

λ2

λ3

λ4

Figure 7.3: Example of a spectrum and the enclosing best ellipse for r = 4.

If r = 1 then one may simply seek the best ellipse in the sense of minimiz-

ing the convergence ratio τ(λ1). This situation is identical to that of Chebyshev

Iteration for linear systems for which much work has been done.
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Figure 7.4: Case where µ = λr (complex): the eigenvalues λ2 and λ3 are inside

the ‘best’ ellipse.

When r > 1, then we have several convergence ratios, each corresponding

to one of the desired eigenvalues λi, i = 1, · · · , r, and several possible strategies

may be defined to try to optimize the process.

Initially, assume that λr is real (Figure 7.3) and consider any ellipseE(c, e, a)
including the set R of unwanted eigenvalues and not the eigenvalues

{λ1, λ2, · · · , λr}.
It is easily seen from our comments of subsection 7.4.1 that if we draw a vertical

line passing through the eigenvalue λr, all eigenvalues to the right of the line

will converge faster than those to the left. Therefore, when λr is real, we may

simply define the ellipse as the one that minimizes the convergence ratio of λr
with respect to the two parameters c and e.

When λr is not real, the situation is more complicated. We could still attempt

to maximize the convergence ratio for the eigenvalue λr, but the formulas giving

the optimal ellipse do not readily extend to the case where λr is complex and

the best ellipse becomes difficult to determine. But this is not the main reason

why this choice is not suitable. A close look at Figure 7.3, in which we assume

r = 5, reveals that the best ellipse for λr may not be a good ellipse for some of the

desired eigenvalues. For example, in the figure the eigenvalues λ2, λ3 should be

computed before the pair λ4, λ5 since their real parts are larger. However, because

they are enclosed by the best ellipse for λ5 they may not converge until many other

eigenvalues will have converged including λ4, λ5, λn, λn−1 and possibly other

unwanted eigenvalues not shown in the figure.
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The difficulty comes from the fact that this strategy will not favor the eigen-

values with largest real parts but those belonging to the outermost confocal el-

lipse. It can be resolved by just maximizing the convergence ratio of λ2 instead

of λ5 in this case. In a more complex situation it is unfortunately more difficult

to determine at which particular eigenvalue λk or more generally at which value

µ it is best to maximize τ(µ). Clearly, one could solve the problem by taking

µ = ℜe(λr), but this is likely to result in a suboptimal choice.

As an alternative, we can take advantage of the previous ellipse, i.e., an ellipse

determined from previous purification steps. We determine a point µ on the real

line having the same convergence ratio as λr, with respect to the previous ellipse.

The next ‘best’ ellipse is then determined so as to maximize the convergence ratio

for this point µ. This reduces to the previous choice µ = ℜe(λr) when λr is

real. At the very first iteration one can set µ to be ℜe(λr). This is illustrated in

Figure7.5. In Figure 7.5 the ellipse in solid is the optimal ellipse obtained from

some previous calculation from the dynamic process. In dashed line is an ellipse

that is confocal to the previous ellipse which passes through λr. The point µ is

defined as one of the two points where this ellipse crosses the real axis.

ℜe(z)

ℑm(z)

✲

✻

← Previous ellipse

↑
Ellipse of the same family

*

*

λr

µ

Figure 7.5: Point on the real axis whose convergence is equivalent with that of λr
with respect to the previous ellipse.

The question which we have not yet fully answered concerns the practical

determination of the best ellipse. At a typical step of the Arnoldi process we are

given m approximations λ̃i, i = 1, · · · ,m, of the eigenvalues of A. This approx-

imate spectrum is divided in two parts: the r wanted eigenvalues λ̃1, · · · , λ̃r and

the set R̃ of the remaining eigenvalues R̃ = {λ̃r+1, · · · , λ̃m}. From the previous

ellipse and the previous sets R̃, we would like to determine the next estimates for

the optimal parameters c and e.
A similar problem was solved in the context of linear systems of equations

and the technique can easily be adapted to our situation. We refer the reader to

the two articles by Manteuffel [126, 127]. The change of variables ξ = (µ − λ)
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easily transforms µ into the origin in the ξ–plane and the problem of maximizing

the ratio τ(µ) is transformed into one of maximizing a similar ratio in the ξ–plane

for the origin, with respect to the parameters c and e. An effective technique

for solving this problem has been developed in [125], [127] but its description

is rather tedious and will be omitted. We only indicate that there exist reliable

software that will deliver the optimal values of µ − c and e at output if given the

shifted eigenvalues µ− λ̃j , j = r + 1, · · · ,m on input.

We now wish to deal with a minor difficulty encountered when λ1 is complex.

Indeed, it was mentioned in Section 7.4 that the eigenvalue λ1 in (7.13) should,

in practice, be replaced by some approximation ν of λ1. Initially, ν can be set to

some initial guess. Then, when the approximation λ̃1 as computed from the outer

loop of the procedure, becomes available it can be used. If it is real then we can

take ν = λ̃1 and the iteration can be carried out in real arithmetic as was already

shown, even when e is purely imaginary. However, the iteration will become

complex if λ̃1 is complex. To avoid this it suffices to take ν to be one of the two

points where the ellipse E(c, e, a1) passing through λ̃1, crosses the real axis. The

effect of the corresponding scaling of the Chebyshev polynomial will be identical

with that using λ̃1 but will present the advantage of avoiding complex arithmetic.

7.5 Chebyshev Subspace Iteration

We will use the same notation as in the previous sections. Suppose that we are

interested in the rightmost r eigenvalues and that the ellipse E(c, e, a) contains

the set R of all the remaining eigenvalues. Then the principle of the Chebyshev

acceleration of subspace iteration is simply to replace the powers Ak in the first

part of the basic algorithm 5.1 described in Chapter 5, by pk(A) where pk is the

polynomial defined by (7.12). It can be shown that the approximate eigenvector

ũi, i = 1, · · · , r converges towards ui, as Ck(a/e)/Ck[(λi − c)/e], which, using

arguments similar to those of subsection (7.4.1) is equivalent to ηki where

ηi =
a+ [a2 − 1]1/2

ai + [a2i − 1]1/2
. (7.20)

The above convergence ratio can be far superior to the standard ratio |λr+1/λi|
which is achieved by the non-accelerated algorithm. However, we recall that sub-

space iteration computes the eigenvalues of largest moduli. Therefore, the unac-

celerated and the accelerated subspace iteration methods are not always compara-

ble since they achieve different objectives.

On the practical side, the best ellipse is obtained dynamically in the same way

as was proposed for the Chebyshev–Arnoldi process. The accelerated algorithm

will then have the following form.

ALGORITHM 7.5 Chebyshev Subspace Iteration

1. Start: Q← X .

2. Iterate: Compute Q← pk(A)Q.
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3. Project: Orthonormalize Q and get eigenvalues and Schur vectors of C =
QTAQ. Compute Q← QF, where F is the matrix of Schur vectors of C.

4. Test for convergence: If Q is a satisfactory set of Schur vectors then stop,

else get new best ellipse and go to 2.

Most of the ideas described for the Arnoldi process extend naturally to this

algorithm, and we now discuss briefly a few of them.

7.5.1 Getting the Best Ellipse.

The construction of the best ellipse is identical with that seen in subsection 7.4.2.

The only potential difficulty is that the additional eigenvalues that are used to

build the best ellipse may now be far less accurate than those provided by the

more powerful Arnoldi technique.

7.5.2 Parameters k and m.

Here, one can take advantage of the abundant work on subspace iteration available

in the literature. All we have to do is replace the convergences |λr+1/λi| of the

basic subspace iteration by the new ratios ηi of (7.20). For example, one way to

determine the number of Chebyshev steps k, proposed in Rutishauser [167] and

in Jennings and Stewart [96] is

n ≈ 1

2
[1 + ln(ǫ−1)/ ln(η1)],

where ǫ is some parameter depending on the unit round–off. The goal of this

choice is to prevent the rounding errors from growing beyond the level of the

error in the most slowly converging eigenvector. The parameter k is also limited

from above by a user supplied bound nmax, and by the fact that if we are close

to convergence a smaller k can be determined to ensure convergence at the next

projection step.

The same comments as in the Arnoldi–Chebyshev method can be made con-

cerning the choice of m, namely that m should be at least r + 2, but preferably

even larger although in a lesser extent than for Arnoldi. For the symmetric case it

is often suggested to take to be a small multiple of r, e.g., m = 2r or m = 3r.

7.5.3 Deflation

Another special feature of the subspace iteration is the deflation technique which

consists of working only with the non-converged eigenvectors, thus ‘locking’

those that have already converged. Clearly, this can be used in the accelerated

subspace iteration as well and will enhance its efficiency. For the more stable ver-

sions such as those based on Schur vectors, a similar device can be applied to the

Schur vectors instead of the eigenvectors.
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7.6 Least Squares - Arnoldi

The choice of ellipses as enclosing regions in Chebyshev acceleration may be

overly restrictive and ineffective if the shape of the convex hull of the unwanted

eigenvalues bears little resemblance to an ellipse. This has spurred much research

in which the acceleration polynomial is chosen so as to minimize an L2-norm of

the polynomial p on the boundary of the convex hull of the unwanted eigenvalues

with respect to some suitable weight function ω. The only restriction to this tech-

nique is that the degree of the polynomial is limited because of cost and storage

requirements. This, however, is overcome by compounding low degree polynomi-

als. The stability of the computation is enhanced by employing a Chebyshev basis

and by a careful implementation in which the degree of the polynomial is taken

to be the largest one for which the Gram matrix has a tolerable conditioning. The

method for computing the least squares polynomial is fully described in [172] but

we present a summary of its main features below.

7.6.1 The Least Squares Polynomial

Suppose that we are interested in computing the r eigenvalues of largest real parts

λ1, λ2, . . . λr and consider the vector

zk = pk(A)z0 (7.21)

where pk is a degree k polynomial. Referring to the expansion (7.9) we wish

to choose among all polynomials p of degree ≤ k one for which p(λi), i>r are

small relative to p(λi), i ≤ r. Assume that by some adaptive process, a polygonal

region H which encloses the remaining eigenvalues becomes available to us. We

then arrive at the problem of approximation theory which consists of finding a

polynomial of degree k whose value inside some (polygonal) region is small while

its values at r particular points (possibly complex) outside the region are large. For

simplicity we start with the case where r = 1, i.e., only the eigenvalue λ1 and its

associated eigenvectors are sought. We seek a polynomial that is large at λ1 and

small elsewhere. For convenience we can always normalize the polynomial so

that

pk(λ1) = 1. (7.22)

The desired polynomial satisfying the above constraint can be sought in the form

pk(λ) ≡ 1− (λ− λ1)sk(λ) (7.23)

where sk is a polynomial of degree k − 1.

Since it is known that the maximum modulus of an analytic function over a

region of the complex plane is reached on the boundary of the region, one solution

to the above problem is to minimize an L2-norm associated with some weight

function ω, over all polynomials of degree k satisfying the constraint (7.22). We

need to choose a weight function ω that will facilitate practical computations.
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Figure 7.6: Polygon H containing the spectrum of A.

Let the regionH of the complex plane, containing the eigenvalues λr+1, . . . λn,
be a polygon consisting of µ edges E1, E2, . . . Eµ, each edge Ej linking two suc-

cessive vertices hj−1 and hj ofH, see Figure 7.6. Denoting by cj =
1
2 (hj+hj−1)

the center of the edge Ej and by dj =
1
2 (hj − hj−1) its half-width, we define the

following Chebyshev weight function on each edge:

ωj(λ) =
2

π
|d2j − (λ− cj)2|−1/2. (7.24)

The weight ω on the boundary ∂H of the polygonal region is defined as the func-

tion whose restriction to each edge Ej is ωj . Finally, the L2-inner-product over

∂H is defined by

< p, q >ω =

∫

∂H

p(λ)q(λ)ω(λ)|dλ| (7.25)

=

µ
∑

j=1

∫

Ej

p(λ)q(λ)ωj(λ)|dλ|, (7.26)

and the corresponding L2-norm is denoted by ‖.‖ω .

Often, the matrix A is real and the convex hull may be taken to be symmetric

with respect to the real axis. In this situation it is better to define the convex hull

as the union of two polygons H+ and H− which are symmetric to each other.

These two are represented in solid line and dashed line respectively in the figure

7.6. Then, when the coefficients of p and q are real, we only need to compute the

integrals over the edges of the upper part H+ of H because of the relation

< p, q >ω= 2ℜe
[∫

∂H+

p(λ)q(λ)ω(λ)|dλ|
]

. (7.27)

Having defined an inner product we now define in the simplest case where

r = 1, the ‘least-squares’ polynomial that minimizes

‖1− (λ− λ1)s(λ)‖ω. (7.28)
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Note that there are other ways of defining the least squares polynomial. Assume

that we use a certain basis t0, . . . , tk−1. and let us express the degree k − 1
polynomial s(λ) in this basis as

s(λ) =

k−1
∑

j=0

ηjtj(λ) . (7.29)

Each polynomial (λ− λ1)tj(λ) is of degree j + 1 and can be expressed as

(λ− λ1)tj(λ) =
j+1
∑

i=0

τijti(λ)

Denote by η the vector of the ηj’s for j = 0, . . . , k − 1 and by γ the vector of

coefficients γj , j = 0, . . . , k of (λ − λ1)s(λ) in the basis t0, . . . , tk and define

τij = 0 for i > j + 1. Then the above two relations state that

(λ− λ1)s(λ) =
k−1
∑

j=0

ηj

k
∑

i=0

τijti(λ) =

k
∑

i=0





k−1
∑

j=0

τijηj



 ti(λ)

In matrix form this means that

γ = Tkη

where Tk is the (k+1)×k matrix of coefficients tij’s, which is upper Hessenberg.

In fact, it will seen that the matrix Tk is tridiagonal when Chebyshev bases are

used.

The least-squares problem (7.28) will translate into a linear least-squares

problem for the vector η. We will discuss some of the details of this approach

next. There are two critical parts in this technique. The first concerns the choice

of the basis and the second concerns the solution least-squares problem.

7.6.2 Use of Chebyshev Bases

To motivate our choice of the basis {tj}, we assume at first that the best polyno-

mial is expressed in the ‘power’ basis

1, λ, λ2, · · · .

Then, the solution of the least-squares problem (7.28) requires the factorization of

the Gram matrix consisting of all the inner products < λi−1, λj−1 >ω:

Mk = {< tj , ti >ω}i,j=0,...,k.

This matrix, often referred to as the moment matrix , can become extremely ill-

conditioned and methods based on the use of the power basis will generally be

limited to low degree calculations, typically not exceeding 10. A more reliable

alternative is to replace the basis {λi−1} by a more stable basis. One such basis,
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Figure 7.7: The ellipse of smallest area containing the convex hull of Λ(A) .

well understood in the real case, is that consisting of Chebyshev polynomials over

an ellipse that contains the convex hull. The solution polynomial (7.42) will be

expressed in terms of a Chebyshev basis associated with the ellipse of smallest

area containing H . Such an ellipse is illustrated in Figure 7.7.

Computing the ellipse of smallest area that encloses H is a rather easy task,

far easier than that of computing ellipses which minimize convergence rates for

Chebyshev acceleration, see Exercise P-7.3 for details.

7.6.3 The Gram Matrix

The next step in the procedure for computing the best polynomial, is to evaluate

the Gram matrix Mk. For the Chebyshev basis, the Gram matrix Mk can be

constructed recursively without any numerical integration.

The entries of the Gram matrix are defined by,

mij =< tj−1, ti−1 >ω , i, j = 1, . . . , k + 1 .

Note that because of the symmetry of the domain, the matrix Mk has real coeffi-

cients. We start by expressing each polynomial ti(λ) in terms of the Chebyshev

polynomials

Cl

(

λ− cν
dν

)

≡ Cl(ξ)

for each of the µ edges Eν , ν = 1, . . . , µ. The variable ξ takes real values when

λ lies on the edge Eν . In other words we express each ti as

ti(λ) =
i
∑

l=0

γ
(i)
l,νCl(ξ) , (7.30)

ξ =
λ− cν
dν

. (7.31)
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Each polynomial ti will have µ different expressions of this type, one for each

edge Eν . Clearly, these expressions are redundant since one of them is normally

enough to fully determine the polynomial ti. However, this redundancy is useful

from the practical point of view as it allows to perform an efficient computation

in a stable manner. The following proposition enables us to compute the Gram

matrix from the expressions (7.30).

Proposition 7.1 Assuming the expressions (7.30) for each of the polynomials ti,
the coefficients of the Gram matrix Mk are given by

mi+1,j+1 = 2 ℜe
{

µ
∑

ν=1

(

2 γ
(i)
0,νγ

(j)
0,ν +

j
∑

l=1

γ
(i)
l,νγ

(j)
l,ν

)}

, (7.32)

for all i, j such that 0 ≤ i ≤ j ≤ k.

Proof. The result follows from the orthogonality of the Chebyshev polynomials,

the change of variables (7.31) and the expression (7.27).

We now need to be able to compute the expansion coefficients. Because of

the three term-recurrence of the Chebyshev polynomials it is possible to carry the

computation of these coefficients in a recursive manner. We rewrite the recurrence

relation for the shifted Chebyshev polynomials in the form

βi+1ti+1(λ) = (λ− αi)ti(λ)− δiti−1(λ), i = 0, 1, . . . , k, . . . , (7.33)

with the convention that t−1 ≡= 0 and δ0 = 0. Using the definitions (7.30) and

(7.31), we get for each edge,

βi+1ti+1(λ) = (dνξ + cν − αi)
i
∑

l=0

γ
(i)
l,νCl(ξ)− δi

i−1
∑

l=0

γ
(i−1)
l,ν Cl(ξ)

which provides the expressions for ti+1 from those of ti and ti−1 by exploiting

the relations

ξCl(ξ) =
1

2
[Cl+1(ξ) + Cl−1(ξ)] l > 0 ,

ξC0(ξ) = C1(ξ) .

The result is expressed in the following proposition.

Proposition 7.2 For ν = 1, 2, . . . µ, the expansion coefficients γ
(i)
l,ν satisfy the

recurrence relation,

βi+1γ
(i+1)
l,ν =

dν
2

[

γ
(i)
l+1,ν + γ

(i)
l−1,ν

]

+ (cν − αi)γ
(i)
l,ν − δiγ

(i−1)
l,ν (7.34)

for l = 0, 1, . . . , i+ 1 with the notational convention,

γ
(i)
−1,ν ≡ γ

(i)
1,ν , γ

(i)
l,ν = 0 for l>i .
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The total number of operations required for computing a Gram matrix with

the help of the above two propositions is O(µk3/3). This cost may be high for

high degree polynomials. However, this cost will in general not be significant

relatively to the total number of operations required with the matrix A which is

typically very large. It is also not recommended to compute least squares polyno-

mials of degree higher than 40 or 50.

7.6.4 Computing the Best Polynomial

In the simple case where we are computing λ1 and the associated eigenvector, we

need the polynomial s(λ) which minimizes:

J(η) = ‖1− (λ− λ1)s(λ)‖w (7.35)

where s(λ) is the unknown polynomial of degree k − 1 expressed in the form

(7.29).

Let Tk be the (k + 1)× k tridiagonal matrix

Tk =

















α0 δ1
β1 α1 δ2

. . .
. . .

. . .

βk−2 αk−2 δk−1

‘ βk−1 αk−1

βk

















(7.36)

whose coefficients αi, δi, βi are those of the three-term recurrence (7.33). Given

two polynomials of degree k

p(λ) =

k
∑

i=0

γiti(λ) and q(λ) =

k
∑

i=0

θiti(λ)

it is easy to show that the inner product of these two polynomials can be computed

from

< p, q >ω= (Mkγ, θ) (7.37)

where γ = (γ0, γ1, . . . , γk)
T and θ = (θ0, θ1, . . . , θk)

T . Therefore, an alternative

expression for J(η) is

J(η)2 = [e1 − (Tk − λ1I)η]HMk[e1 − (Tk − λ1I)η]

and as a consequence, we can prove the following theorem.

Theorem 7.1 Let

Mk = LLT

be the Cholesky factorization of the (k+1)×(k+1) Gram matrixMk and denote

by Hk the (k + 1)× k upper Hessenberg matrix

Hk = LT (Tk − λ1I),
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where Tk is the tridiagonal matrix (7.36) defined from the three-term recurrence

of the basis ti. Then the function J(η) satisfies the relation,

J(η) = ‖l11e1 −Hkη‖2. (7.38)

Therefore the computation of the best polynomial requires the solution of a

(k + 1)× k least squares problem. This is best done by reducing the Hessenberg

matrix Hk into upper triangular form by using Givens rotations.

The above theorem does not deal with the case where we have several eigen-

values to compute, i.e., with the case r > 1. For this situation, we need to redefine

the problem slightly. The following development is also of interest because it

gives an alternative formulation to the least squares polynomial even for the case

r = 1.

We start by introducing what is referred to as kernel polynomials,

Kk(ξ, λ) =

k
∑

j=0

πj(ξ)πj(λ) (7.39)

in which the πj’s are the orthogonal polynomials with respect to the appropriate

inner product, here< ., . >ω . Then the following well-known theorem holds [42].

Theorem 7.2 Among all polynomials of degree k normalized so that p(λ1) = 1,

the one with the smallest ω-norm is given by

qk(λ) =
Kk(λ1, λ)

Kk(λ1, λ1)
. (7.40)

This gives an interesting alternative to the polynomial derived previously. We will

now generalize this result and discuss its practical implementation.

We begin by generalizing the constraint (7.22) by normalizing the polynomial

at the points λ1, λ2, . . . , λr as follows,

r
∑

j=1

µjp(λj) = 1 (7.41)

in which the µj’s , j = 1, . . . r constitute r different weights.

Then we have the following generalization of the above theorem.

