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Abstract

We analyse instabilities of standing pulses in reaction-diffusion systems that are caused by
an absolute instability of the homogeneous background state. Specifically, we investigate the
impact of pitchfork, Turing and oscillatory bifurcations of the rest state on the standing pulse.
At a pitchfork bifurcation, the standing pulse continues through the bifurcation point where it
selects precisely one of the two bifurcating equilibria. At a Turing instability, symmetric pulses
emerge that are spatially asymptotic to the bifurcating spatially-periodic Turing patterns. These
pulses exist for any wavenumber inside the Eckhaus stability band. Oscillatory instabilities of
the background state lead to genuinely time-periodic pulses that emit small wave trains with
a unique selected wavenumber. We analyse these three bifurcations by studying the standing-
wave and modulated-wave equations: In this setup, pulses correspond to homoclinic orbits to
equilibria that undergo reversible bifurcations. We use blow-up techniques to show that the
relevant stable and unstable manifolds can be continued across the bifurcation point and to
investigate both existence and stability of the bifurcating waves.

1 Introduction

Standing pulses arise in many reaction-diffusion systems, and it is therefore natural to investigate
the bifurcations that occur when they destabilize. Since the stability properties of localized pulses
are determined entirely by the spectrum of the linearization, pulses destabilize precisely when part
of the associated spectrum crosses the imaginary axis. On unbounded domains, the spectrum of
pulses is the union of the point spectrum, which by definition consists of all isolated eigenvalues with
finite multiplicity, and the essential spectrum. If isolated eigenvalues cross the imaginary axis, then
the resulting bifurcations correspond to standard steady-state bifurcations such as folds, pitchforks
or Hopf bifurcations. In particular, the dynamics can be described by the finite-dimensional normal
form for the specific steady-state bifurcation that couples to an equation for the position or the speed
of the pulse [22, 23]. In contrast, if essential spectrum crosses the imaginary axis, finite-dimensional
reductions may not be available. The essential spectrum is, however, determined entirely by the
asymptotic homogeneous background state of the pulse. The resulting instability typically creates
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small-amplitude spatially-periodic patterns at the tails of the pulse which then interact with the
localized pulse. It is this interaction that any bifurcation theory for essential spectra has to take
into account.

In earlier work [16, 17, 19], we have investigated bifurcations from travelling waves that are caused
by the essential spectrum. The fact that the pulses move with nonzero speed renders the instability
convective in nature [18, 19]: Even though perturbations grow in overall amplitude, they are outrun
by the travelling pulse so that their amplitude decays pointwise in a frame that moves with the
pulse. Standing pulses, on the other hand, have vanishing speed, so that essential instabilities have
a more severe effect on the pulse since perturbations grow pointwise and cannot be outrun by the
wave. The latter scenario is often referred to as an absolute instability. As argued below, absolute
instabilities are more difficult to investigate.

In this paper, we focus on three different scenarios that occur when essential spectrum crosses the
imaginary axis as µ increases through zero. First, essential spectrum may cross the imaginary axis
away from zero which therefore corresponds to an oscillatory instability. In the other two cases, the
essential spectrum crosses at the origin, thus causing a bifurcation either to a homogeneous steady
state via, for instance, a pitchfork bifurcation or else to a Turing pattern via a Turing bifurcation.

To analyse these bifurcations, we seek pulses as solutions to the standing-wave (or modulated-wave)
equation. In contrast to our earlier work [16, 17, 19], the center manifolds that we will encounter
have dimension four instead of two. In addition, pulses at pitchfork and Turing bifurcations will
typically decay algebraically and not exponentially. To resolve these issues, we use blow-up tech-
niques to regularize the flow on the center manifold and to take the algebraic decay of the pulses
into account. We remark that if the standing pulse converges to zero exponentially at onset (which
is not generic but can be enforced by additional Z2-symmetries), the resulting bifurcation is easier
to analyse (see, for instance, [28, 29] for existence results in this different context).

Oscillatory instabilities have served as our primary motivation for investigating absolute instabil-
ities. We believe that Hopf bifurcations of standing pulses may be responsible for the creation of
1d-spirals such as the ones reported in the CIMA reaction by [13].

1.1 Setup

We consider reaction-diffusion systems

ut = Duxx + f(u;µ), x ∈ R (1.1)

for u ∈ Rn and µ ∈ R, where D = diag(dj) > 0 is a positive diagonal matrix and the nonlinearity
f : Rn × R → Rn is smooth. We assume that f(0;µ) = 0 for all µ.

