Appendix 1: Fourier Transforms

Definition 1. The Fourier transform of a function f(z) € LY(R") is

g(w) = FIfl(w) = / e f(2) da. (1)

Re
Here = = (21, -+ ,xn), w = (w1, -+, wy) € R™,
e~ .= coswx — isinwe, WT = wWix1 + -+ WpTn.
Since |e=™*f| = |f| € L', by Lebesgue’s Dominated Convergence Theorem we have wleWO g(w) = g(wo),

i.e. g= F[f] is continuous for every f € L'. Obviously, F' is also bounded as an operator from L! to
L with [| F[f][lsc < [[f]]1-

First we restrict F' to the Schwartz space S C C*°(R") of functions f satisfying
8%‘? Lo o

(e%

sup [zDP f(z)| = sup |z - -z < 00
Rn Rn

for all multi-indices a, 8 > 0. Since (1 + |x|?)" is a polynomial, and (1 + |z|?)™™ € L', we also have
|(1+ |x|2)”m°‘Dﬁf’ < C(a, B) = const < 0o, z*DPf e L', and Fz*DPf] e L.
Lemma 1. For f €S, g(w):=F[f](w), and all multi-indices o, 5 > 0, we have:
(a) wg(w) = F[(=iD)*f](w);  (b) D g(w) = F[(=iz)" ] (w).

Proof. The property (a) follows by integration by parts, (b) — by differentiation of the equality (1).

0
Corollary 1. If f € S, then g:= F[f] € S.

Proof. By the previous lemma, w*D?g is a finite linear combination of F[z#DVf] with multi-
indices p, v > 0. Since all 2*D"f belong to L', we have |w*DFg| < C' = const < . 0

We also define the inverse Fourier transform of any function g(w) € S by the formula

f(@) = F~Hg(z) == (2m) ™" / ¢ g(w) dw = (2m) " F[g]. (2)

R

From Corollary 1 and the last equality in (2) it follows that if g € S, then F~![g] € S. We will
show that indeed, F'~! is the inverse operator of F on S (equalities (10) in Theorem 2 below). In the
2
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following example, we check these equalities for f =@ : =€ 2.
2
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Example 1. We will find the Fourier transform of the function ¢(x) =e~ 2 on R!. Since ¢ is an

even function, we have
2

g(w) = Flp](w) = /cos wx e T da.
R1



Using polar coordinates, we get
27 [e'¢)
22 y2 m2+y2 r2
gQ(O)—/ede-/e2dy—//e P dxdy—/d9/62rdr—27r,
R R R2 0 0

hence ¢(0) = v27. Further,

22
J(w) = —/sinwx ~xe” 2 dx = /sinwx ~dp(z) = — /wcoswx cp(x)dr = —wg(w),
R1 R1 Rl
W2
(Ing) = —w, In g = const — >

and since ¢(0) = /2,

w? w?
2

g(w) := Flp](w) =const - e~ 2 =V2m-e"
We will use the same notation ¢ for the function

22
(p(aj) = 677 = e*%Z{L‘i on Rn

Its Fourier transform is represented as the product:

) »2 n ) 2 L
g(w) = /e—me‘z dv =[] /e‘“"me_f dry = [ Flel(wn),
k=151 k=1

R'IL
and by the above formula,

Flel(@) = F |e7% | ) = kr:[ (VEr- %) = em2e ¥ = entelw) 3)

The previous calculations remain the same if we replace i by —i. Therefore,

Flp)(z) = (2m) " Fle](z) = (2m) "2 p(a),

and
FIF ' gll(x) = 2m) 2 Flgl(x) = o(x),  F'Flel(z) = (2m)2 F g (z) = p(2). (4)

O

Theorem 1. For any constants k >0 and h € R™, operators F and F~! defined by formulas (1)
and (2) on S, satisfy the equalities

F[f (kz)|(w) = k" F[f(2)](k~'w), F ' g(kw)(z) = k™" F~g(w)](k™ '), (5)
F[f(z + h)](w) = e“"F[f(x)](w), F ' g(w+ h)](z) = e ™ Fg(w)](x), (6)
Fle™ f(2)](w) = F[f(z)](w — h), F e g(w)](z) = F~ ' g(w))(z + h). (7)

Flf xg]=F[f]- Flg]. (8)



Proof of (5)-(7) is easy to obtain by changing the variables. The equality (8) follows from Fubini’s

theorem:
F[f x gl(w) / ‘W[/faz—t ]dac

_ / ) [ / e f — 1) dx] dt = F[f)(w)- / e lg(t) dt = F[f)(w) - Flg)(w).

