

FORTRAN - Coding conventions

Motivation

"Style guides: I hate’em. After all, I know which style is the best: mine! Style guides often appear to be dreary lists of arbitrary-seeming rules that limit my creativity. Reading them puts me to sleep".

However, when a group of people work on the same code, it is better when they all share the same coding conventions, because otherwise the code might look like a one big mess. To avoid this, here are some conventions I found on the web, that I think we should adopt (the important thing is to work according to the same guidelines, no matter which).

This note has 3 parts:

I. Style and readability

II. Other suggestions - some suggestions I encountered on the web, for an efficient coding in FORTRAN 90

III. "Mistakes in Fortran 90 Programs That Might Surprise You"

I Style and readability

Naming conventions

· Use Self-explaining names for variables, procedures etc.

· Don't use keyword or subprogram names for variables.

· name subroutines with names beginning with a verb as in ``get_balance''. For a function the name might be a noun phrase like ``maximum_balance''

· Use the same name in all subprograms for a variable that represents the same item in all units. Avoid using the same name for functionally different items.

· Avoid using a single letter for a variable name

Upper/Lower Case

· Use upper case for parameters, (lower case with an initial capital letter for Fortran keywords??), and lower case for everything else.

· Write comments as normal text, with normal capitalization rules.

Spacing

· Use spacing to enhance readability.

· Indent contents of code blocks (i.e., do loops, block if, etc.).

· Avoid splitting keywords and character strings between lines.

· Use spacing in equations to clarify precedence of operators. I.e., normally put one space on either side of =, +, and - operators (except in subscripts), but none around *, /, or ** operators. For example, this:

 y1 = (-b + Sqrt(b**2 - 4.*a*c))/(2.*a)

is easier to read than this:

 y1=(-b+Sqrt(b**2-4.*a*c))/(2.*a)

or this:

 y1 = (- b + Sqrt (b ** 2 - 4. * a * c)) / (2. * a)

· Use spacing to reveal patterns in continuation lines and in separate but logically related statements. For example, this:

 dum1 = Sqrt((fr (i,j) - fr (1, j))**2 + &

 (fth(i,j) - fth(1, j))**2)

 dum2 = Sqrt((fr (i,j) - fr (n1, j))**2 + &

 (fth(i,j) - fth(n1, j))**2)

 dum3 = Sqrt((fr (i,j) - fr (i, 1))**2 + &

 (fth(i,j) - fth(i, 1))**2)

is easier to read than this:

 dum1 = Sqrt((fr(i,j) - fr(1,j))**2 + (fth(i,j) - &

 fth(1,j))**2)

 dum2 = Sqrt((fr(i,j) - fr(n1,j))**2 + (fth(i,j) - &

 fth(n1,j))**2)

 dum3 = Sqrt((fr(i,j) - fr(i,1))**2 + (fth(i,j) - &

Comments

· Use comments liberally to describe what's being done. Where code may be confusing, use longer comments to describe why something's being done the way that it is.

· Make each comment meaningful; don't simply re-iterate what's already obvious from the coding itself. As an obvious example, this:

c Get the speed of the space ship

 Call get_speed()

 is more meaningful than this:

 c Call get_speed

 Call get_speed()

· In long do loops and if blocks, mark the end of the construct in a way that "connects" it with the start. One convenient and readable method is to use an in-line comment on the ending statement that repeats the beginning statement. E.g.,

 If (bccode == 13) then

 [Lines and lines of code]

 Do i = 1,nzones

 If (zondim(1,i) > 0) then

 [More lines and lines of code]

 End if ! If (zondim(1,i) > 0)

 End do ! Do i = 1,nzones

 End if ! If (bccode == 13)

Arrays

· Specify all subscripts in any array reference. For example, when initializing a 2D array to zero, write:

array(:,:) = zero

 Instead of:

 array = zero

· It is more readable (and I think also more efficient) to write:

array(:,:) = zero

 instead of:

Do i = 1,ndim

 Do j = 1,ndim

 array(i,j) = zero

 Enddo ! do j = 1,ndim

Enddo ! do i = 1,ndim

begin_MLT

· When passing an array of unknown size to a subroutine, avoid implicit size declaration (which causes unecessary access to physical memory, and may even hurt runtime). For instance:

call mysubroutine(array)

 or:

call mysubroutine(array(1,1))

 but never:

call mysubroutine(array(:,:))

 Notice that the construction

call mysubroutine(array(2,1:n))

 is acceptable, and it will pass elements from row 1 to row n in the second column of the array.

end_MLT

Parameters

· Parameterize computer-related characteristics (e.g., word and character size), design-dependent data attributes (e.g., matrix size), and input/output device oriented characteristics (e.g., unit identifiers) as much as possible. For example:

Use:

 don’t use:

parameter(input_unit= 5, output_unit= 6)

parameter (arm_size= 24, input_unit= 5)
 dimension levarm(24)

dimension levarm(arm_size)

read (input_unit) list
 read(5) list

do n= 1, arm_size
 do n=1,24

· Parameters should be declared in the relevant include file (const.f).

Format statements

· Position a FORMAT statement immediately following its reference.

· Position FORMAT statements that are used more than once at the end of the subprogram.

Operators

· Use of the operators <, >, <=, >=, ==, /= is recommended instead of their deprecated counterparts .lt., .gt., .le., .ge., .eq., and .ne. The motivation is readability.

