Math 8601: Real Analysis: Fall 2015

Appendix C. Extension of continuous functions

Let f(x) be a continuous function on a compact set $K \subset \mathbb{R}^d$. Then it is uniformly continuous on K, i.e. its **modulus of continuity**

$$\omega(\rho) := \sup\left\{ |f(x) - f(y)| : x, y \in K, |x - y| \le \rho \right\} \searrow 0 \quad \text{as} \quad \rho \searrow 0.$$
(1)

Lemma 1. If K is convex, then $\omega(\rho)$ is subadditive, *i.e*

$$\omega(\rho_1 + \rho_2) \le \omega(\rho_1) + \omega(\rho_2) \quad \text{for} \quad \rho_1, \rho_2 \ge 0.$$
(2)

Proof. For arbitrary $x, y \in K$ with $|x - y| \leq \rho_1 + \rho_2$, the segment [x, y] lies in K, and there is a point $z \in [x, y]$ such that $|x - z| \leq \rho_1$, $|y - z| \leq \rho_2$. Therefore,

$$|f(x) - f(y)| \le |f(x) - f(z)| + |f(z) - f(y)| \le \omega(\rho_1) + \omega(\rho_2),$$

and (2) follows.

Remark 2. The property (2) fails in general if K is not convex. In polar coordinates $x = r \cos \theta$, $y = r \sin \theta$, an easy example is

$$f(x,y) := \theta \quad \text{on} \quad K := \{ 1 \le r \le 2, \quad \varepsilon \le \theta \le 2\pi - \varepsilon \} \quad \text{with a small} \quad \varepsilon > 0.$$

Lemma 3. For any continuous function f on a compact $K \subset \mathbb{R}^d$ with the modulus of continuity $\omega(\rho)$ in (1), the function

$$\overline{\omega}(\rho) := \sup_{s \ge 1} \frac{\omega(\rho s)}{s}, \qquad \rho \ge 0, \tag{3}$$

satisfies the properties:

(i) $\overline{\omega}(\rho) \ge \omega(\rho),$ (ii) $\overline{\omega}(\rho) \searrow 0$ as $\rho \searrow 0,$ (iii) $\overline{\omega}(\rho)$ is when different is set of equations.

(iii) $\overline{\omega}(\rho)$ is subadditive, i.e. it satisfies (2).

Proof. (i) is obvious.

(ii) Since $\omega(\rho)$ is non-decreasing, the function $\overline{\omega}(\rho)$ is also non-decreasing for $\rho \geq 0$. We also have

$$\omega(\rho) \le C_0 := 2 \sup_K |f|, \text{ and } \overline{\omega}(\rho) \le C_0.$$

For an arbitrary A > 1, we can write

$$\overline{\omega}(\rho) = \max\left\{\sup_{A \ge s \ge 1} \frac{\omega(\rho s)}{s}, \quad \sup_{s \ge A} \frac{\omega(\rho s)}{s}\right\} \le \max\left\{\omega(A\rho), \frac{C_0}{A}\right\}.$$

This implies

$$\limsup_{\rho \to 0^+} \ \overline{\omega}(\rho) \le \frac{C_0}{A},$$

and since A > 1 can be chosen arbitrarily large, we have $\overline{\omega}(\rho) \searrow 0$ as $\rho \searrow 0$.

(iii) This part follows directly from subadditivity of ω in (2)

Theorem 4. Let f be a continuous function on a compact $K \subset \mathbb{R}^d$. Then the function

$$F(x) := \inf_{y \in K} \left[f(y) + \overline{\omega}(|x - y|) \right], \qquad x \in \mathbb{R}^d, \tag{4}$$

where $\overline{\omega}(\rho)$ is defined in (3), satisfies the properties:

(i) $F \equiv f \text{ on } K$,

(ii) F provides a continuous extension of f from K to \mathbb{R}^d , and

$$|F(x_1) - F(x_2)| \le \overline{\omega}(|x_1 - x_2|), \ \forall x_1, x_2 \in \mathbb{R}^d.$$
(5)

Proof. (i) Note that $\forall x, y \in K$, we have

$$f(x) \le f(y) + \omega(|x - y|) \le f(y) + \overline{\omega}(|x - y|),$$

with the equality at y = x. Therefore, $f(x) = F(x), \forall x \in K$.

(ii) By monotonicity and subadditivity of $\overline{\omega}(\rho)$, we have $\forall x_1, x_2, y \in K$:

$$\overline{\omega}(|x_1-y|) \le \overline{\omega}(|x_1-x_2|+|x_2-y|) \le \overline{\omega}(|x_1-x_2|) + \overline{\omega}(|x_2-y|).$$

Hence the function F(x) in (4) satisfies

$$F(x_1) \le \overline{\omega}(|x_1 - x_2|) + F(x_2).$$

Interchanging x_1 and x_2 , we get the desired property (5).