Throughout this paper, we assume that (1.1) has a symmetric standing pulse u(x, t) = q(x) for
µ = 0 so that q(x) = q(−x) for all x and q(x) → 0 as |x| → ∞. In particular, symmetric standing
pulses satisfy the steady-state equation

Duxx + f(u;µ) = 0 (1.2)
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and lie in the fixed-point space of the Z2-symmetry given by x 7→ −x that is respected by (1.2).
Alternatively, any standing pulse corresponds to a homoclinic orbit of the standing-wave ODE

u′ = v (1.3)

v′ = −D−1f(u;µ).

The Z2-symmetry of (1.2) translates into the following reversibility of the system (1.3) for u =
(u, v) ∈ R2n: Reflecting

R : (u, v) 7−→ (u,−v)

and reversing the spatial time x 7→ −x maps solutions into solutions. As a consequence, symmetric
homoclinic orbits to hyperbolic equilibria can be found as intersections of the n-dimensional unsta-
ble manifold of the equilibrium with the n-dimensional fixed point subspace Fix(R) = {(u, v); v =
0}. Whenever such an intersection is transverse, the homoclinic orbit persists as the parameter µ
is varied. Note that (1.3) is, in general, not Hamiltonian unless f is a gradient.

The linearization of (1.1) about the pulse q(x) is given by the operator

L∗ = D∂xx + fu(q(x); 0).

Since we are interested in its essential spectrum, we shall also linearize (1.1) about the trivial rest
state u = 0 which results in the operator

Lµ = D∂xx + fu(0;µ).

We consider the above operators on the space C0
unif(R,Cn) of bounded and uniformly continuous

functions. Thus, we have

L∗, Lµ : C2
unif(R,Cn) ⊂ C0

unif(R,Cn) −→ C0
unif(R,Cn).

We shall also use the subspaces C0
even(R,Cn) and C0

odd(R,Cn) of even and odd functions, respec-
tively, in C0

unif(R,Cn).

We say that a complex number λ is not in the essential spectrum of an operator L if [L − λ]
is Fredholm with index zero. It is then true that the essential spectra of L∗ and L0 coincide.
Furthermore, Fourier transform shows that the essential spectrum of Lµ is given by

spec(Lµ) = {λ ∈ C; d(λ, ik;µ) = 0 for some k ∈ R}

where the linear dispersion relation d(λ, ν;µ) is defined as

d(λ, ν;µ) := det[ν2D + fu(0;µ)− λ], (λ, ν, µ) ∈ C× C× R.

Note that the essential spectrum of Lµ consists of curves of the form λ = λ∗(k;µ) with k ∈ R.
These curves satisfy the equation d(λ(k;µ), ik;µ) = 0 for all k ∈ R.

In the following sections, we summarize our hypotheses and results for each of the three scenarios
mentioned in the preceding section.
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1.2 Pitchfork bifurcations

We begin with spatially-homogeneous instabilities where essential spectrum crosses the imaginary
axis at λ = 0 for k = 0. We assume that this happens in a generic fashion as outlined in the
following hypothesis.

Hypothesis 1 (Homogeneous instability) The essential spectrum of Lµ close to the imaginary
axis is given by a unique curve λ(k;µ), defined for k close to zero, that crosses the imaginary axis
with nonzero speed as µ is increased through zero. More precisely, the dispersion relation d(λ, ν;µ)
satisfies

d(0, 0; 0) = 0, dλ(0, 0; 0) · dνν(0, 0; 0) < 0, dλ(0, 0; 0) · dµ(0, 0; 0) < 0

and that d(iω, ik; 0) 6= 0 for (ω, k) 6= (0, 0).

We now consider spatially-homogeneous solutions of (1.1) which satisfy the kinetic equation

ut = f(u;µ). (1.4)

In a neighborhood of (u, µ) = 0, the dynamics of this ODE can then be reduced to a one-dimensional
center manifold with a vector field

ȧ = g(a;µ), a ∈ R.

We assume that the resulting bifurcation is a supercritical pitchfork bifurcation.

Hypothesis 2 (Supercritical pitchfork bifurcation) The reduced vector field g(a;µ) on the
one-dimensional center manifold is odd in a for all µ close to zero and gaaa(0; 0) < 0.

We denote by u±(µ) the two bifurcating equilibria of (1.4). Lastly, we require that the pulse q(x)
is non-degenerate.

Hypothesis 3 (Standing pulse) The standing pulse q(x) is symmetric, the null space of L∗
posed on C0

even(R,Cn) is trivial, and |q(x)|eδ|x| →∞ as |x| → ∞ for each δ > 0.

As already mentioned, if the standing pulse converges to zero exponentially at onset, the resulting
bifurcation can be analysed without using blow-up techniques [28, 29].