Theorem 7.3 Let {πi}i=0,...,k be the first k + 1 orthonormal polynomials with

respect to the L2-inner-product (7.26). Then among all polynomials p of degree k
satisfying the constraint (7.41), the one with smallest ω-norm is given by

pk(λ) =

∑k
i=0 φiπi(λ)
∑k

i=0 |φi|2
, (7.42)

where φi =
∑r

j=1 µjπi(λj) .
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Proof. We recall the reproducing property of kernel polynomials [42],

< p,Kk(ξ, λ) >ω= p(ξ) , (7.43)

in which the integration is with respect to the variable λ. It is easily verified that

the polynomial (7.42) satisfies the constraint (7.41) and that pk can be recast as

pk(λ) = C

k
∑

j=0

µjKk(λj , λ) (7.44)

where C is some constant. Next, we consider any polynomial p satisfying the

constraint (7.41) and write p in the form

p(λ) = pk(λ) + E(λ),

from which we get,

‖p‖2ω = ‖pk‖2ω + ‖E‖2ω + 2ℜe{< E, pk >ω}. (7.45)

Since both p and pk satisfy the constraint (7.41) we must have

r
∑

j=1

µjE(λj) = 0. (7.46)

From (7.44) and from the reproducing property (7.43) we see that

< E, pk >ω = C

r
∑

j=1

µj < E,Kk(λj , λ) >ω

= C

r
∑

j=1

µjE(λj) .

Hence, from (7.46) < E, pk >ω= 0 and (7.45) shows that ‖p‖ω ≥ ‖pk‖ω for any

p of degree ≤ k.

As is now explained, the practical computation of the best polynomial pk can

be carried out by solving a linear system with the Gram matrixMk. We could also

compute the orthogonal polynomials πj and take their linear combination (7.42)

but this would not be as economical.

We consider the unscaled version of the polynomial (7.42) used in (7.44),

p̂k(λ) =
r
∑

j=1

µ̄jKk(λj , λ) , (7.47)

which satisfies a property stated in the next proposition.



FILTERING AND RESTARTING 187

Proposition 7.3 Let t be the (k + 1)-vector with components

τi =

r
∑

j=1

µjti−1(λj) , i = 0, . . . , k .

Then the coefficients of the polynomial p̂k in the basis {tj} are the conjugates of

the components of the k-vector,

η =M−1
k t .

Proof. Consider the Cholesky factorization Mk = LLT of the Gram matrix Mk.

If we represent by p(λ) and t(λ) the vectors of size k + 1 defined by

p(λ) = (π0(λ), π1(λ), . . . , πk(λ))
T

and

t(λ) = (t0(λ), t1(λ), . . . , tk(λ))
T

then we have the important relation,

p(λ) = L−1t(λ) (7.48)

which can be easily verified from (7.37). Notice that Kk(ξ, η) = (p(λ), p(ξ))
where (., .) is the complex inner product in C

k+1, and therefore, from (7.47) and

(7.48) we get

p̂k(λ) =
r
∑

j=1

µ̄j

(

p(λ), p(λj)
)

=

r
∑

j=1

µ̄j

(

L−1t(λ), L−1t(λj)
)

=

r
∑

j=1

µ̄j

(

t(λ),M−1
k t(λj)

)

=



t(λ),M−1
k

r
∑

j=1

µjt(λj)



 =
(

t(λ),M−1
k t
)

=

k+1
∑

l=1

η̄ltl−1(λ) ,

which completes the proof.

The proposition allows to obtain the best polynomial directly in the desired

basis. Note that since the matrix Mk is real, if the τi’s are real then the coefficient

vector η is real if the λj’s are selected in pairs of conjugate complex numbers.
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7.6.5 Least Squares Arnoldi Algorithms

A resulting hybrid method similar to the Chebyshev Arnoldi Algorithm can be

easily derived. The algorithm for computing the r eigenvalues with largest real

parts is outlined next.

ALGORITHM 7.6 Least Squares Arnoldi Algorithm

1. Start: Choose the degree k of the polynomial pk, the dimension m of the

Arnoldi subspaces and an initial vector v1.

2. Projection step:

(a) Using the initial vector v1, performm steps of the Arnoldi method and

get the m approximate eigenvalues {λ̃1, . . . λ̃m} of the matrix Hm.

(b) Estimate the residual norms ρi, i = 1, . . . , r, associated with the r
eigenvalues of largest real parts {λ̃1, . . . λ̃r} If satisfied then Stop.

(c) Adapt: From the previous convex hull and the set {λ̃r+1, . . . λ̃m} con-

struct a new convex hull of the unwanted eigenvalues.

(d) Obtain the new least squares polynomial of degree k.

(e) Compute a linear combination z0 of the approximate eigenvectors

ũi, i = 1, . . . , r.

3. Polynomial iteration:

Compute zk = pk(A)z0. Compute v1 = zk/‖zk‖ and goto 2.

As can be seen the only difference with the Chebyshev algorithm is that the

polynomial must now be computed. We must explain how the vector zk can be

computed. We will call wi the auxiliary sequence of vectors wi = ti(A)z0. One

possibility would be to compute all the wi’s first and then accumulate their linear

combination to obtain zk. However, the wi can also be accumulated at the same

time as they are computed. More precisely, we can use a coupled recurrence as

described in the next algorithm.

ALGORITHM 7.7 (For Computing zk = pk(A)z0)

1. Start: δ0 := 0, w0, y0 = η0z0.

2. Iterate: For i = 1, 2, . . . , k do:

wi+1 =
1

βi+1
[(A− αiI)wi − δiwi−1] ,

yi = yi−1 + ηiwi+1 .

3. Finish: zk = yk.
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The intermediate vectors yi are not related to the vectors zi only the last vector

yk is.

We cannot, for reasons of space, describe all the details of the implementa-

tion. However, we mention that the linear combination at the end of step 3, is

usually taken as follows:

z0 =

r
∑

i=1

ρiũi

as for the Chebyshev iteration. Note that it is difficult, in general, to choose a linear

combination that leads to balanced convergence because it is hard to represent a

whole subspace by a single vector. This translates into divergence in many cases

especially when the number of wanted eigenvalues r is not small. There is always

the possibility of increasing the space dimension m, at a high cost, to ensure

convergence but this solution is not always satisfactory from the practical point of

view. Use of deflation constitutes a good remedy against this difficulty because it

allows to compute one eigenvalue at a time which is much easier than computing

a few of them at once. We omit the description of the corresponding algorithm

whose general structure is identical with that of Algorithm 7.1.

One attractive feature of the deflation techniques is that the information gath-

ered from the determination of the eigenvalue λi is still useful when iterating to

compute the eigenvalue λi+1. The simplest way in which the information can be

exploited is by using at least part of the convex hull determined during the com-

putation of λi. Moreover, a rough approximate eigenvector associated with λi+1

can be inexpensively determined during the computation of the eigenvalue λi and

then used as initial vector in the next step for computing λi+1.

Another solution is to improve the separation of the desired eigenvalues by

replacing A by a polynomial in A. This will be seen in the next chapter.

PROBLEMS

P-7.1 Prove that the relation (7.27) holds when the polynomials p and q are real and the

polygon is symmetric with respect to the real line.

P-7.2 Show that the recurrence (7.15)-(7.16) can be performed in real arithmetic when A
is real but e is complex. Rewrite the recurrence accordingly.

P-7.3 The purpose of this exercise is to develop formulas for the ellipse E(c, e, a) of

smallest area enclosing a polygon H . It is assumed that the polygon is symmetric about the

real axis. Therefore the ellipse is also symmetric about the real axis. The following result

will be assumed, see for example [126]: The best ellipse is either an ellipse that passes

through 3 vertices of H and encloses H or an ellipse of smallest area passing through

two vertices of H . Formulas for the first case have been established in the literature, see

Manteuffel [126]. Therefore, we must only consider the second case. Let λ1 = (x1, y1)
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and λ2 = (x2, y2) two points in R
2. We set

A =
1

2
(x2− x1), B =

1

2
(x1 + x2),

S =
1

2
(y2− y1), T =

1

2
(y1 + y2)

and define the variable z = c − B. At first, assume that S 6= 0 and define Q = (S/T +
T/S)/2. Show that for a given z (which defines c) the only ellipse that passes through

λ1, λ2 is defined by

e2 =
1

z
[(z +AT/S)(z +AS/T )(z − ST/A)]

a2 = (z +AT/S)(z +AS/T ) .

Then show that the optimal z is given by

z =
A

√

Q2 + 3±Q

where ± is the sign of AS. In the particular case where S = 0 the above formulas break

down. But then c = B and one is lead to minimize the area as a function of a. Show

that the minimum is reached for a2 = 2A2 and that the corresponding d is given by d2 =
2(A2 − T 2).

P-7.4 Polynomials of degree 2 can be used to calculate intermediate eigenvalues of Her-

mitian matrices. Suppose we label the eigenvalues increasingly and that we have estimates

for λ1, λi−1, λi, λi+1, λn. Consider the family of quadratic polynomials that take the value

1 at λi and whose derivative at λi is zero. Find one such polynomial that will be suitable

for computing λi and the associated eigenvector. Is this a good polynomial? Find a good

polynomial for computing the eigenvalue λi.

P-7.5 Establish formula (7.37).

P-7.6 Prove Theorem 7.1.

NOTES AND REFERENCES. Part of the material in this Chapter is taken from Saad [173, 172, 174,

176, 171]. The idea of Chebyshev acceleration for eigenvalue problems is an old one and seems to

have been first advocated by Flanders and Shortley [61]. However, in a work that has been vastly

ignored, Lanczos also did some very interesting contemporary work in acceleration technique [113],

see also the related paper [115]. Lanczos’ approach is radically different from that of Flanders and

Shortley, which is the approach most numerical analysts are familiar with. Concerned about the dif-

ficulty in getting eigenvalue estimates, Lanczos proposed as an alternative to compute a polynomial

approximation to the Dirac function based on the wanted eigenvalue. The approximation is made over

an interval containing the spectrum, which can easily be obtained from Gerschgorin estimates. This

turns out to lead to the so-called Fejer kernel in the theory of approximation by trigonometric func-

tions and then naturally to Chebyshev polynomials. His approach is a least squares technique akin

to the one proposed by Stiefel [208] and later Saad [172]. Some ideas on implementing Chebyshev

acceleration in the complex plane were introduced by Wrigley [225] but the technique did not ma-

ture until the 1975 PhD thesis by Manteuffel [125] in which a FORTRAN implementation for solving

linear systems appeared. The work in [173] was based on adapting Manteuffel’s implementation for

the eigenvalue problem. The least squares polynomial approach presented in this chapter is based on

the technical report [172] and its revised published version [174]. In my experience, the least squares

approach does seem to perform slightly better in practice than the Chebyshev approach. Its drawbacks
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(mainly, having to use relatively low degree polynomials) are rather minor in practice. Implicit restarts

have been developed in the early 1990s by Sorensen [197], see also [117], and later resulted in the

development of the package ARPACK [118]. By one measure the use of explicit restarts, or the use of

polynomial filtering may be viewed as obsolete. However, there are situations where explicit filtering

is mandatory. In electronic structure calculations, a form of nonlinear Subspace iteration based on

Chebyshev polynomials gave superior results to any other methods we have tried, see [228, 226, 227]

for details.





Chapter 8

PRECONDITIONING TECHNIQUES

The notion of preconditioning is better known for linear systems than it is for eigen-

value problems. A typical preconditioned iterative method for linear systems amounts

to replacing the original linear system Ax = b by (for example) the equivalent system

B−1Ax = B−1b, where B is a matrix close to A in some sense and defined as the

product of a lower by an upper sparse triangular matrices. This equivalent system

is then handled by a Krylov subspace method. For eigenvalue problems, the best

known preconditioning is the so-called shift-and-invert technique which we already

mentioned in Chapter 4. If the shift σ is suitably chosen the shifted and inverted

matrix B = (A − σI)−1, will have a spectrum with much better separation prop-

erties than that of the original matrix A and this will result in faster convergence.

The term ‘preconditioning’ here is quite appropriate since the better separation of the

eigenvalues around the desired eigenvalue implies that the corresponding eigenvector

is likely to be better conditioned.

8.1 Shift-and-invert Preconditioning

One of the most effective techniques for solving large eigenvalue problems is to

iterate with the shifted and inverted matrix,

(A− σI)−1 (8.1)

for standard problems and with (for example)

(A− σB)−1B (8.2)

for a generalized problem of the form Ax = λBx. These methods fall under

the general suggestive name shift-and-invert techniques. There are many possible

ways of deriving efficient techniques based on shift-and-invert. In this section we

will discuss some of the issues with one particular implementation in mind which

involves a shift-and-invert preconditioning of Arnoldi’s Algorithm.

193
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8.1.1 General Concepts

Typically shift-and-invert techniques are combined with an efficient projection

method such as Arnoldi’s method or the Subspace iteration. The simplest possible

scheme is to choose a shift σ and run Arnoldi’s method on the matrix (A−σI)−1.

Since the eigenvectors of A and (A − σI)−1 are identical one can recover the

eigenvalues of A from the computed eigenvectors. Note that this can be viewed as

an acceleration of the inverse iteration algorithm seen in Chapter 4, by Arnoldi’s

method, in the same way that the usual Arnoldi method was regarded as an ac-

celeration of the power method. It requires only one factorization with the shifted

matrix.

More elaborate algorithms involve selecting automatically new shifts and per-

forming a few factorizations. Strategies for adaptively choosing new shifts and de-

ciding when to refactor (A−σB) are usually referred to as shift-and-invert strate-

gies. Thus, shift-and-invert simply consists of transforming the original problem

(A−λI)x = 0 into (A−σI)−1x = µx. The transformed eigenvalues µi are usu-

ally far better separated than the original ones which results in better convergence

in the projection type algorithms. However, there is a trade-off when using shift-

and-invert, because the original matrix by vector multiplication which is usually

inexpensive, is now replaced by the more complex solution of a linear system at

every step. When a new shift σ is selected, the LU factorization of the matrix

(A − σI) is performed and subsequently, at every step of Arnoldi’s algorithm

(or any other projection algorithm), an upper and a lower triangular systems are

solved. Moreover, the cost of the initial factorization can be quite high and in the

course of an eigenvalue calculation, several shifts, and therefore several factoriza-

tions, may be required. Despite these additional costs shift-and-invert is often an

extremely useful technique, especially for generalized problems.

If the shift σ is suitably selected the matrix C = (A − σI)−1 will have a

spectrum with much better separation properties than the original matrix A and

therefore should require far less iterations to converge. Thus, the rationale be-

hind the Shift-and-Invert technique is that factoring the matrix (A − σI) once,

or a few times during a whole run in which σ is changed a few times, is a price

worth paying because the number of iterations required with C is so much smaller

than that required with A that the expense of the factorizations is amortized.

For the symmetric generalized eigenvalue problem Bx = λAx there are fur-

ther compelling reasons for employing shift-and-invert. These reasons are well-

known and have been discussed at length in the recent literature, see for example,

[146, 148, 56, 190]. The most important of these is that since we must factor one of

the matrices A or B in any case, there is little incentive in not factoring (A−σB)
instead, to gain faster convergence. Because of the predominance of generalized

eigenvalue problems in structural analysis, shift-and-invert has become a fairly

standard tool in this application area.

For nonsymmetric eigenvalue problems, shift-and-invert strategies are not as

well-known, although the main arguments supporting such techniques are the

same as in the Hermitian case. Let us consider the case where the matrices B
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and A are real and banded but the shift σ is complex. One possibility is to work

entirely in complex arithmetic. This is probably a fine alternative. If the matrix is

real, it seems that the approach is a little wasteful and also unnatural. For exam-

ple, it is known that the eigenvalues of the original matrix pencil come in complex

conjugate pairs (at least in the case where B is positive definite). It would be

desirable to have algorithms that deliver complex conjugate pairs as well. This

is mainly because there may be a few close pairs of computed eigenvalues and it

will become difficult to match the various pairs together if the conjugates are only

approximately computed. A wrong match may in fact give incorrect eigenvectors.

In the next section we consider the problem of performing the computations in

real arithmetic.

8.1.2 Dealing with Complex Arithmetic

Let A be real and assume that we want to use a complex shift

σ = ρ+ iθ . (8.3)

One can factor the matrix (A − σI) in (8.1) and proceed with an algorithm such

as Arnoldi’s method working with complex arithmetic. However, an alternative

to using complex arithmetic is to replace the complex operator (A− σ)−1 by the

real one

B+ = ℜe
[

(A− σI)−1
]

=
1

2

[

(A− σI)−1 + (A− σ̄I)−1
]

(8.4)

whose eigenvectors are the same as those of the original problem and whose eigen-

values µ+
i are related to the eigenvalues λi of A by

µ+
i =

1

2

(

1

λi − σi
+

1

λi − σ̄i

)

. (8.5)

We can also use

B− = ℑm
[

(A− σI)−1
]

=
1

2i

[

(A− σI)−1 − (A− σ̄I)−1
]

. (8.6)

Again, the eigenvectors are the same as those of A and the eigenvalues µ−
i are

given by

µ−
i =

1

2i

(

1

λi − σi
+

1

λi − σ̄i

)

. (8.7)

A few additional possibilities are the following

B(α, β) = αB+ + βB− ,

for any nonzero pair α, β and

B∗ = (A− σI)−1(A− σ̄)−1. (8.8)
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This last option is known as the double shift approach and has been used by

J.G.F. Francis in 1961/62 [63] in the context of the QR algorithm to solve a similar

dilemma. The inverse of B∗ is

(A− σI)(A− σ̄I) = [(A− ρI)2 + θ2I].

This matrix, which is real, and is a quadratic polynomial in A and again shares

A’s eigenvectors. An interesting observation is that (8.8) is redundant with (8.6).

Proposition 8.1 The matrices B∗ and B− are related by

B− = θB∗ . (8.9)

The proof is left as an exercise, see Exercise P-8.4.

An obvious advantage in using either (8.4) or (8.6) in place of (8.1) is that

the first operator is real and therefore all the work done in the projection method

can be performed in real arithmetic. A non-negligible additional benefit is that

the complex conjugate pairs of eigenvalues of original problem are also approx-

imated by complex conjugate pairs thus removing some potential difficulties in

distinguishing these pairs when they are very close. In a practical implementa-

tion, the matrix (A − σI) must be factored into the product LU of a lower tri-

angular matrix L and an upper triangular matrix U . Then every time the vector

w = ℜe[(A − σI)−1]v must be computed, the forward and backward solves are

processed in the usual way, possibly using complex arithmetic, and then the real

part of the resulting vector is taken to yield w.

An interesting question that might be asked is which of (8.4) or (8.6) is best?

The experiments in [152] reveal that the choice is not an easy one. It is readily

verified that as λ→ σ,

µ+ ≈ 1

2(λ− σ) , µ− ≈ 1

2i(λ− σ) .

showing that B+ and B− give equal enhancement to eigenvalues near σ. In con-

trast, as λ→∞, B− dampens the eigenvalues more strongly than does B+ since,

µ+ =
λ− ρ

(λ− σ)(λ− σ̄) , µ− =
θ

(λ− σ)(λ− σ̄) . (8.10)

The only conclusion from all this is that whichever of the two options is used the

performance is not likely to be substantially different from the other or from that

of the standard (8.1).

In the following discussion we choose to single out B+, but all that is said

about B+ is also true of B−. In practice it is clear that the matrix B+ should

not be computed explicitly. In fact either of these matrices is full in general and

would be prohibitive to compute. Instead, we first factor the matrix (A−σI) at the

outset. This is done in complex arithmetic or by implementing complex arithmetic

with real arithmetic. For example, if A is banded, to preserve bandedness and still

use real arithmetic, one can represent the j-th component xj = ξj + iζj of a
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vector z of Cn by the components η2j−1 = ξj and η2j = ζj of the real 2n-vector

y of the components ηj , j = 1, . . . , 2n. Translating the matrix (A − σI) into

this transformation gives a (2n) × (2n) real banded matrix. Once the matrix is

factored, a projection type method, e.g., subspace iteration, is applied using as

operator B+ = ℜe(A − σI). Matrix-vector products with the matrix B+ are

required in the subspace iteration. Each of these can be performed by first solving

(A− σI)w = v, possibly in complex arithmetic, and then setting B+v = ℜe(w)
(respectively B−v = ℑm(w)).

8.1.3 Shift-and-Invert Arnoldi

We now consider the implementation of shift-and-invert with an algorithm such

as Arnoldi’s method. Suppose we must compute the p eigenvalues closest to a

shift σ0. In the symmetric case an important tool is available to determine which

of the approximate eigenvalues should be considered in order to compute all the

desired eigenvalues in a given interval only once. This tool is Sylvester’s inertia

theorem which gives the number of eigenvalues to the right and left of σ by count-

ing the number of negative entries in the diagonal elements of the U part of the

LU factorization of the shifted matrix. In the non Hermitian case a similar tool

does not exist. In order to avoid the difficulty we exploit deflation in the following

manner. As soon as an approximate eigenvalue has been declared satisfactory we

proceed to a deflation process with the corresponding Schur vector. The next run

of Arnoldi’s method will attempt to compute some other eigenvalue close to σ0.

With proper implementation, the next eigenvalue will usually be the next closest

eigenvalue to σ0. However, there is no guarantee for this and so we cannot be sure

that eigenvalues will not be missed. This is a weakness of projection methods in

the non Hermitian case, in general.

Our experimental code ARNINV based on this approach implements a sim-

ple strategy which requires two parameters m, krest from the user and proceeds

as follows. The code starts by using σ0 as an initial shift and calls Arnoldi’s al-

gorithm with (A− σ0I)−1 Arnoldi to compute the eigenvalue of A closest to σ0.

Arnoldi’s method is used with restarting, i.e., if an eigenvalue fails to converge af-

ter the Arnoldi loop we reran Arnoldi’s algorithm with the initial vector replaced

by the eigenvalue associated with the eigenvalue closest to σ0. The strategy for

changing the shift is dictated by the second parameter krest. If after krest calls

to Arnoldi with the shift σ0 the eigenpair has not yet converged then the shift σ0
is changed to the best possible eigenvalue close to σ0 and we repeat the process.

As soon as the eigenvalue has converged we deflate it using Schur deflation as

described in the previous section. The algorithm can be summarized as follows.

