Appendix A. Exponential and Logarithmic Functions

For fixed $b>1$, the function b^{x} was defined in Exercise 6 on p. 22 in the textbook "Principles of Mathematical Analysis" by W. Rudin. It satisfies $b^{x}>0$, and
(E1). $b^{x+y}=b^{x} b^{y}$ for real x, y.
In particular, $b^{0}=1$, which implies

$$
1=b^{0}=b^{y+(-y)}=b^{y} b^{-y} \quad \Longrightarrow \quad b^{-y}=\left(b^{y}\right)^{-1} \quad \Longrightarrow
$$

(E2). $b^{x-y}=b^{x} b^{-y}=b^{x} / b^{y}$ for real x, y.
(E3). $\left(b^{x}\right)^{y}=b^{x y}$ for real x, y.
We divide the proof of this property into a few steps.
Step 1. $y=n$ is natural. Then by iterating of (E1),

$$
\left(b^{x}\right)^{n}=\underbrace{b^{x} b^{x} \cdots b^{x}}_{n \text { times }}=b^{x n} .
$$

Step 2. $y=-n$, where n is natural. Since $\left(b^{x}\right)^{n}\left(b^{x}\right)^{-n}=1$, we get

$$
\left(b^{x}\right)^{-n}=\left(\left(b^{x}\right)^{n}\right)^{-1}=\left(b^{n x}\right)^{-1}=b^{-n x}
$$

Together with the obvious case $y=0$, the cases 1 and 2 cover all integers y.
Step 3. $y=1 / n$, where n is natural. We have

$$
\left(e^{x / n}\right)^{n}=b^{n x / n}=b^{x} \quad \Longrightarrow \quad\left(b^{x}\right)^{1 / n}=b^{x / n}
$$

Step 4. $y=m / n$ - a rational number. Here m is integer and n is natural. Then

$$
\left(b^{x}\right)^{y}=\left(b^{x}\right)^{m / n}=\left(\left(b^{x}\right)^{1 / n}\right)^{m}=\left(b^{x / n}\right)^{m}=e^{m x / n}=e^{x y} .
$$

Step 5. $x>0$ and y is real. Then $b_{1}:=b^{x}>1$, and similarly to Ex. $6(\mathrm{c}, \mathrm{d})$ on p.22,

$$
\left(b^{x}\right)^{y}=b_{1}^{y}=\sup _{r \leq y} b_{1}^{r}=\sup _{r \leq y} b^{r x}=\sup _{r_{1} \leq x y} b_{1}^{r}=b^{x y} .
$$

Here the sup is taken over rational numbers r or r_{1}.
The assumption $b>1$ was needed in order to have an increasing function b^{x}, which is defined as the sup of b^{r} over rational numbers $r \leq x$. If $0<b<1$, then $b^{-1}>1$, and we can define

$$
b^{x}:=\left(b^{-1}\right)^{-x} .
$$

For completeness, we also set $1^{x} \equiv 1$. Then the function b^{x} is defined for all $b>0$ and real x, and it satisfies (E1)-(E3). For example, if $0<b<1$, then the property (E3) can be verified as follows:

$$
\left(b^{x}\right)^{y}=\left(\left(b^{-1}\right)^{-x}\right)^{y}=\left(b^{-1}\right)^{-x y}=b^{x y}
$$

Definition (compare with Ex. 7 on p.22). Let $b>0, b \neq 1$, and $y>0$ be fixed. The logarithm of y to the base b,

$$
x=\log _{b} y \quad \text { - the unique solution of } \quad b^{x}=y, \quad \text { i.e. } \quad b^{\log _{b} y} \equiv y \quad \text { for } \quad y>0 .
$$

The natural logarithm of y

$$
\ln y:=\log y:=\log _{e} y, \quad \text { where } \quad e:=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.71828 \ldots
$$

The logarithmic function $\log _{b} y$ can be easily expressed in terms of the function $\ln y$:
(L0). $\log _{b} y=\ln y / \ln b$. Indeed,

$$
b^{\ln y / \ln b}=\left(e^{\ln b}\right)^{\ln y / \ln b}=e^{\ln b \cdot \ln y / \ln b}=e^{\ln y}=y
$$

and (L0) holds true by definition.
The following properties (L1)-(L3) for $\ln y$ correspond to (E1)-(E3) for e^{x}. They are true for $\log _{b} y$ as well.
(L1). $\ln \left(y_{1} y_{2}\right)=\ln y_{1}+\ln y_{2}$ for $y_{1}>0, y_{2}>0$.
This equality follows from

$$
e^{\ln y_{1}+\ln y_{2}}=e^{\ln y_{1}} e^{\ln y_{2}}=y_{1} y_{2}=e^{\ln \left(y_{1} y_{2}\right)}
$$

