
Math 8601: Real Analysis: Fall 2015

Chapter 1: Measures
This note is supplementary to the textbook:

G.B. Folland, REAL ANALYSIS. Modern Techniques and Their Applications. 2nd Edition.
We keep same notations for same or similar statements, for which our proofs deviates from the text, and
add some material from other sources. Statements or formulas, which are different or not numbered in the
textbook, are labeled by “I-. . . ”. We also use label “B-. . . ” in references to Appendix B, e.g. Theorem B-4
means Theorem 4 in Appendix B.

Definition I-1. A measure µ on a measurable space (X,M) is called complete if

F ⊆ E ∈ M, µ(E) = 0 =⇒ F ∈ M.

This definition is a bit misleading: it would be more natural to call σ-algebra M complete, but we cannot
break this tradition.

The following formulation is equivalent to that in the textbook.

1.9. Theorem. For an arbitrary measure space (X,M, µ), denote

M :=
{
E ⊆ X : ∃E1,2 ∈ M such that E1 ⊆ E ⊆ E2 and µ(E2 \ E1) = 0

}
. (I-1)

Then M is a σ-algebra containing M, and there is a unique measure µ on M such that µ = µ on M. The
measure space (X,M, µ) is called the completion of (X,M, µ).

Proof. If E1 ⊆ E ⊆ E2, then Ec
2 ⊆ Ec ⊆ Ec

1. Since Ec
1 \ Ec

2 = E2 \ E1, from E ∈ M it follows Ec ∈ M.

Next, let a sequence
{
E(j)

}
⊆ M. Then

∃E(j)
1,2 ∈ M such that E

(j)
1 ⊆ E(j) ⊆ E

(j)
2 and µ

(
E

(j)
2 \ E(j)

1

)
= 0

=⇒ E1 :=
∪
j

E
(j)
1 ⊆ E :=

∪
j

E(j) ⊆ E2 :=
∪
j

E
(j)
2 .

Here E1,2 ∈ M, and

µ(E2 \ E1) ≤ µ

(∪
j

(
E

(j)
2 \ E(j)

1

))
≤

∑
j

µ
(
E

(j)
2 \ E(j)

1

)
= 0.

This means that E ∈ M. Since M is closed with respect to operations of taking complements and countable
unions, it is a σ-algebra.

It is easy to verify that µ(E) := µ(E1) in (I-1) is a unique σ-additive extension of µ from M to M.

Definition I-2. An outer measure on a nonempty set X is a function µ∗ : 2X → [0,∞] such that
(i) µ∗(∅) = 0,
(ii) (monotonicity) A ⊆ B =⇒ µ∗(A) ≤ µ∗(B),
(iii) (subadditivity)

µ∗
( ∞∪

j=1

Aj

)
≤

∞∑
j=1

µ∗(Aj). (I-2)

A set A ⊆ X is µ∗-measurable if

µ∗(E) = µ∗(EA) + µ∗(EAc), ∀E ⊆ X. (I-3)

1.11. Carathéodory’s Theorem. The collection M of all µ∗-measurable sets is a σ-algebra,
and µ∗ is a complete measure on M.
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Proof. (i). Obviously, A ∈ M =⇒ Ac ∈ M.

(ii). Next we show that M is an algebra. By induction, it suffices to verify that from A1, A2 ∈ M
it follows A := A1 ∪A2 ∈ M. Note that X is the union of four disjoint sets

C1 := A1A2, C2 := A1A
c
2, C3 := Ac

1A2, and C4 := Ac
1A

c
2. (I-4)

Since A1 ∈ M, for an arbitrary E ⊆ X we have

µ∗(E) =
2∑

k=1

µ∗(Ek), where E1 := EA1, E2 := Ac
1.

Since A2 ∈ M, we also have

µ∗(Ek) = µ∗(EkA2) + µ∗(EkA
c
2) for k = 1, 2.