ALGORITHM 8.1 Shift-and-Invert Arnoldi

1. Initialize:

Choose an initial vector v1 of norm unity, an initial shift σ, and the dimen-

sion and restart parameters m and krest.
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2. Eigenvalue loop:

(a) Compute the LU factorization of (A− σI).
(b) If k > 1 then (re)-compute

hij = ((A− σI)−1vj , vi) i, j = 1, k − 1 .

(c) Arnoldi Iteration. For j = k, k + 1, ...,m do:

• Compute w := (A− σI)−1vj .

• Compute a set of j coefficients hij so that w := w −∑j
i=1 hijvi

is orthogonal to all previous vi’s, i = 1, 2, ..., j.

• Compute hj+1,j := ‖w‖2 and vj+1 := w/hj+1,j .

(d) Compute eigenvalue of Hm of largest modulus, corresponding ap-

proximate eigenvector of (A−σI)−1, and associated (estimated) resid-

ual norm ρk.

(e) Orthonormalize this eigenvector against all previous vj’s to get the

approximate Schur vector ũk and define vk := ũk.

(f) If ρk is small enough then accept vk as the next Schur vector. Set

k : k + 1; if k<p goto 2.

(g) If the number of restarts with the same shift exceeds krest select a new

shift and goto 1. Else restart Arnoldi’s algorithm, i.e., goto 2-(c).

A point of detail in the algorithm is that the (k−1)×(k−1) principal subma-

trix of the Hessenberg matrix Hm is recomputed whenever the shift changes. The

reason is that this submatrix represents the matrix (A − σI)−1 in the first k − 1
Schur vectors and therefore it must be updated as σ changes. This is in contrast

with the simple Arnoldi procedure with deflation described earlier in Chapter 6.

However, there exists a simpler implementation that avoids this, see Exercise P-

8.2. The above algorithm is described for general complex matrix and there is no

attempt in it to avoid complex arithmetic in case the original matrix is real. In this

situation, we must replace (A−σI)−1vj in B.2 by ℜe[(A−σI)−1vj ] and ensure

that we select the eigenvalues corresponding to the eigenvalues of A closest to σ.

We also need to replace the occurrences of eigenvectors by the pair of real parts

and imaginary parts of the eigenvectors.

Example 8.1. We consider the test problem on Chemical reactions described

in Chapter 3. This coupled system is discretized in the interval [0, 1] using nx +1
points with nx = 100 which yields a matrix of size n = 200. We tested ARNINV

to compute the six rightmost eigenvalues of A. We took as initial shift the value

σ = 0, and m = 15, krest = 10. In this case ARNINV delivered all the desired

eigenvalues by making four calls to the Arnoldi subroutine and there was no need

to change shifts. The tolerance imposed was ǫ = 10−7. The result of the execution

is shown in Table 8.1. What is shown in the figure is the progress of the algorithm
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Eig. ℜe(λ) ℑm(λ) Res. Norm

1 0.1807540453D-04 0.2139497548D+01 0.212D-09

0.1807540453D-04 -0.2139497548D+01 0.212D-09

-0.6747097569D+00 0.2528559918D+01 0.224D-06

-0.6747097569D+00 -0.2528559918D+01 0.224D-06

3 -0.6747097569D+00 0.2528559918D+01 0.479D-13

-0.6747097569D+00 -0.2528559918D+01 0.479D-13

-0.2780085122D+01 0.2960250300D+01 0.336D-01

-0.2780085122D+01 -0.2960250300D+01 0.336D-01

5 -0.1798530837D+01 0.3032164644D+01 0.190D-06

-0.1798530837D+01 -0.3032164644D+01 0.190D-06

5 -0.1798530837D+01 0.3032164644D+01 0.102D-11

-0.1798530837D+01 -0.3032164644D+01 0.102D-11

-0.2119505960D+02 0.1025421954D+00 0.749D-03

Table 8.1: Convergence history of ARNINV for chemical reaction test problem.

Each separate outer iteration corresponds to a call to Arnoldi’s module

after each projection (Arnoldi) step. The eigenvalue loop number indicates the

eigenvalue that is being computed at the particular Arnoldi call. Thus, when trying

to compute the eigenvalue number 3, the algorithm has already computed the first

two (in this case a complex conjugate pair), and has deflated them. We print the

eigenvalue of interest, i.e., the one we are trying to compute, plus the one (or the

pair of complex conjugate eigenvalues) that is likely to converge after it. The last

column shows the actual residual norm achieved for the eigenvalues shown. After

execution, we computed the average error for the 6 computed eigenvalues and

found that it was equal to 0.68 × 10−14. The total execution time on an Alliant

FX-8 computer was about 2.13 seconds.

We reran the above test with a larger number of eigenvalues to compute,

namely nev = 10. The initial shift σ, was changed to σ0 = −0.5 + 0.2i and

we also changed krest to krest = 3. Initially, the run looked similar to the previ-

ous one. A pair of complex conjugate eigenvalues were found in the first Arnoldi

iteration, then another pair in the second iteration, then none in the third iteration

and one pair in the fourth iteration. It took two more iterations to get the eigenval-

ues number 7 and 8. For the last eigenvalue a new shift was taken because it took

three Arnoldi iterations without success. However the next shift that was taken

was already an excellent approximation and the next eigenvalue was computed in

the next iteration. The cost was higher than the previous run with the CPU time

on the Alliant FX-8 climbing to approximately 5.65 seconds.
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8.2 Polynomial Preconditioning

We have seen in the previous chapter a few different ways of exploiting polyno-

mials in A to accelerate simple algorithms such as Arnoldi’s method or subspace

iteration. In this section we will show another way of combining a projection type

technique such as Arnoldi’s method with these polynomials.

For a classical eigenvalue problem, one alternative is to use polynomial pre-

conditioning as is described next. The idea of polynomial preconditioning is to

replace the operatorB by a simpler matrix provided by a polynomial inA. Specif-

ically, we consider the polynomial in A

Bk = pk(A) (8.11)

where pk is a degree k polynomial. Ruhe [165] considers a more general method

in which pk is not restricted to be a polynomial but can be a rational function.

When an Arnoldi type method is applied to Bk, we do not need to form Bk ex-

plicitly, since all we will ever need in order to multiply a vector x by the matrix

Bk is k matrix-vector products with the original matrix A and some linear combi-

nations.

For fast convergence, we would ideally like that the r wanted eigenvalues of

largest real parts of A be transformed by pk into r eigenvalues of Bk that are very

large as compared with the remaining eigenvalues. Thus, we can proceed as in

the previous chapter by attempting to minimize some norm of pk in some region

subject to constraints of the form,

p(λ1) = 1 or

r
∑

j=1

µjp(λj) = 1 . (8.12)

Once again we have freedom in choosing the norm of the polynomials, to be either

the infinity norm or the L2-norm. Because the L2-norm offers more flexibility

and performs usually slightly better than the infinity norm, we will only consider

a technique based on the least squares approach. We should emphasize, however,

that a similar technique using Chebyshev polynomials can easily be developed.

Therefore, we are faced again with the function approximation problem described

in Section 3.3.

Once pk is calculated, the preconditioned Arnoldi process consists of using

Arnoldi’s method with the matrix A replaced by Bk = pk(A). This will pro-

vide us with approximations to the eigenvalues of Bk which are related to those

of A by λi(Bk) = pk(λi(A)) It is clear that the approximate eigenvalues of A
can be obtained from the computed eigenvalues of Bk by solving a polynomial

equation. However, the process is complicated by the fact that there are k roots of

this equation for each value λi(Bk) that are candidates for representing one eigen-

value λi(A). The difficulty is by no means unsurmountable but we have preferred

a more expensive but simpler alternative based on the fact that the eigenvectors

of A and Bk are identical. At the end of the Arnoldi process we obtain an or-

thonormal basis Vm which contains all the approximations to these eigenvectors.
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A simple idea is to perform a Galerkin process for A onto span[Vm] by explicitly

computing the matrix Am = V H
m AVm and its eigenvalues and eigenvectors. Then

the approximate eigenvalues of A are the eigenvalues of Am and the approximate

eigenvectors are given by Vmy
(m)
i where y

(m)
i is an eigenvector of Am associated

with the eigenvalue λ̃i. A sketch of the algorithm for computing nev eigenvalues

is as follows.

ALGORITHM 8.2 Least-Squares Preconditioned Arnoldi

1. Start: Choose the degree k of the polynomial pk, the dimension parameter

m and an initial vector v1. Set iev = 1.

2. Initial Arnoldi Step: Using the initial vector v1, perform m steps of the

Arnoldi method with the matrix A and get initial set of Ritz values for A.

3. Eigenvalue Loop:

(a) Adapt: From the previous convex hull and the new set of Ritz values

construct a new convex hull of the unwanted eigenvalues. Obtain the

new least squares polynomial pk of degree k.

(b) Update Hm: If iev > 1 then (re)-compute

hij = (pk(A)vj , vi) i, j = 1, iev − 1 .

(c) Arnoldi Iteration: For j = iev, iev + 1, ...,m do:

• Compute w := pk(A)vj

• Compute a set of j coefficients hij so that w := w −∑j
i=1 hijvi

is orthogonal to all previous vi’s, i = 1, 2, ..., j.

• Compute hj+1,j := ‖w‖2 and vj+1 := w/hj+1,j .

(d) Projection Step: Compute the matrixAm = V T
mAVm and itsm eigen-

values {λ̃1, . . . λ̃m}.
(e) Select the next wanted approximate eigenvalue λ̃iev and compute cor-

responding eigenvector z̃. Orthonormalize this eigenvector against

v1, . . . , viev−1 to get the approximate Schur vector ũiev and define

viev := ũiev .

(f) Test. If ρiev is small enough then accept viev as the next Schur vector

and set iev := iev + 1.

(g) Restart: if iev<nev goto 2.

The general structure of the algorithm is quite close to that of shift-and-invert

with deflation. What differentiates the two algorithms is essentially the fact that

here we need to adaptively compute a polynomial, while the shift-and-invert algo-

rithm computes an LU factorization of a shifted matrix. Practically, we must be

careful about the number of factorizations needed in shift-and-invert whereas the

computational cost of calculating a new polynomial is rather low. The difference
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between this method and those of the previous chapter is that here the polynomial

iteration is an inner iteration and the Arnoldi iteration is the outer loop, while

in the hybrid method, the two processes are serially following each other. Both

approaches can be viewed as means of accelerating the Arnoldi method.

It is clear that a version without the Schur-Wielandt deflation technique can

also be applied to the polynomial preconditioned Arnoldi method but this is not

recommended.

Example 8.2. We take the same example as in the previous section and illus-

trate the use of an experimental least squares Arnoldi program called ARNLS on

the above example. We fixed the dimension of the Krylov subspace to be always

equal to m = 15. The degree of the polynomial was taken to be 20. However,

note that the program has the capability to lower the degree by as much as is re-

quired to ensure a well conditioned Gram matrix in the least squares polynomial

problem. This did not happen in this run however, i.e. the degree was always 20.

Again, ARNLS was asked to compute the six rightmost eigenvalues. The run was

much longer so its history cannot be reproduced here. Here are however a few

statistics.

• Total number of matrix by vector multiplications for the run = 2053;

• Number of calls to the projection subroutines = 9;

• Total CPU time used on an Alliant FX-8 = 3.88 sec.

Note that the number of projection steps is more than twice that required for shift-

and-invert. The execution time is also more than 80 % higher. We reran the same

program by changing only two parameters: m was increased to m = 20 and the

degree of the polynomial was set to k = 15. The statistics are now as follows:

• Total number of matrix by vector multiplications for the run = 1144;

• Number of calls to the projection subroutines = 5;

• Total CPU time used = 2.47 sec.

Both the number of projection steps and the execution times have been dras-

tically reduced and have come closer to those obtained with shift-and-invert.

One of the disadvantages of polynomial preconditionings is precisely this

wide variation in performance depending on the choice of the parameters. To

some extent there is a similar dependence of the performance of ARNINV on the

initial shift, although in practice a good initial shift is often known. A superior

feature of shift-and-invert is that it allows to compute eigenvalues inside the spec-

trum. Polynomial preconditioning can be generalized to this case but does not

perform too well. We should also comment on the usefulness of using polyno-

mial preconditioning in general. A commonly heard argument against polynomial
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preconditioning is that is it suboptimal: In the Hermitian case the conjugate gra-

dient and the Lanczos methods are optimal polynomial processes in that they pro-

vide the best possible approximation, in some sense, to the original problem from

Krylov subspaces. Hence the argument that polynomial preconditioning would

not perform as well since it si likely to require a larger number of matrix by vector

multiplications. However, in the non Hermitian case the optimality result is no

longer valid. In fact even in the symmetric case the optimality result is only true

in exact arithmetic, which is far from real situations in which loss of orthogonal-

ity can be rather severe. A notable difference with the situation of linear system

solutions is that the overhead in computing the best ellipse and best polynomial

may now be amortized over several eigenvalues. In fact one single outer loop may

enable one to compute a few eigenvalues/eigenvectors and not just one.

The next question is whether or not a simple restarted Arnoldi algorithm

would perform better than a polynomial preconditioned method. The answer is

a definite no. A run with ARNIT [177] an iterative Arnoldi method with deflation

failed even to deliver the first eigenvalue of the test matrix used in the above ex-

ample. The initial vector was the same and we tried two cases m = 15, which

did not show any sign of convergence and m = 20 which might have eventu-

ally converged but was extremely slow. The non-restarted Arnoldi method would,

however be of interest, if not for its excessive memory requirement.

8.3 Davidson’s Method

Davidson’s method is a generalization of the Lanczos algorithm in that like the

Lanczos algorithm it uses projections of the matrix over a sequence of subspaces

of increasing dimension. It is indeed a preconditioned version of the Lanczos

method. The difference with the Lanczos algorithm is that the amount of work

required at each step increases at each iteration because, just like in Arnoldi’s

method, we must orthogonalize against all previous vectors. From the implemen-

tation point of view the method is akin to Arnoldi’s method. For example, the

process must be restarted periodically with the current best estimate of the wanted

eigenvector.

The basic idea of the algorithm is rather simple. It consists of generating an

orthogonal set of vectors onto which a projection is performed. At each step j,
(this is the equivalent to the j-th step in the Lanczos algorithm) the residual vector

of the current approximation λ̃, ũ to the desired eigenpair is computed. The result-

ing vector is then multiplied by (M − λ̃I)−1, where M is some preconditioning

matrix. In the original algorithms M was simply the diagonal of the matrix A.

Thus, the algorithm consists of two nested loops. The process for computing

the largest (resp. smallest) eigenvalue of A, can be described as follows.

ALGORITHM 8.3 Davidson’s method.

1. Start: Choose an initial unit vector v1.

2. Iterate: Until convergence do:
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3. Inner Loop: for j = 1, . . . ,m do:

• Compute w := Avj .

• Compute V T
j w, the last column of Hj := V T

j AVj .

• Compute the largest eigenpair λ, y of Hj .

• Compute the Ritz vector u := Vjy and its associated residual vector

r := Au− λu.

• Test for convergence. If satisfied Return.

• Compute t :=Mjr (skip when j = m).

• Orthogonalize t against Vj via Modified Gram-Schmidt: Vj+1 :=
MGS([Vj , t]) (skip when j = m).

4. Restart: Set v1 := u and go to 3.

The preconditioning matrix Mj is normally some approximation of (A −
λI)−1. As was already mentioned the simplest and most common preconditioner

Mj is (D − λI)−1 where D is the main diagonal of A (Jacobi Preconditioner). It

can only be effective when A is nearly diagonal, i.e., when matrix of eigenvectors

is close to the identity matrix. The fact that this is often the situation in Quan-

tum Chemistry explains the popularity of the method in this field. However, the

preconditioner need not be as simple. It should be noticed that, without precon-

ditioning, i.e., when if Mj = I for all j, then the sequence of vectors vj coincide

with those produced by the Lanczos algorithm, so that the Lanczos and Davidson

algorithms are equivalent in this case.

When several eigenvalues are sought or when it is known that there is a cluster

of eigenvalues around the desired eigenvalue then a block version of the algorithm

may be preferred. Then several eigenpairs of Hj will be computed at the same

time and several vectors are added to the basis Vj instead of one.

We state a general convergence result due to Sadkane [182]. In the following,

we assume that we are seeking to compute the largest eigenvalue λ1. We denote by

Pj the projection onto a subspace Kj spanned by an orthonormal basis Vj . Thus,

the non-restarted Davidson algorithm is just a particular case of this situation.

Theorem 8.1 Assuming that the Ritz vector u
(j)
1 belongs to Kj+1, then the se-

quence of Ritz values λ
(j)
1 is an increasing sequence that is convergent. If, in

addition, the preconditioning matrices are uniformly bounded and uniformly pos-

itive definite in the orthogonal complement of Kj and if the vector (I −Pj)Mjrj
belongs to Kj+1 for all j then the limit of λ

(j)
1 as j → ∞ is an eigenvalue of A

and u
(j)
1 admits a subsequence that converges to an associated eigenvector.

Proof. For convenience the subscript 1 is dropped from this proof. In addition we

assume that all matrices are real symmetric. That λ(j) is an increasing sequence

is a consequence of the assumptions and the min-max theorem. In addition, the

λ(j) is bounded from above by λ and as result it converges.
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To prove the second part of the theorem, let us define zj = (I − Pj)Mjrj
and wj = zj/‖zj‖2. Note that since u(j) ⊥ zj and rj ⊥ Kj we have,

zHj Au
(j) = zHj (λ(j)u(j) + rj)

= rHj Mj(I − Pj)rj

= rHj Mjrj . (8.13)

Consider the 2-column matrix Wj = [u(j), wj ] and let

Bj =WH
j AWj =

(

λ(j) αj

αj βj

)

(8.14)

in which we have set αj = wH
j Au

(j) and βj = wH
j Awj . Note that by the

assumptions span{Wj} is a subspace of Kj+1. Therefore, by Cauchy’s interlace

theorem and the optimality properties of the Rayleigh Ritz procedure the smallest

of two eigenvalues µ
(j)
1 , µ

(j)
2 of Bj satisfies the relation

λ(j) ≤ µ(j)
1 ≤ λ(j+1).

The eigenvalues of Bj are defined by (µ−λ(j))(µ−βj)−α2
j = 0 and as a result

of |µ(j)
1 | ≤ ‖A‖2 and |βj | ≤ ‖A‖2 we

α2
j ≤ 2(µ

(j)
1 − λ(j))‖A‖2 ≤ (λ(j+1) − λ(j))‖A‖2 .

The right hand side of the above inequality converges to zero as j → ∞ and so

limj→∞ = 0. From (8.13),

rHj Mjrj = ‖zj‖2αj ≤ ‖(I − Pj)Mjrj‖αj ≤ ‖Mjrj‖αj .

Since we assume that Mj is uniformly bounded and using the fact that ‖rj‖2 ≤
2‖A‖2 the above inequality shows that

lim
j→∞

rHj Mjrj = 0.

In addition, since rj belongs to the orthogonal complement of Kj and by the

uniform positive definiteness of the sequence Mj , r
H
j Mjrj ≥ γ‖rj‖22 where γ

is some positive constant. Therefore, limj→∞ rj = 0. To complete the proof, let

λ̄ the limit of the sequence λ(j). The u(j)’s are bounded since they are all of norm

unity so they admit a limit point. Taking the relation rj = (A− λ(j)I)u(j), to the

limit, we see that any such limit point ū, must satisfy (A− λ̄I)ū = 0.

The result given by Sadkane includes the more general case where more than

one eigenvalue is computed by the algorithm and is therefore more general, see

Exercise P-8.1 for details. The restriction on the positive definiteness of the Mj ’s

is a rather severe condition in the case where the eigenvalue to be computed is not

the largest one. The fact that Mj must remain bounded is somewhat less restric-

tive. However, in shift-and-invert preconditioning, for example, an unbounded
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Mj is sought rather than avoided. If we want to achieve rapid convergence, it is

desirable to have Mj close to some (A− σI)−1 in some sense and σ close to the

desired eigenvalue. The assumptions of the theorem do not allow us to take σ too

close from the desired eigenvalue. Nevertheless, this result does establish conver-

gence in some instances and we should add that little else is known concerning

the convergence of Davidson’s algorithm.

8.4 The Jacobi-Davidson approach

The Jacobi-Davidson approach can be viewed as an improved version of the David-

son approach and it is best introduced via a perturbation argument which in effect

describes the Newton approach for solving nonlinear systems of equations.

8.4.1 Olsen’s Method

We assume that we have a preconditioner, i.e., an approximationM to the original

matrix A and write

M = A+ E. (8.15)

Along with this, an approximate eigenpair (µ, z) of A is available which satisfies

Az = µz + r (8.16)

where r is the residual r ≡ (A− µI)z.

Our goal is to find an improved eigenpair (µ+η, z+v) to the current eigenpair

(µ, z). For this we can set as a goal to solve the following equation for the desired

eigenpair:

A(z + v) = (µ+ η)(z + v).

Neglecting the second order term ηv, replacing A by its preconditioner M , and

rearranging the equation we arrive at the so-called correction equation

(M − µI)v − ηz = −r. (8.17)

The unknowns are η (a scalar) and v (a vector). This is clearly an under-dertermined

system and a constraint must be added. For example, we could require that the

new vector z + v be of 2-norm unity. This will yield the quadratic constraint,

(z + v)H(z + v) = 1 from which second-order terms can be ignored to yield the

linear condition

zHv = 0. (8.18)

Note that a more general constraint of the form wHv = 0 can also be imposed

where w is some other vector.

The equations (8.17) and (8.18) can be put in the following matrix form:

(

M − µI −z
zH 0

)(

v
η

)

=

(

−r
0

)

. (8.19)
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The unknown v can be eliminated from the second equation. This is done by

assuming that M − µI is nonsingular and extracting v = (M − µI)−1[ηz − r]
from the first equation which is substituted in the second equation to yield zHv =
zh(M−µI)−1[ηz−r] = 0 or zH(M−µI)−1ηz = (M−µI)−1r. This determines

η which is substituted in the first part of (8.19). In the end, the solution to the

system (8.19) is:

η =
zH(M − µI)−1r

zH(M − µI)−1z
v = −(M − µI)−1(r − ηz). (8.20)

This solution was proposed by Olsen et al [139] and the corresponding correction

is sometimes known as Olsen’s method.