O

Note that the complex-valued functions f: R® — C in L?*(R") compose a Hilbert space with the
inner (or scalar) product

(fig):= [ fgda.
/

Theorem 2. For all f,g € S, we have

<F[f]>g>=/F[f](w) (W) dw = (2m)"(f, F~"[g]) (9)
Rn
Moreover,
FRFIf]=f  FIFA] =, (10)
and the following Plancherel equalities hold true:
IELE= o™ FIE 113 = o)™ FHAIl. (11)

Proof. The equality (9) follows from Fubini’s theorem:

Fiflg) = [ | [ s ] seraw = [ 5t [ [ st o) da = (2 5.5 )

Further, denote by Sy the set of all functions f € S satisfying (10). By Theorem 1 with g := F[f],
we have
ek w)](@) = f(ka);
He®g(w)(z) = f(z + h).

Flf (ko)) = k"g(k '), F-
Flf(z+ M) = e“"g(w),  F~
In other words, if f € Sy, then f(kx) and f(x + h) satisfy the first equality in (10). The second
equality follows from the relation F~![f] = (27) "F|[f]. Therefore, from f € Sy it follows that
flkz), f(x + h) € Sp.

22

By virtue of (4), we know that ¢(x) =e~ 2 € Sp. Then
K(x):= 2n) 2¢(zx), K°(z):=e "K(ez), and K°%(x—t)

belong to Sy for all € > 0 and ¢t € R™. It is easy to verify that

fo(@) = (f % K9) (@ /f £) K*(x — 1) dt = /f:c—sy () dy



belong to S for for all f €S and ¢ > 0. In addition,

FI/]] /f FIK® (2 — t)]] dt = /f VK (x — 1) dt = -,
Rn
and similarly, F[F~![f.]] = f.. This means that in fact we have f. € Sp.

By our choice of constants, we have [ K(y)dy = 1. Hence

(fe — f)(z) = / [F@ - ey) — f@)] - K@) dy.

R

Using Minkowski’s integral inequality, we estimate the L?-norm as follows:

1 — flla < /\If(x—ey)—f(w)l\z~K(y) dy.
J

We have ||f(z —h) — f(z)|]2 = 0 as h — 0, even for f € L?. Then by the Dominated Convergence
Theorem, ||f: — f|l2 = 0 as € \,0.

Finally, if f € S satisfies (10), then (11) follows from (9) with g := F[f]. The previous argument
shows that these equalities hold true on a family Sy C S, which is dense in Sy with respect to the
L?-norm. By standard approximation, these properties are extended to the whole class S, i.e. Sy = S.

|

The Plancherel equalities allow to define Fourier transforms F and F~! for functions f € L? as
limits in L?:

F[f] := lim F[f,], F!f]:= lim Fl[f,], where f=lm fn, fn€S

n—oo n—oo

Then “by continuity”, all the equalities (5)—(7) and (9)—(11) also hold true for functions in L2.

Example 2. The Fourier transform of the function f(z):= e ¥l on R', where k = const > 0, is

; T ; 1 2k
N _ —iwzr—k|z| _ —(k+iw)x _ _
g(w) .—F[f](w)—/e | |—2-Re/e (k-+iw) dr =2 Re 0 = 15,
R1 0

Since g is an even function, we also have

Flg)(w) = / e~ g ) di = / e g(x) dz = 2m - F[g)(w) = 27 - f(w),

R! R!
and . )
_ _ —k
Pl @ =5 Fll) = m- et
|
Definition 2. For n =0,1,2,..., the Hermite polynomials are defined as

Hy(z) = (—1)"e" (e_xz)m),

22
2

so that Hy = 1, H; = 2z, etc. The corresponding Hermite functions ¢, (z) := H,(z)e



22

In particular, ¢o(z) = e~ 2 = ¢(z) in Example 1. All functions ¢,, belong to the Schwartz space S.
Using integration by parts, it is easy to check that the system {¢,} is orthogonal in L? := L?(R%):

{(Pm, n) = /SDmSDndaﬁ = /HmHnemzdaz =0 for m#n.
R! R!

