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1 Existence and Uniqueness for the Initial Value Problem.

Consider the differential equation of order n

y(n) = f(t, y, y′, . . . , y(n−1)), (1.1)

where f is a continuous function of all its variables, which is defined for t ∈ I := (α, β) and arbitrary
values of y, y′, · · · , y(n−1). The initial value problem, or the Cauchy problem for this equation
is the equations together with the initial conditions at some fixed point t0 ∈ I;

y(t0) = b0, y′(t0) = b1, . . . , y(n−1)(t0) = bn−1, (1.2)

where b0, b1, . . . , bn−1 are prescribed constants. This means that if y = y(t, C1, C2, . . . , Cn) is the
general solution to (1.1), then one needs to choose n constants C1, C1, . . . , Cn in order to satisfy n
conditions in (1.2).

Lemma 1.1. The differential equation (1.1) is equivalent to the system

dy1
dt

= y2,
dy2
dt

= y3, · · · ,
dyn−1

dt
= yn,

dyn
dt

= f(t, y1, · · · , yn), (1.3)

in the following sense.
(i) If y = y(t) satisfies (1.1), then y1 := y, y2 := y′, . . . , yn := y(n) satisfy (1.3).
(ii) If (y1, y2, . . . , yn) satisfy (1.3), then y(t) := y1(t) satisfies (1.1).

Proof is straightforward.

Correspondingly, the Cauchy problem (1.1)–(1.2) is equivalent to

dY

dt
= F (t, Y ) for t ∈ I := (α, β), Y (t0) = Y0, (1.4)

where Y and F are vector functions: Y := (y1, y2, . . . , yn), Y0 := (b0, b1, . . . , bn−1), and
F := (f1, f2, . . . , fn) with f1 := y2, f2 := y3, . . . , fn−1 := yn, fn = f(t, Y ) = f(t, y1, y2, . . . , yn).

In turn, it is easy to check that the Cauchy problem for the differential equation (1.4) with
vector valued functions Y and F is equivalent to the integral equation.
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Lemma 1.2. The vector functions Y = Y (t) satisfies (1.4) if and only if it satisfies

Y (t) = Y0 +

t∫
t0

F
(
s, Y (s)

)
ds for t ∈ I. (1.5)

It is known that the problems (1.4) or (1.5) indeed have solutions for continuous F (t, Y ), but
in order to guarantee uniqueness, one needs to impose some additional restrictions. Technically,
the simplest condition of such kind is the Lipschitz condition with respect to Y :

|F (t, Y1)− F (t, Y2)| ≤ K · |Y1 − Y2| for all t ∈ I and Y1, Y2 ∈ Rn, (1.6)

where K = const ≥ 0. For example, this condition holds true if all the components fj of F have
bounded partial derivatives ∂fj/∂xk.

Here we use the notation

|x| :=
(∑

j

x2j

)1/2
for x = (x1, x2, . . . , xn) ∈ Rn.

We also need the scalar, or inner product

(x, y) :=
∑
j

xjyj for x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn.

Note that if Y = (y1, y2, . . . yn) with differentiable components, then

d

dt

(
|Y |2

)
=

d

dt

(∑
j

y2j

)
= 2

∑
j

yj
dyj
dt

= 2
(
Y,

dY

dt

)
. (1.7)

Lemma 1.3 (Cauchy-Schwartz inequality).∣∣(x, y)∣∣ ≤ |x| · |y| for all x, y ∈ Rn. (1.8)

Proof. This is obvious if either x = 0 or y = 0. Otherwise, if both x ̸= 0 and y ̸= 0, then one
can multiply x and y by appropriate nonzero constants to reduce the proof to the case |x| = |y| = 1.
Then (1.7) is reduced to the equivalent relation∣∣(x, y)∣∣ = ∣∣∣∑

j

xjyj

∣∣∣ ≤ ∑
j

|xjyj | ≤
1

2

∑
j

(x2j + y2j ) =
1

2

(
|x|2 + |y|2

)
= 1 = |x| · |y|.

Theorem 1.4 (Uniqueness). Under the Lipschitz condition (1.6), the problems (1.4) or (1.5)
cannot have more than one solution.