It is worthwhile to generalize the above equations slightly. As was mentioned

earlier we can replace the orthogonality condition (8.18) by some other orthogo-

nality condition of the form

wHv = 0. (8.21)

In this situation, (8.19) becomes

(

M − µI −z
wH 0

)(

v
η

)

=

(

−r
0

)

. (8.22)

and its solution (8.20) is replaced by

η =
wH(M − µI)−1r

wH(M − µI)−1z
v = −(M − µI)−1(r − ηz). (8.23)

8.4.2 Connection with Newton’s Method

We already mentioned the relationship of this approach with Newton’s method.

Indeed, consider one step of Newton’s method for solving the (nonlinear) system

of equations
{

(A− λI)u = 0
1
2u

Tu− 1 = 0
.

The unknown is the pair
(

u
λ

)

and the current approximation is
(

z
µ

)

. One step of

Newton’s method corresponds to the following operation:

(

znew
µnew

)

=

(

z
µ

)

−
(

(A− µI) −z
zT 0

)−1(
r
0

)

.

Compare the Jacobian matrix on the right-hand side with that of the correc-

tion equation (8.17). If we replace the matrix A by its approximation M in the

Jacobian matrix, and write unew = z + v, λnew = λnew + η, we would obtain

the exact same solution (8.20) as that obtained from Olsen’s method. The result

(8.20) is therefore equivalent to using an approximate Newton step, whereby the

matrix A in the Jacobian is replaced by the preconditioner M .
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8.4.3 The Jacobi-Davidson Approach

Yet another way to characterize the solution to the system (8.19) is to express v as

the unique solution of the form v = (M − µI)−1(ηz − r) which is perpendicular

to z, i.e., we need to

Find v = (M − µI)−1(−r + ηz), such that zHv = 0. (8.24)

Indeed, the first equation of (8.17) yields the form of v, which is v = (M −
µI)−1(ηz − r) and the second stipulates that this solution must be orthogonal to

z. Note that in the above equation, η is a parameter which is selected so that the

orthogonality zHv = 0 is satisfied, where v depends on η. The Jacobi-Davidson

formulation developed by Fokkema et al [62] rewrites the solution using projec-

tors.

Let Pz be a projector in the direction of z which leaves r invariant, i.e., such

that

Pzz = 0; Pzr = r.

It can be easily seen that any such projector is of the form

Pz = I − zsH

sHz
, (8.25)

where s is a vector that is orthogonal to r. The η-parameterized equation in (8.24)

yields the relation (M − µI)v = −r + ηz . Multiplying by Pz simplifies this

relation to

Pz(M − µI)v = −r. (8.26)

This can now be viewed as a singular system of equations which has infinitely

many solutions. Indeed, it is a consistent system since it has the particular solution

−(M − µI)−1r due to the relation Pzr = r. In fact one may ask what are all the

solutions to the above system?

Any vector v satisfying the relation

(M − µI)v = −r + ηz for η ∈ C (8.27)

is solution to the system (8.26) as can be readily verified by multiplying (8.27)

by Pz and recalling that Pzr = r and Pzz = 0. Conversely, for any solution

v to (8.26) the vector t = (M − µI)v is such that Pzt = −r. Therefore, the

expression (8.25) of Pz implies (I− zsH

sHz
)t = −r showing that t = −r+ηz, with

η = sHt/sHz. Hence, this vector v is a member of the solution set described by

(8.27).

In other words systems (8.26) and (8.27) are mathematically equivalent in

that they have the sets of solutions. The solutions of (8.27) are clearly the vectors

vη given by

vη = −(M − µI)−1r + η(M − µI)−1z, η ∈ C. (8.28)

So far we have ignored the constraint (8.21). Let Pw any projector in the

direction of w, so that Pww = 0. The constraint that v is orthogonal to w can be
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expressed by the relation Pwv = v. So to obtain the desired solution from (8.26)

we only need to replace this system by

[Pz(M − µI)Pw]v = −r (8.29)

with the understanding that the solution is Pwv instead of v.

We have therefore rewritten the system completely using projectors. The

result is summarized in the following proposition which states that the solutions

of the system (8.29) and that given by (8.23) are identical.

Proposition 8.2 All the solutions of the (singular) system (8.26) are given by

(8.28). The unique solution among these that is orthogonal to w is given by (8.23)

and it is the unique solution v = Pwv of (8.29).

In orthogonal projection methods (e.g. Arnoldi) we have r ⊥ z, so we can

take Pz = I − zzH assuming ‖z‖2 = 1. As for Pw, if we use to the common

constraint (8.18) instead of the more general constraint (8.21) it is natural to take

again Pw = I − zzH . With these assumptions, the Jacobi-Davidson correction

using a single vector z, consists in finding v such that :

(I − zzH)(M − µI)(I − zzH)v = −r v ⊥ z.

The main attraction of this viewpoint is that we can use iterative methods for

the solution of the correction equation, i.e., exact solutions of systems with the

matrix M are not explicitly required.

Block generalizations of the above scheme are straightforward. Instead of a

vector z, we will use an orthogonal matrix Z, and the above system becomes

(I − ZZH)(M − µI)(I − ZZH)v = −r.

An interpretation of the above equation is that we need to solve the correction in a

reduced subspace, namely one that is orthogonal to the span of Z. This will tend

to maximize ‘new’ information injected to the approximation.

8.5 The CMS – AMLS connection

A method for computing eigenvalues of partitioned matrices was introduced in

structural dynamics by [32, 92] and was later extended [8] to a method known

as the Algebraic Multi-Level Substructuring (AMLS). The method takes its root

from domain decomposition ideas and it can be recast in the framework of the

correction equations seen earlier.

Let A ∈ R
n×n be a symmetric real matrix, partitioned as

A =

(

B E

ET C

)

, (8.30)

where B ∈ R
(n−p)×(n−p), C ∈ R

p×p and E ∈ R
(n−p)×p. The underlying

context here is that the above matrix arises from the discretization of a certain
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operator (e.g., a Laplacean) on a domain Ω which is then partitioned into several

subdomains. An illustration is shown in Figure 8.1 for the simplest case of two

subdomains. The subdomains, which may overlap, are separated by an interface

Γ. The unknowns in the interior of each subdomain Ωi are completely decou-

pled from the unknowns in all other subdomains. Coupling among subdomains

is through the unknowns of the interface Γ and the unknowns in each Ωi that are

adjacent to Γ. With the situation just described, the matrix B is a block diagonal

matrix. Each diagonal block will represent the unknowns which are interior for

each domain. The C block correspond to all the interface variables.

Γ

Ω
Ω1

2

Figure 8.1: The simple case of two subdomains Ω1, Ω2 and an interface Γ (source

of figure: [5]).

The eigenvalue problem Au = λu, can be written

(

B E

ET C

)(

u
y

)

= λ

(

u
y

)

, (8.31)

where u ∈ C
n−p and y ∈ C

p. The method of Component Mode Synthesis (CMS),

was introduced in the 1960s in structural dynamics for computing eigenvalues

of matrices partitioned in this form, see [32, 92]. The first step of the method

is to solve the problem Bv = µv. This amounts to solving each of the decou-

pled smaller eigenvalue problems corresponding to each subdomain Ωi separately.

The method then injects additional vectors to account for the coupling among

subdomains. With the local eigenvectors and the newly injected eigenvectors, a

Rayleigh-Ritz projection procedure is then performed. We now consider these

steps in detail.

Consider the matrix

U =

(

I −B−1E
0 I

)

. (8.32)

This block Gaussian eliminator for matrix (8.30) is selected so that

UTAU =

(

B 0
0 S

)

,
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where S is the Schur complement

S = C − ETB−1E. (8.33)

The original problem (8.31) is equivalent to the generalized eigenvalue prob-

lem UTAUu = λUTUu, which becomes
(

B 0
0 S

)(

u
y

)

= λ

(

I −B−1E
−ETB−1 MS

)(

u
y

)

, (8.34)

where MS = I + ETB−2E.

The next step of CMS is to neglect the coupling matrices (blocks in positions

(1,2) and (2,1)) in the right-hand side matrix of (8.34). This yields the uncoupled

problem

Bz = µ z (8.35)

Sw = η MSw. (8.36)

Once the wanted eigenpairs have been obtained from (8.35–8.36), they are

utilized in a projection method (Rayleigh-Ritz) applied to the original problem

(8.34). The basis used for this projection is of the form
{

ẑi =
(zi
0

)

i = 1, . . . ,mB ; ŵj =

(

0

wj

)

j = 1, . . . ,mS

}

, (8.37)

where mB < (n − p) and mS < p. It is important to note that the projection is

applied to (8.34) rather than to the original problem (8.31). There is an inherent

change of basis between the two and, for reasons that will become clear shortly,

the basis {ẑi}i, {ŵj}j , is well suited for the transformed problem rather than the

original one.

We now consider this point in detail. We could also think of using the trans-

formed basis
{

ẑi =
(zi
0

)

i = 1, . . . ,mB ; ûj =

(−EB−1wj

wj

)

j = 1, . . . ,mS

}

,

(8.38)

for solving the original problem (8.31) instead of basis (8.37). As can be easily

seen, these two options are mathematically equivalent.

Lemma 8.1 The Rayleigh-Ritz process using the basis (8.37) for problem (8.34)

is mathematically equivalent to the Rayleigh-Ritz process using the basis (8.38)

for problem (8.31).

Proof. For a given matrix A, and a given basis (not necessarily orthogonal) con-

sisting of the columns of a certain matrix Z, the Rayleigh Ritz process can be

written as

ZTAZv = λZTZv

If Z is the basis (8.37) then the basis (8.38) is nothing but UZ. Comparing the

two projection processes gives the result.
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8.5.1 AMLS and the Correction Equation

It is possible to view AMLS from the angle of the correction equation. First,

AMLS corrects the eigenvectors of B in an attempt to obtain better approxima-

tions to the eigenvectors of the whole matrix A. This is done by exploiting the

Schur complement matrix and constructing a good (improved) basis to perform a

Rayleigh Ritz projection.

Consider eigenvectors of B associated with a few of its smallest eigenvalues

µi, i = 1, · · · ,mB :

Bzi = µizi .

One can consider the expanded version of zi into the whole space,

ẑi =
(zi
0

)

as approximate eigenvectors of A. The eigenvectors obtained in this manner

amount to neglecting all the couplings and are likely to yield very crude approx-

imations. It is possible to improve this approximation via a correction equation

as is was done for the Davidson or Jacobi-Davidson approach, or in an inverse

iteration approach.

An interesting observation is that the residuals ri = (A−µI)ẑi have compo-

nents only on the interface variables, i.e., they have the shape:

ri =

(

0
ET zi

)

. (8.39)

where the partitioning corresponds to the one above.

Consider now a Davidson-type correction in which the preconditioner is the

matrix (A−µI). We are to solve the equation (A−µI)ui = ri where ri is given

by (8.39) so that the system to solve is

(A− µI)ui =
(

0
ET zi

)

(8.40)

The matrix A− µI can be block-factored as

(A− µI) =
(

I 0
ET (B − µI)−1 I

)(

B − µI E
0 S(µ)

)

(8.41)

where S(µ) is the Schur complement

S(µ) = C − µI − ET (B − µI)−1E .

The particular form of the right-hand side (8.40) leads to a solution that simplifies

considerably. We find that

ui =

(

−(B − µI)−1Ewi

wi

)

with wi = S(µ)−1ET zi. (8.42)
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There is a striking similarity between the result of this correction when the shift

µ = 0 is used, and the basis vectors used in the projection process in AMLS. The

basis (8.38) used in the AMLS correction consists of the vectors

(

zi
0

) (

−B−1Ewj

wj

)

(8.43)

where the wi’s are (generalized) eigenvectors of the Schur complement problem

(8.36), and the zi’s are eigenvectors of the B block. In contrast, Jacobi-Davidson

computeswi’s from a form of inverse iteration applied to S(µ). Notice that vectors

to which the inverse of S(µ) is applied to vectors in the range of ET .

Next consider a correction obtained from a single vector inverse iteration. In

this case, for each approximate eigenvector zi we would seek a new approximation

xi by solving an equation of the type (A−µI)xi = ẑi , where µ is a certain shift,

often a constant one during the inverse iteration process to reduce the cost of the

factorization.

Let us define

ti = (B − µI)−1zi (8.44)

wi = −S(µ)−1ET ti. (8.45)

Then, taking the factorization (8.41) and the particular structure of ẑi into account

we find that the solution xi the system (A− µI)xi = ẑi is

xi =

(

ti − (B − µI)−1Ewi

wi

)

. (8.46)

Note that the wi’s are again different from those of AMLS or the Davidson ap-

proach. If the zi are eigenvectors of the B block then this basis would be equiva-

lent to the one where each zi is replaced by B−1zi = µ−1
i zi.

8.5.2 Spectral Schur Complements

The following equations result from (8.34)

Bu = λ(u−B−1Ey), (8.47)

Sy = λ(−ETB−1u+MSy). (8.48)

It is easyly shown that when E is of full rank and B is nonsingular, then (λ, u)
cannot be an eigenpair of B. This is because if (λ, u) is an eigenpair for B, then

we would have B−1Ey = 0 and since E if of full rank, then y would be zero.

However, since y and u cannot be both equal to zero, ETB−1u 6= 0 and (8.48)

would imply that λ = 0 which contradict the assumption that B is nonsingular.

The result is that any pair (λ, u), where (λ, u, y) is a solution of (8.34), cannot be

an eigenpair for B.

A consequence of this is that when λ is an eigenvalue of B, then equation

(8.47) always has a solution in the orthogonal of the eigenspace of B associated
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with this eigenvalue. We can therefore always solve the system (B − λI)u =
−B−1y derived from (8.47) provided the inverse of B is interpreted as a pseudo-

inverse. In what follows, (B − λI)−1 will mean the pseudo-inverse (B − λI)†
when λ is an eigenvalue of B. The notation is not changed because this is a

situation of little practical interest in general as it occurs rarely.

We can substitute (8.47) into (8.48) to obtain

Sy = λ
(

λETB−1(B − λI)−1B−1Ey +Msy
)

,

which results in the equivalent nonlinear eigenvalue problem

[

S − λ
(

ETB−2E
)

− λ2ETB−1(B − λI)−1B−1E
]

y = λy. (8.49)

Rewriting the above problem in an expanded notation we obtain the following

nonlinear eigenvalue problem

[

C − ETB−1(B + λI + λ2(B − λI)−1)B−1E
]

y = λy. (8.50)

We can show that the above problem is equivalent to a nonlinear eigenvalue prob-

lem involving the spectral Schur complement

S(λ) = C − ET (B − λI)−1E. (8.51)

The first resolvent equality (3.15) seen in Chapter 3, yields

(B − λI)−1 −B−1 = λ(B − λI)−1B−1.

Substitute the above relation to transform the term λ2(B − λI)−1)B−1 in the

expression of the left hand matrix in (8.50) which we denote by Ŝ(λ):

Ŝ(λ) = C − ETB−1
(

I + λB−1 + λ(B − λI)−1 − λB−1
)

E

= C − ET
(

B−1 + λB−1(B − λI)−1
)

E

= C − ET
(

B−1 −B−1 + (B − λI)−1
)

E

= C − ET (B − λI)−1E

= S(λ).

In fact, the Schur complement S can be viewed as the first term of the Taylor

series expansion of S(λ) with respect to λ around λ = 0. The standard expansion

of the resolvent, see, equation (3.14) in Chapter 3, which in our situation can be

written as

(B − λI)−1 = B−1
∞
∑

k=0

(λB−1)k =

∞
∑

k=0

λkB−k−1, (8.52)

leads to the following series expansion for S(λ)

S(λ) = C − ET
∞
∑

k=0

(λkB−k−1)E

= C − ET
(

B−1 + λB−2 + λ2B−3 + · · ·
)

E. (8.53)
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In AMLS the second part of the projection basis Z (see (8.37)) consists of

eigenvectors associated with the smallest eigenvalues of the generalized eigen-

problem Sw = λMSw which translates to

[C − ETB−1E]w = λ(I + ETB−2E)w

or equivalently,

(

C − ET (B−1 + λB−2)E
)

w = λw. (8.54)

In light of relation (8.53), the above eigenproblem can clearly be considered as

a truncated version of the original nonlinear problem (8.50), where the terms

λkB−k−1 for k ≥ 2 in the expansion of the resolvent (B − λI)−1 are dropped.

Thus, the eigenvector w can be seen as a direct approximation to the bottom part

y of the exact eigenvector of (8.34).

The above observations immediately lead to some possible suggestions on

how to improve the approximation by including additional terms of the infinite

expansion. We can for example devise a second order approximation to (8.50)

obtained by adding the term λ2B−3, see [5] for details.

Next we analyze how AMLS expands the approximation of the lower part y
to an approximation [u; y]T of an eigenvector of the complete problem (8.34).

8.5.3 The Projection Viewpoint

Consider again the nonlinear Schur complement (8.51). The eigenvalues of the

original problem, which do not belong to the spectrum ofB, can be obtained from

those of the nonlinear eigenvalue problem

S(λ)x = λx.

Proposition 8.3 Let λ, y be an eigenpair of the nonlinear eigenvalue problem

S(λ)y = λy

where S(λ) is defined by (8.51). Then, λ is an eigenvalue of (8.31) with associated

eigenvector:
(

−(B − λI)−1Ey
y

)

(8.55)

Proof. The proof consists of a simple verification.

Now assume that we have a good approximation to the nonlinear Schur com-

plement problem, i.e., to a solution λ and y of the nonlinear problem (8.49). It is

clear that the best we can do to retrieve the corresponding eigenvector of (8.31) is

to use substitution, i.e., to compute the top part of (8.55):

u = −(B − λI)−1Ey, (8.56)
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which will give us the top part of the exact eigenvector. This entails factoring the

matrix (B − λI) for each different eigenvalue λ, which is not practical. As was

seen in the previous section, AMLS extracts an approximation to the nonlinear

problem (8.49) by solving the generalized eigenvalue problem (8.54) and then it

replaces the substitution step (8.56) by a projection step. Specifically, once an

approximate pair λ, y is obtained, AMLS computes approximate eigenvectors to

the original problem by a projection process using the space spanned by the family

of vectors:
{(

vBi
0

)}

,

{(−B−1Eyj
yj

)}

, (8.57)

in which vBi are eigenvectors of B associated with its smallest eigenvalues. Note

that these two sets of vectors are of the form U
(

vB
i

0

)

, for the first, and U
(

0
yj

)

for the second, where U was defined earlier by equation (8.32). The question is:

why is this a good way to replace the substitution step (8.56)? Another issue is

the quality we might expect from this process.

Ideally, the prolongation matrix U should be replaced by one which depends

on the eigenvalue λ, namely

U(λ) =

(

I −(B − λI)−1E
0 I

)

.

Indeed, if we were to use the prolongator U(λ) instead of U , then U(λ)
(

0
yj

)

would be an exact eigenvector (if the approximation to y that we use were exact).

It is not appealing in practice to use a different prolongator U(λ) for each

different eigenvalue λ. What is interesting and important to note is that U(λ)
and U are likely to be close to each other for small (in modulus) eigenvalues λ.

Furthermore, the difference between the two consists mostly of components related

to eigenvectors ofB which are associated with eigenvalues close to λ. It is helpful

to examine this difference:

[U(λ)− U ]

(

0

y

)

=

(

0 −((B − λI)−1 −B−1)E
0 0

)(

0

y

)

=

(

−λ (B − λI)−1B−1Ey
0

)

.

In order to compensate for this difference, it is natural to add to the subspace

eigenvectors of B in which this difference will have large components, i.e., eigen-

vectors corresponding to the smallest eigenvalues of B. This is at the heart of the

approximation exploited by AMLS which incorporates the first set in (8.57).

PROBLEMS

P-8.1 Consider a more general framework for Theorem 8.1, in which one is seeking l
eigenvalues at a time. The new vectors are defined as

ti,j = M−1
i,j ri,j i = 1, 2, . . . l.
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where i refers to the eigenvalue number and j is the step number. As a result the dimension

of the Davidson subspace increases by l at every step instead of one. The assumptions on

each of the individual preconditioners for each eigenvalue are the same as in Theorem 8.1.

(1) Establish that the first part of Theorem 8.1 is still valid.

(2) To show the second part, define zij = (I−Pj)Mi,jrij and similarly wij = zij/‖zij‖2
and

Wj = [u
(j)
1 , u

(j)
2 , . . . , u

(j)
i , wij ].

Show that Wj is orthonormal and that the matrix Bi,j = WH
j AWj has the form,

Bi,j =















λ
(j)
1 α1j

. . .
...

λ
(j)
i αij

α1j · · · αij βj















(8.58)

in which we set αkj = wH
ijAu

(j)
k ) and βj = wH

ijAwij .

(3) Show that

λ
(j)
k ≤ µ

(j)
k ≤ λ

(j+1)
k k = 1, 2, . . . , i.

(4) Taking the Frobenius norm of Bi,j and using the fact that

tr(Bi,j) =

i+1
∑

k=1

µ
(j)
k = βj +

i
∑

k=1

λ
(j)
k

show that

2
i

∑

k=1

α2
kj =

i
∑

k=1

(µ
(j)
k − λ

(j)
k )(µ

(j)
k + λ

(j)
k − µ

(j)
i+1 − βj)

≤ 4‖A‖2
i

∑

k=1

(µ
(j)
k − λ

(j)
k ) .

(5) Complete the proof of the result similarly to Theorem 8.1.

P-8.2 Using the result of Exercise P-6.3 write a simpler version of the shift-and-invert

Arnoldi Algorithm with deflation, Algorithm 8.1, which does not require the (k − 1) ×
(k− 1) principal submatrix of Hm, i.e., the (quasi) upper triangular matrix representing of

(A− σI)−1 in the computed invariant subspace.

