Math 8602: REAL ANALYSIS. Spring 2016.
Final Exam. Problems and Solutions.

#1. Let f be a Lebesgue measurable function on R! such that

flaty) =f(@)+f(y) forall z,yeR.

Show that f(z) = cx for some constant c.

Proof. We rely on the definition of a Lebesgue measurable function f : R! — R! on p. 44, which does
not assume values £o0o. The statement is easily extended to functions f = f; +ifs : R — C, where f; and f,
are real-valued functions. Indeed, from f(z +y) = f(z) + f(y) it follows fio(x +y) = fi2(x) + f12(y). If the
statement holds true for fi o, then fi 2(z) = ¢1 22, and f(z) = cx with ¢ := ¢; +ics.

Note that the statement in Homework 5, Problem 2, was proved under the assumption |f| < oo a.e. It can be
applied to both functions f and —f, because

f(;z:+y> 1 {f<x+y>+f(:v+y>} _ f(ff;y) f(fv);f(y).
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Therefore, both functions f and —f are convex, which is only possible if f(z) is a linear function. Finally,
f(0) = f(0+0) = f(0)+ £(0), so that f(0) =0, and f(z) = cz for some constant c.

#2. Let f, g be function in the linear space LP(X, M, ), 0 < p < oo, with quasinorm

1l o= ([ 1) ™

1 +glly < K@) - (II£1lp +lglly),
where K(p) is a constant such that K(p) \,(1 as p /1.

Show that

Proof. It is known that || - ||, is a norm (i.e. K(p) = 1) if p > 1, so that it suffices to consider the case
0 < p < 1. Note that
[f+glP <[fI" +g[" for 0<p<1. (1)

Indeed, one can assume that f > 0, g > 0. Then (1) is equivalent to
__ I
f+g

Since F”(t) = p(p — 1) - [t*72 + (1 — ¢)P"2] < 0 on (0,1), the function F(t) is concave on [0,1]. In addition,
F(0) = F(1) = 1, and the inequality F'(t) > 1 follows.

Using (1), one can write

1< F(t):=tP+ (1 —t)P, where t: € (0,1).

/|f—|—g|pdu§A1—|—A2, where A; ::/|f|pdu, Ay ::/\g|pdu.

Now Holder’s inequality with p; :=1/p > 1, 1/¢3 =1—1/p; =1 — p, implies

2 2 1/p1
M dp =301 A <2 (DA ) =2 (i + o)
=1

j=1

which in turn yields the desired inequality

Nf +gllp < (A1 + AV < K(p) - (|Ifllp + llgllp), where K(p):=27 =25"1\,1 as p /1.



#3. Let A and B be disjoint convex compact sets in R™.
(a). Show that there exist a € A and b € B such that

la — bl =min{|lz —y|: x € A, y € B}.

(b). Use this fact to prove that there is a linear function I(z) := ¢y + (¢, z) with constants cg € R! and ¢ € R”,
such that {(z) <0 on A, and I(x) > 0 on B.

Proof. (a). Since A and B are bounded, there are sequences {z,;} C A and {y;} C B, such that
|z; —y;| = d(A,B):=inf{lz—y|: v €A, ye B} as j— oo.
By compactness of A, there is a convergent subsequence ay := zj, — a € A as k — oo. Then

lim |a —bx| = lim |ax — bi| = d(A4, B), where by :=y,,.
k— o0 k—o0

By compactness of B, there is a convergent subsequence by, — b € B as [ — oco. Finally,

l|a —b] = lim |a — by, | = d(A, B).
=00
One can write “min” in place of “inf” in the definition of d(A, B), because it is attained at the points = a, y = b.

(b). We define
l(z) = (c,x —xp), where c:=b—a#0, zg:= % -(b+a).

Of course, one can rewrite it as I(x) = ¢ + (¢, ) with ¢g := —(¢,x0). It is easy to see that
1 2 1 2
lla)=—=-b—al*<0<(b)=="-|b—al".
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We claim that
l(x) <l(a) <0 on A, l(z) >1(b) <0 on B. (2)

This means that A and B are separated in R™ by the strip {x € R": I(a) < l(x) < I(b)}.

We will derive (2) by a contradiction argument. Indeed, suppose that {(p) > l(a) at some point p € A. By
convexity of A,
a+eve A forevery c€[0,1], where v:=p—a#0.

