
Appendix A. Ordered sets

This note is supplementary to the book:
[1] G. F. Folland, “Real analysis. Modern Techniques and Their Applications”, 2nd Edition,
c⃝1999 by John Wiley & Sons, Inc.

In our exposition, we partially follow Chapter I, §6 in the book:
[2] A. G. Kurosh, “Lectures on General Algebra”, c⃝1963 by Chelsea Publishing Company.

Here we derive the Well Ordering Principle and the Hausdorff Maximal Principle from
The Axiom of Choice. For an arbitrary non-empty set X, there exists a function

f : 2X \ ∅ 7→ X such that f(A) ∈ A for every non-empty set A ⊆ X. (1)

Throughout this note, we assume that X is a non-empty set.

A set X is partially ordered by a relation “x ≤ y” for some pairs (x, y) ∈ X ×X if
(i) x ≤ y, y ≤ z =⇒ x ≤ z;
(ii) x ≤ y, y ≤ x =⇒ x = y;
(iii) x ≤ x for every x ∈ X.
We write x < y iff x ≤ y, x ̸= y.

A partially ordered set (X,≤) is linearly (totally) ordered, or (X,≤) is a chain, if for every
pair (x, y) ∈ X ×X we have either x ≤ y or y ≤ x.

A linearly ordered set (X,≤) is well ordered if every non-empty set A ⊆ X contains its
minimal element minA ∈ A, i.e. minA ≤ x for every x ∈ A.

Further, define a segment of a well ordered set (X,≤) to be a subset S ⊆ X such that for every
a ∈ S, we also have [m, a) := {x ∈ X : x < a} ⊂ S. In addition, S is a proper segment of (X,≤)
if X \ S is non-empty.

Theorem 1 (Zermelo’s Well Ordering Principle). Every non-empty set X can be well ordered.

Proof. Let f be a function satisfying (1). Consider the family

F :=
{
(Wα,≤α), α ∈ I

}
(2)

of all well ordered sets (Wα,≤α) satisfying m := f(X) = minαWα – the minimal element of Wα

with respect to the ordering ≤α, and

f(X \ S) = minα(Wα \ S) ∈ Wα \ S for every proper segment S of (Wα,≤α). (P)

This means that f(X \S) is the first subsequent element in (Wα,≤α) following S. The equality
in (P) can be rewritten in the form

S = [m, a)α :=
{
x ∈ Wα : x <α a

}
, where a := f(X \ S) ∈ Wα \ S. (P1)

Indeed, since S is a segment in (Wα,≤α), the inequality a <α x for x ∈ S brings to a
contradiction: a ∈ [m,x)α ⊂ S, whereas a /∈ S. Therefore, x <α a for all x ∈ S, i.e. S ⊆ [m, a)α.
On the other hand, from a = minα(Wα \ S) it follows [m, a)α ⊆ S. Hence we have S = [m, a)α.
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Let well ordered sets (W1,≤1) and (W2,≤2) satisfy (P). Consider the common segments S of
both these ordered sets, such that the ordering ≤1 agrees with ≤2 on S. Then the union S0 of all
common segments is the maximal (by inclusion) common segment, and S0 ⊆ W1 ∩W2. We claim
that S0 coincides with at least one of the sets W1 or W2. Indeed, suppose otherwise. Then S0 is a
proper segment in each of these two ordered sets, and from (P) it follows

a0 := f(X \ S0) = mink(Wk \ S0) ∈ Wk \ S0 for k = 1, 2, hence a0 ∈ (W1 ∩W2) \ S0.

By virtue of (P1), S0 = [m, a0)1 = [m, a0)2. Then S0 ∪ {a0} is a common segment of (W1,≤1) and
(W2,≤2), in contradiction with the maximality of S0.

The previous argument shows that for every two well ordered sets in (2), one is the extension
of another, with the same ordering on the smaller set, which is a segment in the larger set. Note
that if x ∈ Wα1 and y ∈ Wα2 , then both x, y ∈ Wα – the largest of Wα1 and Wα2 . This allows us to
define the chain (X0,≤), where

X0 :=
∪
α∈I

Wα, and x ≤ y if and only if x, y ∈ Wα and x ≤α y for some α. (3)

Further, we claim that (X0,≤) is well ordered. Let A be a non-empty subset of X0. Then
A∩Wβ is non-empty for some β. Since (Wβ,≤β) is well ordered, there exists a := minβ(A∩Wβ) ∈
A ∩Wβ ⊆ A. For the proof of our claim, it suffices to show that a = minA, i.e. a ≤ x for every
x ∈ A, which in turn means that if a, x ∈ A ∩Wα, then a ≤α x. If x ∈ A ∩Wα ∩Wβ, this is true
because the ordering ≤α agrees with ≤β, and a is the minimal element for a larger set A ∩Wβ. In
the remaining case x ∈ A ∩ (Wα \Wβ), the set Wβ is a proper segment of (Wα,≤α). By virtue of
(P1) and (P), we have

a ∈ Wβ = [m, b)α, where b := f(X \Wβ) = minα(Wα \Wβ),

so that a <α b ≤α x. Thus we have a ≤ x for every x ∈ A, i.e. a = minA, and (X0,≤) is well
ordered.