P-8.3 How can one get the eigenvalues of A from those of B+ or B−. What happens if

the approximate eigenvalues are close and complex? What alternative can you suggest for

recovering approximate eigenvalues of A from a given projection process applied to either

of these two real operators.

P-8.4 Establish the relation (8.9).

NOTES AND REFERENCES. The notion of preconditioning is well-known for linear systems but it

is not clear who defined this notion first. In the survey paper by Golub and O’Leary [78] it is stated

that “The term preconditioning is used by Turing (1948) and by then seems standard terminology

for problem transforming in order to make solutions easier. The first application of the work to the
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idea of improving the convergence of an iterative method may be by Evans (1968), and Evans (1973)

and Axelsson (1974) apply it to the conjugate gradient algorithm”. However, the idea of polynomial

preconditioning is clearly described in a 1952 paper by Lanczos [113], although Lanczos does not

use the term “preconditioning” explicitly. The idea was suggested later for eigenvalue calculations by

Stiefel who employed least-squares polynomials [208] and Rutishauser [166] who combined the QD

algorithm with Chebyshev acceleration. The section on Shift-and-Invert preconditioning is adapted

from [152]. Davidson’s method as described in [41] can be viewed as a cheap version of Shift-and-

Invert , in which the solution of the linear systems are solved (very) inaccurately. The method is well-

known to the physicists or quantum chemists but not as well known to numerical analysts. The lack of

theory of the method might have been one reason for the neglect. Generalizations and extensions of

the method are proposed by Morgan and Scott [132] in the Hermitian case but little has been done in

the non-Hermitian case.

The Jacobi-Davidson enhancement was developed in the mid 1990s [62]. Many of the ideas of

the method can also be found in the Trace Minimization algorithm (’Tracemin’) of Sameh and Wis-

niewski [185, 184], which predates the Jacobi-Davidson work by about 14 years. Also, other simplified

forms of this technique existed already, since the method represents in effect a Newton-type approach.

The viewpoint of projections found in the Jacobi-Davidson work [62] and the insight provided by the

ensuing articles gave an important impetus to this general approach. A few packages have been written

based on Jacobi-Davidson. For example, JADAMILU 1, developed by Matthias Bollhöfer and Yvan

Notay [14] is a package written in fortran-77 and exploits incomplete LU factorizations and iterative

solvers.

The AMLS approach was developed mainly as a powerful replacement to the shift-and-invert

Block-Lanczos algorithm which was used in certain structural engineering problems [8]. It is in

essence a form of shift-and-invert approach based on the shift σ = 0 and the use of domain-decomposition

concepts for factoring the matrix. Because it uses a single shift, and it is a single-shot method, its ac-

curacy tends to be limited for the eigenvalues that are far from zero. Some of the material on the new

sections 8.4 and 8.5 is adapted from [158], and [5].

1http://homepages.ulb.ac.be/~jadamilu/

http://homepages.ulb.ac.be/~jadamilu/


Chapter 9

NON-STANDARD EIGENVALUE

PROBLEMS

Many problems arising in applications are not of the standard form Ax = λx but of

the ‘generalized’ form Ax = λBx. In structural engineering, the A matrix is called

the stiffness matrix and B is the mass matrix. In this situation, both are symmetric

real and often B is positive definite. Other problems are quadratic in nature, i.e.,

they take the form

λ2Ax+ λBx+ Cx = 0.

This chapter gives a brief overview of these problems and of some specific techniques

that are used to solve them. In many cases, we will seek to convert a nonstandard

problems into a standard one in order to be able to exploit the methods and tools of

the previous chapters.

9.1 Introduction

Many eigenvalue problems arising in applications are either generalized, i.e., of

the form

Ax = λBx (9.1)

or quadratic,

λ2Ax+ λBx+ Cx = 0.

Such problems can often be reduced to the standard form Ax = λx under a few

mild assumptions. For example whenB is nonsingular, then (9.1) can be rewritten

as

B−1Ax = λx . (9.2)

As will be explained later, the matrix C = B−1A need not be computed explic-

itly in order to solve the problem. Similarly, the quadratic eigen-problem can be

transformed into a generalized eigen-problem of size 2n, in a number of different

ways.

Thus, it might appear that these nonstandard problems may be regarded as

particular cases of the standard problems and that no further discussion is war-

ranted. This is not the case. First, a number of special strategies and techniques

must be applied to improve efficiency. For example, when A is symmetric and B

219
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is symmetric positive definite then an alternative transformation of (9.1) will lead

to a Hermitian problem. Second, there are some specific issues that arise, such as

the situation where both A and B are singular matrices, which have no equivalent

in the standard eigenvalue context.

9.2 Generalized Eigenvalue Problems

In this section we will summarize some of the results known for the generalized

eigenvalue problem and describe ways of transforming it into standard form. We

will then see how to adapt some of the techniques seen in previous chapters.

9.2.1 General Results

The pair of matrices A,B in the problem (9.1) is often referred to as a matrix

pencil. We will more often use the term matrix pair than vmatrix pencil. If there

is no particular reason why one of the two matrices A and B should play a special

role, then the most natural way of defining eigenvalues of a matrix pair is to think

of them as pairs (α, β) of complex numbers. Thus, (α, β) is an eigenvalue of the

pair (A,B) if by definition there is a vector u, called an associated eigenvector,

such that

βAu = αBu. (9.3)

Equivalently, (α, β) is an eigenvalue if and only if

det(βA− αB) = 0 .

When (α, β) is an eigenvalue pair for (A,B), then (ᾱ, β̄) is an eigenvalue pair for

(AH , BH) since det(βA − αB)H = 0. The left eigenvector for A,B is defined

as a vector for which

(βA− αB)Hw = 0. (9.4)

This extension of the notion of eigenvalue is not without a few drawbacks. First,

we note that the trivial pair (0, 0) always satisfies the definition. Another diffi-

culty is that there are infinitely many pairs (α, β) which can be termed ‘general-

ized eigenvalues’ to represent the same ‘standard eigenvalue’. This is because we

can multiply a given (α, β) by any complex scalar and still get an eigenvalue for

the pair. Thus, the standard definition of an eigenvalue corresponds to the case

where B = I and β = 1. There are three known ways out of the difficulty. A

popular way is to take the ratio α/β as an eigenvalue, which corresponds to select-

ing the particular pair (α, 1) in the set. When β is zero, the eigenvalue takes the

value infinity and this may not be satisfactory from the numerical point of view.

A second way would be to use pairs (α, β) but scale them by some norm in C
2,

e.g., so that |α|2 + |β|2 = 1. Finally, a third way, adopted by Stewart and Sun

[206] is to denote by 〈α, β〉 the set of all pairs that satisfy (9.3). The eigenvalue

is then a set instead of an element in C
2. We will refer to this set as a generalized

eigenvalue. However, we will sacrifice a little of rigor for convenience, and also
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call any representative element (α, β), in the set, at the exclusion of (0, 0), an

eigenvalue pair. Note the distinction between the notation of an eigenvalue pair

(., .) and the set to which it belongs to, i.e., the generalized eigenvalue, denoted

by 〈., .〉. This definition is certainly radically different from, and admittedly more

complicated than, the usual definition, which corresponds to arbitrarily selecting

the pair corresponding to β = 1. On the other hand it is more general. In particu-

lar, the pair 〈1, 0〉 is well defined whereas with the usual definition it becomes an

infinite eigenvalue.

To illustrate the various situations that can arise we consider two by two ma-

trices in the following examples.

Example 9.1. Let

A =

(

−1 0
0 1

)

and B =

(

0 1
1 0

)

.

By the definition (α, β) is an eigenvalue if det(βA−αB) = 0 which gives the set

of pairs (α, β) satisfying the relation β = ±iα. In other words, the two general-

ized eigenvalues are 〈1, i〉 and 〈1,−i〉. This example underscores the fact that the

eigenvalues of a symmetric real (or Hermitian complex) pair are not necessarily

real.

Example 9.2. Let

A =

(

−1 1
0 0

)

and B =

(

0 0
1 0

)

.

Here det(βA − αB) = αβ, so the definition shows that 〈0, 1〉 and 〈1, 0〉 are

generalized eigenvalues. Note that both matrices are singular.

Example 9.3. Let

A =

(

−1 0
1 0

)

and B =

(

0 0
1 0

)

.

In this case any pair 〈α, β〉 is an eigenvalue since det(βA − αB) = 0 indepen-

dently of the two scalars α and β. Note that this will occur whenever the two

matrices are singular and have a common null space. Any vector of the null-space

can then be viewed as a degenerate eigenvector associated with an arbitrary scalar.

Such pairs are said to be singular.

Example 9.4. Let

A =

(

1 0
1 0

)

and B =

(

0 2
0 2

)

.

This is another example where any pair (α, β) is an eigenvalue since det(βA −
αB) = 0 independently of α and β. The two matrices are again singular but here
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their two null spaces do not intersect. Any ‘eigenvalue’ (α, β) has the associated

‘eigenvector’ (2α,−β)H .

The above examples suggests an important case that may cause difficulties

numerically. This is the case of ‘singular pairs’.

Definition 9.1 A matrix pair (A,B) is called singular if βA−αB is singular for

all α, β. A matrix pair that is not singular is said to be regular .

The added complexity due for example to one (or both) of the matrices being

singular means that special care must be exercised when dealing with generalized

eigen-problems. However, the fact that one or both of the matrices A or B is

singular does not mean that trouble is lurking. In fact generalized eigenvalue

problem can be quite well behaved in those situations, if handled properly.

We now state a number of definitions and properties. If we multiply both

components A andB of the pair (A,B) to the left by the same nonsingular matrix

Y then the eigenvalues and right eigenvectors are preserved. Similarly, if we

multiply them to the right by the same non-singular matrixX then the eigenvalues

and the left eigenvectors are preserved. The left eigenvectors are multiplied by

Y −H in the first case and the right eigenvectors are multiplied by X−1 in the

second case. These transformations generalize the similarity transformations of

the standard problems.

Definition 9.2 If X and Y are two nonsingular matrices, the pair

(Y AX, Y BX)

is said to be equivalent to the pair (A,B).

We will now mention a few properties. Recall that if (α, β) is an eigenvalue pair

for (A,B), then (ᾱ, β̄) is an eigenvalue pair for (AH , BH). The corresponding

eigenvector is called the left eigenvector of the pair (A,B).
A rather trivial property, which may have some nontrivial consequences, is

that the eigenvectors of (A,B) are the same as those of (B,A). A corresponding

eigenvalue pair (α, β) is simply permuted to (β, α).
In the standard case we know that a left and a right eigenvector associated

with two distinct eigenvalues are orthogonal. We will now show a similar property

for the generalized problem.

Proposition 9.1 Let λi = 〈αi, βi〉 and λj = 〈αj , βj〉 two distinct generalized

eigenvalues of the pair (A,B) and let ui be a right eigenvector associated with

λi and wj a left eigenvector associated with λj . Then,

(Aui, wj) = (Bui, wj) = 0. (9.5)

Proof. Writing the definition for λi yields,

βiAui − αiBui = 0.
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Therefore,

0 = (βiAui − αiBui, wj) = (ui, (β̄iA
H − ᾱiB

H)wj) . (9.6)

We can multiply both sides of the above equation by βj and use the fact that

(ᾱj , β̄j) is an eigenvalue for AH , BH with associated eigenvector wj to get,

0 = (ui, β̄iβ̄jA
Hwj − ᾱiβ̄jB

Hwj)

0 = (ui, (β̄iᾱj − ᾱiβ̄j)B
Hwj)

0 = (βiαj − αiβj)(Bui, wj).

This implies that (Bui, wj) = 0 because

βiαj − αiβj =

∣

∣

∣

∣

βi βj
αi αj

∣

∣

∣

∣

must be nonzero by the assumption that the two eigenvalues are distinct. Finally,

to show that (Aui, wj) = 0 we can redo the proof, this time multiplying both sides

of (9.6) by αj instead of βj , or we can simply observe that we can interchange the

roles of A and B, and use the fact that (A,B) and (B,A) have the same set of

eigenvectors.

The proposition suggests that when all eigenvalues are distinct, we may be

able to simultaneously diagonalize A and B. In fact if all eigenvalues are distinct

then the proposition translates into

WHAU = DA, WHBU = DB

in which DA and DB are two diagonals, U is the matrix of the right eigenvectors

and W the matrix of left eigenvectors (corresponding to eigenvalues listed in the

same order as for U ). There are two points that are still unclear. The first is that we

do not know how many distinct eigenvalues there can be. We would like to show

that when the pair is regular then there are n of them so that the matrices U andW
in the above equality are n×n matrices. The second point is that we do not know

yet whether or not the eigenvectors associated with these distinct eigenvalues are

linearly independent. When either A or B are nonsingular then the eigenvectors

associated with distinct eigenvectors are linearly independent. This can be seen

by observing that the eigenvectors of the pair (A,B) are the same as those of

(B−1A, I) in case B is nonsingular or (I, A−1B) when A is nonsingular. As it

turns out this extends to the case when the pair is regular. When the pair (A,B) is

a regular pair, then there are two scalars σ∗, τ∗ such that the matrix τ∗A− σ∗B is

nonsingular. We would like to construct linearly transformed pairs that have the

same eigenvectors as (A,B) and such that one of the two matrices in the pair is

nonsingular. The following theorem will help establish the desired result.

Theorem 9.1 Let (A,B) any matrix pair and consider the transformed pair (A1, B1)
defined by

A1 = τ1A− σ1B , B1 = τ2B − σ2A , (9.7)
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for any four scalars τ1, τ2, σ1, σ2 such that the 2× 2 matrix

Ω =

(

τ2 σ1
σ2 τ1

)

is nonsingular. Then the pair (A1, B1) has the same eigenvectors as the pair

(A,B). An associated eigenvalue (α(1), β(1)) of the transformed pair (A1, B1) is

related to an eigenvalue pair (α, β) of the original pair (A,B) by

(

α

β

)

= Ω

(

α(1)

β(1)

)

. (9.8)

Proof. Writing that (α(1), β(1)) is an eigenvalue pair of (A1, B1) with associated

eigenvector u we get

β(1)(τ1A− σ1B)u = α(1)(τ2B − σ2A)u

which after grouping the Au and Bu terms together yields,

(τ1β
(1) + σ2α

(1))Au = (τ2α
(1) + σ1β

(1))Bu . (9.9)

The above equation shows that u is an eigenvector for the original pair (A,B)
associated with the eigenvalue (α, β) with

β = τ1β
(1) + σ2α

(1), α = τ2α
(1) + σ1β

(1). (9.10)

Note that (α, β) is related by (9.8) to (α(1), β(1)) and as a result α and β cannot

both vanish because of the nonsingularity of Ω. Conversely, to show that any

eigenvector of (A,B) is an eigenvector of (A1, B1) we can show that A and B
can be expressed by relations similar to those in (9.7) in terms of A1 and B1. This

comes from the fact that Ω is nonsingular. n

A result of the above theorem is that we can basically identify a regular problem

with one for which one of the matrices in the pair is nonsingular. Thus, the choice

σ1 = σ∗, τ1 = τ∗ and σ2 = σ1, τ2 = −τ1 makes the matrix A1 nonsingular with

a non-singular Ω transformation. In fact once τ1, σ1 are selected any choice of τ2
and σ2 that makes Ω nonsingular will be acceptable.

Another immediate consequence of the theorem is that when (A,B) is regular

then there are n eigenvalues (counted with their multiplicities).

Corollary 9.1 Assume that the pair (A,B) has n distinct eigenvalues. Then the

matrices U and W of the n associated right and left eigenvectors respectively, are

nonsingular and diagonalize the matrices A and B simultaneously, i.e., there are

two diagonal matrices DA, DB such that,

WHAU = DA , WHBU = DB .

The equivalent of the Jordan canonical form is the Weierstrass-Kronecker

form. In the following we denote by diag (X,Y ) a block diagonal matrix with X
in the (1,1) block and Y in the (2,2) block.
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Theorem 9.2 A regular matrix pair (A,B) is equivalent to a matrix pair of the

form

(diag (J, I) , diag (I,N)) , (9.11)

in which the matrices are partitioned in the same manner, and where J and N are

in Jordan canonical form and N is nilpotent.

The equivalent of the Schur canonical form would be to simultaneously re-

duce the two matrices A and B to upper triangular form. This is indeed possible

and can be shown by a simple generalization of the proof of Schur’s theorem seen

in Chapter 1.

Theorem 9.3 For any regular matrix pair (A,B) there are two unitary matrices

Q1 and Q2 such that

QH
1 AQ2 = RA and QH

1 BQ2 = RB

are two upper triangular matrices.

9.2.2 Reduction to Standard Form

When one of the components of the pair (A,B) is nonsingular, there are simple

ways to get a standard problem from a generalized one. For example, when B is

nonsingular, we can transform the original system

βAu = αBu

into

B−1Au = αu

taking β = 1. This simply amounts to multiplying both matrices in the pair by

B−1, thus transforming (A,B) into the equivalent pair (B−1A, I). Other trans-

formations are also possible. For example, we can multiply on the right by B−1

transforming (A,B) into the equivalent pair (AB−1, I). This leads to the problem

AB−1y = αy with u = B−1y.

Similarly, when A is nonsingular, we can solve the problem

A−1Bu = αu

setting β = 1 or, again using the variable y = A−1u,

BA−1y = αy.

Note that all the above problems are non Hermitian in general. When A and

B are both Hermitian and, in addition, B is positive definite, a better alternative

may be to exploit the Cholesky factorization of B. If B = LLT , we get after

multiplying from the left by L−1 and from the right by L−T , the standard problem

L−1AL−T y = αy. (9.12)
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None of the above transformations can be used when both A and B are sin-

gular. In this particular situation, one can shift the matrices, i.e., use a transfor-

mation of the form described in theorem (9.1). If the pair is regular then there

will be a matrix Ω that will achieve the appropriate transformation. In practice

these transformations are not easy to perform since we need to verify whether or

not a transformed matrix is singular. If a pair is regular but both A and B are

singular, then chances are that a slight linear transformation will yield a pair with

one or both of the matrices nonsingular. However, this is not easy to check in

practice. First, there is the difficulty of determining whether or not a matrix is

deemed nonsingular. Second, in case the two matrices have a nontrivial common

null space, then this trial-and-error approach cannot work since any pair α, β will

yield a singular βA − αB, and this information will not be enough to assert that

the pair (A,B) is singular.

The particular case where both components A and B are singular and their

null spaces have a nontrivial intersection, i.e.,

Null(A) ∩Null(B) 6= {0}

deserves a few more words. This is a special singular problem. In practice, it may

sometimes be desirable to ‘remove’ the singularity, and compute the eigenvalues

associated with the restriction of the pair to the complement of the null space.

This can be achieved provided we can compute a basis of the common null space,

a task that is not an easy one for large sparse matrices, especially if the dimension

of the null space is not small.

9.2.3 Deflation

For practical purposes, it is important to define deflation processes for the gener-

alized eigenvalue problem. In particular we would like to see how we can extend,

in the most general setting, the Wielandt deflation procedure seen in Chapter 4.

Assuming we have computed an eigenvector u1 associated with some eigenvalue

λ1 = 〈α, β〉, of (A,B) the most general way of defining analogues of the deflated

matrix A1 of Chapter 4 is to deflate the matrices A and B as follows:

A1 = A− σ1Bu1vH , (9.13)

B1 = B − σ2Au1vH . (9.14)

We assume, as in the standard case, that vHu1 = 1. We can easily verify that

the eigenvector u1 is still an eigenvector of the pair (A1, B1). The corresponding

eigenvalue pair (α′, β′) must satisfy

β′A1u1 = α′B1u1

from which we get the relation

(β′ + σ2α
′)Au1 = (α′ + σ1β

′)Bu1 .
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Thus we can identify α′ + σ1β
′ with α and β′ + σ2α

′ with β, to get

α = α′ + σ1β
′, β = β′ + σ2α

′ . (9.15)

Inverting the relations, we get

α′ =
α− σ1β
1− σ1σ2

, β′ =
β − σ2α
1− σ1σ2

(9.16)

assuming that 1 − σ1σ2 6= 0. The scaling by 1 − σ1σ2 can be ignored to obtain

the simpler relations,

α′ = α− σ2β , β′ = β − σ1α (9.17)

which can be rewritten as
(

α′

β′

)

=

(

1 −σ1
−σ2 1

)(

α

β

)

. (9.18)

In the standard case we have B = I, β = β′ = 1 and σ2 = 0, so the standard

eigenvalue is changed to α′ = α− σ1 as was seen in Chapter 4.

Using Proposition 9.1, we can show that the left eigenvectors not associated

with λ1 are preserved. The particular choice v = Bw1, in which w1 is the left

eigenvector associated with the eigenvalue λ1 preserves both left and right eigen-

vectors and is a generalization of Hotelling’s deflation, see Exercise P-9.3.

9.2.4 Shift-and-Invert

Before defining the analogue of the standard shift-and-invert technique we need to

know how to incorporate linear shifts. From Theorem 9.1 seen in Section 9.2.1, for

any pair of scalars σ1, σ2, the pair (A−σ1B,B−σ2A) has the same eigenvectors

as the original pair (A,B). An eigenvalue (α′, β′) of the transformed matrix pair

is related to an eigenvalue pair (α, β) of the original matrix pair by

α = α′ + σ1β
′ ,

β = β′ + σ2α
′ .

Computing (α′, β′) from (α, β) we get, assuming 1− σ1σ2 6= 0,

α′ =
α− σ1β
1− σ1σ2

, β′ =
β − σ2α
1− σ1σ2

.

In fact, since the eigenvalues are defined up to a scaling factor, we can write

α′ = α− σ1β , β′ = β − σ2α . (9.19)

It is common to take one of the two shifts, typically σ2, to be zero. In this

special situation:

α′ = α− σ1β , β′ = β
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which gives the usual situation corresponding to β = 1.

Shift-and-invert for the generalized problems corresponds to multiplying through

the two matrices of the shifted pair by the inverse of one of them, typically the first.

Thus the shifted-and-inverted pair would be

(

I , (A− σ1B)−1(B − σ2A)
)

.

