Math 8601: Real Analysis: Fall 2015
Appendix B. Lebesgue measure

In this note, we partially follow the book:
A. N. Kolmogorov, S. V. Fomin, “Elements of the theory of functions and functional analysis”.

Set Q := [0,1]¢. Consider rectangles I := I x --- x I, where I}, for each k is one of the subsets

(ak7 bk)? (aka bk]a [ak7 bk)a or [aka bk] Of [07 1] .

The measure of such a rectangle,
d
m(I) = [ (bx — ar).
k=1

Definition 1. Elementary sets £ are finite unions of rectangles in ).

€ is closed with respect to finite number of operations U, N, (-)¢, i.e. £ is an algebra (a field). Each
elementary set A can be represented as a finite union

n
A= U A; of disjoint rectangles.
i=1

Then the measure m(A) = > m(A;) does not depend on representation (some of A; can be subdivided

7
into smaller rectangles). Note that m(A) is an additive function on &, i.e.

it A= U A; with A4, €& and {A;} aredisjoint, then m(A) = Zm(Az)
i=1 =1

Theorem 2. If A, Ay, Ao, ... are elementary sets, and

AC fj A;, then m(A4) < im(Al)
i=1

i=1
Proof. Ye > 0, 3 a compact F' € £ and an open G; € £, such that
We have

F_AQDAiQGGi.
i=1 i=1

Since F' is compact, AN such that

-

Il
—

N
FclJG,  mF) <)y mG). (1)
=1

(2

Since m is additive, we have
m(A) = m(F)+m(A\F) <m(F)+e,
m(Gi) = m(A) +m(Gi\ A) < m(A) + .
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Together with (1), these inequalities imply

N 0o
€
m(A) < e+ Z; (m(as) + y) <2+ Z; m(A;).
The desired inequality m(A) < Y m(A4;) follows by taking e — 0F. O
Definition 3. The outer measure of an arbitrary subset A C Q := [0, 1]¢,

m*(A) := inf { Zm(An) . AC U An, A, — rectangles}.
n=1

n=1
Obviously, m*() = 0 and from A C B it follows m*(A) < m*(B).
Theorem 4 (subadditivity). For arbitrary sets A, Ay, As, ... C Q= [0,1]¢,

AC

(@

A, = m*(A)gim*(An).
n=1

n=1

Proof. Fix € > 0. By Definition 3, Vn > 1, 3 rectangles A, 1., k > 1, such that
o0 o €
A, C ZAM with Zm(A”k) <m*(An) + o
k=1 k=1

We can re-arrange the countable family of sets {An,k n, k> 1} into one sequence {B; : j > 1}, so that

ACSAC S A=Y 5
n,k=1

n=1

and

O]

Remark 5. Note that m* = m on a algebra £ of all elementary sets A C Q = [0,1]%. Indeed, each
elementary set

N
A= U A, — a finite union of disjoint rectangles.
n=1

o
Take A, = ) forn = N+ 1,N +2,.... Then A = (J A, so that by definition of m*(A) and finite

n=1
additivity,
00 N
m*(A) <) m(Ay) =) m(An) = m(A).
n=1 n=1

By Theorem 2, we also have m(A) < m*(A) so we must have m*(A4) = m(A), VA € £.
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Further, any open set in Q := [0, 1]¢ is a finite or countable union of rectangles. Therefore, the Borel
o-algebra
B:=0c(0)=0(), where O- all open sets in (.

Our goal is to extend m(A) from & to a o-algebra F O £ (then F O B := o(£)) in such a way that
the extended measure is o-additive on B, i.e. the additivity property is extended to countable union of
disjoint sets. It turns out that one can take F = Lebesgue measurable sets in the following definition,
and m = m* on F. Note that there are other equivalent definitions.

Definition 6. A set A C Q := [0,1]¢ is Lebesgue measurable if Ve > 0, 3 an elementary set B € £
such that
m*(AAB) <e, where AAB:=(A\B)U(B\A)=(AUB)\ (4B) - (2)

the symmetric difference of A and B.

Lemma 7.
|m*(A) — m*(B)| < m*(AAB).