From these equalities it follows

µ∗(E) =
2∑

k=1

(
µ∗(EkA2) + µ∗(EkA

c
2)) =

4∑
j=1

µ∗(ECj). (I-5)

Now note that A := A1 ∪ A2 = C1 ∪ C2 ∪ C3, and Ac = Ac
1A

c
2 = C4. Using subadditivity twice and then

(I-5), we derive

µ∗(E) ≤ µ∗(EA) + µ∗(EAc) ≤
4∑

j=1

µ∗(ECj) = µ∗(E).

Since the left and right sides coincide, we arrive at (I-3), i.e. A := A1 ∪A2 ∈ M, and M is an algebra.

We include the following lemma inside of the proof. Note that we first get σ-additivity of µ∗ on the algebra
M, and then show that M is actually σ-algebra. This lemma is formulated in Exercise 17 on p. 32.

Lemma I-3. Let {Aj} be a sequence of disjoint sets in M. Then

µ∗(EA) =
∞∑
j=1

µ∗(EAj), E ⊆ X, where A :=
∞∪
j=1

Aj . (I-6)

In particular (for E = X) we have σ-additivity of µ∗ on M.

Proof. First consider the case of two sets A1 and A2, i.e. Aj = ∅ for j ≥ 3. Then in (I-4)

C1 := A1A2 = ∅, C2 := A1A
c
2 = A1, C3 := Ac

1A2 = A2, and C4 := Ac
1A

c
2 = (A1 ∪A2)

c.

Now (I-5) can be rewritten as

µ∗(E) = µ∗(EA1) + µ∗(EA2) + µ∗(E(A1 ∪A2)
c
)
.

On the other hand, since A1 ∪A2 ∈ M, we also have

µ∗(E) = µ∗(E(A1 ∪A2)
)
+ µ∗(E(A1 ∪A2)

c
)
.

Comparing these two equalities, we see that

µ∗(E(A1 ∪A2)
)
= µ∗(EA1) + µ∗(E2),
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i.e. (I-6) holds true for two sets. By induction, this equality is extended to any finite number of disjoint sets
Aj ∈ M:

µ∗(EBn) =
n∑

j=1

µ∗(EAj), where Bn :=
n∪

j=1

Aj ∈ M. (I-7)

By monotonicity, µ∗(EA) ≥ µ∗(EBn). Since n is arbitrary, we have the inequality “ ≥′′ between the two parts
in (I-6). The opposite inequality is always true by subadditivity. Lemma is proved.

Now we complete the remaining parts of the proof of Carathéodory’s Theorem.

(iii). Next we show that M is a σ-algebra, i.e. the set A in (I-6) belongs to M. By the equality (I-6) and
relations Bn ⊆ A, Bc

n ⊇ Ac, we get

µ∗(E) = µ∗(EBn) + µ∗(EBc
n) ≥

n∑
j=1

µ∗(EAj) + µ∗(EAc).

By taking n → ∞ and using subadditivity, we obtain

µ∗(E) ≥
∞∑
j=1

µ∗(EAj) + µ∗(EAc) ≥ µ∗(EA) + µ∗(EAc) ≥ µ∗(E).

Since both sides coincide, we must have the equality in (I-3), i.e. A ∈ M. Hence M is a σ-algebra, and µ∗ is
a measure on M.

(iv). Finally, if A ⊆ X satisfies µ∗(A) = 0, then

µ∗(E) ≤ µ∗(EA) + µ∗(EAc) ≤ µ∗(A) + µ∗(E) = µ∗(E).

As in the previous arguments, we must have the equality in (I-3). Therefore, from µ∗(A) = 0 it follows A ∈ M,
and by Definition I-1, µ∗ is a complete measure on M. Theorem is proved.

Definition I-4. A premeasure on an algebra A ⊆ 2X is a function µ0 : A → [0,∞] such that
(i) µ0(∅) = 0,
(ii) µ0 is σ-additive on A: if A ∈ A is a countable union of disjoint sets Aj ∈ A, then

µ0(A) =

∞∑
j=1

µ0(Aj).