This is now a problem which has the same eigenvalues as the pair (A−σ1B,B−
σ2A), i.e., its generic eigenvalue pair (α′, β′) is related to the original pair (α, β)
of (A,B) via (9.19). It seems as if we have not gained anything as compared with

the pair (A − σ1B,B − σ2A). However, the A -matrix for the new pair is the

identity matrix.

The most common choice is σ2 = 0 and σ1β close to an eigenvalue of the

original matrix.

9.2.5 Projection Methods

The projection methods seen in Chapter 4 are easy to extend to generalized eigen-

problems. In the general framework of oblique projection methods, we are given

two subspaces K and L and seek an approximate eigenvector ũ in the subspace

K and an approximate eigenvalue (α̃, β̃) such that

(β̃A− α̃B)ũ ⊥ L. (9.20)

Given two bases V = {v1, . . . , vm}, and W = {w1, . . . , wm} of K and L, re-

spectively, and writing ũ = V y, the above conditions translate into the generalized

eigenvalue problem

β̃WHAV y = α̃WHBV y .

Note that we can get a standard projected problem if we can find a pair W,V that

is such that WHBV = I . For orthogonal projection methods (K = L), this will

be the case in particular when B is Hermitian positive definite, and the system of

vectors {vi}i=1,...m is B-orthonormal.

When the original pair is Hermitian definite, i.e., whenA andB are Hermitian

positive definite and when B is positive definite, the projected problem will also

be Hermitian definite. The approximate eigenvalues will also be real and all of

the properties seen for the Hermitian case in Chapter 1 will extend in a straight-

forward way.

9.2.6 The Hermitian Definite Case

We devote this section to the important particular case where both A and B are

Hermitian and one of them, say B, is positive definite. This situation corresponds

to the usual Hermitian eigen-problem in the standard case. For example the eigen-

values are real and the eigenvectors from an orthogonal set with respect to the

B–inner product defined by

(x, y)B = (Bx, y) . (9.21)
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That this represents a proper inner product is well-known. The corresponding

norm termed the B-norm is given by

‖x‖B = (Bx, x)1/2 .

An important observation that is key to understanding this case is that even though

the matrix C = B−1A of one of the equivalent standard eigenproblems is non-

Hermitian with respect to the Euclidean inner product, it is self-adjoint with re-

spect to the B-inner product in that

(Cx, y)B = (x,Cy)B ∀ x, y . (9.22)

Therefore, one can expect that all the results seen for the standard problem for

Hermitian case will be valid provided we replace Euclidean product by the B-

inner product. For example, the min-max theorems will be valid provided we

replace the Rayleigh quotient (Ax, x)/(x, x) by

µ(x) =
(Cx, x)B
(x, x)B

=
(Ax, x)

(Bx, x)
.

If we were to use the Lanczos algorithm we would have two options. The first

is to factor the B matrix and use the equivalent standard formulation (9.12). This

requires factoring the B-matrix and then solving a lower and an upper triangular

system at each step of the Lanczos algorithm. An interesting alternative would be

to simply employ the standard Lanczos algorithm for the matrix C = B−1A re-

placing the usual Euclidean inner product by the B inner product at each time that

an inner product is invoked. Because of the self-adjointness of C with respect to

the B inner product, we will obtain an algorithm similar to the one in the standard

case, which is based on a simple three term recurrence. A naive implementation

of the main loop in exact arithmetic would consist of the following steps,

w := B−1Avj , (9.23)

αj := (w, vj)B , (9.24)

w := w − αjvj − βjvj−1 , (9.25)

βj+1 := ‖w‖B , (9.26)

vj+1 := w/βj+1 .

We observe that αj in (9.24) is also equal to (Avj , vj) and this gives an easy

way of computing the α′s, using standard Euclidean inner products. Before mul-

tiplying Avj by B−1 in (9.23) αj is computed and saved. The computation on

βj+1 is a little more troublesome. The use of the definition of the B-inner product

would require a multiplication by the matrix B. This may be perfectly acceptable

ifB is diagonal but could be wasteful in other cases. One way to avoid this matrix

product is to observe that, by construction, the vector w in (9.26) is B-orthogonal

to the vectors vj and vj−1. Therefore,

(Bw,w) = (Avj , w)− αj(Bvj , w)− βj(Bvj−1, w) = (Avj , w).
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As a result, if we save the vector Avj computed in (9.23) until the end of the loop

we can evaluate the B-norm of w with just an Euclidean inner product. Another

alternative is to keep a three-term recurrence for the vectors zj = Bvj . Then Bw
is available as

Bw = Avj − αjzj − βjzj−1

and the inner product (Bw,w) can be evaluated. Normalizing Bw by βj+1 yields

zj+1. This route requires two additional vectors of storage and a little additional

computation but is likely to be more viable from the numerical point of view.

Whichever approach is taken, a first algorithm will look as follows.

ALGORITHM 9.1 First Lanczos algorithm for matrix pairs

1. Start: Choose an initial vector v1 of B-Norm unity. Set β1 = 0, v0 = 0.

2. Iterate: For j = 1, 2, . . . ,m, do:

(a) v := Avj ,

(b) αj := (v, vj) ,

(c) w := B−1v − αjvj − βjvj−1 ,

(d) Compute βj+1 = ‖w‖B , using βj+1 :=
√

(v, w) ,

(e) vj+1 = w/βj+1.

One difficulty in the above algorithm is the possible occurrence of a negative B
norm of w in the presence of rounding errors.

A second algorithm which is based on keeping a three-term recurrence for

the zj’s, implements a modified Gram-Schmidt version of the Lanczos algorithm,

i.e., it is analogous to Algorithm 6.5 seen in Chapter 6.

ALGORITHM 9.2 Second Lanczos algorithm for matrix pairs

1. Start: Choose an initial vector v1 of B-Norm unity. Set β1 = 0, z0 = v0 =
0, z1 = Bv1.

2. Iterate: For j = 1, 2, . . . ,m, do

(a) v := Avj − βjzj−1 ,

(b) αj = (v, vj) ,

(c) v := v − αjzj ,

(d) w := B−1v ,

(e) βj+1 =
√

(w, v) ,

(f) vj+1 = w/βj+1 and zj+1 = v/βj+1.



NON STANDARD EIGENVALUE PROBLEMS 231

Note that theB-norm in (d) is now of the form (B−1v, v) and sinceB is Her-

mitian positive definite, this should not cause any numerical problems if computed

properly.

In practice the above two algorithms will be unusable in the common situation

when B is singular. This situation has been studied carefully in [137]. Without

going into the geometric details, we would like to stress that the main idea here

is to shift the problem so as to make (A− σB) nonsingular and then work in the

subspace Ran(A − σB)−1B. A simplification of the algorithm in [137] is given

next. Here, σ is the shift.

ALGORITHM 9.3 Spectral Transformation Lanczos

1. Start: Choose an initial vector w in Ran[ (A− σB)−1B ]. Compute z1 =
Bw and β1 :=

√

(w, z1). Set v0 := 0.

2. Iterate: For j = 1, 2, . . . ,m, do

(a) vj = w/βj and zj := zj/βj ,

(b) zj = (A− σB)−1w,

(c) w := w − βjvj−1 ,

(d) αj = (w, zj) ,

(e) w := w − αjzj ,

(f) zj+1 = Bw ,

(g) βj+1 =
√

(zj+1, w).

Note that the algorithm requires only multiplications with the matrix B. As

in the previous algorithm, the two most recent zj’s must be saved, possibly all of

them if some form of B - reorthogonalization is to be included. We should point

out a simple connection between this algorithm and the previous one. With the

exception of the precaution taken to choose the initial vector, algorithm 9.3 is a

slight reformulation of Algorithm 9.2, applied to the pair (A′, B′) where A′ = B
and B′ = (A− σB).

9.3 Quadratic Problems

The equation of motion for a structural system with viscous damping and without

external forces is governed by the equation

Mq̈ + Cq̇ +Kq = 0 .

In vibration analysis, the generic solution of this equation is assumed to take the

form q = ueλt and this leads to the quadratic eigenvalue problem

(λ2M + λC +K)u = 0 . (9.27)

These eigenvalue problems arise in dynamical systems where damping and other

effects, e.g., gyroscopic, are taken into account. Such effects will define the C
matrix. In the next subsections we will see how to adapt some of the basic tools

to solve quadratic problems.
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9.3.1 From Quadratic to Generalized Problems

The most common way of dealing with the above problem is to transform it into

a (linear) generalized eigenvalue problem. For example, defining

v =

(

λu

u

)

we can rewrite (9.27) as

(

−C −K
I 0

)

v = λ

(

M 0
0 I

)

v . (9.28)

It is clear that there is a large number of different ways of rewriting (9.27), the

one above being one of the simplest. One advantage of (9.27) is that when M is

Hermitian positive definite, as is often the case, then so also is the second matrix

of the resulting generalized problem (9.28). If all matrices involved, namely K,
C, and M, are Hermitian it might be desirable to obtain a generalized problem

with Hermitian matrices, even though this does not in any way guarantee that the

eigenvalues will be real. We can write instead of (9.28)

(

C K
K 0

)

v = λ

(

−M O
O K

)

v . (9.29)

An alternative to the above equation is

(

C M
M 0

)

v = µ

(

−K O
O M

)

v (9.30)

where we have set µ = 1/λ. By comparing (9.29) and (9.30) we note the inter-

esting fact that M and K have simply been interchanged. This could also have

been observed directly from the original equation (9.27) by making the change of

variable µ = 1/λ. For practical purposes, we may therefore select between (9.30)

and (9.29) the formulation that leads to the more economical computations. We

will select (9.29) in the rest of this chapter.

While the difference between (9.30) and (9.29) may be insignificant, there are

important practical implications in choosing between (9.28) and (9.29). Basically,

the decision comes down to choosing an intrinsically non-Hermitian generalized

eigen-problem with a Hermitian positive definite B matrix, versus a generalized

eigen-problem where both matrices in the pair are Hermitian indefinite. In the

case where M is a (positive) diagonal matrix, then the first approach is not only

perfectly acceptable, but may even be the method of choice in case Arnoldi’s

method using a polynomial preconditioning is to be attempted. In case all matri-

ces involved are Hermitian positive definite, there are strong reasons why the sec-

ond approach is to be preferred. These are explained by Parlett and Chen [149].

Essentially, one can use a Lanczos type algorithm, similar to one of versions de-

scribed in subsection 9.2.6, in spite of the fact that the B matrix that defines the

inner products is indefinite.
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PROBLEMS

P-9.1 Examine how the eigenvalues and eigenvectors of a pair of matrices (A,B) change

when both A and B are multiplied by the same nonsingular matrix to the left or to the right.

P-9.2 In section 9.2.4 and 9.2.3 the shifts σ1, σ2 were assumed to be such that 1−σ1σ2 6=
0. What happens if this were not to be the case? Consider both the linear shifts, Section

9.2.4 and Wielandt deflation 9.2.3.

P-9.3 Given the right and left eigenvectors u1, and w1 associated with an eigenvalue λ1

of the pair A,B and such that (Bu1, Bw1) = 1, show that the matrix pair

A1 = A− σ1Bu1w
H
1 BH , B1 = B − σ2Au1w

H
1 BH

has the same left and right eigenvectors as A,B. The shifts σ1, σ2 are assumed to satisfy

the condition 1− σ1σ2 6= 0.

P-9.4 Show that when (A,B) are Hermitian and B is positive definite then C = B−1A
is self-adjoint with respect to the B-inner product, i.e., that (9.22) holds.

P-9.5 Redo the proof of Proposition 9.1 with the usual definitions of eigenvalues (Au =
λBu). What is gained? What is lost?

P-9.6 Show that algorithm 9.3 is a reformulation of Algorithm 9.2, applied to the pair

(A′, B′) where A′ = B and B′ = (A− σB).

NOTES AND REFERENCES. The reader is referred to Stewart and Sun [206] for more details and

references on the theory of generalized eigenproblems. There does not seem to be any exhaustive

coverage of the generalized eigenvalue problems, theory and algorithms, in one book. In addition,

there seems to be a dichotomy between the need of users, mostly in finite elements modeling, and the

numerical methods that numerical analysts develop. One of the first papers on the numerical solution

of quadratic eigenvalue problems is Borri and Mantegazza [16]. Quadratic eigenvalue problems are

rarely solved in structural engineering. The models are simplified first by neglecting damping and the

leading eigenvalues of the resulting generalized eigenproblem are computed. Then the eigenvalues of

the whole problem are approximated by performing a projection process onto the computed invariant

subspace of the approximate problem [95]. This may very well change in the future, as models are

improving and computer power is making rapid gains.
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ORIGINS OF MATRIX EIGENVALUE

PROBLEMS

This chapter gives a brief overview of some applications that give rise to matrix

eigenvalue problems. These applications can be classified in three different cate-

gories. The first category, by far the largest from the applications point of view,

consists of problems related to the analysis of vibrations. These typically generate

symmetric generalized eigenvalue problems. The second is the class of problems re-

lated to stability analysis, such as for example the stability analysis of an electrical

network. In general, this second class of problems generates nonsymmetric matrices.

The third category comprises physical applications related to quantum mechnical

systems, specifically problems generated from the Schrödinger equation. The list of

applications discussed in this chapter is by no means exhaustive. In fact the number of

these applications is constantly growing. For example, an emerging application is one

that is related to the broad area of data analysis, machine learning, and information

sciences.

10.1 Introduction

The numerical computation of eigenvalues of large matrices is a problem of major

importance in many scientific and engineering applications. We list below just a

few of the applications areas where eigenvalue calculations arise:

• Structural dynamics • Quantum chemistry

• Electrical Networks •Markov chain techniques

• Combustion processes • Chemical reactions

•Macro-economics •Magnetohydrodynamics

• Normal mode techniques • Control theory

One class of applications which has recently gained considerable ground is that re-

lated to linear algebra methods in data-mining, see for example, [109] for a survey.

However, the most commonly solved eigenvalue problems today are those issued

from the first item in the list, namely those problems associated with the vibration

analysis of large structures. Complex structures such as those of an aircraft or a

turbine are represented by finite element models involving a large number of de-

grees of freedom. To compute the natural frequencies of the structure one usually

235
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solves a generalized eigenvalue problem of the formKu = λMu where typically,

but not always, the stiffness and mass matrices K and M respectively, are both

symmetric positive definite.

In the past decade tremendous advances have been achieved in the solution

methods for symmetric eigenvalue problems especially those related to problems

of structures. The well-known structural analysis package, NASTRAN, which

was developed by engineers in the sixties and seventies now incorporates the state

of the art in numerical methods for eigenproblems such as block Lanczos tech-

niques.

Similar software for the nonsymmetric eigenvalue problem on the other hand

remains lacking. There seems to be two main causes for this. First, in structural

engineering where such problems occur in models that include damping, and gy-

roscopic effects, it is a common practice to replace the resulting quadratic problem

by a small dense problem much less difficult to solve using heuristic arguments.

A second and more general reason is due to a prevailing view among applied sci-

entists that the large nonsymmetric eigenvalue problems arising from their more

accurate models are just intractable or difficult to solve numerically. This of-

ten results in simplified models to yield smaller matrices that can be handled by

standard methods. For example, one-dimensional models may be used instead of

two-dimensional or three-dimensional models. This line of reasoning is not totally

unjustified since nonsymmetric eigenvalue problems can be hopelessly difficult to

solve in some situations due for example, to poor conditioning. Good numerical

algorithms for non-Hermitian eigenvalue problems tend also to be far more com-

plex that their Hermitian counterparts. Finally, as was reflected in earlier chapters,

the theoretical results that justify their use are scarcer.

The goal of this chapter is mainly to provide motivation and it is indepen-

dent of the rest of the book. We will illustrate the main ideas that lead to the

various eigenvalue problems in some of the applications mentioned above. The

presentation is simplified in order to convey the overall principles.

10.2 Mechanical Vibrations

Consider a small object of mass m attached to an elastic spring suspended from

the lid of a rigid box, see Figure 10.1. When stretched by a distance ∆l the

spring will exert a force of magnitude k∆l whose direction is opposite to the

direction of the displacement. Moreover, if there is a fluid in the box, such as oil,

a displacement will cause a damping, or drag force to the movement, which is

usually proportional to the velocity of the movement. Let us call l the distance of

the center of the object from the top of the box when the mass is at equilibrium

and denote by y the position of the mass at time t, with the initial position y = 0
being that of equilibrium. Then at any given time there are four forces acting on

m:
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m

l

Figure 10.1: Model problem in mechanical vibrations

1. The gravity force mg pulling downward;

2. The spring force −k(l + y);

3. The damping force −cdy
dt

;

4. The external force F (t).

By Newton’s law of motion,

m
d2y

dt2
= mg − k(l + y)− cdy

dt
+ F (t) .

If we write the equation at steady state, i.e., setting y ≡ 0 and F (t) ≡ 0, we

get mg = kl. As a result the equation simplifies into

m
d2y

dt2
+ c

dy

dt
+ ky = F (t) . (10.1)

Free vibrations occur when there are no external forces and when the damping

effects are negligible. Then (10.1) becomes

m
d2y

dt2
+ ky = 0 (10.2)

the general solution of which is of the form

y(t) = R cos

(

k

m
t− φ

)

which means that the mass will oscillate about its equilibrium position with a

period of 2π/ω0, with ω0 ≡ k/m.
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Damped free vibrations include the effect of damping but exclude any effects

from external forces. They lead to the homogeneous equation:

m
d2y

dt2
+ c

dy

dt
+ ky = 0

whose characteristic equation is mr2 + cr + k = 0.
When c2 − 4km > 0 then both solutions r1, r2 of the characteristic equation

are negative and the general solution is of the form

y(t) = aer1t + ber2t

which means that the object will return very rapidly to its equilibrium position. A

system with this characteristic is said to be overdamped.

When c2 − 4km = 0 then the general solution is of the form

y(t) = (a+ bt)e−ct/2m

which corresponds to critical damping. Again the solution will return to its equi-

librium but in a different type of movement from the previous case. The system is

said to be critically damped.

Finally, the case of underdamping corresponds to the situation when c2 −
4km < 0 and the solution is of the form

y(t) = e−ct/2m [a cosµt+ b sinµt]

with

µ =

√
4km− c2
2m

.

This time the object will oscillate around its equilibrium but the movement will

die out quickly.

In practice the most interesting case is that of forced vibrations, in which the

exterior force F has the form F (t) = F0 cosωt. The corresponding equation is

no longer a homogeneous equation, so we need to seek a particular solution to the

equation (10.1) in the form of a multiple of cos(ωt− δ). Doing so, we arrive after

some calculation at the solution

η(t) =
F0 cos(ωt− δ)

√

(k −mω2)2 + c2ω2
(10.3)

where

tan δ =
cω

k −mω2
.

See Exercise P-10.3 for a derivation. The general solution to the equations with

forcing is obtained by adding this particular solution to the general solution of the

homogeneous equation seen earlier.

The above solution is only valid when c 6= 0. When c = 0, i.e., when there

are no damping effects, we have what is referred to as free forced vibrations . In
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this case, letting ω2
0 = k

m , a particular solution of the non-homogeneous equation

is
F0

m(ω2
0 − ω2)

cosωt

when ω 6= ω0 and
F0t

2mω0
sinω0t (10.4)

otherwise. Now every solution is of the form

y(t) = a cosωt+ b sinωt+
F0

2mω0
t sinω0t.

The first two terms in the above solution constitute a periodic function but the last

term represents an oscillation with a dangerously increasing amplitude.

This is referred to as a resonance phenomenon and has been the cause of sev-

eral famous disasters in the past, one of the most recent ones being the Tacoma

bridge disaster (Nov. 7, 1940). Another famous such catastrophe, is that of the

Broughton suspension bridge near Manchester England. In 1831 a column of

soldiers marched on it in step causing the bridge to enter into resonance and col-

lapse. It has since become customary for soldiers to break step when entering a

bridge. For an interesting accoint of the Tacoma bridge disaster mentioned above

and other similar phenomena see Braun [17].

Note that in reality the case c = 0 is fallacious since some damping effects

always exist. However, in practice when c is very small the particular solution

(10.3) can become very large when ω2 = k/m. Thus, whether c is zero or simply

very small, dangerous oscillations can occur whenever the forcing function F
has a period equal to that of the free vibration case.

We can complicate matters a little in order to introduce matrix eigenvalue

problems by taking the same example as before and add another mass suspended

to the first one, as is shown in Figure 10.2.

Assume that at equilibrium, the center of gravity of the first mass is at distance

l1 from the top and that of the second is at distance l2 from the first one. There are

now two unknowns, the displacement y1 from the equilibrium of the first mass and

the displacement y2 from its equilibrium position of the second mass. In addition

to the same forces as those for the single mass case, we must now include the

effect of the spring force pulling from the other spring. For the first mass this is

equal to

k2[l2 − y1 + y2],

which clearly corresponds to a displacement of the second mass relative to the

first one. A force equal to this one in magnitude but opposite in sign acts on the

second mass in addition to the other forces. Newton’s law now yields

m1
d2y1
dt2

= m1g − k1(l1 + y1)− c1
dy1
dt

+ k2(l2 + y2 − y1) + F1(t) ,

m2
d2y2
dt2

= m2g − k2(l2 + y1)− c
dy2
dt
− k2(l2 + y2 − y1) + F2(t) .
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m1

m2

l1

l2

k1

k2

Figure 10.2: A spring system with two masses.