Theorem 3. The system of Hermite functions {p,} is complete in L?, i.e. from f € L* and
(pn, fY =0 for all n it follows f =0 a.e.

Proof. The assumption (¢,, f) = 0 for all n is equivalent to (x"p, f) = 0 for all n, because
every x™ is a linear combination of Hy, k < n, and correspondingly, "¢ is a linear combination of
Hyp = i, k < n. Consider the Fourier transform

) == Flofl(w) = [ 7% f(a) da.
Rl

This integral is well defined for complex w = w; +iwse, and g(w) is analytic in the whole complex plane C'.
By our assumptions, all the derivatives

g0 = [ (mio)e ™ fla)do = (~i)" ("0, 1) = 0.
Rl

By uniqueness for analytic functions, we must have ¢ = 0. Finally, from the Plancherel equality it
follows

27 - |l f13 = ll9l13 = 0,
so that f =0 a.e. 0

Theorem 4. The Hermite functions @, are eigenfunctions of the Fourier transform:

Flon) = cnpn, where ¢, = (—i)"V2r for n=0,1,2,.... (12)

Proof. We know that this property holds true for n = 0 with ¢ := v/27. Moreover,
(@ = D)= (4 - D) ()| = cayprte () Y <,
so that by induction, ¢, = (x — D)"¢ for all n=0,1,2,.... Note that by Lemma 1,
Fl(x—=D)f] =—iF[(-i)(D—=2)f] = —i(w—D)F[f] for feS&.
Therefore,
Flipn] = F[(z = D)"¢] = (=i)"(w — D)"Fl¢] = (=i)"V2r - (w — D)"p = (=i)"V27 - .

Theorem is proved. 0

At the conclusion, we prove a few relations between the Fourier operator F', the differential operator
L := D? — 22, and the Hermite functions ¢, := Hyp.



Theorem 5. (a). The Fourier operator F is commutative with L :== D? — 22 on S:
F[Lf] = LF[f] for fe€S. (13)

In particular, if Lf := f" —2%f =0, then g(w) := F[f](w) also satisfies Lg := ¢" —w?g = 0.

(b). The Hermite functions ¢, := Hyp are eigenfunctions of L:
Loy = ¢! — 220, = \pon with Ay :=—2n+1) for n=0,1,2,.... (14)
(c). The Hermite polynomials Hy, satisfy the Hermite equation

y' —2xy =py with p=2n for n=0,1,2,.... (15)

Proof. (a). By Lemma 1, the functions f and g := F[f] in S satisfy
FID?f) = —F[(—iD)*f] = %y,  Fl-af] = Fl(=iz)2f] = D,
From these relations, the equality (13) follows:
F[Lf] = FID*f —2*f] = —w’g+ D*g = Lg = LF[f].

(b) and (c). We will try to find polynomials P, of degree n (eventually P,, = const - H,,) such that

x

ty 1= Py satisty L, = ! — 2%, = M, with a constant A (depending on n). Since p(z) := e~ 2
satisfies ¢ = —xp, ¢’ = (2% — 1), we get

Lpy, = P+ 2Py + P,p" — 2?Pyp = (P! — 22P! — P,)¢ = A\P,¢.

n

Here P, = Y apz®, a, # 0. Comparing the coefficients of 2 in both sides, we see that the equality is

only possible_ if A\ =\, := —(2n+1). One can select a,, # 0 in an arbitrary way, and then the remaining
coefficients aj are uniquely defined by a standard recurrent procedure.

From the equalities Ly = Apty it follows

(@b;rﬂ/}n - w%wm)/ = 1%'1 n ¢Zwm = ()\m - )\n)wmwn-

Integrating over R! yields 0 = (Ay, — An) - (¥m, %), so that {¢,} is an orthogonal system in LZ.
Note that both {p, := H,p} and {1, := P,¢} can be obtained by orthogonalization of {z"y}, i.e.
(on,2¥p) = (¢, 2F¢) = 0 for all k < n — 1. From this observation it follows that ¢, = const - ¢,, and
H, = const - P,. Finally, since L, = A\t and P! — 2xP) + 2nP, = 0, the functions ¢, := Hy,¢
satisfy (14), and y = H,, satisfy (15). Theorem is proved.

O



