Appendix 1: Fourier Transforms

Definition 1. The Fourier transform of a function $f(x) \in L^1(\mathbb{R}^n)$ is

$$g(\omega) = F[f](\omega) := \int_{\mathbb{R}^n} e^{-i\omega x} f(x) dx. \tag{1}$$

Here $x = (x_1, \dots, x_n), \, \omega = (\omega_1, \dots, \omega_n) \in \mathbb{R}^n$,

$$e^{-i\omega x} := \cos \omega x - i \sin \omega x, \qquad \omega x := \omega_1 x_1 + \dots + \omega_n x_n.$$

Since $|e^{-i\omega x}f|=|f|\in L^1$, by Lebesgue's Dominated Convergence Theorem we have $\lim_{\omega\to\omega_0}g(\omega)=g(\omega_0)$, i.e. g=F[f] is continuous for every $f\in L^1$. Obviously, F is also bounded as an operator from L^1 to L^∞ with $||F[f]||_\infty \le ||f||_1$.

First we restrict F to the **Schwartz space** $S \subset C^{\infty}(\mathbb{R}^n)$ of functions f satisfying

$$\sup_{\mathbb{R}^n} |x^{\alpha} D^{\beta} f(x)| = \sup_{\mathbb{R}^n} \left| x^{\alpha_1} \cdots x^{\alpha_n} \frac{\partial^{\beta_1 + \dots + \beta_n} f}{\partial x_1^{\beta_1} \cdots \partial x_n^{\beta_n}} \right| < \infty$$

for all multi-indices $\alpha, \beta \geq 0$. Since $(1+|x|^2)^n$ is a polynomial, and $(1+|x|^2)^{-n} \in L^1$, we also have

$$\left|(1+|x|^2)^n x^\alpha D^\beta f\right| \leq C(\alpha,\beta) = \mathrm{const} < \infty, \quad x^\alpha D^\beta f \in L^1, \quad \mathrm{and} \quad F[x^\alpha D^\beta f] \in L^\infty.$$

Lemma 1. For $f \in S$, $g(\omega) := F[f](\omega)$, and all multi-indices $\alpha, \beta \geq 0$, we have:

(a)
$$\omega^{\alpha} g(\omega) = F[(-iD)^{\alpha} f](\omega);$$
 (b) $D^{\beta} g(\omega) = F[(-ix)^{\beta} f](\omega).$

Proof. The property (a) follows by integration by parts, (b) – by differentiation of the equality (1).

Corollary 1. If $f \in S$, then $g := F[f] \in S$.

Proof. By the previous lemma, $\omega^{\alpha}D^{\beta}g$ is a finite linear combination of $F[x^{\mu}D^{\nu}f]$ with multiindices $\mu, \nu \geq 0$. Since all $x^{\mu}D^{\nu}f$ belong to L^1 , we have $|\omega^{\alpha}D^{\beta}g| \leq C = \text{const} < \infty$.

We also define the **inverse Fourier transform** of any function $g(\omega) \in S$ by the formula

$$f(x) = F^{-1}[g](x) := (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\omega x} g(\omega) d\omega = (2\pi)^{-n} \overline{F[\overline{g}]}.$$
 (2)

From Corollary 1 and the last equality in (2) it follows that if $g \in S$, then $F^{-1}[g] \in S$. We will show that indeed, F^{-1} is the inverse operator of F on S (equalities (10) in Theorem 2 below). In the following example, we check these equalities for $f = \varphi := e^{-\frac{x^2}{2}}$.

Example 1. We will find the Fourier transform of the function $\varphi(x) = e^{-\frac{x^2}{2}}$ on \mathbb{R}^1 . Since φ is an even function, we have

$$g(\omega) = F[\varphi](\omega) = \int_{\mathbb{R}^1} \cos \omega x \cdot e^{-\frac{x^2}{2}} dx.$$