Proof. Let functions Y1(t) and Y2(t) both satisfy (1.4). Combining together (1.6)–(1.8), we
get the following estimates for the function Y (t) := Y1(t)− Y2(t):∣∣∣dY

dt

∣∣∣ = ∣∣∣dY1
dt

− dY2
dt

∣∣∣ = ∣∣F (t, Y1)− F (t, Y2)
∣∣ ≤ K · |Y1 − Y2| = K · |Y |,

d

dt

(
|Y |2

)
= 2

(
Y,

dY

dt

)
≤ 2 |Y | ·

∣∣∣dY
dt

∣∣∣ ≤ 2K · |Y |2.
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Then the function

h(t) := e−2Kt|Y (t)|2 ≥ 0, and
dh

dt
= e−2Kt

(
− 2K · |Y |2 + d

dt

(
|Y |2

))
≤ 0.

Since also h(t0) = 0, we must have h(t) ≡ 0 and Y1(t) ≡ Y2(t) for t ≥ t0. Replacing t by −t, we
also get Y1(t) ≡ Y2(t) for t ≤ t0. Hence Y1 and Y2 cannot be distinct.

In order to prove the existence, we can assume without loss of generality that t0 = 0, and
consider the problem only for t ≥ 0 (otherwise we can replace t by −t. We need some auxiliary
fact from the advanced Calculus. Let X = C

(
[0, A],Rn

)
denote the set of all continuous vector

functions Y (t) on the closed interval [0, A] with values in Rn, i.e. Y = (y1, y2, . . . , yn) with scalar
components. Introduce the distance in X by the formula

d(Y, Z) := sup
[0,A]

|Y − Z| for Y, Z ∈ X. (1.9)

It is easy to see that (X, d) is a metric space, which means:
(i) d(Y, Z) ≥ 0, and d(Y, Z) = 0 if and only if Y = Z,
(ii) d(Y, Z) = d(Z, Y ),
(iii) (the triangle inequality) d(Y,W ) ≤ d(Y, Z) + d(Z,W ) for all Y, Z,W ∈ X.

Theorem 1.5. The metric space (X, d) is complete, i.e. every Cauchy sequence {Yk}
converges. This means that from d(Yj , Yk) → 0 as j, k → ∞ it follows d(Yk, Y ) → 0 as k → ∞ for
some Y ∈ X.

Proof. We still rely on two more elementary facts: (i) Rn with the Euclidean distance |x−y| is
complete, and (ii) every continuous function Y (t) on a compact [0, A] is uniformly continuous:
for every ε > 0, there exists δ > 0, such that

|Y (t1)− Y (t2)| ≤ ε for all t1, t2 ∈ [0, A] with |t1 − t2| ≤ δ. (1.10)

For completeness, we provide the proofs of these facts in Section 4 below.

For every t ∈ [0, A], we have |Yj(t) − Yk(t)| ≤ d(Yj , Yk) → 0 as j, k → ∞, so that {Yj(t)} is a
Cauchy sequence in Rn, therefore, there exists

Y (t) := lim
j→∞

Yj(t) for every t ∈ [0, A]. (1.11)

We have to show that Y ∈ X, i.e. Y (t) is continuous and satisfies the above property (1.10).

Fix ε > 0 and then choose a large enough k, such that d(Yj , Yk) ≤ ε/3 for all j ≥ k. Then

|Y (t)− Yk(t)| = lim
j→∞

|Yj(t)− Yk(t)| ≤ sup
j≥k

d(Yj , Yk) ≤
ε

3
for every t ∈ [0, A].

Further, applying (1.10) to the functions Yk with ε/3 in place of ε, we can get a constant δ > 0,
such that

|Yk(t1)− Yk(t2)| ≤
ε

3
for all t1, t2 ∈ [0, A] with |t1 − t2| ≤ δ.

For such t1, t2, we also have

|Y (t1)− Y (t2)| ≤ |Y (t1)− Yk(t1)|+ |Yk(t1)− Yk(t2)|+ |Yk(t2)− Y (t2)| ≤
ε

3
+

ε

3
+

ε

3
= ε.

This means that Y satisfies (1.10) and belongs to X.
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Theorem 1.6 (Existence and Uniqueness). Under the Lipschitz condition (1.6), the prob-
lems (1.4) or (1.5) have a unique solution.