If S is a proper segment of (X0,≤), then the set Wα \ S is non-empty for some α, and S is a
proper segment of (Wα,≤α) for some α. According to (P), we have

a := f(X \ S) = minα(Wα \ S) = min(X0 \ S). (4)

Here the last equality follows from the facts that (i) the ordering ≤ agrees with ≤α on Wα \ S, and
(ii) if x ∈ X0 \Wα, then x ∈ Wβ \Wα, where Wα is a proper segment of Wβ, so that a ≤ x (which
is the same as a ≤β x) holds true automatically.

The property (4) allows us to include (X0,≤) into the family F in (2). Finally, it remains to
note that X0 = X, because otherwise one can compose a larger well ordered set (X0 ∪ {a0},≤)
by taking a0 := f(X \ X0) /∈ X0 as the subsequent element following X0. This extended set also
belongs to the family F , which contradicts to the choice of X0 in (3). Theorem is proved.

Remark 2. In the opposite direction, the Axiom of Choice follows from the Well Ordering Principle,
simply by taking f(A) := m(A) in (2).
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Theorem 3 (The Hausdorff Maximal Principle). Every chain (A,≤) in a partially ordered
set (X,≤) is contained in a maximal chain (L,≤). In particular, maximal chains exist, because one
can always start with a single point set A := {a}, which satisfies a ≤ a.

Proof. If A = X, then there is nothing to prove. In the contrary case, the set X0 := X \ A is
non-empty, and by Theorem 1, there is an ordering ≤0 (which has no relation to ≤) such that
(X0,≤0) is a well ordered set.

Denote m0 := min0 X0 ∈ X0 – the minimal element in X0 with respect to the ordering ≤0.
There are two possible cases: (i) m0 is comparable with every element x ∈ A, i.e. we have either
m0 ≤ x or x ≤ m0; and the contrary case (ii) m0 is not comparable with some of x ∈ A. In other
words, we have either (i) (A ∪ {m0},≤) is a chain, or (ii) (A ∪ {m0},≤) is not a chain.

Following the well ordering ≤0, we can proceed by induction, deciding for every x ∈ X0 whether
or not it should be included into a chain (Lx,≤), which appears as an extension of the original
chain (A,≤). At the initial step, for x = m0, we have either (i) Lx0 = A ∪ {m0} or (ii) Lx0 = A.
We denote

L′
x :=

∪{
Ly : y ∈ X0, y <0 x

}
,

assuming that all Ly in this expression are already defined.

Let B ⊆ X0 be the set of all elements b such that for all x ∈ X0 satisfying m0 ≤0 x ≤0 b, the
chains (Lx,≤) are uniquely defined and satisfy

(i) Lx := L′
x ∪ {x} if

(
L′
x ∪ {x},≤

)
is a chain, (ii) Lx := L′

x otherwise. (5)

We claim that B = X0. Indeed, otherwise X0 \B is non-empty, and ∃a0 := min0(X0 \B) ∈ X0 \B.
Then L′

a0
is the union of Ly over y ∈ B, hence one can uniquely define La0 according to (5), and

we must have a0 ∈ B. This contradiction proves the claim.

Finally, let L be the union of Lx over x ∈ X0. We need to show that the arbitrary x, y ∈ L are
comparable, i.e. x ≤ y or y ≤ x. If at least one of x or y belongs to A, this follows from A ⊆ Ax

for all x ∈ X0. In the remaining case x, y ∈ L \ A, we can assume for certainty that y <0 x. Then
by construction in (5),

y ∈ Ly ⊆ L′
x ⊆ Lx, and x ∈ Lx.

Since both x, y ∈ Lx, they are comparable. Thus (L,≤) is a chain.

This chain is maximal, because if x /∈ L, then x ∈ X0 and x /∈ Lx. Then by virtue of (4), x is
not comparable with some elements of L′

x ⊆ L. Theorem is proved.
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