Using polar coordinates, we get

$$g^{2}(0) = \int_{\mathbb{R}^{1}} e^{-\frac{x^{2}}{2}} dx \cdot \int_{\mathbb{R}^{1}} e^{-\frac{y^{2}}{2}} dy = \iint_{\mathbb{R}^{2}} e^{-\frac{x^{2}+y^{2}}{2}} dx dy = \int_{0}^{2\pi} d\theta \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r dr = 2\pi,$$

hence $g(0) = \sqrt{2\pi}$. Further,

$$g'(\omega) = -\int\limits_{\mathbb{R}^1} \sin \omega x \cdot x e^{-\frac{x^2}{2}} dx = \int\limits_{\mathbb{R}^1} \sin \omega x \cdot d\varphi(x) = -\int\limits_{\mathbb{R}^1} \omega \cos \omega x \cdot \varphi(x) dx = -\omega g(\omega),$$

$$(\ln g)' = -\omega, \qquad \ln g = \text{const} - \frac{\omega^2}{2},$$

and since $g(0) = \sqrt{2\pi}$,

$$g(\omega) := F[\varphi](\omega) = \text{const} \cdot e^{-\frac{\omega^2}{2}} = \sqrt{2\pi} \cdot e^{-\frac{\omega^2}{2}}.$$

We will use the same notation φ for the function

$$\varphi(x) = e^{-\frac{x^2}{2}} = e^{-\frac{1}{2}\sum x_k^2} \quad \text{on} \quad \mathbb{R}^n.$$

Its Fourier transform is represented as the product:

$$g(\omega) = \int_{\mathbb{R}^n} e^{-i\omega x} e^{-\frac{x^2}{2}} dx = \prod_{k=1}^n \int_{\mathbb{R}^1} e^{-i\omega_k x_k} e^{-\frac{x_k^2}{2}} dx_k = \prod_{k=1}^n F[\varphi](\omega_k),$$

and by the above formula,

$$F[\varphi](\omega) = F\left[e^{-\frac{x^2}{2}}\right](\omega) = \prod_{k=1}^n \left(\sqrt{2\pi} \cdot e^{-\frac{\omega_k^2}{2}}\right) = (2\pi)^{\frac{n}{2}} e^{-\frac{\omega^2}{2}} = (2\pi)^{\frac{n}{2}} \varphi(\omega). \tag{3}$$

The previous calculations remain the same if we replace i by -i. Therefore,

$$F^{-1}[\varphi](x) = (2\pi)^{-n} F[\varphi](x) = (2\pi)^{-\frac{n}{2}} \varphi(x),$$

and

$$F[F^{-1}[\varphi]](x) = (2\pi)^{-\frac{n}{2}}F[\varphi](x) = \varphi(x), \qquad F^{-1}[F[\varphi]](x) = (2\pi)^{\frac{n}{2}}F^{-1}[\varphi](x) = \varphi(x). \tag{4}$$

Theorem 1. For any constants k > 0 and $h \in \mathbb{R}^n$, operators F and F^{-1} defined by formulas (1) and (2) on S, satisfy the equalities

$$F[f(kx)](\omega) = k^{-n}F[f(x)](k^{-1}\omega), \qquad F^{-1}[g(k\omega)](x) = k^{-n}F^{-1}[g(\omega)](k^{-1}x), \tag{5}$$

$$F[f(x+h)](\omega) = e^{i\omega h} F[f(x)](\omega), \qquad F^{-1}[g(\omega+h)](x) = e^{-ihx} F^{-1}[g(\omega)](x), \tag{6}$$

$$F[e^{ihx}f(x)](\omega) = F[f(x)](\omega-h), \qquad F^{-1}[e^{ih\omega}g(\omega)](x) = F^{-1}[g(\omega)](x+h). \tag{7}$$

$$F[e^{ihx}f(x)](\omega) = F[f(x)](\omega - h), \qquad F^{-1}[e^{ih\omega}g(\omega)](x) = F^{-1}[g(\omega)](x + h).$$
 (7)

$$F[f * g] = F[f] \cdot F[g]. \tag{8}$$

Proof of (5)–(7) is easy to obtain by changing the variables. The equality (8) follows from Fubini's theorem:

$$F[f * g](\omega) = \int e^{-i\omega x} \left[\int f(x-t)g(t) dt \right] dx$$
$$= \int e^{-i\omega t} g(t) \left[\int e^{-i\omega(x-t)} f(x-t) dx \right] dt = F[f](\omega) \cdot \int e^{-i\omega t} g(t) dt = F[f](\omega) \cdot F[g](\omega).$$

Note that the complex-valued functions $f: \mathbb{R}^n \to C$ in $L^2(\mathbb{R}^n)$ compose a Hilbert space with the **inner** (or **scalar**) **product**

$$\langle f, g \rangle := \int_{\mathbb{R}^n} f \overline{g} \, dx.$$

Theorem 2. For all $f, g \in S$, we have

$$\langle F[f], g \rangle = \int_{\mathbb{D}^n} F[f](\omega) \cdot \overline{g(\omega)} \, d\omega = (2\pi)^n \langle f, F^{-1}[g] \rangle. \tag{9}$$