At equilibrium the displacements as well as their derivatives, and the external

forces are zero. As a result we must have 0 = m1g − k1l1 + k2l2, and 0 =
m2g − 2k2l2. Hence the simplification

m1
d2y1
dt2

+ c1
dy1
dt

+ (k1 + k2)y1 − k2y2 = F1(t) , (10.5)

m2
d2y2
dt2

+ c2
dy2
dt
− k2y1 + 2k2y2 = F2(t) . (10.6)

Using the usual notation of mechanics for derivatives, equations (10.5) and (10.6)

can be written in condensed form as
(

m1 0
0 m2

) (

ÿ1
ÿ2

)

+

(

c1 0
0 c2

) (

ẏ1
ẏ2

)

+

(

k1 + k2 −k2
−k2 2k2

) (

y1
y2

)

=

(

F1

F2

)

(10.7)

or,

Mÿ + Cẏ +Ky = F (10.8)

in which M,C and K are 2× 2 matrices. More generally, one can think of a very

large structure, for example a high rise building, as a big collection of masses and

springs that are interacting with each other just as in the previous example. In fact

equation (10.8) is the typical equation considered in structural dynamics but the

matrices M,K, and C can be very large. One of the major problems in structural

engineering it to attempt to avoid vibrations, i.e., the resonance regime explained



ORIGINS OF EIGENVALUE PROBLEMS 241

earlier for the simple one mass case. According to our previous discussion this

involves avoiding the eigenfrequencies, ω0 in the previous example, of the system.

More exactly, an analysis is made before the structure is build and the proper

frequencies are computed. There is usually a band of frequencies that must be

avoided. For example, an earthquake history of the area may suggest avoiding

specific frequencies. Here, the proper modes of the system are determined by

simply computing oscillatory solutions of the form y(t) = y0e
iωt that satisfies the

free undamped vibration equation

Mÿ +Ky = 0 or − ω2My0 +Ky0 = 0 .

10.3 Electrical Networks.

Consider a simple electrical circuit consisting of a resistance or R Ohms, an in-

ductance of L Henrys and a capacitor of C Farads connected in series with a

generator of E volts.

C

L

R

E

+−

−

+

S

Figure 10.3: A simple series electric circuit.

In a closed circuit, the sum of the voltage drops is equal to the input voltage

E(t). The voltage drop across the resistance isRI where I is the intensity while it

is Lİ across the inductance and Q/C across the capacitor where Q is the electric

charge whose derivative is I . Therefore the governing equations can be written in

terms of Q as follows,

LQ̈+RQ̇+Q/C = E(t) ,

which resembles that of mechanical vibrations. Realistic electric networks can be

modeled by a large number of circuits interconnected to each other. Resonance

here might be sought rather than avoided, as occurs when tuning a radio to a given

electromagnetic wave which is achieved by varying the capacity C.
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The problem of power system networks is different in that there are instabili-

ties of exponential type that occur in these systems under small disturbances. The

problem there is to control these instabilities. Although very complex in nature,

the problem of power systems instability can be pictured from the above simple

circuit in which the resistance R is made negative, i.e., we assume that the resis-

tance is an active device rather than a passive one. Then it can be seen that the

circuit may become unstable because the solution takes the form aes1t + bes2t in

which s1, s2 may have positive real parts, which leads to unstable solutions.

10.4 Electronic Structure Calculations

One of the greatest scientific achievements of humankind is the discovery, in the

early part of the twentieth century, of quantum mechanical laws describing the

behavior of matter. These laws make it possible, at least in principle, to predict

the electronic properties of matter from the nanoscale to the macroscale. The

progress that lead to these discoveries is vividly narrated in the book “Thirty years

that shook physics” by George Gamov [68]. A series of discoveries, starting with

the notion of quantas originated by Max Planck at the end of 1900, and ending

roughly in the mid-1920’s, with the emergence of the Schrödinger wave equation,

set the stage for the new physics. Solutions of the Schrödinger wave equation

resulted in essentially a complete understanding of the dynamics of matter at the

atomic scale.

One could, formally at least, understand atomic and molecular phenomena

from these equations, but solving these equations in their original form is nearly

impossible, even today, except for systems with a very small number of elec-

trons. The decades following the discovery of quantum mechanics have elabo-

rated several methods for finding good approximations to the solutions. In terms

of methodology and algorithms, the biggest steps forward were made in the six-

ties with the advent of two key new ideas. The first, density functional theory,

enabled one to transform the initial problem into one which involves functions of

only one space variables instead of N space variables, for N -particle systems in

the original Schrödinger equation. Instead of dealing with functions in R
3N , we

only need to handle functions in R
3. The second substantial improvement came

with pseudopotentials. In short pseudopotentials allowed one to reduce the num-

ber of electrons to be considered by constructing special potentials, which would

implicitly reproduce the effect of chemically inert core electrons and explicitly

reproduce the properties of the chemically active valence electrons .

10.4.1 Quantum descriptions of matter

Consider N nucleons of charge Zn at positions {Rn} for n = 1, · · · , N and

M electrons at positions {ri} for i = 1, · · · ,M . An illustration is shown in

Figure 10.4.
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Figure 10.4: Atomic and electronic coordinates: Filled circles represent electrons,

open circles represent nuclei (Source of figure: [181]).

The non-relativistic, time-independent Schrödinger equation for the electronic

structure of the system can be written as:

H Ψ = E Ψ (10.9)

where the many-body wave function Ψ is of the form

Ψ ≡ Ψ(R1,R2,R3, · · · ; r1, r2, r3, · · · ) (10.10)

and E is the total electronic energy. The HamiltonianH in its simplest form is:

H(R1,R2, · · · ; r1, r2, · · · ) = −
N
∑

n=1

~
2∇2

n

2Mn
+

1

2

N
∑

n,n′=1,
n 6=n′

ZnZn′e2

|Rn −Rn′ |

−
M
∑

i=1

~
2∇2

i

2m
−

N
∑

n=1

M
∑

i=1

Zne
2

|Rn − ri|
+

1

2

M
∑

i,j=1
i 6=j

e2

|ri − rj |
. (10.11)

Here, Mn is the mass of the nucleus, ~ is Planck’s constant, h, divided by 2π, m
is the mass of the electron, and e is the charge of the electron. The above Hamilto-

nian includes the kinetic energies for the nucleus (first sum in H), and each elec-

tron (3rd sum), the inter-nuclei repulsion energies (2nd sum), the nuclei-electronic

(Coulomb) attraction energies (4th sum), and the electron-electron repulsion en-

ergies (5th sum). Each Laplacean ∇2
n involves differentiation with respect to the

coordinates of the nth nucleus. Similarly the term ∇2
i involves differentiation

with respect to the coordinates of the ith electron.

In principle, the electronic structure of any system is completely determined

by (10.9), or, to be exact, by minimizing the energy < Ψ|H|Ψ > under the con-

straint of normalized wave functions Ψ. This is nothing but the Rayleigh quo-

tient of the Hamiltonian associated with the wave function Ψ and its minimum
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is reached when Ψ is the eigenfunction associated with the smallest eigenvalue.

Recall that Ψ has a probabilistic interpretation: for the minimizing wave function

Ψ,

|Ψ(R1, · · · ,RN ; r1, · · · , rM )|2d3R1 · · · d3RNd
3
r1 · · · d3rM

represents the probability of finding particle 1 in volume |R1 + d3R1|, particle 2

in volume |R2 + d3R2|, etc.

From a computational point of view however, the problem is not tractable for

systems which include more than just a few atoms and dozen electrons, or so. The

main computational difficulty stems from the nature of the wave function which

involves all coordinates of all particles (nuclei and electrons) simultaneously. For

example, if we had just 10 particles, and discretized each coordinate using just

100 points for each of the x, y, z directions, we would have 106 points for each

coordinate for a total of
(

106
)10

= 1060 variables altogether.

Several simplifications were made to develop techniques which are practical

as well as sufficiently accurate. The goal for these approximations is to be able to

compute both the ground state, i.e., the state corresponding to minimum energy

E, and excited state energies, or energies corresponding to higher eigenvalues E
in (10.9), and this by using a reasonable number of degrees of freedom.

The first, and most basic, of these is the Born-Oppenheimer or adiabatic

approximation. Since the nuclei are considerably more massive than the electrons,

it can be assumed that the electrons will respond “instantaneously” to the nuclear

coordinates. We can then separate the nuclear coordinates from the electronic

coordinates. Under this approximation, the first term in (10.11) vanishes and the

second becomes a constant. We are left with a new Hamiltonian:

H(r1, r2, · · · , rM ) =

M
∑

i=1

−~2∇2
i

2m
−

N
∑

n=1

M
∑

i=1

Zne
2

|Rnri|

+
1

2

M
∑

i,j=1
i 6=j

e2

|ri − rj |
. (10.12)

This simplification in itself will not be sufficient to reduce the complexity of the

Schrödinger equation to an acceptable level.

10.4.2 The Hartree approximation

If we were able to write the HamiltonianH as a sum of individual (non-interacting)

Hamiltonians, one for each electron, then it is easy to see that the problem would

become separable. In this case the wave function Ψ can be written as a prod-

uct of individual orbitals, φk(rk) each of which is an eigenfunction of the non-

interacting Hamiltonian. This is an important concept and it is often characterized

as the one-electron picture of a many-electron system.

The eigenfunctions of such a Hamiltonian determine orbitals (eigenfunctions)

and energy levels (eigenvalues). For many systems, there are an infinite number of

states, enumerated by quantum numbers. Each eigenvalue represents an “energy”
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level corresponding to the orbital of interest. For example, in an atom such as

hydrogen, an infinite number of bound states exist, each labeled by a set of three

discrete integers. In general, the number of integers equal the spatial dimensional-

ity of the system plus spin. In hydrogen, each state can be labeled by three indices

(n, l, and m) and s for spin. In the case of a solid, there are essentially an infinite

number of atoms and the energy levels can be labeled by quantum numbers, which

are no longer discrete, but quasi-continuous. In this case, the energy levels form

an energy band.

The energy states are filled by minimizing the total energy of the system, in

agreement with the Pauli principle, i.e., each electron has a unique set of quantum

numbers, which label an orbital. The N lowest orbitals account for 2N electrons,

i.e., a pair of a spin up and a spin down electrons for each orbital. Orbitals that are

not occupied are called “virtual states.” The lowest energy orbital configuration is

called the ground state. The ground state can be used to determine a number of

properties, e.g., stable structures, mechanical deformations, phase transitions, and

vibrational modes. The states above the ground state are known as excited states.

These are helpful in calculating response functions of the solid, e.g., the dielectric

and the optical properties of materials.

In mathematical terms, H ≡ ⊕Hi, the circled sum being a direct sum mean-

ing that Hi acts only on particle number i, leaving the others unchanged. Hartree

suggested to use this as an approximation technique whereby the basis resulting

from this calculation will be substituted in < Ψ|H|Ψ > / < Ψ|Ψ >, to yield an

upper bound for the energy.

In order to make the Hamiltonian (10.12) non-interactive, we must remove

the last term in (10.12), i.e., we assume that the electrons do not interact with each

other. Then the electronic part of the Hamiltonian becomes:

Hel = Hel(r1, r2, r3, · · · ) =
M
∑

i=1

−~2∇2
i

2m
−

N
∑

n=1

M
∑

i=1

Zne
2

|Rn − ri|
(10.13)

which can be cast in the form

Hel =

M
∑

i=1

[−~2∇2
i

2m
+ VN (ri)

]

≡
M
⊕

i=1

Hi (10.14)

where

VN (ri) = −
N
∑

n=1

Zne
2

|Rn − ri|
. (10.15)

This simplified Hamiltonian is separable and admits eigenfunctions of the form

ψ(r1, r2, r3, · · · ) = φ1(r1)φ2(r2)φ3(r3) · · · , (10.16)

where the φi(r) orbitals are determined from the “one-electron” equation:

Hiφi(r) = Eiφi(r) . (10.17)
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The total energy of the system is the sum of the occupied eigenvalues, Ei.

This model is extremely simple, but not realistic. Physically, using the statis-

tical interpretation mentioned above, writing Ψ as the product of φi’s, only means

that the electrons have independent probabilities of being located in a certain po-

sition in space. This lack of correlation between the particles causes the resulting

energy to be overstated. In particular, the Pauli Principle states that no two elec-

trons can be at the same point in space and have the same quantum numbers. The

solutions Ψ computed in (10.16)–(10.17) is known as the Hartree wave function.

It can be shown that the individual orbitals, φi(r), are solutions of the eigen-

value problem






−~2∇2

2m
+ VN (r) +

M
∑

j=1
j 6=i

∫

e2|φj(r′)|2
|r′ − r| d3r′






φi(r) = Eiφi(r) . (10.18)

The subscripts i, j of the coordinates have been removed as there is no ambiguity.

The Hamiltonian related to each particle can be written in the formH = −~
2∇2

2m +
VN +WH , where VN was defined earlier and

WH ≡
M
∑

j=1
j 6=i

∫

e2φj(r)φj(r)
∗d3r′

|r′ − r| . (10.19)

This Hartree potential, or Couloumb potential, can be interpreted as the poten-

tial seen from each electron by averaging the distribution of the other electrons

|φj(r)|2’s. It can be obtained from solving the Poisson equation with the charge

density e|φj(r)|2 for each electron j. Note that both VN andWH depend on the

electron i. Another important observation is that solving the eigenvalue problem

(10.18), requires the knowledge of the other orbitals φj , i.e., those for j 6= i.
Also, the electron density of the orbital in question should not be included in the

construction of the Hartree potential.

The solution of the problem requires a self-consistent field (SCF) iteration.

One begins with some set of orbitals, and computes iteratively new sets by solv-

ing (10.18), using the most current set of φ′js for j 6= i. This iteration is continued

until the set of φi’s is self-consistent. One difficulty is that the Hamiltonian de-

pends on the orbital since the summation in (10.18) excludes the term j = i. This

means that if there areM electrons, thenM Hamiltonians must be considered and

(10.18) solved for each of them at each SCF loop. This procedure can therefore

be expensive.

A major weakness of the Hartree approximation is that it does not obey the

Pauli exclusion principle [124]. The Hartree-Fock method, discussed next, is an

attempt to remedy this weakness.

10.4.3 The Hartree-Fock approximation

Pauli’s exclusion principle states that there can be only two electrons in the same

orbit and they must be of opposite spin. The coordinates must include spin, so
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we define xi =
(

ri

si

)

where si is the spin of the ith electron. A canonical way

to enforce the exclusion principle is to require that a wave function Ψ be an anti-

symmetric function of the coordinates xi of the electrons in that by inter-changing

any two of these its coordinates, the function must change its sign. In the Hartree-

Fock approximation, many body wave functions with antisymmetric properties

are constructed, typically cast as Slater determinants, and used to approximately

solve the eigenvalue problem associated with the Hamiltonian (10.12).

Starting with one-electron orbitals, φi(x) ≡ φ(r)σ(s), the following func-

tions meet the antisymmetry requirements:

Ψ̂(x1,x2, · · · ) =

∣

∣

∣

∣

∣

∣

∣

∣

φ1(x1) φ1(x2) · · · · · · φ1(xM )
φ2(x1) φ2(x2) · · · · · · · · ·
· · · · · · · · · · · · · · ·

φM (x1) · · · · · · · · · φM (xM )

∣

∣

∣

∣

∣

∣

∣

∣

. (10.20)

The actual Slater determinants are obtained from normalizing the auxiliary func-

tions P̂ si of (10.20): Ψ = (M !)−1/2Ψ̂. If two electrons occupy the same orbit,

two rows of the determinant will be identical and Ψ will be zero. The determi-

nant will also vanish if two electrons occupy the same point in generalized space

(i.e., xi = xj) as two columns of the determinant will be identical. Exchanging

positions of two particles will lead to a sign change in the determinant.

If one uses a Slater determinant to evaluate the total electronic energy and

maintains wave function normalization, the orbitals can be obtained from the fol-

lowing Hartree-Fock equations:

Hiφi(r) =





−~2∇2

2m
+ VN (r) +

M
∑

j=1

∫

e2 |φj(r ′)|2
|r− r ′| d3r ′



 φi(r)

−
M
∑

j=1

∫

e2

|r− r ′| φ
∗
j (r

′)φi(r
′) d3r ′ δsi,sj φj(r) = Eiφi(r) . (10.21)

It is customary to simplify this expression by defining an electronic charge density,

ρ:

ρ(r) =

M
∑

j=1

|φj(r )|2, (10.22)

and an orbital dependent “exchange-charge density”, ρHF
i for the ith orbital:

ρHF
i (r, r ′) =

M
∑

j=1

φ∗j (r
′) φi(r

′) φ∗i (r ) φj(r )

φ∗i (r ) φi(r )
δsi,sj . (10.23)

This “density” involves a spin dependent factor which couples only states (i, j)
with the same spin coordinates (si, sj).

With these charge densities defined, it is possible to define corresponding

potentials. The Coulomb or Hartree potential, VH , is defined by

VH(r) =

∫

ρ(r)
e2

|r− r ′| d
3
r
′ . (10.24)
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and an exchange potential can be defined by

Vi
x(r) = −

∫

ρHF
i (r, r ′)

e2

|r− r ′| d
3
r
′ . (10.25)

This combination results in the following Hartree-Fock equation:

( −~2∇2

2m
+ VN (r) + VH(r) + Vi

x(r)

)

φi(r) = Eiφi(r) . (10.26)

The number of electronic degrees of freedom in Hartree-Fock - based calcula-

tions grows rapidly with the number atoms often prohibiting an accurate solution,

or even one’s ability to store the resulting wave function. The method scales nom-

inally as N4 (N being the number of basis functions), though its practical scaling

is closer to N3. An alternate approach is based on Density Functional Theory

(DFT) which scales nominally as N3, or close to N2 in practice.

10.4.4 Density Functional Theory

In a number of classic papers, Hohenberg, Kohn, and Sham established a theo-

retical basis for justifying the replacement of the many-body wave function by

one-electron orbitals [123, 90, 108]. Their results put the charge density at center

stage. The charge density is a distribution of probability, i.e., ρ(r1)d
3
r1 repre-

sents,in a probabilistic sense, the number of electrons (all electrons) in the in-

finitesimal volume d3r1.

Specifically, the Hohenberg-Kohn results were as follows. The first Hohen-

berg and Kohn theorem states that for any system of electrons in an external po-

tential Vext, the Hamiltonian (specifically Vext up to a constant) is determined

uniquely by the ground-state density alone. Solving the Schrödinger equation

would result in a certain ground-state wave function Ψ, to which is associated

a certain charge density,

ρ(r1) =
∑

s1=↑,↓

M

∫

|Ψ(x1,x2, · · · ,xM )|dx2 · · · dxM . (10.27)

From each possible state function Ψ one can obtain a (unique) probability distri-

bution ρ. This mapping from the solution of the full Schrödinger equation to ρ is

trivial. What is less obvious is that the reverse is true: Given a charge density, ρ, it

is possible in theory to obtain a unique Hamiltonian and associated ground-state

wave function, Ψ. Hohenberg and Kohn’s first theorem states that this mapping

is one-to-one, i.e., we could get the Hamiltonian (and the wave function) solely

from ρ.

The second Hohenberg-Kohn theorem provides the means for obtaining this

reverse mapping: The ground-state density of a system in a particular external

potential can be found by minimizing an associated energy functional. In prin-

ciple, there is a certain energy functional, which is minimized by the unknown

ground state charge density, ρ. This statement still remains at a formal level in the
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sense that no practical means was given for computing Ψ or a potential, V . The

magnitude of the simplification suggests that the energy functional will be hard to

construct. Indeed, this transformation changes the original problem with a total of

3N coordinates plus spin, to one with only 3 coordinates, albeit with N orbitals

to be determined.

Later Kohn and Sham provided a workable computational method based on

the following result: For each interacting electron system, with external potential

V0, there is a local potential Vks, which results in a density ρ equal to that of the

interacting system. Thus, the Kohn-Sham energy functional is formally written in

the form

HKS =
~
2

2m
∇2 + Veff , (10.28)

where the effective potential is defined as for a one-electron potential, i.e., as in

(10.14),

Veff = VN (ρ) + VH(ρ) + Vxc(ρ). (10.29)

Note that in contrast with (10.14), Vxc is now without an index, as it is only for one

electron. Also note the dependence of each potential term on the charge density ρ,

which is implicitly defined from the set of occupied eigenstates ψi, i = 1, · · · , N
of (10.28) by Eq. (10.22).

The energy term associated with the nuclei-electron interactions is 〈VN |ρ〉,
while that associated with the electron-electron interactions is 〈VH |ρ〉, where VH
is the Hartree potential,

VH =

∫

ρ(r′)

|r− r′|dr
′ .

The Kohn-Sham energy functional is of the following form:

E(ρ) = − ~
2

2m

N
∑

i=1

∫

φ∗i (r)∇2φi(r)dr +

∫

ρ(r)Vion(r)dr

+
1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| drdr
′ + Exc(ρ(r)) (10.30)

The effective energy, or Kohn-Sham energy, may not represent the true, or “ex-

perimental energy,” because the Hamiltonian has been approximated.

One of the issues left with the DFT approximation is to determine the Ex-

change and Correlation energy from which the potential Vxc in (10.29) can be

obtained.

In contemporary theories, correlation energies are explicitly included in the

energy functionals [123]. These energies have been determined by numerical stud-

ies performed on uniform electron gases resulting in local density expressions of

the form: Vxc[ρ(r)] = Vx[ρ(r)] + Vc[ρ(r)], where Vc represents contributions to

the total energy beyond the Hartree-Fock limit [20]. For the exchange energy, one

of the simplest model in DFT consists of using the Local Density Approximation

(LDA), originally suggested by Kohn and Sham [108]. Within LDA, one obtains
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the following expression:

Ex[ρ] = −
3e2

4π
(3π2)1/3

∫

[ρ(r)]4/3 d3r, (10.31)

from which one obtains Vx[ρ] by taking the functional derivative:

Vx[ρ] =
δEx[ρ]

δρ
= −e

2

π
(3π2ρ(r))1/3 . (10.32)

10.4.5 The Kohn-Sham equation

The Kohn-Sham equation [108] for the electronic structure of matter is

( −~2∇2

2m
+ VN (r) + VH(r) + Vxc[ρ(r)]

)

φi(r) = Eiφi(r) . (10.33)

This equation is nonlinear and it can be solved either as an optimization problem

(minimize energy with respect to wavefunctions) or a nonlinear eigenvalue prob-

lem. In the optimization approach an initial wavefunction basis is selected and

a gradient-type approach is used to iteratively refine the basis until a minimum

energy is reached. In the second approach the Kohn-Sham equation is solved

solved “self-consistently”. An approximate charge is assumed to estimate the

exchange-correlation potential, and this charge is used to determine the Hartree

potential from (10.24). The output potential is then carefully mixed with the pre-

vious input potential (s) and the result is inserted in the Kohn-Sham equation and

the total charge density determined as in (10.22). The “output” charge density is

used to construct new exchange-correlation and Hartree potentials. The process is

repeated until the input and output charge densities or potentials are identical to

within some prescribed tolerance.

