Math 8602: REAL ANALYSIS. Spring 2016

Homework #1. Problems and Solutions.

#1. Show that the function

>, sin(4Fx)
fla)y =2 —5—

k=1

is continuous on R!, but its total variation V[f; a,b] = oo for any a < b.

Proof. The function f is continuous as the uniform limit of continuous functions:
n
— 1 — —k g k
flz) = nh_}ngo Sp(x), where S,(x):= ;2 sin(4”x).

Further, we fix a < b and an interval I C (a,b) of length [ = 47" - 27w. Note that the function

o0

fnlz) = Z 2 %sin(4Fz) is Il-periodic, i.e. fo(z+1)= fu(x).
k=n

Since f = S,—1 + fn, where S,,_1 is a smooth function, it suffices to show that
V :=V|[fn; I] ;== (the total variation of f, on I) = oc.

Suppose otherwise, i.e. V < oo, and let p,, be a signed measure on I which corresponds to f,, according to
Theorem 3.29. Then for integers m > n,

V= |un| (I) > / | cos(4™x)| d|pn| > /cos(4m:c) dp, =: /cos(4mx) df .
T T T

Since both f,, and cos(4™z) are I-periodic, using integration by parts (Theorem 3.36), we see that the boundary
terms cancel, hence

V>- / fndcos(d™z) = 4m/fn sin(4™x) dx.
I 1
Further, for k,m > n, we have

sin(4%z) - sin(4™x) = = [cos(4¥ — 4™)z — cos(4* +4™)z].

N |

By periodicity, the integrals of these expressions over I are zeros for k # m. Therefore,

(oo}
Vamy ok /sin(4kx) -sin(4mx) dr = 2’”/31112(4%) de =2m"1 =2m . 47",
k=n T 1
For large m, we have a contradiction with the assumption V' < oco. Therefore, V = co.

#2. (Problem 36 on p. 127). Let X be the set of all real-valued Lebesgue measurable functions f on [0, 1]
satisfying the inequality |f| < 1. Show that there is NO topology 7 on X such that f,, — 0 a.e. as n — oo if and
only if it converges with respect to 7.

Proof. Suppose there is such a topology 7. Let G be an open set (G € T) containing the function f = 0.
We claim that

1
Je >0 such that from ¢ge€ X and ||g]]1:= / lg(z)|dx < e it follows g€ G. (1)
0



Indeed, otherwise we have: Vn € N, g, ¢ G with ||g,||1 <1/n. By Theorem 2.30, 3 a subsequence g,,, — 0 a.e.
By our assumption, g,,; — 0 with respect to 7, which implies that g, € G for large enough j. However, g, ¢ G for
all n. This contradiction proves (1).

Now take a sequence f,, € X such that ||f.||1 — 0, but f,, does not converge to 0 a.e. For example, one can take
fn from iv on p. 61. From (1) it follows that for an arbitrary open set G containing f = 0, there exists ng such that
fn € G, ¥Yn > ng. This means that f,, — 0 with respect to 7. Since f,, does not converge to 0 a.e., these two kinds
of convergence are not equivalent.

#3. Let f be a real valued continuous function on R' such that f(x) = 0 for |z| > 2.
Show that

fO) = / @ —cp)olp)dy = fz) as N0
Rl

uniformly on R!, where
1

p(y) == 7 et

Proof. Since f is continuous on [—2, 2], it is bounded: |f| < M = const < oo, and uniformly continuous:

w(p):= sup |[f(z)—f(y)l =0 as 0.

lz—y|<o

For an arbitrary constant A > 0, we can write

|f (@) = f(a)] =

/ [f(z —ey) — f(x)] (y) dy

R1

g( [+ )}f(m—ey)—f(x)W(y)dy
ly|l<A  [y[>A

<w(Ae)+2M -ca, where cy:= / o(y) dy;

ly|>A

limsup sup |f&) — f| <2M ¢4 -0 as A — .
eN\0 Rt

This implies the uniform convergence f() — f as ¢ \, 0 uniformly on R'.

#4. Use the previous problem for the proof of the Weierstrass theorem: every continuous function on [—1, 1] can
be uniformly approximated by polynomials.

Proof. Obviously, every function f € C([—1,1]) can be extended as a continuous function on R! satisfying
f(z) = 0for |z| > 2. By the previous problem, it suffices to show that the function f(*) can be uniformly approximated
by polynomials. Using substitution z =z — ey, y = ¢~ !(x — 2), we can rewrite the expression for f© in the form

fE(z) =t / f(2) cp(e_l(x - 2)) dz.
|z]<2
For |z| < 1, |2| < 2, we have |y| < 3/e. Fix an arbitrarily small 6 > 0. Note that the corresponding Taylor

2,
polynomials ¢, (y) = ¢(y) as n — oo uniformly on |y| < 3/e. Choose a large n such that

]
sup |, — | < =9 Where M := sup | f|.

lyl<3/e AM
Then
P (x) :=¢! / f(z)on (sfl(m —2)) dz.
|z|<2
is a polynomial of degree < 2n satisfying
9@ -m@l e [ @I |- o e a <t [ar Shde=s
[z]<2 |z]<2

for |2| < 1. This proves the desired property.



