
Math 8602: REAL ANALYSIS. Spring 2016.
Final Exam. Problems and Solutions.

#1. Let f be a Lebesgue measurable function on R1 such that

f(x+ y) = f(x) + f(y) for all x, y ∈ R1.

Show that f(x) = cx for some constant c.

Proof. We rely on the definition of a Lebesgue measurable function f : R1 → R1 on p. 44, which does
not assume values ±∞. The statement is easily extended to functions f = f1 + if2 : R1 → C, where f1 and f2
are real-valued functions. Indeed, from f(x + y) = f(x) + f(y) it follows f1,2(x + y) = f1,2(x) + f1,2(y). If the
statement holds true for f1,2, then f1,2(x) = c1,2x, and f(x) = cx with c := c1 + ic2.

Note that the statement in Homework 5, Problem 2, was proved under the assumption |f | < ∞ a.e. It can be
applied to both functions f and −f , because

f
(x+ y

2

)
=

1

2
·
[
f
(x+ y

2

)
+ f

(x+ y

2

)]
=

f(x+ y)

2
=

f(x) + f(y)

2
.

Therefore, both functions f and −f are convex, which is only possible if f(x) is a linear function. Finally,
f(0) = f(0 + 0) = f(0) + f(0), so that f(0) = 0, and f(x) = cx for some constant c.

#2. Let f, g be function in the linear space Lp(X,M, µ), 0 < p < ∞, with quasinorm

||f ||p :=
(∫

|f |pdµ
)1/p

.

Show that
||f + g||p ≤ K(p) ·

(
||f ||p + ||g||p

)
,

where K(p) is a constant such that K(p) ↘ 1 as p ↗ 1.

Proof. It is known that || · ||p is a norm (i.e. K(p) = 1) if p ≥ 1, so that it suffices to consider the case
0 < p < 1. Note that

|f + g|p ≤ |f |p + |g|p for 0 < p < 1. (1)

Indeed, one can assume that f > 0, g > 0. Then (1) is equivalent to

1 ≤ F (t) := tp + (1− t)p, where t :=
f

f + g
∈ (0, 1).

Since F ′′(t) = p(p − 1) ·
[
tp−2 + (1 − t)p−2

]
< 0 on (0, 1), the function F (t) is concave on [0, 1]. In addition,

F (0) = F (1) = 1, and the inequality F (t) ≥ 1 follows.

Using (1), one can write∫
|f + g|pdµ ≤ A1 +A2, where A1 :=

∫
|f |pdµ, A2 :=

∫
|g|pdµ.

Now Hölder’s inequality with p1 := 1/p > 1, 1/q1 = 1− 1/p1 = 1− p, implies

A1 +A2 =
2∑

j=1

1 ·Aj ≤ 21/q1 ·
( 2∑

j=1

Ap1

j

)1/p1

= 21/q1 ·
(
||f ||p + ||g||p

)p
,

which in turn yields the desired inequality

||f + g||p ≤ (A1 +A2)
1/p ≤ K(p) ·

(
||f ||p + ||g||p

)
, where K(p) := 2

1−p
p = 2

1
p−1 ↘ 1 as p ↗ 1.
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#3. Let A and B be disjoint convex compact sets in Rn.
(a). Show that there exist a ∈ A and b ∈ B such that

|a− b| = min{|x− y| : x ∈ A, y ∈ B}.

(b). Use this fact to prove that there is a linear function l(x) := c0 + (c, x) with constants c0 ∈ R1 and c ∈ Rn,
such that l(x) < 0 on A, and l(x) > 0 on B.

Proof. (a). Since A and B are bounded, there are sequences {xj} ⊆ A and {yj} ⊆ B, such that

|xj − yj | → d(A,B) := inf{|x− y| : x ∈ A, y ∈ B} as j → ∞.

By compactness of A, there is a convergent subsequence ak := xjk → a ∈ A as k → ∞. Then

lim
k→∞

|a− bk| = lim
k→∞

|ak − bk| = d(A,B), where bk := yjk .

By compactness of B, there is a convergent subsequence bkl
→ b ∈ B as l → ∞. Finally,

|a− b| = lim
l→∞

|a− bkl
| = d(A,B).

One can write “min” in place of “inf” in the definition of d(A,B), because it is attained at the points x = a, y = b.

(b). We define

l(x) := (c, x− x0), where c := b− a ̸= 0, x0 :=
1

2
· (b+ a).

Of course, one can rewrite it as l(x) = c0 + (c, x) with c0 := −(c, x0). It is easy to see that

l(a) = −1

2
· |b− a|2 < 0 < l(b) =

1

2
· |b− a|2.

We claim that
l(x) ≤ l(a) < 0 on A, l(x) ≥ l(b) < 0 on B. (2)

This means that A and B are separated in Rn by the strip {x ∈ Rn : l(a) < l(x) < l(b)}.
We will derive (2) by a contradiction argument. Indeed, suppose that l(p) > l(a) at some point p ∈ A. By

convexity of A,
a+ εv ∈ A for every ε ∈ [0, 1], where v := p− a ̸= 0.

Note that (v, c) = (p, c)− (a, c) = l(p)− l(a) > 0. Since a+ εv ∈ A and b ∈ B, we get for small ε > 0:

|c|2 = |a− b|2 = d2(A,B) ≤ |a+ εv − b|2 = |εv − c|2 = ε2|v|2 − 2ε(v, c) + |c|2 < |c|2.

This contradiction proves the first assertion in (2). The second one can be proved quite similarly.