Due to its ease of implementation and overall accuracy, the Local Density Ap-

proximation (LDA) mentioned earlier is a popular choice for describing the elec-

tronic structure of matter. Recent developments have included so-called gradient

corrections to the local density approximation. In this approach, the exchange-

correlation energy depends on the local density and the gradient of the density.

This approach is called the generalized gradient approximation (GGA) [155].

10.4.6 Pseudopotentials

A major difficulty in solving the eigenvalue problem arising from the Kohn-Sham

equation is the length and energy scales involved. The inner (core) electrons are

highly localized and tightly bound compared to the outer (valence electrons). A

simple basis function approach is frequently ineffectual. For example, a plane

wave basis (see next section) might require 106 waves to represent converged

wave functions for a core electron, whereas only 102 waves are required for a

valence electron[24]. In addition, the potential is singular near the core and this
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cause difficulties in discretizing the Hamiltonian and in representing the wave-

functions. The use of pseudopotentials overcomes these problems by removing

the core states from the problem and replacing the all-electron potential by one

that replicates only the chemically active, valence electron states[24]. It is well-

known that the physical properties of solids depend essentially on the valence

electrons rather than on the core electrons, e.g., the Periodic Table is based on

this premise. By construction, the pseudopotential reproduces exactly the valence

state properties such as the eigenvalue spectrum and the charge density outside the

ion core.

The cores are composed of nuclei and inert inner electrons. Within this model

many of the complexities of an all-electron calculation are avoided. A group IV

solid such as C with 6 electrons is treated in a similar fashion to Pb with 82 elec-

trons since both elements have 4 valence electrons.

The pseudopotential approximation takes advantage of this observation by re-

moving the core electrons and introducing a potential that is weaker at the core,

which will make the (pseudo)wave functions behave like the all-electron wave

function near the locations of the valence electrons, i.e., beyond a certain radius

rc away from the core region. The valence wave functions often oscillate rapidly

in the core region because of the orthogonality requirement of the valence states

to the core states. This oscillatory or nodal structure of the wave functions corre-

sponds to the high kinetic energy in this region.

Pseudopotential calculations center on the accuracy of the valence electron

wave function in the spatial region away from the core, i.e., within the “chemically

active” bonding region. The smoothly-varying pseudo wave function should be

identical with the appropriate all-electron wave function in the bonding regions.

The idea of pseudopotentials goes back to Fermi [58] who in 1934 introduced a

similar construction to account for the shift in the wave functions of high-lying

states of alkali atoms subject to perturbations from foreign atoms.

10.5 Stability of Dynamical Systems

Consider a dynamical system governed by the differential equation

dy

dt
= F (y) (10.34)

where y ∈ R
n is some vector-valued function of t and F is a function from R

n

to itself. We will assume that the system is time autonomous in that the variable t
does not appear in the right hand side of (10.34). Note that F can be a complicated

partial differential operator and is usually nonlinear.

The stability of a nonlinear system that satisfies the equation ẏ = F (y) is

usually studied in terms of its steady state solution. The steady state solution ȳ is,

by definition, the limit of y(t) as t tends to infinity. This limit, when it exists, will

clearly depend on the initial conditions of the differential equation. The solution ȳ
can be found by solving the steady-state equation F (y) = 0 because the variation

of y with respect to time will tend to zero at infinity. A system governed by



252 CHAPTER 10

equation (10.34) is said to be locally stable if there exists an ǫ such that

‖y(t)− ȳ‖ → 0 , as t→∞

whenever ‖y(0) − ȳ‖ ≤ ǫ. For obvious reasons, it is said that the steady state

solution is attracting. The important result on the stability of dynamical systems,

is that in most cases the stability of the dynamical system can be determined by

its linear stability, i.e., by the stability of the linear approximation of F at ȳ. In

other words the system is stable if all the eigenvalues of the Jacobian matrix

J =

{

∂fi(ȳ)

∂xj

}

i,j=1,...,n

have negative real parts and unstable if at least one eigenvalue has a positive real

part. If some eigenvalues of J lie on the imaginary axis, then the stability of

the system cannot be determined by its linear stability, see [83]. In this case the

system may or may not be stable depending on the initial condition among other

things.

It is often the case that Jacobian matrices are very large nonsymmetric and

sparse such as for example when F originates from the discretization of a partial

differential operator. This is also the case when simulating electrical power sys-

tems, since the dimension of the Jacobian matrices will be equal to the number of

nodes in the network multiplied by the number of unknowns at each node, which

is usually four.

10.6 Bifurcation Analysis

The behavior of phenomena arising in many applications can be modeled by a

parameter dependent differential equation of the form

dy

dt
= F (y, α) (10.35)

where y is a vector valued function and α is typically a real parameter. There are

several problems of interest when dealing with an equation of the form (10.35). A

primary concern in some applications is to determine how stability properties of

the system will change as the parameter α varies. For example α might represent

a mass that is put on top of a structure to study its resistance to stress. When this

mass increases to reach a critical value the structure will collapse. Another impor-

tant application is when controlling the so-called panel flutter that causes wings

of airplanes to disrupt after strong vibrations. Here the bifurcation parameter is

the magnitude of the velocity of air. Christodoulou and Scriven solved a rather

challenging problem involving bifurcation and stability analysis in fluid flow in

[27]. Bifurcation theory comprises a set of analytical and numerical tools used to

analyze the change of solution behavior as α varies and part of the spectrum of the

Jacobian moves from the left half plane (stable plane) to the right half (unstable)

plane.
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(d) (f)(e)

(c)(b)(a)

Figure 10.5: Bifurcation patterns. Stable branches solid lines, unstable branches

dashed lines.

A typical situation is when one real eigenvalue passes from the left plane to

the right half plane. Thus, the Jacobian becomes singular in between. This could

correspond to either a ‘turning ’point or a ‘real bifurcation ’point. The change of

behavior of the solution can happen in several different ways as is illustrated in

Figure 4. Often bifurcation analysis amounts to the detection of all such points.

This is done by a marching procedure along one branch until crossing the primary

bifurcation point and taking all possible paths from there to detect the secondary

bifurcation points etc..

An interesting case is when a pair of complex imaginary eigenvalues cross

the imaginary axis. This is referred to as Hopf bifurcation. Then at the critical

value of α where the crossing occurs, the system admits a periodic solution. Also,

the trajectory of y, sometimes referred to as the phase curve in mechanics, forms

a closed curve in the y plane referred to as the phase plane (this can be easily seen

for the case n = 2 by using the parameter t to represent the curve).

10.7 Chemical Reactions

An increasing number of matrix eigenvalue problems arise from the numerical

simulation of chemical reactions. An interesting class of such reactions are those

where periodic reactions occur ‘spontaneously ’and trigger a wave like regime. A

well-known such example is the Belousov-Zhabotinski reaction which is modeled
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by what is referred to as the Brusselator model. The model assumes that the

reaction takes place in a tube of length one. The space variable is denoted by r,
and the time variable by t. There are two chemical components reacting with one

another. Their concentrations which are denoted by x(t, r) and y(t, r) satisfy the

coupled partial differential equations

∂x

∂t
=

D1

L

∂2x

∂r2
+A−B − (B + 1)x+ x2y

∂y

∂t
=

D2

L

∂2y

∂r2
+Bx− x2y

with the initial conditions,

x(0, r) = x0(r), y(0, r) = y0(r), 0 ≤ r ≤ 1

and the boundary conditions

x(t, 0) = x(t, 1) = A, y(t, 0) = y(t, 1) =
B

A
.

A trivial stationary solution to the above system is x̄ = A, ȳ = B/A. The linear

stability of the above system at the stationary solution can be studied by examining

the eigenvalues of the Jacobian of the transformation on the right-hand-side of the

above equations. This Jacobian can be represented in the form

J =

(

D1

L
∂2

∂2
r
− (B + 1) + 2xy x2

B − 2xy D2

L
∂2

∂2
r
− x2

)

.

This leads to a sparse eigenvalue problem after discretization. In fact the problem

addressed by chemists is a bifurcation problem, in that they are interested in the

critical value of L at which the onset of periodic behavior is triggered. This cor-

responds to a pair of purely imaginary eigenvalues of the Jacobian crossing the

imaginary axis.

10.8 Macro-economics

We consider an economy which consists of n different sectors each producing

one good and each good produced by one sector. We denote by aij the quantity

of good number i that is necessary to produce one unit of good number j. This

defines the coefficient matrix A known as the matrix of technical coefficients. For

a given production (x)i=1,...,n, the vector Ax will represent the quantities needed

for this production , and therefore x − Ax will be the net production. This is

roughly Leontiev’s linear model of production.

Next, we would like to take into account labor and salary in the model. In

order to produce a unit quantity of good j, the sector j employs wj workers and

we define the vector of workers w = [w1, w2, . . . , wn]
T . Let us assume that the

salaries are the same in all sectors and that they are entirely used for consumption,
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each worker consuming the quantity di of good number i. We define again the

vector d = [d1, d2, . . . , dn]
T . The total consumption of item i needed to produce

one unit of item j becomes

aij + wjdi .

This defines the so-called socio-technical matrix B = A+ wT d.

The additional assumptions on the model are that the needs of the workers are

independent of their sector, and that there exists a pricing system that makes every

sector profitable. By pricing system or strategy, we mean a vector p = (pi)i=1,...,n

of the prices pi of all the goods. The questions are

1) Does there exist a pricing strategy that will ensure a profit rate equal for all

sectors? (balanced profitability)

2) Does there exist a production structure x that ensures the same growth rate τ to

each sector? (balanced growth).

The answer is provided by the following theorem.

Theorem 10.1 If the matrix B is irreducible there esists a pricing strategy p, a

production structure x and a growth rate r = τ that ensure balanced profitability

and balanced growth and such that

BT p =
1

1 + r
p , Bx =

1

1 + τ
x.

In other words the desired pricing system and production structure are left

and right eigenvectors of the matrixB respectively. The proof is a simple exercise

that uses the Perron-Frobenius theorem. Notice that the profit rate r is equal to the

growth rate τ ; this is referred to as the golden rule of growth.

10.9 Markov Chain Models

A discrete state, discrete time Markov chain is a random process with a finite (or

countable) number of possible states taking place at countable times t1, t2, . . . , tk . . . ,
and such that the probability of an event depends only on the state of the system

at the previous time. In what follows, both times and states will be numbered by

natural integers. Thus, the conditional probability that the system be in state j at

time k, knowing that it was under state j1 at time 1, state j2, at state 2 etc.., state

jk − 1 at time k − 1 only depends on its state jk − 1 at the time k − 1, or

P (Xk = j | X1 = j1, X2 = j2, . . . , Xk−1 = jk−1)

= P (Xk = j | Xk−1 = jk−1)

where P (E) is the probability of the event E and X is a random variable.

A system can evolve from a state to another by passing through different tran-

sitions. For example, if we record at every minute the number of people waiting



256 CHAPTER 10

for the 7am bus at a given bus-stop, this number will pass from 0 at, say, in-

stant 0 corresponding to 6 : 45 am to say 10 at instant 15 corresponding to 7 am.

Moreover, at any given time between instant 0 and 15, the probability of another

passenger coming, i.e., of the number of passengers increasing by one at that in-

stant, only depends on the number of persons already waiting at the bus-stop.

If we assume that there are N possible states, we can define at each instant

k, an N ×N matrix P (k), called transition probability matrix, whose entries p
(k)
ij

are the probabilities that a system passes from state i to state j at time k, i.e.,

p
(k)
ij = P (Xk = j|Xk−1 = i)

The matrix P (k) is such that its entries are nonnegative, and the row sums are

equal to one. Such matrices are called stochastic. One of the main problems

associated with Markov chains is to determine the probabilities of every possible

state of the system after a very long period of time.

The most elementary question that one faces when studying such models is:

how is the system likely to evolve given that it has an initial probability distribution

q(0) = (q
(0)
1 , q

(0)
2 , . . . , q

(0)
N )? It is easy to see that at the first time q(1) = q(0)P (0),

and more generally

q(k) = q(k−1)P (k−1).

Therefore,

q(k) = q(0)P (0)P (1) . . . P (k−1)P (k).

A homogeneous systems is one whose transition probability matrix P (k) is

independent of time. If we assume that the system is homogeneous then we have

q(k) = q(k−1)P (10.36)

and as a result if there is a stationary distribution π = lim q(k) it must satisfy the

equality π = πP . In other words π is a left eigenvector of P associated with the

eigenvalue unity. Conversely, one might ask what are the conditions under which

there is a stationary distribution.

All the eigenvalues of P do not exceed its 1-norm which is one because P
is nonnegative. Therefore if we assume that P is irreducible then by the Perron-

Frobenius theorem, one is the eigenvalue of largest modulus, and there is a cor-

responding left eigenvector π with positive entries. If we scale this eigenvector

so that ‖π‖1 = 1 then this eigenvector will be a stationary probability distribu-

tion. Unless there is only one eigenvalue with modulus one, it is not true that a

limit of qk defined by (10.36) always exists. In case there is only eigenvalue of

P of modulus one, then qk will converge to π under mild conditions on the initial

probability distributions q0.

Markov chain techniques are very often used to analyze queuing networks

and to study the performance of computer systems.
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PROBLEMS

P-10.1 Generalize the model problems of Section 10.2 involving masses and springs to

an arbitrary number of masses.

P-10.2 Compute the exact eigenvalues (analytically) of the matrix obtained from dis-

cretizing the Chemical reaction model problem in Section 10.7. Use the parameters listed

in Chapter II for the example.

P-10.3 Show that when F (t) = F0 cosωt then a particular solution to (10.1) is given by

F0

(k −mω2)2 + c2ω2

[

(k −mω2) cosωt+ cω sinωt
]

.

Show that (10.3) is an alternative expression of this solution.

NOTES AND REFERENCES. At the time of the first edition of this book I stated that “Many of the

emerging applications of eigenvalue techniques are related to fluid dynamics and bifurcation theory

[19, 87, 98, 128, 130, 99, 187, 216] aero-elasticity [47, 48, 66, 129, 84, 85, 186], chemical engineer-

ing [28, 27, 160, 88, 161] and economics [38].” Recent interest of numerical analysts has turned to

applications from two challenging and distinct areas: nanosciences (electronic structure calculations,

see Sec. 10.4) and information sciences (machine learning, data analysis). Problems originating from

quantum mechanical calculations are challenging not only because of the large sizes of the matrices en-

countered but also because the number of eigenvalues to be computed can be very large. Section 10.4

is an abbreviated version of the survey article [181]. A prototypical application in the second category

is that of the google page-rank problem, see for example, [102, 74, 15]. For a description of linear

algebra method for information retrieval (IR), see [9]. These application typically lead to singular

value problems instead of eigenvalue problems. The eigenvalue problems which are encountered in

the specific problem of dimension reduction are surveyed in [109]. The Lanczos algorithm can play a

significant role in reducing the cost of these techniques as the required accuracy is typically not high,

see for example [25, 10] for an illustration.
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practical implementation, 143
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locking technique, 121

locking vectors, 121

Look-Ahead Lanczos algorithm, 143

look-ahead Lanczos algorithm, 143

lower triangular matrices, 4

lucky breakdown, see Lanczos algorithm

M

MA28 package, 36

macro-economics, 254

Markov chain models, 255

matrices, 2

matrix

banded, 5

bidiagonal, 4

block diagonal, 5

block-tridiagonal, 5

circulant, 6

diagonal, 4

diagonalizable, 14

Hankel, 5

Hermitian, 4

Hessenberg, 5

lower triangular, 4

nonnegative, 4

normal, 4

norms, 8

orthogonal, 4

outer product, 5

reduction, 13

skew-Hermitian, 4

skew-symmetric, 4

symmetric, 4

Toeplitz, 5

tridiagonal, 4

unitary, 4

upper triangular, 4

matrix pair, 220

matrix pencil, 195, 220

matvecs, 168

mechanical vibrations, 236

min-max problem, 170

min-max theorem, 23

modified Gram-Schmidt, 131

moment matrix, 181

in Lanczos, 144

MSR storage format, 32

multiple eigenvalue, 13

multiplication of matrices, 2

N

NASTRAN, 236

Neuman series expansion, 52

Newton’s law of motion, 237

nilpotent, 17

nilpotent matrix, 17

nipotent, 18

nonnegative matrices, 4, 25–26

normal equations, 127

normal matrices, 4, 21–23

characterization, 21

definition, 21

norms, 8–9

Frobenius, 8

Hölder, 7

of matrices, 8

null space, 10, 226

nullity, 11

O

oblique projection method, 106, 139

oblique projector, 50, 106

Olsen’s method, 207

optimal ellipse, 174

optimal polynomial, 184

orbital, 244

orthogonal complement, 12, 48

orthogonal matrix, 4

orthogonal projection methods, 97

orthogonal projector, 12, 48, 98

orthogonality, 11–12

between vectors, 11

of a vector to a subspace, 12

orthonormal, 11

oscillatory solutions, 241

outer product matrices, 5

P

partial reorthogonalization, 144

partial Schur decomposition, 19, 95

Pauli principle, 245
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permutation matrices, 5

Perron-Frobenius theorem, 255, 256

Petrov-Galerkin condition, 106

Petrov-Galerkin method, 97

polynomial acceleration, 170

polynomial filters, 163

polynomial iteration, 170

polynomial preconditioning, 199–203

poorly conditioned polynomial bases, 181

positive definite matrix, 25

positive real matrices, 36

positive semi-definite, 25

power method, 85–88, 116, 123, 132

convergence, 87

example, 87

shifted, 88

the algorithm, 85

power systems, 242

preconditioning, 123, 193, 203

principal vector, 15

projection method, 127

projection methods, 96–108

for matrix pairs, 228

Hermitian case, 100

oblique, 97, 106

orthogonal, 97

projection operators, 98

projector, 10, 47

pseudo-eigenvalues, 79–82

pseudo-spectrum, 79

Q

QR algorithm, 168

QR decomposition, 12

quadratic eigenvalue problem, 219, 231–233

quantum mechanics, 242

quasi Schur form, 19, 95

R

random walk example, 36

range, 10

rank, 10

column, 10

full, 10

row, 10

Rank+Nullity theorem, 11

Rayleigh quotient, 22, 23, 243

Rayleigh Quotient Iteration, 90

Rayleigh-Ritz

in AMLS, 210

procedure, 98

real Chebyshev polynomials, 108

real Schur form, 19

reduced resolvent, 72

reducible, 26

reduction of matrices, 12

regular matrix pair, 222

reorthogonalization, 11

residual norm, 131

resolvent, 51–75

analyticity, 56

equalities, 52

operator, 51

reduced, 72, 75

resonance phenomena, 239

right eigenvector, 222

right subspace, 97, 106

Ritz eigenvalues, 130

Ritz values, 139

row rank, 10

RQI (Rayleigh Quotient Iteration), 90

S

Schrödinger equation, 243

Schur complement, 210

spectral, 213

Schur form, 18

example, 20

non-uniqueness, 20

partial, 19

quasi, 20

real, 20

Schur vectors, 98, 135, 165

in subspace iteration, 119

under Wielandt deflation, 93

Schur-Wielandt deflation, 95

complex eigenvalues, 95

second resolvent equality, 52

selective reorthogonalization, 144

self-adjoint, 229

semi-simple, 13

serious breakdown, see Lanczos algorithm

shift-and-invert, 89, 193–199

complex arithmetic, 195

for matrix pairs, 227

real and complex arithmetic, 196

with Arnoldi’s method, 197

with direct solvers, 35
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shifted power method, 88, 132

similarity transformation, 13

simple eigenvalue, 13

singular matrix pair, 222

singular values, 9

singularities of the resolvent, 52

skew-Hermitian matrices, 4

skew-symmetric matrices, 4

Slater determinant, 247

socio-technical matrix, 255

span of q vectors, 9

sparse direct solvers, 35

sparse matrices, 29–45

basic operations with, 34

direct solvers, 35

matrix-vector product, 34

storage, 30

structured, 29

unstructured, 29

sparse triangular system solution, 35

sparsity, 29

SPARSKIT, 30, 40

special matrices, 5

spectral decomposition, 18

spectral portraits, 83

spectral projector, 18

spectral radius, 3

Spectral Schur complement, 213

spectral transformation Lanczos, 231

spectrum of a matrix, 3

stability

linear, 252

of a nonlinear system, 251

of dynamical systems, 251

staircase iteration, 115

stationary distribution, 256

stationary iterations, 81

Stieljes algorithm, 138

stochastic matrices, 256

storage format

coordinate, 31

CSR, 32

Diagonal, 33

Ellpack-Itpack, 33

MSR, 32

storage of sparse matrices, 30

structural engineering, 241

structured sparse matrix, 29

subspace, 9–11

basis, 10

subspace iteration, 115–124

convergence, 118

locking, 121

multiple step version, 116

practical implementation, 121

simple version, 115

with Chebyshev acceleration, 177–178

with linear shifts, 123

with preconditioning, 123

with projection, 118

subspace of approximants, 97

sum of two subspaces, 10

Sylvester’s equation, 76

symmetric matrices, 4

T

test problems, 36

three-term recurrence, 171

Toeplitz matrices, 5

trace, 3

transition probability matrix, 256

transpose, 2

transpose conjugate, 2

tridiagonal matrices, 4

U

unitary matrices, 4

unstructured sparse matrix, 29

upper triangular matrices, 4

V

vibrations, 236

critical damping, 238

damped free, 238

forced, 238

free forced, 238

free vibrations, 237

overdamping, 238

underdamping, 238

W–Z

Weierstrass-Kronecker canonical form, 225

Wielandt deflation, 91, 226

optimality in, 92

Wielandt’s theorem, 91

YSMP, 36

Zarantonello’s lemma, 110, 111
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