Proof. Since these two problems are equivalent, we can deal with integral equation (1.5), which
means that Y is a fixed point for the transformation T:

Y (t) = T[Y ](t) := Y0 +

t∫
0

F
(
s, Y (s)

)
ds for 0 ≤ t ≤ A. (1.12)

It is convenient to introduce another distance on the metric space X as follows:

d0(Y, Z) := sup
[0,A]

e−2Kt|(Y − Z)(t)| for Y, Z ∈ X. (1.13)

Comparing with the distance d(Y, Z) in (1.9), one can see that d0 ≤ d ≤ e2KAd0, so that previous
Theorem 1.5 is equally applicable to the metric space (X, d0). In terms of this distance, we have a
pointwise estimate

|(Y − Z)(t)| ≤ d0(Y, Z) · e2Kt for 0 ≤ t ≤ A. (1.14)

We claim that T is a contraction in (X, d0):

d0(V1,W1) ≤
1

2
d0(V,W ), where V1 := T[V ], W1 := T[W ], for V,W ∈ X. (1.15)

Indeed, by virtue of (1.12) and (1.14),

∣∣(V1 −W1)(t)
∣∣ = ∣∣T[V ](t)− T[W ](t)

∣∣ = ∣∣∣∣
t∫

0

[
F (s, V (s))− F (s,W (s))

]
ds

∣∣∣∣
≤ K

t∫
0

∣∣(V −W )(s)
∣∣ds ≤ Kd0(V,W ) ·

t∫
0

e2Ksds ≤ 1

2
d0(V,W )e2Kt,

and then (1.15) follows by definition of d0 in (1.13).

Now we introduce the sequence

Y0(t) ≡ Y0, and then Yk+1 := T[Yk] for k = 0, 1, 2, . . . .

Iterating the estimate (1.15), we obtain

d0(Yk, Yk+1) ≤ 2−1d0(Yk−1, Yk) ≤ · · · ≤ 2−kC0, where C0 := d0(Y0, Y1).

Further, using the triangle inequality, we also get

d0(Yk, Yj) ≤ d0(Yk, Yk+1) + d0(Yk+1, Yk+2) + · · ·+ d0(Yj−1, Yj)

≤
(
2−k + 2−k−1 + · · ·

)
C0 ≤ 21−kC0 for j > k.

This means that {Yk} is a Cauchy sequence in (X, d0), and by Theorem 1.5, there exists Y ∈ X
such that d0(Yk, Y ) → 0 as k → ∞.
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Finally, we claim that Y is the desired solution of (1.12), i.e. Y = T[Y ]. Indeed, denote
Z := T[Y ]. They by (1.15), we have

d0(Yk+1, Z) ≤ 1

2
d0(Yk, Y ) → 0 as k → ∞.

Then
d0(Y, Z) ≤ d0(Y, Yk) + d0(Yk, Yk+1) + d0(Yk+1, Z) → 0 as k → ∞.

But the left hand side does not depend on k, which means that Y = Z = T[Y ].

Independently of Theorem 1.4, the uniqueness follows immediately from (1.15): if both V and
W are fixed point for T, then V1 = V, W1 = W , and the inequality d0(V,W ) = d0(V1,W1) ≤
2−1d0(V,W ) is only possible if d0(V,W ) = 0 and V = W .

Since the problem (1.1)–(1.2) is equivalent to (1.4), one can re-formulate Theorem 1.5 as follows:

Theorem 1.7. Let the function f in (1.1) satisfies the Lipschitz condition with respect to
the variables y, y′, . . . , y(n−1) on every closed subinterval I0 := [a0, β0] ⊂ I := (α, β). Then for
arbitrary t0 ∈ I, and arbitrary b0, b1, . . . , bn−1 in R1, there exists a unique solution to the problem
(1.1)–(1.2).

2 Linear Homogeneous Equations.

We first consider linear homogeneous equations with variable coefficients.

Theorem 2.1. Let p0, p1, . . . , pn be continuous functions on an interval I := (α, β), p0 ̸= 0.
Then for arbitrary t0 ∈ I, and arbitrary b0, b1, . . . , bn in R1, there exists a unique solution y = y(t)
of the equation

Ly = p0y
(n) + p1y

(n−1) + · · ·+ pn−1y
′ + pny =

n∑
j=0

pn−jy
(j) = 0 on I, (2.1)

where we set y(0) := y, with the initial conditions

y(t0) = b0, y′(t0) = b1, . . . , y(n−1)(t0) = bn−1. (2.2)

Proof. Dividing by P0 ̸= 0, we reduce the proof to the case p0 ≡ 1. Then one can rewrite (2.1)
as follows:

y(n) = f(t, y, y′, . . . , y(n−1)) := −p1(t)y
(n−1) − · · · − pn−1(t)y

′ − pn(t)y. (2.3)

On every closed subinterval I0 ⊂ I, we have |pj | ≤ K for all j with a constant K depending on
I0. Then automatically the function f in (2.3) satisfies the Lipschitz condition with respect to the
variables y, y′, . . . , y(n−1) on I0, and the claim follows from Theorem 1.7.
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Definition 2.2. A fundamental set of solutions of the equation (2.1) is a set of solutions
y1, y2, . . . , yn, for which the Wronskian

W := W [y1, y2, . . . , yn] :=

∣∣∣∣∣∣∣∣
y1 y2 . . . yn
y′1 y′2 . . . y′n
. . . . . . . . . . . .