It induces an outer measure on X:

µ∗(E) := inf

{ ∞∑
j=1

µ0(Aj) : Aj ∈ A, E ⊆
∞∪
j=1

Aj

}
. (1.12)

This is an outer measure according to Proposition 1.10. Its proof is similar to that of Theorem B-4.

Proposition 1.13. (a) µ∗ = µ0 on A; (b) every set in A is µ∗-measurable.
See the textbook for the proof.

In the following theorem, the equivalence (i) ⇐⇒ (ii) is formulated Exercise 19 on p.32. In the case when
A = (finite unions of intervals in R1), the implication (i) =⇒ (iii) is contained in Proposition 1.20.
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Theorem I-5. Assume that µ0(X) < ∞. Then the following are equivalent:
(i) A is µ∗-measurable in the Carathéodory’s sense:

µ∗(E) = µ∗(EA) + µ∗(EAc), ∀E ⊆ X;

(ii) µ0(X) = µ∗(A) + µ∗(Ac);
(iii) ∀ε > 0, ∃B ∈ A such that µ∗(A∆B) < ε.

Proof. (i) =⇒ (ii). Take E = X and note that µ∗ = µ0 on A.

(ii) =⇒ (iii). Let A satisfy the property (ii). Fix ε > 0. By (1.12),

∃Aj ∈ A such that A ⊆
∞∪
j=1

Aj and

∞∑
j=1

µ0(Aj) < µ∗(A) + ε.

Since µ∗(A) ≤ µ0(X) < ∞, the last series converges, and for a large enough n we have

∞∑
j=n+1

µ0(Aj) < ε.

Then A ⊆ B ∪B′, where

B :=
n∪

j=1

Aj ∈ A, and B′ :=
∞∪

j=n+1

Aj satisfies µ∗(B′) ≤
∞∑

j=n+1

µ0(Aj) < ε.

Therefore,

µ∗(A) ≤ µ0(B) + µ∗(B′) ≤
∞∑
j=1

µ0(Aj) < µ∗(A) + ε.

Similarly, Ac ⊆ C ∪ C ′ with C ∈ A, µ∗(C ′) < ε, and

µ∗(Ac) ≤ µ0(C) + µ∗(C ′) < µ∗(Ac) + ε.

We have X = (A ∪Ac) ⊆ (B ∪ C) ∪B′ ∪ Cc, where by additivity of µ0 on A,

µ0(B ∪ C) = µ0(B) + µ0(C)− µ0(BC).

From these relations together with (ii) it follows

µ0(X) ≤ µ0(B ∪ C) + µ∗(B′) + µ∗(C ′)

≤ µ0(B) + µ∗(B′) + µ0(C) + µ∗(C ′)− µ0(BC)

< µ∗(A) + µ∗(Ac) + 2ε− µ0(BC)

= µ0(X) + 2ε− µ0(BC).

Therefore, µ0(BC) < 2ε. Finally, since

A \B ⊆ B′, B \A = BAc ⊆ B(C ∪ C ′) ⊆ (BC) ∪ C ′,

we get
µ∗(A∆B) ≤ µ∗(A \B) + µ∗(B \A) ≤ µ∗(B′) + µ0(BC) + µ∗(C ′) < 4ε.

After replacing ε by ε/4, the desired property (iii) follows.
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(iii) =⇒ (i). Let A satisfy (iii). Fix ε > 0 and choose B ∈ A such that µ∗(A∆B) < ε. Note that

A ⊆ B ∪ (A \B) ⊆ B ∪ (A∆B), Ac ⊆ Bc ∪ (Ac∆Bc) = Bc ∪ (A∆B).

Hence for an arbitrary E ⊆ X,

µ∗(EA) ≤ µ∗(EB) + µ∗(A∆B) < µ∗(EB) + ε, µ∗(EAc) < µ∗(EBc) + ε.