Proof. Since A C BU (AAB), we have by subadditivity
m*(A) < m*(B) + m*(AAB).
By symmetry, one can interchange A and B. O
Lemma 8. For arbitrary sets A and B, we have
AAB = A°ABC. (3)

Moreover, for arbitrary families of sets {Aq} and {By}, o € I — a common set of indices, we have

(U AQ>A<U Ba) C | J(ABy), (3a)

«

(N4.)a(NB.) < UMatrBa). (3b)

«

Proof. The equality (3) is obvious. For the proof of (3a), note that

xE(UAa)\<UBa) = z€ A\ By C A,AB, for some «
— (UAQ)\(UBQ> c J(4a2B.).

Interchanging A, and By, we get (3a).

Using (3), we can now derive (3b) from (3a) as follows:
(A4)(01m) - (V) 2(1m)
= (U2)a(UB) < UMarss) = (4a0Ba).

«



Theorem 9. (a). The family F of all Lebesque measurable sets is an algebra.
(b). m* is additive on F.

Proof. (a). By virtue of (3), from A € F it follows that A° € F. Therefore, it remains to show that from
Ay, Ay € F it follows that A := Ay U Ay € F.

Fix € > 0 and choose Bi, By € £ such that
m*(AlABl) <eg, m*(AQABg) <eE. (4)

Note that by (3a),
(Al U AQ)A(Bl U Bg) - (AlﬂBl) U (AQABQ)

Using subadditivity and monotonicity of m*, we obtain for A := A; U Ay, B := B1 U Bs:
m*(AAB) < m*(A1ABy) + m*"(A3ABs) < e+ ¢ = 2e. (5)
This means A := A; U Ay € F. By taking (41 N Ag)¢ = A U AS, we also get A; N Ay € F.
(b). By induction, it suffices to check the additivity for two disjoint sets:
A1, Ay € F, A1As = A1 N Ay = 0.

Fix ¢ > 0 and choose By, By € £ as in (4). Set A := A; U Ay, B := By U Bs. Note that 4143 = () and
from (3b) it follows
BBy = (AlAz)A(BlBg) C (AlﬂBl) U (AQABQ)

As in (5), we get (remember that m* = m on the family £ which contains By, Bs, BiABs, B1B3):
m*(AAB) < 2e, m(B1Ba) < 2e.

By Lemma 7,
Im* (A1) =m(B1)| <&, |m*(A2) —m(By)| <e,

and
m*(A) > m(B) — m*(AAB) > m(B) — 2¢. (6)

Uisng additivity of m on £, we obtain

m(B) = m(31 U Bg) = m(Bl) + m(Bg) — m(BlBg)
> m(B1) +m(Bz2) —2e >m*(A1) + m*(A2) — 4e.

By virtue of (6),
m*(Al U A2) = m*(A) > m*(Al) + m*(AQ) — 6e.

Since € > 0 can be arbitrarily small, this implies
m*(A; U Ag) > m*(A1) + m*(Az).

The opposite inequality is always true by subadditivity.

Theorem is proved. ]



Theorem 10. (a). F is a o-algebra.
(b). m* is o-additive on F.

o0
Proof. (a). Let A:= |J A,. One can always assume that {A,} are disjoint, because otherwise, one can
n=1

replace A, by
n—1
Al = A\ ( U Ak>.
k=1

We can write
A=CyUDy, where Cy:= U Ay, Dy = U A,
n<N n>N
Then by additivity of m*,

N
> m*(Ay) =m*(Cy) < m*(A) <m*(Q) =1.
n=1

Fix € > 0 and choose N such that

Z m*(A,) < e, so that by subadditivity m*(Dy) < e.
n>N

By Theorem 9(a), 3By € & such that
m*(CNnABy) < e.

Then by (3a),
AAByN = (CNUDN)A(BNU@) - (CNABN)UDN,

which in turn implies
m*(AABN) < m*(CnyABy) +m*(Dy) < 2e.

Since € > 0 is arbitrary, we have A € F.
o)
(b). Let A := |J A,, with disjoint A,,. In the previous part (a), we proved that A € F. Using the
n=1

additivity of m™*, in the previous notations we get:
N
> m*(A) =m*(Cy) < m*(A), VN > 1.
n=1

Therefore,
> m*(4y) < m*(A).
n=1

The opposite inequality is always true by subadditivity.

Theorem is proved. ]

This completes the construction of the Lebesgue measure m* = m on Lebesgue sets in Q := [0, 1]%.
Since the boundary has zero measure, nothing changes if Q is replaced by Qg := [0,1)%. One can use
decomposition

RY = U(z’ +Q),

(2

where i = (i1,...,1q) — vectors with integer components, in order to define

m(A) = Zm(A N(i+Q)) for AC R4,

(2