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n

∣∣∣∣∣∣∣∣ (2.4)

is nonzero at some point t0 ∈ I.

Theorem 2.3. The previous definition is equivalent to the statement that the solutions
y1, y2, . . . , yn are linearly independent on I, i.e. the identity

y := c1y1 + c2y2 + · · ·+ cnyn ≡ 0 on I (2.5)

with constants c1, c2, . . . , cn is possible only if c1 = c2 = · · · = cn = 0.

Proof. Let W (t0) ̸= 0, and let the identity (2.5) hold true with some constants cj .
By differentiation, we get a system of n equations with n unknowns c1, c2, . . . , cn:

y = c1y1 + c2y2 + · · ·+ cnyn ≡ 0,

y′ = c1y
′
1 + c2y

′
2 + · · ·+ cny

′
n ≡ 0,

· · ·
y(n−1) = c1y

(n−1)
1 + c2y

(n−1)
2 + · · ·+ cny

(n−1)
n ≡ 0.

(2.6)

From Linear Algebra it is knows that this system has non-trivial solutions (not all cj are zeroes)
if and only if the determinant of the matrix of coefficients if zero. This determinant is exactly the
Wronskian W in (2.4). Since W (t0) ̸= 0, we must have c1 = c2 = · · · = cn = 0, which means that
y1, y2, . . . , yn are linearly independent on I.

Now suppose that W (t0) = 0 at some point t0 ∈ I. At this point, the system (2.6) has nontrivial
solution c1, c2, . . . , cn. Then the function y := c1y1 + c2y2 + · · ·+ cnyn satisfied the equation (2.1)
with the initial conditions y(t0) = y′(t0) = · · · = y(n−1)(t0) = 0. By uniqueness of solution to the
problem (2.1)–(2.2), we must have y ≡ 0 on I, hence y1, y2, . . . , yn are dependent on I. In this case,
we also have W ≡ 0 on I.

In the rest of this section, we consider the equations (2.1) with constant coefficients
p0 ̸= 0, p1, · · · , pn .

The characteristic polynomial of this equation is

p(r) = p0r
n + p1r

n−1 + · · ·+ pn−1r + pn =
n∑

j=0

pn−jr
j .

It is known from Algebra that any polynomial p(r) can be represented in the form

p(r) = p0(r − r1)
m1(r − r2)

m2 · · · (r − rs)
ms = p0

s∏
j=1

(r − rj)
mj , (2.7)
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where rj (j = 1, 2, · · · , s) are distinct (real or complex) zeros of p(r) and mj are their multiplici-
ties. One can re-write (2.1) as follows:

Ly = p(D)y =

n∑
j=0

pn−jD
jy = 0, where D :=

d

dt
. (2.8)

Lemma 2.4
p(D)eλt = p(λ)eλt.

This lemma is a particular case of the following one with v = 1.

Lemma 2.5
p(D)[eλtv(t)] = eλtp(D + λ)v(t). (2.9)

Proof. We have

D[eλtv(t)] = λeλtv(t) + eλtv′(t) = eλt(D + λ)v(t),

D2[eλtv(t)] = D
[
D[eλtv(t)]

]
= D

[
eλt(D + λ)v(t)

]
= eλt(D + λ)2v(t),

etc.,
Dj [eλtv(t)] = eλt(D + λ)jv(t)

for all j, and finally,

p(D)[eλtv(t)] =
n∑

j=0

pn−jD
j [eλtv(t)] = eλt

n∑
j=0

pn−j(D + λ)jv(t) = eλtp(D + λ)v(t).

Corollary 2.6 If p(r) has a root λ0 of multiplicity m0, then

p(D)[eλ0ttk] = 0 for k = 0, 1, · · · ,m0 − 1.