Theorem 1 (Existence: Pitchfork) Assume that the Hypotheses 1, 2 and 3 are met. For all µ
sufficiently small, there exists a symmetric standing pulse q(x;µ) that depends continuously on µ as
an element of C0

unif(R,Rn). These pulses select one of the two bifurcating homogeneous equilibria
u+(µ) or u−(µ) for µ > 0 and are asymptotic to u = 0 for µ ≤ 0. Besides these pulses, there are
no other standing pulses that are close in C0

unif(R,Rn) to the primary pulse q(x). (See Figure 1).
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Figure 1: The bifurcation diagram for standing pulses to homogeneous states that undergo a super-
critical pitchfork bifurcation. The insets illustrate the profiles of the standing pulses and their PDE
spectra.

If the standing pulse is marginally stable at µ = 0, then the bifurcating pulses are asymptotically
stable for µ 6= 0.

Hypothesis 4 (Marginal stability) The eigenvalue λ = 0 of L∗ in C0
unif(R,Cn) has geometric

and algebraic multiplicity equal to one, and the spectrum of L∗ is contained in {Reλ < 0} ∪ {0}.

Theorem 2 (Stability: Pitchfork) Assume that the Hypotheses 1, 2, 3 and 4 are met. The
pulses q(x;µ) that we found in Theorem 1 are asymptotically stable for µ 6= 0. In particular, we
can find a constant δ > 0 so that the spectrum of the linearization of (1.1) about q(x;µ) is contained
in {Reλ ≤ −δµ} uniformly in µ 6= 0 close to zero with the exception of a simple eigenvalue at λ = 0
with eigenfunction qx(x;µ).

The above stability result can be formulated and proved in terms of an appropriate Evans function.
Following [20], we set λ = γ2 for γ ≈ 0 and extend the Evans function Ě(γ) for µ = 0 as a C2-
function into γ = 0 on an appropriate Riemann surface for Re γ > 0. Hypothesis 4 implies that
Ě ′′(0) 6= 0. The above theorem is then proved by showing that the Evans function Ě is continuous
in the parameter µ, so that γ = 0 is the unique zero of the Evans function for all µ.

Remark 1.1 If the eigenvalue λ = 0 of L∗ in C0
unif(R,Cn) has geometric multiplicity one, then its

algebraic multiplicity is one if, and only if, the Melnikov integral

M :=
∫ ∞

−∞
〈q∗(x), q′(x)〉dx (1.5)

is nonzero, where q∗(x) is the second component of the unique (up to scalar multiples) bounded,
nonzero solution of the adjoint variational equation(

ux

vx

)
= −

(
0 1

−D−1fu(q(x); 0) 0

)T (
u

v

)
.
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While we will not give a proof of the above remark, we wish to mention that the results that we
shall establish in Section 2.1 demonstrate that both q(x) and q∗(x) will decay algebraically to zero
as |x| → ∞. The connection between the Melnikov integral and the algebraic multiplicity of λ = 0
can be proved using the results in Section 3.3.

1.3 Turing instability

Turing instabilities are characterized by the following assumption.

Hypothesis 5 (Turing instability) The essential spectrum of Lµ close to the imaginary axis is
given by precisely two curves λ±(k;µ), defined for k close to ±k∗ for some k∗ 6= 0, that cross the
imaginary axis with nonzero speed as µ is increased through zero. More precisely, the dispersion
relation d(λ, ν;µ) satisfies

d(0, ik∗; 0) = 0, dλ(0, ik∗; 0) · dνν(0, ik∗; 0) < 0, dλ(0, ik∗; 0) · dµ(0, ik∗; 0) < 0

and that d(iω, ik; 0) 6= 0 for (ω, k) 6= (0,±k∗).

To discuss the resulting steady-state equation, we scale the spatial variable x = ky and restrict
ourselves to functions that are even and 2π-periodic in y. The equation for u(y, t) is given by

ut = Dk2uyy + f(u;µ) (1.6)

which has a one-dimensional center manifold near u = 0 for (µ, k) close to (0, k∗) with vector field

ȧ = g(a; k, µ), a ∈ R.

Hypothesis 6 (Supercritical Turing instability) The coefficient gaaa(0; k∗, 0) < 0 is negative.

Note that the vector field on the center manifold is always odd by equivariance of (1.6) with respect
to the shift x 7→ x+ π. For each k close to k∗ and each µ with

µ > µbif(k) =
1
2
µ0

bifk
2 + O(k3), µ0

bif := − dµ(0, ik∗, 0)
dkk(0, ik∗, 0)

,

there exists a unique even spatially-periodic Turing pattern u(x; k, µ). In fact [17], the patterns
u(x; k, µ) are spectrally stable inside the Eckhaus boundary µ > µeck(k) = 3

2µ
0
bifk

2 + O(k3).