This implies
µ∗(EA) + µ∗(EAc) < µ∗(EB) + µ∗(EBc) + 2ε.

Further, by (1.12),

∃{Aj} ⊆ A such that E ⊆
∞∪
j=1

Aj and

∞∑
j=1

µ0(Aj) < µ∗(E) + ε.

By subadditivity of µ∗ on 2X and additivity of µ0 on A, we get

µ∗(EA) + µ∗(EAc) < µ∗
( ∞∪

j=1

(AjB)

)
+ µ∗

( ∞∪
j=1

(AjB
c)

)
+ 2ε

≤
∞∑
j=1

µ0(AjB) +
∞∑
j=1

µ0(AjB
c) + 2ε

=
∞∑
j=1

µ0(Aj) + 2ε < µ∗(E) + 3ε.

Since ε > 0 is arbitrary,
µ∗(E) ≤ µ∗(EA) + µ∗(EAc) ≤ µ∗(E),

and the property (i) follows. Theorem is proved.

In comparison with the textbook, the following theorem is restricted to the case of σ-finite µ0.
On the other hand, we consider extensions to the set of all µ-measurable sets, with contains M := σ(A). An
alternative approach to part (ii) is outlined in Exercise 22a on p.32. Our proof may be longer because we
incorporate a few useful facts. For example, the completion of M with respect to µ can be described as the
family of all sets A ⊆ X such that µ∗(A∆A0) = 0 for some A0 ∈ M := σ(A).

1.14. Theorem. Let µ0 be a σ-finite premeasure on an algebra A ⊆ 2X . Denote M := σ(A), and
F - the family of all µ∗-measurable sets.

(i) µ := µ∗|F is a unique measure on F such that µ = µ0 on A.
(ii) If µ := µ∗|M, then µ is the completion of µ.

Proof. (i). In the textbook, this part is proved (with M instead of F) by means of Carathéodory’s theorem.
Alternatively, one can adjust the construction in Appendix B by taking (X,A, µ0) in place of (Ω, E ,m).

First we assume that µ0(X) < ∞. Following Definition B-6 or part (iii) in Theorem I-5, introduce the
family

F :=
{
A ⊆ X : ∀ε > 0, ∃B ∈ A such that µ∗(A∆B) < ε

}
. (I-8)

Then the proofs of Theorems B-9 and B-10 remain valid, which state that F is a σ-algebra and µ := µ∗ is
σ-additive on F . Moreover, since A ⊆ F , we also have M := σ(A) ⊆ F .
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If ν is another measure on F , such that ν = µ0 on A, then

A ∈ F , Aj ∈ A, A ⊆
∞∪
j=1

Aj =⇒ ν(A) ≤
∞∑
j=1

ν(Aj) =
∞∑
j=1

µ0(Aj).

By (1.12), we get ν(A) ≤ µ∗(A) =: µ(A), ∀A ∈ F . Then also ν(Ac) ≤ µ∗(Ac), hence

µ0(X) = ν(X) = ν(A) + ν(Ac) ≤ µ∗(A) + µ∗(Ac) = µ∗(X) = µ0(X).

This implies uniqueness, i.e. ν = µ∗ =: µ on F .

In the case µ0(X) = ∞, the σ-finiteness of µ0 means that

∃Ej ↗ X, Ej ∈ A, µ0(Ej) < ∞ for all j = 1, 2, . . . .

Introduce the families Fj corresponding to Ej in place of X in (I-8). Then the family

F :=
{
A ⊆ X : AEj ∈ Fj , ∀j = 1, 2, . . .

}
(I-9)

is a σ-algebra containing A, and the unique extension of µ0 from A to F is given by formula

µ(A) := lim
j→∞

µ(AEj), ∀A ∈ F . (I-10)

(ii). Let A be a set in the family F defined in (I-9) for σ-additive µ0. Then

∀ε > 0, ∀j = 1, 2, . . . , ∃Bj ∈ A such that µ∗((AEj)∆Bj

)
<

ε

2j
.