Proof. We have p(r) = q(r)(r − λ0)
m0 for some polynomial q(r). Hence

p(D)[eλ0ttk] = eλ0tp(D + λ0)t
k = eλ0tq(D + λ0)D

m0tk = 0

for all k ≤ m0 − 1.

Using this Corollary, we now prove the following

Theorem 2.7. Consider a linear homogeneous equation (2.1) with constant coefficients. Let its
characteristic polynomial p(r) be represented in the form (2.7) with distinct rj . Then this equation
has n linearly independent solutions

tkerjt (j = 1, 2, . . . s; k = 0, 1, . . . ,mj − 1), (2.10)

so that its general solution is

y =
s∑

j=1

mj−1∑
k=0

cj,kt
kerjt. (2.11)
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Proof. By Corollary 2.6, the functions tkerjt in (2.10) satisfy the equation (2.1). It remains to
show that these functions are linearly independent, i.e. the function y in (2.11) is identically 0
if and only if the coefficients cj,k = 0 for all j, k. This means that for distinct r1, · · · , rs and arbitrary
polynomials P1, · · · , Ps,

s∑
j=1

erjtPj(t) ≡ 0 ⇐⇒ Pj(t) ≡ 0 for all j. (2.12)

For s = 1, this statement is trivial. Suppose it is true for some s ≥ 1 and arbitrary distinct
r1, · · · , rs, and show that it remains true for s+ 1 as well. Let

er1tP1(t) + · · ·+ erstPs(t) + ers+1tPs+1(t) ≡ 0. (2.13)

Note that DNPs+1 ≡ 0 for large N. Dividing (2.13) by ers+1t and differentiating N times, we obtain

DN
[
e(r1−rs+1)tP1(t) + · · ·+ e(rs−rs+1)tPs(t)

]
≡ 0. (2.14)

For r ̸= 0, and any polynomial P,

D
(
ertP

)
=

(
ertP

)′
= ert (r +D)P = ert

(
rP + P ′) = ertQ,

where the polynomial Q = rP + P ′ has same degree as P, and Q ≡ 0 ⇐⇒ P ≡ 0. Repeating this
operation N times, we rewrite (2.14) as follows:

e(r1−rs+1)tQ1(t) + · · ·+ e(rs−rs+1)tQs(t) ≡ 0, (2.15)

where Qj ≡ 0 ⇐⇒ Pj ≡ 0 for all k ≤ s. By our assumption, (2.15) implies Qj ≡ 0 for all j ≤ s.
Then Pj ≡ 0 for all j ≤ s, and now (2.13) yields Ps+1 ≡ 0, so that (2.12) holds true for s + 1. By
induction, it holds true for all s.

Remark 2.8. If the set of distinct roots {rj} in (2.7) contains complex numbers, then they
can be grouped by pairs α± iβ of the same multiplicity. In this case, one can replace each pair of
complex valued solutions in (2.10),

tkeα±iβ by tkeαt cosβt, tkeαt sinβt.

Remark 2.9. In the case when every root rj in (2.7) has multiplicity one, we have the fun-
damental set of solutions

{
yj(t) := erj , j = 1, 2, . . . , n

}
. Then one can re-write the Wronskian in

(2.4) as follows:

W := W [er1t, er2t, . . . , ernt] :=

∣∣∣∣∣∣∣∣
er1t er2t . . . ernt

r1e
r1t r2e

r2t . . . rne
rnt

. . . . . . . . . . . .

rn−1
1 er1t rn−1

2 er2t . . . rn−1
n ernt

∣∣∣∣∣∣∣∣
= e(r1+r2+·+rn)tVn, where Vn = Vn[r1, r2, . . . , rn] :=

∣∣∣∣∣∣∣∣
1 1 . . . 1
r1 r2 . . . rn
. . . . . . . . . . . .

rn−1
1 rn−1

2 . . . rn−1
n

∣∣∣∣∣∣∣∣ . (2.16)
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The determinant in (2.16) is called the Vandermonde determinant. The fact that Vn ̸= 0, and
therefore W ̸= 0, follows immediately from the following explicit expression.

Theorem 2.10. The Vandermonde determinant in (2.16)

Vn[r1, r2, . . . , rn] =
∏

1≤j<k≤n

(rk − rj).