Theorem 3 (Existence: Turing) Assume that the Hypotheses 3, 5 and 6 are met, then there are
positive constants δ and C so that the following is true. For each k inside the Eckhaus-stable band
sufficiently close to k∗, there is a µ∗ > µeck(k) with the following properties. For µeck(k) < µ < µ∗,
there exist a phase θ(k, µ) and a symmetric standing pulse q(x; k, µ) which depends continuously
on (k, µ) in C0

loc such that

|q(x; k, µ)− u(x+ θ(k, µ); k, µ)| ≤ Ce−δµ|x|
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Figure 2: The bifurcation diagram for standing pulses to homogeneous states that undergo a su-
percritical Turing instability. The shaded region in (µ, k)-space corresponds to the regime where
Eckhaus-stable Turing patterns with wavenumber k exist. The insets illustrate the profiles of the
standing pulses.

for x ∈ R. The pulse q and its phase θ are unique in a neighborhood of the primary pulse q(x)
in C0

loc. For each µ < 0 sufficiently small, there exists a unique standing pulse, which is in fact
symmetric and localized, in a neighborhood of the primary pulse q(x), while localized pulses close
to q(x) do not exist for µ > 0. (See Figure 2).

Theorem 4 (Stability: Turing) Assume that the Hypotheses 3, 4, 5 and 6 are met. For µ > 0,
the pulses q(x; k, µ) that are described by Theorem 3 are spectrally stable: the spectrum of the
linearization of (1.1) about q(x; k, µ) is contained in {Reλ < 0}∪{0}, and the algebraic multiplicity
of λ = 0 in C0

unif(R,Cn) is one.

For Turing bifurcations, spectral stability does not obviously imply asymptotic stability since λ = 0
is always contained in the essential spectrum of the bifurcating pulses. The above theorem states
that isolated unstable eigenvalues are not created in a generic Turing instability of standing pulses.

1.4 Oscillatory instability

Lastly, we consider oscillatory instabilities.

Hypothesis 7 (Homogeneous oscillatory instability) The essential spectrum of Lµ near the
imaginary axis is given by precisely two curves λ±(k;µ), defined for k close to zero, that cross the
imaginary axis with nonzero speed at ±iω∗ for some ω∗ 6= 0 as µ is increased through zero. More
precisely, the dispersion relation d(λ, ν;µ) satisfies

d(iω∗, 0; 0) = 0, dλ(iω∗, 0; 0) · dνν(iω∗, 0; 0) < 0, dλ(iω∗, 0; 0) · dµ(iω∗, 0; 0) < 0

and d(iω, ik; 0) 6= 0 for (ω, k) 6= (±ω∗, 0).

As a consequence of Hypothesis 7, the kinetic equation

ut = f(u;µ) (1.7)
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undergoes a Hopf bifurcation at (u, µ) = 0, and the dynamics of (1.7) near u = 0 can be reduced
to a two-dimensional center manifold.

Hypothesis 8 (Supercritical Hopf bifurcation) The cubic normal form of the reduced vector
field on the center manifold of (1.7) at µ = 0 is given by

At = iω∗A− (1 + iβ)|A|2A

for some β ∈ R.

Upon scaling the spatial variable x, we may assume that ∂kkλ±(0; 0) = 1+iα. Since the coefficients
α and β will play an important role in the statement of our results, we remark that procedures for
computing them for a given reaction-diffusion system can be found, for instance, in [12].

As proved in [26], the dynamics of the reaction-diffusion system close to the steady state u = 0 in
the supercritical regime µ > 0 is approximated by the complex Ginzburg–Landau equation (CGL)

AT = (1 + iα)AXX +A− (1 + iβ)|A|2A, (X,T ) = (
√
µx, µt). (1.8)

Standing modulated waves of the CGL are of the form

A(X,T ) = e−iΩTA(X)

where A(X) together with its derivative satisfies the ordinary differential equation (ODE)

AX = B (1.9)

BX =
1

1 + iα
[
−(1 + iΩ)A+ (1 + iβ)|A|2A

]
which respects the reverser Rcgl : (A,B) 7→ (−A,B). The wave trains

Aw(X;κ) =
√

1− κ2eiκX

are periodic orbits of (1.9) for

Ω = Ωnl(κ) := β + (α− β)κ2.

In our analysis, we shall need certain transversality properties of the Nozaki–Bekki holes Anb which
are standing waves of the CGL (1.8) that are spatially asymptotic to the wave train Aw(·;κ) for a
selected wavenumber κ.

Hypothesis 9 (Nozaki–Bekki holes) There is a wavenumber κ∗ and a solution Anb(X) of (1.9)
such that the following is true:

(i) The center-unstable manifold W cu(Aw(·;κ∗)) of the wave Aw(X;κ∗) as a solution to (1.9)
satisfies dimW cu(Aw(·;κ∗)) = 2.