Note that (v,¢) = (p,¢) — (a,¢) =l(p) — l(a) > 0. Since a+cv € A and b € B, we get for small £ > 0:
lc]? =|a —b]? = d*(A,B) < |a+ev—b|? = |ev — c|* = *]v|? — 2¢(v,¢) + || < ||
This contradiction proves the first assertion in (2). The second one can be proved quite similarly.

#4. For f € L'(R") and g € LP(R") with p > 1, show that the convolution
(F9)@)i= [ Fla =gty dy
R’ﬂ,

belongs to LP(R™) and satisfies ||f * g||, < ||f]l1 - |9lp-

Proof. This property is obvious in the case p = 0o, so we assume that 1 < p < co. Without loss of generality,
we can also assume that f > 0, g > 0, and moreover, f and g are bounded functions vanishing outside a compact
set in R™. The general case follows easily by the monotone convergence theorem.



Let ¢ be a conjugate exponent to p, i.e. p~! 4+ ¢~ = 1. By the Riesz representation in Proposition 6.13,
we have

1 #glly= sup /(f*g)hdx.

[Ihllg<1

Here by the Fubini-Tonelli theorem and Hoélder’s inequality,
[t somas= [ 16)] [ ote =i de]day < [ 70)- gl ellady = 171l 1]

Therefore, [|f * gllp < [|f][1 - [|9]lp-
#5. Consider the Dirichlet kernel

K. (z):= ———~, zeRY e>0.

(a). Show that for every continuous function f with compact support in R, we have
[1npar<c: [IfPa where foimKoxf,
R! R1

with a positive constant C. Find the smallest possible C.

(b). Let
> sin(2k3x) 1
f(x):ZT, 0<z<m and f=0 on R"\J0,n].
k=1
Show that
lim |£2(0)] = oo.
Proof. (a). Note that
L 1/e
sin(e™ w 1 1
K. (w) = % =5 / coswzx dr = o - FI],
—1/e

where I is the indicator of [—1/¢,1/¢]. Comparing formulas for the direct and inverse Fourier transforms (formulas
(1) and (2) in Appendix 1), we get
FIK]=2r-F'K.]=1

= | Flf = [FIKe+ f]| = | FIK]- I < |F[f]] = [ FUfe]ll2 <[ FUI-

By the Plancherel Theorem 8.29 (or equality (11) in Appendix 1), we get ||fc||2 < ||f]|2, i-e. one can take C' = 1.
This is a minimal possible constant, because by the dominated convergence theorem,

2mtiy [ If: Pde = i [ 1P(7) Pdo = i [ 1L FUf) Pdo = [ 1917) P =27 [ |fPaa.

(b). We take £ =&, =2~"". Then

£-(0) = / FOK(~t)dt =Y I, where I = % / sin(2" 1) sin(2° 1)
0 0

it
k=1



Note that for A > 2B > 0,

/ sin At - sin Bt g — / 1—cos(A+ B)t g — / 1—cos(A— B)t it
t 2t 2t
0 0 0
(A+B)r (A-B)m (A+B)m
_( / 7 / >1—cossd8_ / 1—cossds
2s 2s
0 0 (A-B)m
It follows
T sin At - sin B R A+ B
Og/wdtg / ds _ AT B s
t s A—-B
0 (A-B)7
Therefore,
0<Y <33 SIS st < 0
- k= k2w x0T '
k#n k#n k=1
On the other hand, for A =B = 2”3,
T 2AT 2A® 2A®
/Sin2Atdt B / l—cossd8> / 1—Cossds_lnA_ / d(sins) InA
t N 25 = 2s 2 25 2
0 0 27 27
o0
S InA /ds_lnAl_n31n21
2 252 2 2 '
1
Hence .
1 [ sin?(2""t) n®ln2 -1
I, = — t = — 00 as n — 0.
n2 mt 2mn?2
0

This implies
fen(O):In—&—ZIk—)oo as m — oo.

k#n
#6. Consider the family of functions on R*:
K(t)i=———— e>0
T (a2 4 e2)’ '
Show that the convolution
Ko, xK., =K. 4o, for e1,e9>0.

2AT

/

2

Proof. By Example 2 in Appendix 1, the Fourier transform F[K.](w) = e¢/*!. Therefore,

FIK:, + Ko,](w) = FIK:,](w) - FIKe,](w)

sin s ds
252

emalwl L gmealel — e=(ertell — FK, . |(w) for ey, e > 0.

Since F is invertible in L2, this implies the desired identity.