Moreover,

$$F^{-1}[F[f]] = f, F[F^{-1}[f]] = f,$$
 (10)

and the following Plancherel equalities hold true:

$$||F[f]||_2^2 = (2\pi)^n ||f||_2^2, \qquad ||f||_2^2 = (2\pi)^n ||F^{-1}[f]||_2^2.$$
 (11)

Proof. The equality (9) follows from Fubini's theorem:

$$\langle F[f],g\rangle = \int \left[\int e^{-i\omega x} f(x)\,dx\right] \overline{g(\omega)}\,d\omega = \int f(x) \left[\overline{\int e^{i\omega x} g(\omega)\,d\omega}\right] dx = (2\pi)^n \langle f,F^{-1}[g]\rangle.$$

Further, denote by S_0 the set of all functions $f \in S$ satisfying (10). By Theorem 1 with g := F[f], we have

$$\begin{split} F[f(kx)](\omega) &= k^{-n}g(k^{-1}\omega), \qquad F^{-1}[k^{-n}g(k^{-1}\omega)](x) = f(kx); \\ F[f(x+h)](\omega) &= e^{i\omega h}g(\omega), \qquad F^{-1}[e^{i\omega h}g(\omega)](x) = f(x+h). \end{split}$$

In other words, if $f \in S_0$, then f(kx) and f(x+h) satisfy the first equality in (10). The second equality follows from the relation $F^{-1}[f] = (2\pi)^{-n} \overline{F[f]}$. Therefore, from $f \in S_0$ it follows that $f(kx), f(x+h) \in S_0$.

By virtue of (4), we know that $\varphi(x) = e^{-\frac{x^2}{2}} \in S_0$. Then

$$K(x) := (2\pi)^{-\frac{n}{2}} \varphi(x), \quad K^{\varepsilon}(x) := \varepsilon^{-n} K(\varepsilon^{-1} x), \quad \text{and} \quad K^{\varepsilon}(x-t)$$

belong to S_0 for all $\varepsilon > 0$ and $t \in \mathbb{R}^n$. It is easy to verify that

$$f_{\varepsilon}(x) := (f * K^{\varepsilon})(x) = \int_{\mathbb{D}^n} f(t) K^{\varepsilon}(x - t) dt = \int_{\mathbb{D}^n} f(x - \varepsilon y) K(y) dy$$

belong to S for for all $f \in S$ and $\varepsilon > 0$. In addition,

$$F^{-1}[F[f_{\varepsilon}]] = \int_{\mathbb{R}^n} f(t) F^{-1}[F[K^{\varepsilon}(x-t)]] dt = \int_{\mathbb{R}^n} f(t) K^{\varepsilon}(x-t) dt = f_{\varepsilon},$$

and similarly, $F[F^{-1}[f_{\varepsilon}]] = f_{\varepsilon}$. This means that in fact we have $f_{\varepsilon} \in S_0$.

By our choice of constants, we have $\int K(y) dy = 1$. Hence

$$(f_{\varepsilon} - f)(x) = \int_{\mathbb{R}^n} [f(x - \varepsilon y) - f(x)] \cdot K(y) dy.$$

Using Minkowski's integral inequality, we estimate the L^2 -norm as follows:

$$||f_{\varepsilon} - f||_2 \le \int_{\mathbb{D}^n} ||f(x - \varepsilon y) - f(x)||_2 \cdot K(y) \, dy.$$

We have $||f(x-h)-f(x)||_2 \to 0$ as $h \to 0$, even for $f \in L^2$. Then by the Dominated Convergence Theorem, $||f_{\varepsilon}-f||_2 \to 0$ as $\varepsilon \searrow 0$.

Finally, if $f \in S$ satisfies (10), then (11) follows from (9) with g := F[f]. The previous argument shows that these equalities hold true on a family $S_0 \subseteq S$, which is dense in S_0 with respect to the L^2 -norm. By standard approximation, these properties are extended to the whole class S, i.e. $S_0 = S$.