Proof. This is obviously true for n = 2 : V2[r1, r2] = r2 − r1. For n ≥ 3, Consider Vn as a
function of rn with fixed r1, r2, . . . , rn−1. This is a polynomial of degree n − 1 with n − 1 roots
r1, r2, . . . , rn−1, because if rn = rj , 1 ≤ j ≤ n− 1, then the jth and nth columns in (2.16) coincide,
hence Vn = 0. Therefore,

Vn[r1, r2, . . . , rn] = (rn − 1)(rn − r2) · · · (rn − rn−1) · V ∗ =
∏

1≤j<n

(rn − rj) · V ∗,

where V ∗ does not depend on rn. One can see that V ∗ is the coefficient of rn−1
n . Comparing with

the decomposition of the determinant in (2.16) with respect to the last column, we conclude that
V ∗ = V [r1, r2, . . . , rn−1]. The rest of the proof follows by induction.

3 Linear Nonhomogeneous Equations.

Here we consider equations with constant coefficients.

Theorem 3.1. Consider a linear nonhomogeneous equation

Ly = p0y
(n) + p1y

(n−1) + · · ·+ pn−1y
′ + pny = eλ0tQs (3.1)

with constant coefficients p0 ≠ 0, p1, . . . , pn, where Qs is a polynomial of degree s. If λ0 is a root of
the characteristic polynomial p(r) = p0r

n+p1r
n−1+ · · ·+pn−1r+pn of multiplicity m0 ≥ 0 (m0 = 0

if p(λ0) ̸= 0), then there exists a particular solution of this equation of the form

yp(t) = eλ0ttm0Ps(t), (3.2)

where Ps is a polynomial of degree s.

Proof. Consider the linear mapping TP = e−λ0tL
[
eλ0ttm0P

]
on the set Ps of all polynomials

of degree ≤ s. We can write L = p(D) = q(D)(D − λ0)
m0 , where q(λ0) ̸= 0. By Lemma 2.5,

TP = e−λ0tq(D)(D − λ0)
m0

[
eλ0ttm0P

]
= q(λ0 +D)Dm0 [tm0P ] . (3.3)

It is easy to see that TPs ⊆ Ps, i.e. T is a linear mapping of the linear space Ps of finite dimension
into itself. Moreover, since

q(λ0 +D) = q(λ0) +
q′(λ0)

1!
D +

q′′(λ0)

2!
D2 + · · ·+ q(n)

n!
Dn, q(λ0) ̸= 0, (3.4)

we have

TP = q(λ0 +D)Dm0 [tm0P ] ≡ 0 ⇐⇒ Dm0 [tm0P ] ≡ 0 ⇐⇒ P ≡ 0.
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From Linear Algebra it is known that T is a one-to-one correspondence. Therefore, for given
Qs ∈ Ps, there exists a unique Ps ∈ Ps satisfying TPs = Qs. In other words, L

[
eλ0ttm0Ps

]
= eλ0tQs,

which proves our statement.

Theorem 3.2. Consider a linear nonhomogeneous equation

Ly = p0y
(n) + p1y

(n−1) + · · ·+ pn−1y
′ + pny = eα0t [Qs cosβ0t+Q∗

s sinβ0t] (3.5)

with real constant coefficients p0 ̸= 0, p1, · · · , pn, where Qs and Q∗
s are polynomials of degree ≤ s,

and α0, β0 are real numbers. If λ0 = α0 + iβ0 is a root of the characteristic polynomial p(r) of
multiplicity m0 ≥ 0, then there exists a particular solution of this equation in the form

yp(t) = eα0ttm0 [Ps cosβ0t+ P ∗
s sinβ0t] , (3.6)

where Ps and P ∗
s are polynomials of degree ≤ s.

This theorem follows from the previous one by re-writing eα0t cosβ0 and eα0t sinβ0 through
e(α0±iβ0)t as in Remark 2.8.

Linear nonhomogeneous equations Ly = f with constant coefficients and zero initial conditions
at time t = 0 can be considered as a particular case of systems with “input” f(t) 99K “output”
y(t), satisfying two properties:
(i) Linearity: if fj(t) 99K yj(t), then

∑
cjfj(t) 99K

∑
cjyj(t), where cj are constants. By approxi-

mation, this property is also extended to integrals as limits of Riemann sums.
(ii) Delay property: if fj(t) 99K yj(t), then fj(t− τ) 99K yj(t− τ) for every τ > 0.

Let h(t) be the “output” for unit “input”:

u0(t) :=

{
0, t < 0,

1, t ≥ 0.
99K h(t). (3.7)

If f(t) is a smooth function for t ≥ 0, then

f(t) = f(0) · u0(t) +
t∫

0

f ′(τ)dτ = f(0) · u0(t) +
∞∫
0

f ′(τ)u0(t− τ) dτ, t ≥ 0.

