
Math 8601: Real Analysis: Fall 2015

Appendix B. Lebesgue measure

In this note, we partially follow the book:
A. N. Kolmogorov, S. V. Fomin, “Elements of the theory of functions and functional analysis”.

Set Ω := [0, 1]d. Consider rectangles I := I1 × · · · × Id, where Ik for each k is one of the subsets

(ak, bk), (ak, bk], [ak, bk), or [ak, bk] of [0, 1].

The measure of such a rectangle,

m(I) :=

d∏
k=1

(bk − ak).

Definition 1. Elementary sets E are finite unions of rectangles in Ω.

E is closed with respect to finite number of operations ∪,∩, (·)c, i.e. E is an algebra (a field). Each
elementary set A can be represented as a finite union

A =

n∪
i=1

Ai of disjoint rectangles.

Then the measure m(A) =
∑
i
m(Ai) does not depend on representation (some of Ai can be subdivided

into smaller rectangles). Note that m(A) is an additive function on E , i.e.

if A =
n∪

i=1

Ai with A,Ai ∈ E and {Ai} are disjoint, then m(A) =
n∑

i=1

m(Ai).

Theorem 2. If A,A1, A2, . . . are elementary sets, and

A ⊆
∞∪
i=1

Ai, then m(A) ≤
∞∑
i=1

m(Ai).

Proof. ∀ε > 0, ∃ a compact F ∈ E and an open Gi ∈ E , such that

F ⊆ A, m(A \ F ) < ε; Ai ⊆ Gi, m(Gi \Ai) <
ε

2i
.

We have

F ⊆ A ⊆
∞∪
i=1

Ai ⊆
∞∪
i=1

Gi.

Since F is compact, ∃N such that

F ⊆
N∪
i=1

Gi, m(F ) ≤
N∑
i=1

m(Gi). (1)

Since m is additive, we have

m(A) = m(F ) +m(A \ F ) < m(F ) + ε,

m(Gi) = m(Ai) +m(Gi \Ai) < m(Ai) +
ε

2i
.
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Together with (1), these inequalities imply

m(A) ≤ ε+

N∑
i=1

(
m(Ai) +

ε

2i

)
< 2ε+

∞∑
i=1

m(Ai).

The desired inequality m(A) ≤
∑
i
m(Ai) follows by taking ε → 0+.

Definition 3. The outer measure of an arbitrary subset A ⊆ Ω := [0, 1]d,

m∗(A) := inf

{ ∞∑
n=1

m(An) : A ⊆
∞∪
n=1

An, An − rectangles

}
.

Obviously, m∗(∅) = 0 and from A ⊆ B it follows m∗(A) ≤ m∗(B).

Theorem 4 (subadditivity). For arbitrary sets A,A1, A2, . . . ⊆ Ω := [0, 1]d,

A ⊆
∞∪
n=1

An =⇒ m∗(A) ≤
∞∑
n=1

m∗(An).

Proof. Fix ε > 0. By Definition 3, ∀n ≥ 1, ∃ rectangles An,k, k ≥ 1, such that

An ⊆
∞∑
k=1

An,k with
∞∑
k=1

m
(
An,k

)
< m∗(An

)
+

ε

2n
.

We can re-arrange the countable family of sets
{
An,k : n, k ≥ 1

}
into one sequence {Bj : j ≥ 1}, so that

A ⊆
∞∑
n=1

An ⊆
∞∑

n,k=1

An,k =

∞∑
j=1

Bj ,

and

m∗(A) ≤
∞∑
j=1

m(Bj) =
∞∑
n=1

∞∑
k=1

m(An,k) ≤
∞∑
n=1

(
m∗(An) +

ε

2n

)
= ε+

∞∑
n=1

m∗(An).

Since ε > 0 is arbitrary, we have

m∗(A) ≤
∑
n

m∗(An).

Remark 5. Note that m∗ = m on a algebra E of all elementary sets A ⊆ Ω = [0, 1]d. Indeed, each
elementary set

A =
N∪

n=1

An – a finite union of disjoint rectangles.

Take An = ∅ for n = N + 1, N + 2, . . .. Then A =
∞∪
n=1

An, so that by definition of m∗(A) and finite

additivity,

m∗(A) ≤
∞∑
n=1

m(An) =
N∑

n=1

m(An) = m(A).

By Theorem 2, we also have m(A) ≤ m∗(A) so we must have m∗(A) = m(A), ∀A ∈ E .
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Further, any open set in Ω := [0, 1]d is a finite or countable union of rectangles. Therefore, the Borel
σ-algebra

B := σ(O) = σ(E), where O– all open sets in Ω.

Our goal is to extend m(A) from E to a σ-algebra F ⊇ E (then F ⊇ B := σ(E)) in such a way that
the extended measure is σ-additive on B, i.e. the additivity property is extended to countable union of
disjoint sets. It turns out that one can take F = Lebesgue measurable sets in the following definition,
and m = m∗ on F . Note that there are other equivalent definitions.

Definition 6. A set A ⊆ Ω := [0, 1]d is Lebesgue measurable if ∀ε > 0, ∃ an elementary set B ∈ E
such that

m∗(A△B) < ε, where A△B := (A \B) ∪ (B \A) = (A ∪B) \ (AB) – (2)

the symmetric difference of A and B.

Lemma 7.
|m∗(A)−m∗(B)| ≤ m∗(A△B).

Proof. Since A ⊆ B ∪ (A△B), we have by subadditivity

m∗(A) ≤ m∗(B) +m∗(A△B).

By symmetry, one can interchange A and B.