Then

B :=
∞∪
j=1

Bj satisfies A∆B =

( ∞∪
j=1

(AEj)

)
∆

( ∞∪
j=1

Bj

)
⊆

∞∪
j=1

(
(AEj)∆Bj

)
.

Therefore,

µ∗(A∆B) ≤
∞∑
j=1

µ∗
(
(AEj)∆Bj

)
<

∞∑
j=1

ε

2j
= ε.

In other words, for σ-additive µ0, one needs to replace A by M := σ(A) in (I-8):

F =
{
A ⊆ X : ∀ε > 0, ∃B ∈ M := σ(A) such that µ∗(A∆B) < ε

}
. (I-11)

Further, one can choose a sequence Aj ∈ A such that µ∗(A∆Aj) → 0 as j → ∞. Then by the triangle
inequality, µ∗(Aj∆Ak) → 0 as j, k → ∞. We can assume that the convergence is fast enough, so that one can
apply the result in HW #4, Problem 3, with (F , µ∗) in place of M, µ). It guarantees that µ∗(A0∆Aj) → 0 as
j → ∞ for some A0 ∈ M. Since

µ∗(A0∆A) ≤ µ∗(A∆Aj) + µ∗(A0∆Aj) → 0 as j → ∞,

we must have µ∗(A0∆A) = 0, where A0 ∈ M. Moreover, by (1.12),

A∆A0 ⊆ Cj ∈ M with µ(Cj) <
1

j
.
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Then

A∆A0 ⊆ C := lim inf
j→∞

Cj :=
∞∪

n=1

∞∩
j=n

Cj ∈ M with µ(C) = 0.

Hence E1 := A0 \ C and E2 := A0 ∪ C belong to M, and

E1 ⊆ A0 \ (A∆A0) ⊆ A ⊆ A0 ∪ (A∆A0) ⊆ E2, µ(E2 \ E1) ≤ µ(C) = 0.

Since this is true for an arbitrary A ∈ F , by (I-1) we have F = M, and (X,F , µ = µ∗) is the completion of
(X,M, µ). Theorem is proved.

The following theorem generalizes Lemma 1.17 and Theorem 1.18 to the multidimensional case. In this
theorem, Mµ can be considered as the completion of the Borel σ-algebra B with respect to µ. We use same
notation µ = µ for the corresponding unique extension of µ.

Theorem I-6. Let µ be a Borel measure on Rd such that µ(K) < ∞ ∀ compact K ⊆ Rd, and let Mµ

denote the family of all µ-measurable sets in Rd. Then
(i) ∀E ∈ Mµ, ∀ε > 0

∃ closed F ⊆ E ⊆ open G with µ(G \ F ) < ε. (I-12)

(ii) µ is regular, i.e.

µ(E) = inf
{
µ(G) : E ⊆ open G

}
= sup

{
µ(K) : compact K ⊆ E

}
. (I-13)

Proof. (i). Denote by W the family of all sets in Mµ satisfying (1-12). We have

Kδ :=

∞∏
j=1

[aj + δ, bj ] ↗ Q :=

∞∏
j=1

(aj , bj ], Gδ :=

∞∏
j=1

(aj , bj + δ) ↘ Q as δ ↘ 0. (I-14)

Here Kδ ⊆ Q ⊆ Gδ, and by the continuity of µ (Theorem 1.8c,d), µ(Gδ \Kδ) → 0 as δ ↘ 0.
Hence W contains all the rectangles Q in (I-14).