The Plancherel equalities allow to define Fourier transforms F and F^{-1} for functions $f \in L^2$ as limits in L^2 :

$$F[f] := \lim_{n \to \infty} F[f_n], \quad F^{-1}[f] := \lim_{n \to \infty} F^{-1}[f_n], \quad \text{where} \quad f = \lim_{n \to \infty} f_n, \quad f_n \in S.$$

Then "by continuity", all the equalities (5)–(7) and (9)–(11) also hold true for functions in L^2 .

Example 2. The Fourier transform of the function $f(x) := e^{-k|x|}$ on \mathbb{R}^1 , where k = const > 0, is

$$g(\omega) := F[f](\omega) = \int_{\mathbb{P}^1} e^{-i\omega x - k|x|} = 2 \cdot \operatorname{Re} \int_0^\infty e^{-(k+i\omega)x} dx = 2 \cdot \operatorname{Re} \frac{1}{k+i\omega} = \frac{2k}{k^2 + \omega^2}.$$

Since q is an even function, we also have

$$F[g](\omega) := \int\limits_{\mathbb{R}^1} e^{-i\omega x} g(x) \, dx = \int\limits_{\mathbb{R}^1} e^{i\omega x} g(x) \, dx = 2\pi \cdot F^{-1}[g](\omega) = 2\pi \cdot f(\omega),$$

and

$$F\left[\frac{k}{k^2 + x^2}\right](\omega) = \frac{1}{2} \cdot F[g](\omega) = \pi \cdot e^{-k|\omega|}.$$

Definition 2. For n = 0, 1, 2, ..., the **Hermite polynomials** are defined as

$$H_n(x) := (-1)^n e^{x^2} \left(e^{-x^2}\right)^{(n)},$$

so that $H_0=1, H_1=2x,$ etc. The corresponding **Hermite functions** $\varphi_n(x):=H_n(x)\,e^{-\frac{x^2}{2}}.$

In particular, $\varphi_0(x) = e^{-\frac{x^2}{2}} = \varphi(x)$ in Example 1. All functions φ_n belong to the Schwartz space S. Using integration by parts, it is easy to check that the system $\{\varphi_n\}$ is orthogonal in $L^2 := L^2(\mathbb{R}^1)$:

$$\langle \varphi_m, \varphi_n \rangle := \int_{\mathbb{R}^1} \varphi_m \varphi_n dx = \int_{\mathbb{R}^1} H_m H_n e^{-x^2} dx = 0 \text{ for } m \neq n.$$

Theorem 3. The system of Hermite functions $\{\varphi_n\}$ is complete in L^2 , i.e. from $f \in L^2$ and $\langle \varphi_n, f \rangle = 0$ for all n it follows f = 0 a.e.

Proof. The assumption $\langle \varphi_n, f \rangle = 0$ for all n is equivalent to $\langle x^n \varphi, f \rangle = 0$ for all n, because every x^n is a linear combination of H_k , $k \leq n$, and correspondingly, $x^n \varphi$ is a linear combination of $H_k \varphi = \varphi_k$, $k \leq n$. Consider the Fourier transform

$$g(\omega) := F[\varphi f](\omega) = \int_{\mathbb{R}^1} e^{-i\omega x - \frac{x^2}{2}} f(x) dx.$$

This integral is well defined for complex $\omega = \omega_1 + i\omega_2$, and $g(\omega)$ is analytic in the whole complex plane C. By our assumptions, all the derivatives

$$g^{(n)}(0) = \int_{\mathbb{R}^1} (-ix)^n e^{-\frac{x^2}{2}} f(x) \, dx = (-i)^n \langle x^n \varphi, f \rangle = 0.$$

By uniqueness for analytic functions, we must have $g \equiv 0$. Finally, from the Plancherel equality it follows

$$2\pi \cdot ||\varphi f||_2^2 = ||g||_2^2 = 0,$$

so that f = 0 a.e.

Theorem 4. The Hermite functions φ_n are eigenfunctions of the Fourier transform:

$$F[\varphi_n] = c_n \varphi_n$$
, where $c_n := (-i)^n \sqrt{2\pi}$ for $n = 0, 1, 2, \dots$ (12)

Proof. We know that this property holds true for n=0 with $c_0:=\sqrt{2\pi}$. Moreover,

$$(x-D)\varphi_k = (-1)^k (x-D) \left[e^{\frac{x^2}{2}} \left(e^{-x^2} \right)^{(k)} \right] = (-1)^{k+1} e^{\frac{x^2}{2}} \left(e^{-x^2} \right)^{(k+1)} = \varphi_{k+1},$$

so that by induction, $\varphi_n = (x - D)^n \varphi$ for all $n = 0, 1, 2, \ldots$ Note that by Lemma 1,

$$F[(x-D)f] = -iF[(-i)(D-x)f] = -i(\omega-D)F[f]$$
 for $f \in S$.