(ii) (Anb, A
′
nb)(0) ∈ Fix(Rcgl) ∩W cu(Aw(·;κ∗)).
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(iii) The above intersection is transverse at (Anb, A
′
nb)(0) when considered in the extended phase

space (A,B,Ω).

The assumptions on the stability properties of the Nozaki–Bekki holes are summarized in the
following hypothesis.

Hypothesis 10 (Nozaki–Bekki holes: Stability) (i) The selected wave train with wavenum-
ber κ∗ is spectrally stable for (1.8).

(ii) The linearization of (1.8) about the Nozaki–Bekki hole Anb considered in the space C0
odd(R,C)

has a simple eigenvalue at the origin and no other spectrum in the closed right-half plane.

There is strong numerical evidence that Hypotheses 9 and 10 are true in a large region in parameter
space (α, β) (see [1, 11] for references). However, they have been verified analytically only in the
limit to the real Ginzburg–Landau equation:

Proposition 1.2 There exists a constant δ > 0 so that Hypotheses 9 and 10 are true for all (α, β)
with |α|, |β| < δ and 0 < |α− β| < δ in which case

κ∗ =
√

2(1 + α2)
3(1 + αβ)

(β − α) + O(|β − α|2).

We remark that the existence part of this proposition is well known (see again [1, 11] for references).
The stability of the Nozaki–Bekki holes has been investigated in [7]; however, the result stated in
[7] is incorrect, and we shall give a corrected statement, and its proof, in Appendix A.

We now return to the reaction-diffusion system (1.1). The above assumptions imply that (1.1)
has a family of wave trains uw(kx − ωt; k, µ) for each k close to zero and µ > µbif(k) > 0 where
ω := ω∗ + Ωnl(k/

√
µ)µ+ O(µ3/2) and uw is 2π-periodic in its first argument.

Lastly, we assume that (1.1) admits a symmetric standing pulse for µ = 0.

Hypothesis 11 (Standing pulse) There exists a symmetric standing pulse q(x) of (1.1) with
µ = 0 such that the null space of L∗− iω∗` is trivial in C0

even(R,Cn) for all ` ∈ Z and in C0
odd(R,Cn)

for all odd ` ∈ Z.

Time-periodic pulses of the reaction-diffusion system can now be obtained by gluing together the
standing pulse and the Nozaki–Bekki holes at x = ±∞.

Theorem 5 (Existence: Hopf) Assume that the Hypotheses 7, 8, 9 and 11 are met. For each
µ > 0 sufficiently small, there exist symmetric and antisymmetric oscillating pulses, denoted by
q0(x, t;µ) and qπ(x, t;µ), respectively, with minimal temporal periods and frequencies

Tj(µ) =
2π
ωj(µ)

, ωj(µ) = ω∗ + Ωnl(κ∗)µ+ O(µ2), j = 0, π,
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Figure 3: The bifurcation diagram for standing pulses to homogeneous states that undergo an
oscillatory instability. The insets to the left illustrate snapshots in time of the profiles of the standing
pulse for µ < 0 and of symmetric and asymmetric oscillatory pulses for µ > 0. The space-time plots
to the right show the difference between the symmetric and the asymmetric modulated pulses.

that satisfy

q0(x, t;µ) = q0(x, t+ T0(µ);µ) = q0(−x, t;µ)

qπ(x, t;µ) = qπ(x, t+ Tπ(µ);µ) = qπ

(
−x, t+

Tπ(µ)
2

;µ
)
.

Both pulses depend continuously on µ in C0
loc, and they are asymptotic in space to the small-

amplitude wave trains uw with the selected wavenumber kj(µ) =
√
µκ∗ + O(µ): There exist contin-

uous functions θj(µ) ∈ R such that

|qj(x, t;µ)− uw(kj(µ)x− ωj(µ)t+ θj(µ); kj(µ), µ)| → 0

as x→∞ uniformly in t for j = 0, π. (See Figure 3).

The theorem and its proof imply that both the phase and the group velocity of the asymptotic
wave trains are directed away from the primary pulse. Thus, the bifurcating modulated pulses are
sources in the terminology used in [21].

We remark that the primary localized pulse persists for µ > 0 (but is unstable). We also point out
that the symmetric and antisymmetric pulses constructed in the theorem above are not unique.
Many other modulated pulses can be found, but all of these involve sinks: One example are mod-
ulated pulses for which the group velocities of the asymptotic wave trains are directed towards
the primary pulse [21]. Furthermore, modulated pulse may arise due to the interaction of several
copies of the large sources that we constructed above with small-amplitude sinks that match the
counter-propagating wave trains created by the sources.

Hypothesis 12 (Marginal stability) The spectrum of L∗ is contained in {Reλ < 0}∪{0,±iω∗}.
The eigenvalue λ = 0 of L∗ in C0

unif(R,Cn) has geometric and algebraic multiplicity equal to one,
while the null space of L∗ ± iω∗ is trivial in C0(R,Cn).