(L2). $\ln \left(y_{1} / y_{2}\right)=\ln y_{1}-\ln y_{2}$ for $y_{1}>0, y_{2}>0$.
The proof is quite similar to the previous one.
(L3). $\ln \left(y^{a}\right)=a \ln y$ for $y>0$ and real a.
Indeed, using (E3), we obtain

$$
e^{a \ln y}=\left(e^{\ln y}\right)^{a}=y^{a}=e^{\ln \left(y^{a}\right)},
$$

which is equivalent to (L3).
One an also prove (L2) by combining (L1) and (L3) with $a=-1$:

$$
\ln \left(y_{1} / y_{2}\right)=\ln \left(y_{1} \cdot y_{2}^{-1}\right)=\ln \left(y_{1}\right)+\ln \left(y_{2}^{-1}\right)=\ln y_{1}-\ln y_{2} .
$$

Using the properties (E) and (L), we also get a new property
(E4). $(a b)^{x}=a^{x} b^{x}$ for $a>0, b>0$ and real x.
It suffices to check that the logarithms of both sides coincide, and this is the case:

$$
\ln \left((a b)^{x}\right)=x \cdot \ln (a b)=x \cdot \ln a+x \cdot \ln b=\ln \left(a^{x}\right)+\ln \left(b^{x}\right)=\ln \left(a^{x} b^{x}\right) .
$$

The base e of the natural logarithm satisfies some special properties.
Theorem. The sequences

$$
a_{n}:=\left(1+\frac{1}{n}\right)^{n} \nearrow e:=2.71828 \ldots, \quad b_{n}:=\left(1+\frac{1}{n}\right)^{n+1} \searrow e \quad \text { as } \quad n \rightarrow \infty .
$$

Proof. We will use an elementary inequality, which is easily proved by induction:

$$
(1+h)^{n} \geq 1+n h \quad \text { for all } \quad h \geq-1 \quad \text { and } \quad n=1,2,3, \ldots
$$

Using this inequality for $n \geq 2$ and $h:=-1 / n^{2}$, we get

$$
\frac{a_{n}}{a_{n-1}}=\left(\frac{n+1}{n}\right)^{n}\left(\frac{n-1}{n}\right)^{n-1}=\left(1-\frac{1}{n^{2}}\right)^{n} \cdot \frac{n}{n-1} \geq\left(1-\frac{n}{n^{2}}\right) \cdot \frac{n}{n-1}=1
$$

i.e. $a_{n-1} \leq a_{n}$ for all $n \geq 2$. Similarly,

$$
\begin{aligned}
\frac{b_{n-1}}{b_{n}} & =\left(\frac{n}{n-1}\right)^{n}\left(\frac{n}{n+1}\right)^{n+1}=\left(\frac{n^{2}}{n^{2}-1}\right)^{n+1} \cdot \frac{n-1}{n} \\
& =\left(1+\frac{1}{n^{2}-1}\right)^{n+1} \cdot \frac{n-1}{n} \geq\left(1+\frac{n+1}{n^{2}-1}\right) \cdot \frac{n-1}{n}=1,
\end{aligned}
$$

i.e. $b_{n-1} \geq b_{n}$ for all $n \geq 2$.

Note that since n cannot have nontrivial common factors with $n-1$ or $n+1$, we actually have strict inequalities " $>$ " instead of " 2 " in the above expressions:

$$
a=a_{1}<a_{2}<a_{3}<\cdots<a_{n}<b_{n}<\cdots<b_{3}<b_{2}<b_{1}=4 .
$$

By Theorem 3.19, there exists $\lim a_{n}$, which we denote by e. We also have

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) a_{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right) \cdot \lim _{n \rightarrow \infty} a_{n}=1 \cdot e=e .
$$

Corollary. We have

$$
\frac{1}{n+1}<\ln \left(1+\frac{1}{n}\right)<\frac{1}{n} \quad \text { for all } \quad n=1,2,3, \ldots
$$

Proof. Since $\ln y$ is an increasing function for $y>0$, from the previous theorem it follows $\ln a_{n}<\ln e=1<\ln b_{n}$. Using the property (L3) of $\ln y$, we get

$$
n \cdot \ln \left(1+\frac{1}{n}\right)<1<(n+1) \cdot \ln \left(1+\frac{1}{n}\right)
$$

and the desired inequalities follow.

