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1 Exponential Matrix.

Definition 1.1. For n x n—matrix A, the exponential matrix function

t t2 e
etA:I+FA+§A2+...: — Ak, (1.1)
’ ’ k=0

Lemma 1.2. X = X(t) = ¢/ is the unique solution of the Cauchy problem
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Proof. It is easy to see that
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so that X = €4 is a solution of (1.2). Moreover, we can treat n x n—matrix function X as a vector
functions with values in R™ (or C™). we only need to rewrite the matrix equation X’ = AX in
the vector form X’ = BX with a n? x n?—matrix B. Then the uniqueness for the Cauchy problem
in the vector form implies the uniqueness for the problem (1.2). 0

Definition 1.3. If AV = AV, for some vector V # 0, then A is an eigenvalue of A, and V is an
eigenvector corresponding to A.

We have AV = AV <= (A — M)V = 0. The last system has nontrivial solutions V' # 0 <=
|A — AI| = 0. We introduce the characteristic polynomial of A by the formula p(\) = |\ — A|.
Now we can conclude:

(i) The eigenvalues of A are roots of the characteristic equation
p(A) = |\ — A =0. (1.3)
(ii) For each eigenvalue A, the corresponding eigenvectors V' are nontrivial solutions of the

system

(A— M)V =0. (1.4)

Lemma 1.4. Let A be a constant n x n matrix, and let AV = AV for some vector V. Then the
matrix function U = U(t) = eMV satisfies U’ = AU.



Proof. U'(t) = (M) V = MAV = MAV = AU(1). 0

Lemma 1.5. For distinct eigenvalues A1, Ao, - - , Ay, of the matrix A, the corresponding eigenvec-
tors Vp, Vo, .-+ |V}, are linearly independent.

Proof. For m = 1, this is trivial:
V1750, c1V1:O = c1 =0.

Now suppose this statement is true for some m = k, i.e. Vi, Vs, -+, Vi are linearly independent.
We will prove that it remains true for m = k + 1, i.e. the equality

aVi+- 4oV + 1V =0 (1.5)

holds only in case ¢; = -+ = ¢ = cg+1 = 0. Multiplying (1.5) by the matrix A and using the
equalities AV, = \;V;, we get

cVi+ -+ AV + cpr1 A +1Vierr = 0.
Now subtract (1.5) multiplied by Ag41. This gives us
et (M = Mer1) Vi e (A — Ag1) Vi = 0.

By our assumption, Vi, Va, .-, V; are linearly independent. Therefore,
1 (A1 = A1) =+ = ¢ (A — A1) = 0.
Since all the eigenvalues are distinct, this implies ¢; = --- = ¢ = 0. Now from (1.5) it follows

ck+1 = 0. This proves our statement for m = k + 1, and by induction, it is true for arbitrary m.
Another way of computation e* is based on the following famous result.

Theorem 1.6 ( Cayley-Hamilton). Let A = (a;;) be a n X n matrix, and let p(\) = |\ — A|.
Then p(A) = 0.

Proof. Denote

pA) =M= A=) "piN,  (pa=1).
j=0

Similarly to the geometric series for large A > 0, we have a convergent series
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On the other hand, the elements of this function are co-factors of A\I — A divided by p(A) = |A\] —A].
Therefore, the product

1 A
PO (A=A = 1> pN TR A,
7.k

is a polynomial of A\ with matrix coefficient, so that the coefficients of all negative powers of A must
be 0. In particular, the coefficient of A~!, which corresponds to a part of the above sum for j = k,
is

0= p; 47 = p(A).



Let A1, Ag,---,As denote all the distinct eigenvalues of a matrix A (real and complex). Then
we can write the characteristic polynomial of A in the form

s

p(A) = M — Al = [T =)™, (1.6)
k=1

where my, is the multiplicity of A\x. We have
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where ax () is a polynomial of degree < my, — 1 for each k. Therefore,
1= arNpe(N), 1= ar(A)pk(A), (1.8)
k=1 k=1
where o)
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Theorem 1.6. Let A\, Ao, --- , A\ be all the distinct eigenvalues of a matrix A with the character-
istic polynomial p(A) in (1.6). Then
s mg—1 t‘
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where aj, are polynomials of degree < my — 1, which are defined from the decomposition (1.7), and
pr. are polynomials in (1.9).

First we prove a lemma, which allows us to use the equalities

LA _ I t(A—XA) At tH(A=AA) (1.11)
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Lemma 1.7. Let A and B be n X n matrices satisfying AB = BA. Then
oHAtB — JMA+B).
Proof of Lemma. We have
AB=BA = A"B=DBA*¥ = "B =DBc"
Therefore, the matrix function X (t) = e!4e!? satisfies

X' = () e!B 4t (e!B) = Ae'e!P 4 Belde!P = (A+ B)X,  X(0)=1.

By Lemma 1.2, we have X (t) = !(A+5), 0



Proof of Theorem 1.6. Using the equalities (1.8) and (1.11) we get

=Y an(Ap(A)et = 37 My (A)pe(A)e D,
k=1 k=1

Since py(A)(A — Apl)™ = p(A4) =0,
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Together with (1.12), this gives us the equality (1.10).
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Example 1.8. Consider the matrix A = ( 0 -1 4 ) We have
0 o0 1

pN) =M —A=\+1)7>*0\-1) =

)\1 = —1, mi = 2, )\2 = 1, mo = 1, pl()\) =A— 1, pg()\) = ()\+ 1)2;

I 1 101 A+3
p(A) T A+ 1)2(A—1) _4<)\—1_ (A+1)2

By (1.10), we have

et = —%e*t(AJr 3BN(A-D[I+tA+1)] + iet(A-i- )%

Finally,
. 10 0 01 —2\?
—jA+3NA-D=1{0 1 -2 ], 1(A+I)2—f 00 4| =
00 0 00 2
10 0 01 -2 0 0
— =t 01 -2 |+tetl 00 0|+ 00
00 0 00 0 0 0
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Example 1.9. Consider the matrix A = < 1 0

> . We have

pMN)=X+1, A=i, ptN)=A+i; do=—i, pp(N)=A—i, m =

> . al()\):—i()\—k:%), as(2)
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