A general subprogram structure

Each subprogram should have the following structure (top-down):

· Start each subprogram with a suitable header that includes:

· Subprogram Name

· Its purpose or what does it do

· Method(s) that are used in it (if any)

· Other comments (if needed)

begin_MLT

· Original author, and author(s) of major revisions (so that later developers know who to ask when he/she needs clarification)

· Copyright information

end_MLT

· Title of subroutine/function

· List of "use…" statements

· An "implicit none" statement (all variables and parameters should then be explicitly declare)

· List variables in the following order:

· Input/output variables in the following type order:

· integer

· real (double precession)

· character

· logical

For input and output variables, use the "intent" declaration for an easier debugging and enhancing readability.

· Working variables in the above type order:

· integer

· real (double precession)

· character

· logical

· Avoid declaring two variables on the same line unless they are very intimately related, such as x and y for coordinates of a point.

· The code itself

Here is a proposed file structure:

c===

c Subprogram Name:

c meaningful_name

c Purpose:

c This subroutine does this and that.

C Method:

c It uses the Jo's algorithm

c <Also include any applicable external references>

c Comments:

c <any additional information to clarify the module>

c Author, date:

c <who wrote it and when>

c Copyright © 2005 Finite Difference Research Group

c This file is part of parsec, http://www.ices.utexas.edu/parsec/

c===

 Subroutine meaningful_name (boys_num,girls_num,children_num,time)

 use ...

 use ...

 implicit none

c===================== INPUT/OUTPUT VARIABLES ===================

<integers:>

c
<comment>

integer, intent(in) :: boys_num, girls_num

c
<comment>

integer, intent(out) :: children_num

<reals:>

c
<comment>

real(dp), intent(inout) :: time

<characters:>

<logicals:>

c====================== WORK VARIABLES ==========================

<integers:>

<reals:>

<characters:>

<logicals:>

c=========================== CODE =================================

c================== END SUBROUTINE MEANINGFULL_NAME ===============

II Other suggestions (efficiency and robustness)

Arrays with Multiple Dimensions in do loops

Whenever practicable, in nested DO loops, index the first variable indexed with the innermost DO. This is computationally more efficient for some compilers. For example,

Do j = 1, ndim

 Do i = 1, ndim

 grid(i,j) = i*j

 Enddo !do i = 1, ndim

Enddo
 ! do j = 1, ndim

Is more efficient in FORTRAN then

Do i = 1, ndim

 Do j = 1, ndim

 grid(i,j) = i*j

 Enddo !do j = 1, ndim

Enddo
 ! do i = 1, ndim

Because of the way FORTRAN handles its memory (continues in columns rather then continues in rows). This example was for 2D, but the same idea, is applicable in all dimensions.

If-else blocks

Avoid if statement of the form:

 If (good .eq. .false.)

Instead use:

 If (.not. good)

The IBM compiler does not allow a logical variable to be with an .eq. comparison (but the SGI accepts that.)

Division

It is recommended to protect most divisions by a preceding zero test of the denominator.

Instead of:

result = a/b

it is to be written:

If (b .NE. 0) Then

 result = a/b

Else

 …

Endif

Remark: The "if condition" might decrease performance (not by much), so in places that are safe beyond a doubt – the "if statement" can be neglected.

Go To

Minimize the use of "Go to" statements.

Type

Avoid comparing arithmetic expressions of different types; convert the type explicitly.

Calling a subprogram

· Match the arguments in the calling (sub)program to those of the called subprogram in both number and type.

begin_MLT

Expections to this rule is when arguments have intent “optional”

begin_MLT

III Mistakes in Fortran 90 Programs That Might Surprise You

(Taken from http://www.cs.rpi.edu/~szymansk/OOF90/bugs.html
there are several more tips, I copied just those who seemed more relevant to us)

Danger with intent(out)

In this example we assign components of a derived type with intent(out).

 program intent_gotcha

 type mytype

 integer :: x

 real :: y

 end type mytype

 type (mytype) :: a

 a%x = 1 ; a%y = 2.

 call assign(a)

 ! a%y COULD BE UNDEFINED HERE

 print *, a

 contains

 subroutine assign(this)

 type (mytype), intent (out) :: this

 ! THIS IS THE WRONG WAY

 this%x = 2

 end subroutine assign

 subroutine assign(this)

 type (mytype), intent (out) :: this

 ! THIS IS THE RIGHT WAY

 this%x = 2 ; this%y = 2.

 end subroutine assign

 end program intent_gotcha

Explanation:
The problem is that when intent(out) is used with a derived type, any component not assigned in a procedure could become undefined on exit. For example, even though a%y was defined on entry to this routine, it could become undefined on exit because it was never assigned within the routine. The lesson is that all components of a derived type should be assigned within a procedure, when intent(out) is used. Intent(out) behaves like the result variable in a function: all components must be assigned. As an alternative, use intent(inout).

Remark: In addition to extra debugging capabilities, 'in' arguments are passed slightly more efficiently than 'out' and 'inout' arguments.

Danger with Optional Arguments

In this example an optional argument is used to determine if a header is printed.

 Subroutine print_char(this,header)

 character(len=*), intent (in) :: this

 logical, optional, intent (in) :: header

 ! THIS IS THE WRONG WAY

 if (present(header) .and. header) then

 print *, 'This is the header '

 endif

 print *, this

 end subroutine print_char

 subroutine print_char(this,header)

 character(len=*), intent (in) :: this

 logical, optional, intent (in) :: header

 ! THIS IS THE RIGHT WAY

 if (present(header)) then

 if (header) print *, 'This is the header '

 endif

 print *, this

 end subroutine print_char

Explanation
The first method is not safe because the compiler is allowed to evaluate the header argument before the present function is evaluated. If the header argument is not in fact present an out of bounds memory reference could occur, which could cause a failure.

c
================== End of coding conventions =========================