#4. For f ∈ L1(Rn) and g ∈ Lp(Rn) with p ≥ 1, show that the convolution

(f ∗ g)(x) :=
∫
Rn

f(x− y)g(y) dy

belongs to Lp(Rn) and satisfies ||f ∗ g||p ≤ ||f ||1 · ||g||p.

Proof. This property is obvious in the case p = ∞, so we assume that 1 ≤ p < ∞. Without loss of generality,
we can also assume that f ≥ 0, g ≥ 0, and moreover, f and g are bounded functions vanishing outside a compact
set in Rn. The general case follows easily by the monotone convergence theorem.
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Let q be a conjugate exponent to p, i.e. p−1 + q−1 = 1. By the Riesz representation in Proposition 6.13,
we have

||f ∗ g||p = sup
||h||q≤1

∫
(f ∗ g)h dx.

Here by the Fubini-Tonelli theorem and Hölder’s inequality,∫
(f ∗ g)h dx =

∫
f(y)

[ ∫
g(x− y)h(x) dx

]
dy ≤

∫
f(y) · ||g||p · ||h||q dy = ||f ||1 · ||g||p · ||h||q.

Therefore, ||f ∗ g||p ≤ ||f ||1 · ||g||p.

#5. Consider the Dirichlet kernel

Kε(x) :=
sin(ε−1x)

πx
, x ∈ R1, ε > 0.

(a). Show that for every continuous function f with compact support in R1, we have∫
R1

|fε|2dx ≤ C ·
∫
R1

|f |2dx, where fε := Kε ∗ f,

with a positive constant C. Find the smallest possible C.

(b). Let

f(x) =
∞∑
k=1

sin(2k
3

x)

k2
, 0 ≤ x ≤ π; and f ≡ 0 on R1 \ [0, π].

Show that
lim
ε↘0

|fε(0)| = ∞.

Proof. (a). Note that

Kε(ω) =
sin(ε−1ω)

πω
=

1

2π

1/ε∫
−1/ε

cosωxdx =
1

2π
· F [Iε],

where Iε is the indicator of [−1/ε, 1/ε]. Comparing formulas for the direct and inverse Fourier transforms (formulas
(1) and (2) in Appendix 1), we get

F [Kε] = 2π · F−1[Kε] = Iε

=⇒ |F [fε] | = |F [Kε ∗ f ] | = |F [Kε] · F [f ] | ≤ |F [f ] | =⇒ ||F [fε] ||2 ≤ ||F [f ] ||.

By the Plancherel Theorem 8.29 (or equality (11) in Appendix 1), we get ||fε||2 ≤ ||f ||2, i.e. one can take C = 1.
This is a minimal possible constant, because by the dominated convergence theorem,

2π · lim
ε↘0

∫
|fε |2dx = lim

ε↘0

∫
|F [fε] |2dω = lim

ε↘0

∫
|Iε · F [f ] |2dω =

∫
|F [f ] |2dω = 2π ·

∫
|f |2dx.

(b). We take ε = εn = 2−n3

. Then

fε(0) =

π∫
0

f(t)Kε(−t) dt =
∞∑
k=1

Ik, where Ik =
1

k2

π∫
0

sin(2n
3

t) sin(2k
3

t)

πt
dt.
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Note that for A ≥ 2B > 0,

π∫
0

sinAt · sinBt

t
dt =

π∫
0

1− cos(A+B)t

2t
dt−

π∫
0

1− cos(A−B)t

2t
dt

=

( (A+B)π∫
0

−
(A−B)π∫

0

)
1− cos s

2s
ds =

(A+B)π∫
(A−B)π

1− cos s

2s
ds.

It follows

0 ≤
π∫

0

sinAt · sinBt

t
dt ≤

(A+B)π∫
(A−B)π

ds

s
= ln

A+B

A−B
≤ ln 3.

Therefore,

0 ≤
∑
k ̸=n

Ik ≤
∑
k ̸=n

ln 3

k2π
<

∞∑
k=1

ln 3

k2π
=: C0 = const < ∞.

On the other hand, for A = B = 2n
3

,

π∫
0

sin2 At

t
dt =

2Aπ∫
0

1− cos s

2s
ds ≥

2Aπ∫
2π

1− cos s

2s
ds =

lnA

2
−

2Aπ∫
2π

d(sin s)

2s
=

lnA

2
−

2Aπ∫
2π

sin s ds

2s2

>
lnA

2
−

∞∫
1

ds

2s2
=

lnA− 1

2
=

n3 ln 2− 1

2
.

Hence

In :=
1

n2

π∫
0

sin2(2n
3

t)

πt
dt =

n3 ln 2− 1

2πn2
→ ∞ as n → ∞.

This implies

fεn(0) = In +
∑
k ̸=n

Ik → ∞ as n → ∞.

#6. Consider the family of functions on R1:

Kε(x) :=
ε

π(x2 + ε2)
, ε > 0.

Show that the convolution
Kε1 ∗Kε2 ≡ Kε1+ε2 for ε1, ε2 > 0.

Proof. By Example 2 in Appendix 1, the Fourier transform F [Kε](ω) = e−ε|ω|. Therefore,

F [Kε1 ∗Kε2 ](ω) = F [Kε1 ](ω) · F [Kε2 ](ω)

= e−ε1|ω| · e−ε2|ω| = e−(ε1+ε2)|ω| = F [Kε1+ε2 ](ω) for ε1, ε2 > 0.

Since F is invertible in L2, this implies the desired identity.
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