
Math 8602: REAL ANALYSIS. Spring 2016

Homework #1. Problems and Solutions.

#1. Show that the function

f(x) =
∞∑
k=1

sin(4kx)

2k

is continuous on R1, but its total variation V [f ; a, b] = ∞ for any a < b.

Proof. The function f is continuous as the uniform limit of continuous functions:

f(x) = lim
n→∞

Sn(x), where Sn(x) :=

n∑
k=1

2−k sin(4kx).

Further, we fix a < b and an interval I ⊂ (a, b) of length l = 4−n · 2π. Note that the function

fn(x) :=
∞∑

k=n

2−k sin(4kx) is l-periodic, i.e. fn(x+ l) ≡ fn(x).

Since f = Sn−1 + fn, where Sn−1 is a smooth function, it suffices to show that

V := V [fn; I] := (the total variation of fn on I) = ∞.

Suppose otherwise, i.e. V < ∞, and let µn be a signed measure on I which corresponds to fn according to
Theorem 3.29. Then for integers m ≥ n,

V = |µn| (I) ≥
∫
I

∣∣ cos(4mx)
∣∣ d|µn| ≥

∫
I

cos(4mx) dµn =:

∫
I

cos(4mx) dfn.

Since both fn and cos(4mx) are l-periodic, using integration by parts (Theorem 3.36), we see that the boundary
terms cancel, hence

V ≥ −
∫
I

fn d cos(4
mx) = 4m

∫
I

fn sin(4mx) dx.

Further, for k,m ≥ n, we have

sin(4kx) · sin(4mx) =
1

2

[
cos(4k − 4m)x− cos(4k + 4m)x

]
.

By periodicity, the integrals of these expressions over I are zeros for k ̸= m. Therefore,

V ≥ 4m
∞∑

k=n

2−k

∫
I

sin(4kx) · sin(4mx) dx = 2m
∫
I

sin2(4mx) dx = 2m−1l = 2m · π4−n.

For large m, we have a contradiction with the assumption V < ∞. Therefore, V = ∞.

#2. (Problem 36 on p. 127). Let X be the set of all real-valued Lebesgue measurable functions f on [0, 1]
satisfying the inequality |f | ≤ 1. Show that there is NO topology T on X such that fn → 0 a.e. as n → ∞ if and
only if it converges with respect to T .

Proof. Suppose there is such a topology T . Let G be an open set (G ∈ T ) containing the function f ≡ 0.
We claim that

∃ε > 0 such that from g ∈ X and ||g||1 :=

1∫
0

|g(x)| dx < ε it follows g ∈ G. (1)
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Indeed, otherwise we have: ∀n ∈ N, ∃gn /∈ G with ||gn||1 < 1/n. By Theorem 2.30, ∃ a subsequence gnj
→ 0 a.e.

By our assumption, gnj → 0 with respect to T , which implies that gnj ∈ G for large enough j. However, gn /∈ G for
all n. This contradiction proves (1).

Now take a sequence fn ∈ X such that ||fn||1 → 0, but fn does not converge to 0 a.e. For example, one can take
fn from iv on p. 61. From (1) it follows that for an arbitrary open set G containing f ≡ 0, there exists n0 such that
fn ∈ G, ∀n ≥ n0. This means that fn → 0 with respect to T . Since fn does not converge to 0 a.e., these two kinds
of convergence are not equivalent.

#3. Let f be a real valued continuous function on R1 such that f(x) ≡ 0 for |x| ≥ 2.
Show that

f (ε)(x) :=

∫
R1

f(x− εy)φ(y)dy → f(x) as ε ↘ 0

uniformly on R1, where

φ(y) :=
1√
π
· e−y2

.

Proof. Since f is continuous on [−2, 2], it is bounded: |f | ≤ M = const < ∞, and uniformly continuous:

ω(ρ) := sup
|x−y|≤δ

|f(x)− f(y)| → 0 as δ ↘ 0.

For an arbitrary constant A > 0, we can write∣∣f (ε)(x)− f(x)
∣∣ = ∣∣∣∣∣

∫
R1

[
f(x− εy)− f(x)

]
φ(y) dy

∣∣∣∣∣ ≤
( ∫

|y|≤A

+

∫
|y|>A

)∣∣f(x− εy)− f(x)
∣∣φ(y) dy

≤ ω(Aε) + 2M · cA, where cA :=

∫
|y|>A

φ(y) dy;

lim sup
ε↘0

sup
R1

|f (ε) − f | ≤ 2M · cA → 0 as A → ∞.

This implies the uniform convergence f (ε) → f as ε ↘ 0 uniformly on R1.

#4. Use the previous problem for the proof of the Weierstrass theorem: every continuous function on [−1, 1] can
be uniformly approximated by polynomials.

Proof. Obviously, every function f ∈ C([−1, 1]) can be extended as a continuous function on R1 satisfying
f(x) ≡ 0 for |x| ≥ 2. By the previous problem, it suffices to show that the function f (ε) can be uniformly approximated
by polynomials. Using substitution z = x− εy, y = ε−1(x− z), we can rewrite the expression for f (ε) in the form

f (ε)(x) = ε−1

∫
|z|≤2

f(z)φ
(
ε−1(x− z)

)
dz.

For |x| ≤ 1, |z| ≤ 2, we have |y| ≤ 3/ε. Fix an arbitrarily small δ > 0. Note that the corresponding Taylor
polynomials φn(y) → φ(y) as n → ∞ uniformly on |y| ≤ 3/ε. Choose a large n such that

sup
|y|≤3/ε

|φn − φ| ≤ εδ

4M
, where M := sup |f |.

Then

Pn(x) := ε−1

∫
|z|≤2

f(z)φn

(
ε−1(x− z)

)
dz.

is a polynomial of degree ≤ 2n satisfying∣∣f (ε)(x)− Pn(x)
∣∣ ≤ ε−1

∫
|z|≤2

|f(z)| ·
∣∣∣(φn − φ)

(
ε−1(x− z)

)∣∣∣ dz ≤ ε−1

∫
|z|≤2

M · εδ

4M
dz = δ.

for |x| ≤ 1. This proves the desired property.
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