Further, if E ∈ Mµ, then from (I-12) it follows

closed Gc ⊆ Ec ⊆ open F c with µ(F c \Gc) = µ(G \ F ) < ε,

i.e. Ec ∈ Mµ. Therefore, Mµ contains the algebra of sets

A :=
{
A ⊆ Rd : A or Ac is a finite union of rectangles Q in (I-14)

}
. (I-15)

Now consider a sequence Ej ∈ W, j = 1, 2, . . .. For fixed ε > 0,

∃ closed Fj ⊆ Ej ⊆ open Gj with µ(Gj \ Fj) <
ε

2j
.

This implies

F ∗ :=
∞∪
j=1

Fj ⊆ E =
∞∪
j=1

Ej ⊆ open G :=
∞∪
j=1

Gj with µ(G \ F ∗) < ε,

where

(G \ F ∗) ⊆
∞∪
j=1

(Gj \ Fj), µ(G \ F ∗) ≤
∞∑
j=1

µ(Gj \ Fj) < ε. (I-16)
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In #HW 3, Problem 1, we can assume that Rd is represented as a union of closed cubes {Ik}, k ≥ 1, with
edge length 1, which are non-overlapping in the sense that their interiors I0j ∩ I0k = ∅ for j ̸= k. The closed
sets

F ∗
n :=

n∪
j=1

Fj ↗ F ∗, F ∗
nIk ↗ F ∗Ik as n → ∞.

By continuity of µ, for fixed ε > 0, one can choose nk such that

µ
((

F ∗Ik
)
\
(
F ∗
nk

)
Ik

)
<

ε

2k
.

Here we used the property µ(K) < ∞ for K = Ik. Then by the above mentioned problem, the closed set

F :=
∞∪
k=1

(
F ∗
nk
Ik
)
⊆ F ∗ =

∞∪
k=1

(
F ∗Ik

)
, and µ(F ∗ \ F ) ≤

∞∑
k=1

µ
((

F ∗Ik
)
\
(
F ∗
nk

)
Ik

)
< ε.

Together with (I-16), this gives µ∗(G \ F ) = µ∗(G \ F ∗) + µ∗(F ∗ \ F ) < 2ε. Replacing ε by ε/2, we see that

E :=
∞∪
j=1

Ej ∈ W . Since W contains the algebra A and is closed with respect to operations (· · · )c and
∪
j

(· · · ),

it is a σ-algebra containing σ(A) = B.
Finally, let E be a set in Mµ with µ(E) = 0. We can use the definition (1.12) with µ∗(E) = µ(E) = 0,

and µ0 = µ on the algebra A defined in (I-15). For fixed ε > 0,

∃Aj ∈ A such that E ⊆
∞∪
j=1

Aj and

∞∑
j=1

µ(Aj) < ε.

Similarly to (I-14),

∃ open Gj ⊇ Aj with µ(Gj \Aj) <
ε

2j
.

Then the open set

G :=

∞∪
j=1

Gj ⊇
∞∪
j=1

Aj ⊇ E, and µ(G) ≤
∞∑
j=1

µ(Gj) =

∞∑
j=1

µ(Aj) +

∞∑
j=1

µ(Gj \Aj) < 2ε.

Hence E satisfies (I-12) with F = ∅ (after redefining ε).

Summarizing the previous arguments, we see that the σ-algebra W ⊆ Mµ contains B = σ(A) and all
µ-null sets. It remains to note that Mµ is the completion of B with respect to µ, so we must have W = Mµ.
Statement (i) is proved.

(ii). From (I-12) it follows immediately that

µ(E) = inf
{
µ(G) : E ⊆ open G

}
= sup

{
µ(F ) : closed F ⊆ E

}
, (I-17)

which includes the first equality in (I-13). In order to prove the second equality, note that

µ(F ) = sup
n

µ(FKn), where Kn := [−n, n]d ⊂ Rd.

Here FKn are bounded closed sets in Rd, i.e. compacts, which are contained in F ⊆ E. Therefore,

µ(F ) ≤ sup
{
µ(K) : compact K ⊆ E

}
≤ µ(E).

In combination with (I-17), this implies the desired equality. Theorem is proved.
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