By the properties (i), (ii), we have f(t) 99K y(t), where

y(t) = f(0) · h(t) +
∞∫
0

f ′(τ)h(t− τ) dτ, t ≥ 0.

Since h(t) ≡ 0 for t < 0, after integrating by parts, we obtain the Duhamel’s integral

y(t) = (f ∗ h′)(t) :=
t∫

0

f(τ)h′(t− τ) dτ, t ≥ 0. (3.8)

In application to our equations, this result can be formulated as follows.
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Theorem 3.3 (Duhamel). Let h(t) be the solution of the equation with constant coefficients

Lh = p0h
(n) + p1h

(n−1) + · · ·+ pn−1h
′ + pnh = 0 for t ≥ 0,

with the initial conditions h(0) = h′(0 = · · ·h(n−1)(0) = 0. Then the function y(t) in (3.8) is the
solution of Ly = f for t ≥ 0, with the initial conditions y(0) = y′(0 = · · · y(n−1)(0) = 0.

The following example is just for demonstration, the suggested method here is not the shortest
possible.

Example 3.4. We will apply this theorem to the problem

y′′ + y = sin t, y(0) = y′(0) = 0. (3.9)

We have h(t) = 1− cos t, h′(t) = sin t, hence

y(t) = (sin t) ∗ (sin t) =
∫ t

0
sin(t− s) sin s ds.

The equality

sinα · sinβ =
1

2
[cos(α− β)− cos(α+ β)].

implies

y(t) =
1

2

∫ t

0
[cos(t− 2s)− cos t] ds =

1

2

[
sin(t− 2s)

−2
− s cos t

]s=t

s=0

=
1

2
(sin t− t cos t).

Example 3.4. Solve the problem

Ly = y′′ + 4y′ + 4y = t−2e−2t for t > 0, y(1) = y′(1) = 0.

Note that the right hand side is not integrable near the point t = 0, but we still can use formula
(3.8) with 1 in place of 0 as the lower limit of the integral. We have

h(t) =
1

4
−
(1
4
+

t

2

)
e−2t, h′(t) = te−2t;

y(t) =

t∫
1

f(τ)h′(t− τ) dτ =

t∫
1

τ−2e−2τ (t− τ)e−2(t−τ)dτ = e−2t

t∫
1

(τ−2t− τ−1)dτ

= e−2t
(
− t

τ
− ln τ

)∣∣∣∣τ=t

τ=1

= e−2t(−1− ln t+ t).

In this example, a shorter way is to write y = (c1 + c2t)e
−2t + yp, find a particular solution in

the form yp = e−2tv:

Lyp = (D + 2)2(e−2tv) = e−2tD2v = t−2e−2t, v′′ = t−2, v′ = −t−1, v = − ln t,

and then find the constants c1 and c2 from the initial conditions.
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4 Proof of Auxiliary Results.

Here we give the proofs of statements (i) and (ii) in the beginning of the proof of Theorem 1.5, in a
more general setting. These facts are well known, and they can be formulated in a few equivalent
ways. We choose the formulations which are most convenient for our applications. In this sections,
we deviate from our notations x = (x1, x2, . . . , xn) ∈ Rn: in what follows below, x1, x2, . . . are
points in Rn.

Theorem 4.1 (Bolzano–Weierstrass). Every bounded sequence {xj} = {x1, x2, . . .} in Rn

has a convergent subsequence {xjk}, k = 1, 2, . . ., i.e.

there exists x0 = lim
k→∞

xjk . (4.1)

Proof. We first consider the case n = 1. Since {xj} is bounded, there exists an interval
I0 := [a0.b0], which contains all the points xj . Divide I0 into two equal parts at the center point
c0 := (a0 + b0)/2 ∈ I0:

I0 = I ′0 ∪ I ′′0 , where I ′0 := [a0, c0], I ′′0 := [c0, b0].