Lemma 8. For arbitrary sets A and B, we have

A△B = Ac△Bc. (3)

Moreover, for arbitrary families of sets {Aα} and {Bα}, α ∈ I – a common set of indices, we have(∪
α

Aα

)
△
(∪

α

Bα

)
⊆

∪
α

(
Aα△Bα

)
, (3a)

(∩
α

Aα

)
△
(∩

α

Bα

)
⊆

∪
α

(
Aα△Bα

)
. (3b)

Proof. The equality (3) is obvious. For the proof of (3a), note that

x ∈
(∪

α

Aα

)
\
(∪

α

Bα

)
=⇒ x ∈ Aα \Bα ⊆ Aα△Bα for some α

=⇒
(∪

α

Aα

)
\
(∪

α

Bα

)
⊆

∪
α

(
Aα△Bα

)
.

Interchanging Aα and Bα, we get (3a).

Using (3), we can now derive (3b) from (3a) as follows:(∩
α

Aα

)
△
(∩

α

Bα

)
=

(∩
α

Aα

)c
△
(∩

α

Bα

)c

=
(∪

α

Ac
α

)
△
(∪

α

Bc
α

)
⊆

∪
α

(
Ac

α△Bc
α

)
=

∪
α

(
Aα△Bα

)
.
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Theorem 9. (a). The family F of all Lebesgue measurable sets is an algebra.
(b). m∗ is additive on F .

Proof. (a). By virtue of (3), from A ∈ F it follows that Ac ∈ F . Therefore, it remains to show that from
A1, A2 ∈ F it follows that A := A1 ∪A2 ∈ F .

Fix ε > 0 and choose B1, B2 ∈ E such that

m∗(A1△B1) < ε, m∗(A2△B2) < ε. (4)

Note that by (3a),
(A1 ∪A2)△(B1 ∪B2) ⊆ (A1△B1) ∪ (A2△B2).

Using subadditivity and monotonicity of m∗, we obtain for A := A1 ∪A2, B := B1 ∪B2:

m∗(A△B) ≤ m∗(A1△B1) +m∗(A2△B2) < ε+ ε = 2ε. (5)

This means A := A1 ∪A2 ∈ F . By taking (A1 ∩A2)
c = Ac

1 ∪Ac
2, we also get A1 ∩A2 ∈ F .

(b). By induction, it suffices to check the additivity for two disjoint sets:

A1, A2 ∈ F , A1A2 := A1 ∩A2 = ∅.

Fix ε > 0 and choose B1, B2 ∈ E as in (4). Set A := A1 ∪ A2, B := B1 ∪ B2. Note that A1A2 = ∅ and
from (3b) it follows

B1B2 = (A1A2)△(B1B2) ⊆ (A1△B1) ∪ (A2△B2).

As in (5), we get (remember that m∗ = m on the family E which contains B1, B2, B1△B2, B1B2):

m∗(A△B) < 2ε, m(B1B2) < 2ε.

By Lemma 7,
|m∗(A1)−m(B1)| < ε, |m∗(A2)−m(B2)| < ε,

and
m∗(A) ≥ m(B)−m∗(A△B) > m(B)− 2ε. (6)

Uisng additivity of m on E , we obtain

m(B) = m(B1 ∪B2) = m(B1) +m(B2)−m(B1B2)

> m(B1) +m(B2)− 2ε > m∗(A1) +m∗(A2)− 4ε.

By virtue of (6),
m∗(A1 ∪A2) = m∗(A) > m∗(A1) +m∗(A2)− 6ε.

Since ε > 0 can be arbitrarily small, this implies

m∗(A1 ∪A2) ≥ m∗(A1) +m∗(A2).

The opposite inequality is always true by subadditivity.

Theorem is proved.
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Theorem 10. (a). F is a σ-algebra.
(b). m∗ is σ-additive on F .

Proof. (a). Let A :=
∞∪
n=1

An. One can always assume that {An} are disjoint, because otherwise, one can

replace An by

A′
n := An \

( n−1∪
k=1

Ak

)
.

We can write
A = CN ∪DN , where CN :=

∪
n≤N

An, DN :=
∪
n>N

An.

Then by additivity of m∗,

N∑
n=1

m∗(An) = m∗(CN ) ≤ m∗(A) ≤ m∗(Ω) = 1.

Fix ε > 0 and choose N such that∑
n>N

m∗(An) < ε, so that by subadditivity m∗(DN ) < ε.

By Theorem 9(a), ∃BN ∈ E such that
m∗(CN△BN ) < ε.

Then by (3a),
A△BN = (CN ∪DN )△(BN ∪ ∅) ⊆ (CN△BN ) ∪DN ,

which in turn implies
m∗(A△BN ) ≤ m∗(CN△BN ) +m∗(DN ) < 2ε.

Since ε > 0 is arbitrary, we have A ∈ F .

(b). Let A :=
∞∪
n=1

An with disjoint An. In the previous part (a), we proved that A ∈ F . Using the

additivity of m∗, in the previous notations we get:

N∑
n=1

m∗(An) = m∗(CN ) ≤ m∗(A), ∀N ≥ 1.

Therefore,
∞∑
n=1

m∗(An) ≤ m∗(A).

The opposite inequality is always true by subadditivity.

Theorem is proved.

This completes the construction of the Lebesgue measure m∗ = m on Lebesgue sets in Ω := [0, 1]d.
Since the boundary has zero measure, nothing changes if Ω is replaced by Ω0 := [0, 1)d. One can use
decomposition

Rd =
∪
i

(i+Ω0),

where i = (i1, . . . , id) – vectors with integer components, in order to define

m(A) :=
∑
i

m
(
A ∩ (i+Ω0)

)
for A ⊆ Rd.
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