Therefore,

$$F[\varphi_n] = F[(x-D)^n \varphi] = (-i)^n (\omega - D)^n F[\varphi] = (-i)^n \sqrt{2\pi} \cdot (\omega - D)^n \varphi = (-i)^n \sqrt{2\pi} \cdot \varphi_n.$$

Theorem is proved. \Box

At the conclusion, we prove a few relations between the Fourier operator F, the differential operator $L := D^2 - x^2$, and the Hermite functions $\varphi_n := H_n \varphi$.

Theorem 5. (a). The Fourier operator F is commutative with $L := D^2 - x^2$ on S:

$$F[Lf] = LF[f] \quad for \quad f \in S. \tag{13}$$

In particular, if $Lf := f'' - x^2 f = 0$, then $g(\omega) := F[f](\omega)$ also satisfies $Lg := g'' - \omega^2 g = 0$.

(b). The Hermite functions $\varphi_n := H_n \varphi$ are eigenfunctions of L:

$$L\varphi_n := \varphi_n'' - x^2 \varphi_n = \lambda_n \varphi_n \quad with \quad \lambda_n := -(2n+1) \quad for \quad n = 0, 1, 2, \dots$$
 (14)

(c). The Hermite polynomials H_n satisfy the Hermite equation

$$y'' - 2xy' = \mu y$$
 with $\mu = 2n$ for $n = 0, 1, 2, \dots$ (15)

Proof. (a). By Lemma 1, the functions f and g := F[f] in S satisfy

$$F[D^2 f] = -F[(-iD)^2 f] = -\omega^2 g, \qquad F[-x^2 f] = F[(-ix)^2 f] = D^2 g.$$

From these relations, the equality (13) follows:

$$F[Lf] = F[D^2f - x^2f] = -\omega^2g + D^2g = Lg = LF[f].$$

(b) and (c). We will try to find polynomials P_n of degree n (eventually $P_n = \text{const} \cdot H_n$) such that $\psi_n := P_n \varphi$ satisfy $L\psi_n = \psi_n'' - x^2 \psi_n = \lambda \psi_n$ with a constant λ (depending on n). Since $\varphi(x) := e^{-\frac{x^2}{2}}$ satisfies $\varphi' = -x\varphi$, $\varphi'' = (x^2 - 1)\varphi$, we get

$$L\psi_n = P_n''\varphi + 2P_n'\varphi' + P_n\varphi'' - x^2P_n\varphi = (P_n'' - 2xP_n' - P_n)\varphi = \lambda P_n\varphi.$$

Here $P_n = \sum_{k=0}^n a_k x^k$, $a_n \neq 0$. Comparing the coefficients of x^n in both sides, we see that the equality is only possible if $\lambda = \lambda_n := -(2n+1)$. One can select $a_n \neq 0$ in an arbitrary way, and then the remaining coefficients a_k are uniquely defined by a standard recurrent procedure.

From the equalities $L\psi_k = \lambda_k \psi_k$ it follows

$$(\psi'_m\psi_n - \psi'_n\psi_m)' = \psi''_m\psi_n - \psi''_n\psi_m = (\lambda_m - \lambda_n)\psi_m\psi_n.$$

Integrating over \mathbb{R}^1 yields $0 = (\lambda_m - \lambda_n) \cdot \langle \psi_m, \psi_n \rangle$, so that $\{\psi_n\}$ is an orthogonal system in L^2 . Note that both $\{\varphi_n := H_n \varphi\}$ and $\{\psi_n := P_n \varphi\}$ can be obtained by orthogonalization of $\{x^n \varphi\}$, i.e. $\langle \varphi_n, x^k \varphi \rangle = \langle \psi_n, x^k \varphi \rangle = 0$ for all $k \leq n-1$. From this observation it follows that $\varphi_n = \text{const} \cdot \psi_n$ and $H_n = \text{const} \cdot P_n$. Finally, since $L\psi_n = \lambda_n \psi_n$ and $P''_n - 2xP'_n + 2nP_n = 0$, the functions $\varphi_n := H_n \varphi$ satisfy (14), and $y = H_n$ satisfy (15). Theorem is proved.