The following stability result is formulated in terms of Evans functions. The interpretation for
the spectrum is that any root of the Evans function on or to the right of the essential spectrum
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2 2 2

Figure 4: The spectra of the symmetric and antisymmetric defects are plotted for Λ 6= 0: (i)
unstable defect; (ii) stable defect; (iii) stable defect in a weighted L2-space with norm ‖u‖2 :=∫

R e−η|x||u(x)|2 dx for some small η > 0 (which may depend on the bifurcation parameter µ). The
solid line represents the essential spectrum of the asymptotic wave trains. (See [21, Theorem 6.1]
for details).

corresponds to a genuine Floquet exponent of the linearization of (1.1) about qj , while roots to the
left of the essential spectrum correspond to resonance poles (i.e. to eigenvalues in an exponentially
weighted function space).

Theorem 6 (Stability: Hopf) Assume that the Hypotheses 7, 8, 9, 10, 11 and 12 are met. For
µ > 0, the essential Floquet spectrum of the linearization of (1.1) about qj(x, t;µ) with j = 0, π is
contained in {Reλ < 0}∪{0}, and λ = 0 is a Floquet exponent of geometric and algebraic multiplic-
ity two. Furthermore, there are constants δ > 0 and Λ ∈ R such that the Evans function associated
with qj has precisely one additional root λj(µ) in the region Reλ > −δµ with the expansions

λ0(µ) = Λµ3/2 + O(µ2), λπ(µ) = −Λµ3/2 + O(µ2).

An expression for Λ is given in (4.33). Generically, Λ 6= 0 so that either q0 or qπ is stable, while
the other pulse has a single unstable Floquet exponent. (See Figure 4).

1.5 Further remarks and outline of the paper

The following result shows that the hypotheses of our main theorems are compatible.

Theorem 7 There exist three open, non-empty classes of one-parameter families of reaction-
diffusion systems so that the equations in these three classes satisfy

• Hypotheses 1, 2, 3 and 4 [Pitchfork instability],

• Hypotheses 3, 4, 5 and 6 [Turing instability],

• Hypotheses 7, 8, 9, 10, 11 and 12 [Oscillatory instability],

respectively.

The plan of this paper is as follows. We prove the existence results in Section 2 and the stability
results in Sections 3 and 4. After discussing Theorem 7 in Section 5, we conclude with a brief
discussion in Section 6. Lastly, Proposition 1.2 is proved in Appendix A.
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2 Existence

2.1 Pitchfork bifurcations: Existence

We shall prove Theorem 1: We seek symmetric standing pulses of (1.1) as reversible homoclinic
orbits of the standing-wave ODE

u′ = v (2.1)

v′ = −D−1f(u;µ)

where (u, v) ∈ R2n and µ ∈ R. Hypotheses 1 and 2 on the linear dispersion relation and the
nonlinearity, respectively, imply that the equilibrium (u, v) = 0 undergoes a reversible pitchfork
bifurcation at µ = 0. In particular, the center eigenspace of the linearization of (2.1) about the
origin is two-dimensional, and we can therefore reduce the dynamics near the origin to a two-
dimensional, locally invariant center manifold for µ close to zero. Using [27, (5.7) in §2.5] and
reversibility, we see that, possibly after transforming into appropriate normal-form coordinates, the
vector field on the center manifold is given by

Ax = B (2.2)

Bx = −µA+A3 +AO(|A|4 + |B|4 + |µ| |A|2 + µ2|A|),

and the reverser R is represented by the reflection B 7→ −B. We refer to Figure 5 for an illustration
of the expected phase diagram which will be confirmed by the forthcoming analysis.

For µ < 0, the origin of (2.2) has a one-dimensional unstable manifold. To determine the fate of the
homoclinic orbit upon increasing µ through zero, we will need to continue the unstable manifold
through µ = 0. Since the origin is not hyperbolic for µ = 0, we use geometric blow-up to isolate the
unstable set of the origin. Background material on blow-up techniques can be found, for instance,
in the review article [4]. We transform (2.2) with coordinates (A,B, µ) ∈ R3 into polar coordinates
that live on R+ × S2 with the radius given by R = A4 + B2 + µ2. We use different charts to
parametrize the sphere S2.