Then at least one of subintervals I ′0 or I ′′0 contains infinitely many xj (more precisely, xj for
infinitely many indices j). Denote I1 := [a1, b1] one of such intervals. Continuing in a similar
manner, we get a sequence of nested intervals

I0 ⊃ I1 ⊃ I2 ⊃ · · · ⊃ Ik := [ak, bk] ⊃ · · · ,

where each interval Ik contains infinitely many xj . By construction, {ak} is non-decreasing, {bk}
is non-increasing, ak < bk, and bk − ak = 2−k(b0 − a0) → 0 as k → ∞. These are bounded
monotone sequences, hence

there exists x0 = lim
k→∞

ak = lim
k→∞

bk. (4.2)

Now choose a sequence 1 ≤ j1 < j2 < · · · < jk < · · · , such that xjk ∈ Ik for every k. It is easy
to see that the point x0 in (4.2) also belongs to Ik for every k. Therefore,

|xjk − x0| ≤ bk − ak = 2−k(b0 − a0) → 0 as k → ∞,

which means that we have the convergence in (4.1).

In the general case of arbitrary dimension n, if {xj} is a bounded sequence in Rn, then we use
the previous argument to select a subsequence of {xj}, for which their first coordinates converge in
R1. Out of resulting subsequence, choose another subsequence, for which their second coordinates
converge in R1. Proceeding in a similar way, we end up with a sequence for which all n coordinates
converge in R1, which is equivalent to the convergence in Rn.

Closed and compact subsets in Rn can be defined by means of sequences as follows.

Definition 4.2 (a). A subset K ⊆ Rn is closed if from {xj} ⊆ K and xj → x0 as j → ∞
it follows x0 ∈ K.

(b). A subset K ⊆ Rn is compact if every sequence {xj} contains a convergent subsequence
xjk , and its limit x0 belongs to K.
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Theorem 4.3. A subset K ⊆ Rn is compact if and only if it is bounded and closed.

In one direction, this theorem follows immediately from Theorem 4.1 and the above definitions.
We need it only in this direction, namely, we need the fact that the closed interval [0, A] is compact.
It is also easy to prove it in the opposite directions.

Definition 4.4. A sequence {xj} in Rn is a Cauchy sequence if |xi − xj | → 0 as i, j → ∞.
More formally, for every ε > 0, there exists a natural number m = m(ε) such that

|xi − xj | ≤ ε for all i, j ≥ m. (4.3)

One can also re-write (4.3) as follows:

εm := sup
i,j≥m

|xi − xj | → 0 as m → ∞. (4.4)

Theorem 4.5. Rn with the Euclidean distance |x−y| is complete, i.e. every Cauchy sequence
{xj} in Rn converges.

Proof. Let m1 be the constant m in (4.3) corresponding to ε = 1. Then from (4.3) it follows:

|xj | ≤ |xm1 |+ |xm1 − xj | ≤ |xm1 |+ 1 for all j ≥ m1.

Therefore, the sequence {xj} is bounded:

|xj | ≤ M := max
{
|x1|, |x2|, . . . , |xm1−1|, |xm1 |+ 1

}
for all j ≥ 1.

By Theorem 4.1, there exists a subsequence {xjk} convergent to x0 ∈ Rn. Finally, we can use
(4.4) with i = m and j = jk:

|xm − x0| = lim
k→∞

|xm − xjk | ≤ εm → 0 as m → ∞.

This means that the whole sequence {xj} also converges to x0.

One can also define continuity in by means of sequences.

Definition 4.6 (a). Let f(x) be a function defined on a set K ⊆ Rn. We say that f(x) is
continuous at the point x0 ∈ K, if from {xj} ⊆ K and xj → x0 it follows that f(xj) → f(x0) as
j → ∞. The function f(x) is continuous on K if it is continuous at every point x0 ∈ K.

(b). The function f(x) is uniformly continuous onK if from {xj}, {yj} ⊆ K and |xj−yj | → 0
it follows that |f(xj)− f(yj)| → 0 as j → ∞.

Theorem 4.7. If a function f(x) is continuous on a compact K ⊂ Rn, then it is uniformly
continuous on K.

Proof. Suppose that this statement fails. Then there is a constant ε > 0 and two sequences
{xj}, {yj} ⊆ K, such that

|xj − yj | → 0 as j → ∞, but |f(xj)− f(yj)| ≥ ε > 0 for all j. (4.5)

By Theorem 4.1, we can choose a subsequence xjk → x0 ∈ K as k → ∞. Then also yjk → x0,
and since f(x) is continuous at the point x0, we must have f(xjk) → f(x0) and f(yjk) → f(x0) as
j → ∞. Therefore,

|f(xjk)− f(yjk)| ≤ |f(xjk)− f(x0)|+ |f(yjk)− f(x0)| → 0 as k → ∞,

in contradiction to (4.5) with j = jk. This contradiction proves the statement.
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