B

A

B

A

B

A

Figure 5: The phase diagrams of a supercritical pitchfork bifurcation for µ < 0, µ = 0 and µ > 0
(from left to right).
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The singular chart

We begin with the A-directional blow-up chart defined by

A1 = A, B1 =
B

A2
, µ1 =

µ

A2
,

which contains the dynamics in the region A 6= 0 that we are interested in. In these coordinates,
equation (2.2) becomes

A′1 = A1[A1B1]

B′1 = A1[1− µ1 − 2B2
1 + O(A1)] (2.3)

µ′1 = A1[−2µ1B1]

where ′ = d/dx. If we introduce the new evolution variable y via dy/dx = A1(x) and set ˙ = d/dy,
then (2.3) with A1 > 0 becomes

Ȧ1 = A1B1

Ḃ1 = 1− µ1 − 2B2
1 + O(A1) (2.4)

µ̇1 = −2µ1B1.

Note that flow lines are reversed for A1 < 0.

We shall now analyse the flow of (2.4) and confirm that Figure 6 is an accurate description of the
dynamics. First, note that the origin (A,B) = 0 becomes the singular plane {A1 = 0} which is
invariant under the flow. In addition, the B1-axis, which corresponds to the origin (A,B) = 0 at
µ = 0, is invariant.

Checking equation (2.4) for equilibria, we find the two singular equilibria

p±s = (A1, B1, µ1) =
(

0,
±1√

2
, 0
)

on the B1-axis and the one-parameter family

pw = pw(A1) = (A1, B1, µ1) = (A1, 0, 1 + O(A1))

of wave equilibria which correspond to the equilibria with A1 = A > 0 that bifurcate in the pitchfork
bifurcation.

The linearization of (2.4) about the singular equilibria p±s is given by
± 1√

2
0

O(1) ∓ 4√
2

0

0 0 ∓ 2√
2

 (2.5)

where the O(1)-term comes from differentiating the O(A1)-term in (2.4). If we restrict ourselves
to the invariant plane µ1 = 0, which corresponds to µ = 0, then we see that the unstable set

13



A1 B1

µ1

p−s

p+
s

pw

A1 = 0

B1

µ1

p−s

p+
s

pw

Figure 6: The dynamics of (2.4) and (2.6) are shown in the left and right figure, respectively. The
dotted lines indicate coordinate axes. Each of the wave equilibria pw has one-dimensional stable and
unstable manifolds.

of the B1-axis (i.e. the origin in (A,B, µ)-coordinates) in the region A1 > 0 is given by the one-
dimensional unstable manifold of the singular equilibrium p+

s (see Figure 6). This proves that the
unstable set of the origin inside the center manifold is, for µ = 0, the union of two smooth manifolds
W u = W u

+ ∪ {0} ∪W u
−.

Next, we analyse the family of wave equilibria pw. Within the invariant plane {A1 = 0}, (2.4)
reduces to

Ḃ1 = 1− µ1 − 2B2
1 (2.6)

µ̇1 = −2µ1B1.

The wave equilibrium pw(0) is a saddle for (2.6) and, as indicated in Figure 6, the heteroclinic orbit

(B1, µ1) =

(√
2

4

(
1 + tanh

(
x√
2

))
,
1
2

(
1− tanh

(
x√
2

)))
(2.7)

connects pw(0) to the sink p+
s along the invariant line B1 = (1− µ1)/

√
2.

In summary, we have established that the flow of (2.4) is indeed as shown in Figure 6. Since we
are interested in constructing homoclinic orbits to the wave equilibria pw, we need to understand
the structure of the one-dimensional unstable manifolds of each wave equilibrium.

As indicated in Figure 6, the unstable manifolds for A1 close to zero will follow the unstable
manifold belonging to A1 = 0 until we are close to the singular equilibrium p+

s . From there, we
expect that the unstable manifolds for A1 6= 0 will follow the one-dimensional unstable manifold
of p+

s which points into the A1-direction (see again Figure 6). In other words, we see that the
unstable manifolds of the wave equilibria for A1 6= 0 can be thought of as being constructed in a
heteroclinic bifurcation where the unstable manifold of the wave equilibrium with A1 6= 0 and the
unstable manifold of the singular equilibrium p+

s are glued together. This will be a recurrent theme
throughout this paper.
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We shall now make these comments precise and prove that the unstable manifold of each wave
equilibrium can be continued smoothly to a fixed finite value of A1 = A, so that its limit, as the
A1-coordinate of pw goes to zero, coincides with the unstable manifold of the singular equilibrium
p+
s . To prove this claim, we have to track the unstable manifold of each wave equilibrium as

it passes near the singular equilibrium p+
s and derive expressions for its position relative to the

unstable manifold of p+
s when evaluated at a finite fixed distance A1 = δ > 0 from A1 = 0. First,

note that the unstable manifold of the wave equilibrium pw with A1 = ε > 0 enters, after a finite
time, a small fixed neighborhood of the singular equilibrium p+

s at distance O(ε) from the invariant
plane A1 = 0. To compute the location of the unstable manifold for a finite value A1 = δ, we
therefore have to analyse the transition map near the hyperbolic equilibrium p+

s . The analysis
presented in Appendix B, which is based on the fact that the modulus of the stable eigenvalues of
the linearization (2.5) about the singular equilibrium p+

s is twice that of the unstable eigenvalue,
shows that the unstable manifold of the wave equilibrium with amplitude A1 = ε is O(ε2)-close to
the unstable manifold of the singular equilibrium p+

s within the plane given by A1 = δ. Since we
have µ1 = 1 close to each wave equilibrium, and therefore µ ≈ A2

1, we conclude that the unstable
manifold of the wave equilibrium is O(µ)-close to the singular unstable manifold. This shows that,
outside a small fixed neighborhood of the origin, W u

+ can be continued in a continuous fashion as
a smooth manifold to positive parameter values µ > 0.

The rescaling chart

Next, to show that we can extend the unstable manifold also to negative values µ < 0, we investigate
the rescaling chart with coordinates

A3 =
A√
|µ|
, B3 =

B

|µ|
, µ3 = |µ|,

which, for µ < 0, results in the equation

Ȧ3 = B3

Ḃ3 = A3 +A3
3 + O(

√
|µ3|) (2.8)

µ̇3 = 0.

Note that the coordinates in singular and rescaling charts are related via

A1 = A3
√
µ3, B1 =

B3

A2
3

, µ1 = − 1
A2

3

. (2.9)

For µ3 = 0, the unstable manifold of the saddle equilibrium (A3, B3, µ3) = 0 can be evaluated
at some distance from the origin so that its coordinates are (A3, B3, µ3) = (a∗, b∗, 0) for some
a∗, b∗ > 0. Using (2.9), the corresponding coordinates in the A-directional chart are given by
(A1, B1, µ1) = (0, b∗/a2

∗,−1/a2
∗). Thus, examining the flow of (2.6), we see that the unstable

manifold of (A3, B3, µ3) = 0 connects to the stable singular equilibrium p+
s in the A-directional

chart. The equilibrium (A3, B3, µ3) = 0 continues as a family (A3, B3, µ3) = (0, 0, µ3) for all
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µ3 > 0. Using the same arguments as for the wave equilibria, we see that the unstable manifold of
(A3, B3, µ3) = (0, 0, µ3) is O(µ)-close to the unstable manifold of the singular equilibrium p+

s when
evaluated at a fixed finite value δ > 0 of A1. Thus, we have shown that the unstable manifold
can be continued as a smooth manifold in a continuous fashion to µ = 0 outside of a fixed small
neighborhood of the origin (A,B) = 0.

Constructing the bifurcating pulse

We have proved that, when measured at a fixed finite distance away from the origin, the unstable
set of the origin for µ ≤ 0 and the unstable manifold of the bifurcating equilibrium for µ > 0 fit
together inside the center manifold in a continuous fashion at µ = 0.

We shall now interpret these results in the entire phase space R2n. For µ = 0, the center-unstable
manifold of the origin contains the entire unstable set. Furthermore, the center-unstable manifold is
fibered smoothly over the center manifold. Thus, the unstable set of the origin is the unionWu(0) =
Wu

+ ∪ Wuu ∪ Wu
− of three disjoint sets that are obtained from the corresponding decomposition

W u = W u
+ ∪ {0} ∪W u

− inside the center manifold by adding the strong unstable fibers. Note that
we can extend all these manifolds in a continuous fashion to arbitrary µ close to zero by considering
the unstable manifold of the origin for µ < 0 and of the small bifurcating wave equilibria for µ > 0.

By assumption, the standing pulse q(x) is symmetric in x at µ = 0 and therefore given as the
intersection of Wu with Fix(R). We required in Hypothesis 3 that q(x)e−δx → ∞ as x → −∞
for each δ > 0 from which we infer that Fix(R) ∩ Wuu = ∅. Without loss of generality, we may
therefore assume that Wu

+ ∩Fix(R) 6= ∅. We claim that this intersection is transverse. If true, this
implies the existence of intersections for any µ close to zero, and therefore Theorem 1. It remains
therefore to prove the claim.

We argue by contradiction and assume that the intersection is not transverse for µ = 0. As a
consequence, since Fix(R) = {v = 0}, there exists then a nonzero vector (u0, 0) in the tangent
space of Wu

+ at the point (q(0), 0) ∈ Fix(R). We consider the corresponding even nonzero solution
of the linearized equation(

ux

vx

)
=

(
v

−D−1fu(q(x); 0)u

)
,

(
u(0)
v(0)

)
=

(
u0

0

)
. (2.10)

Since the tangent space of Wu
+ along the homoclinic orbit is the sum of the tangent space of W u

+

and to the strong unstable fiber, the solution to (2.10) is a linear combination of the derivative
(q′(x), q′′(x)) and an exponentially decaying solution that lies in the tangent spaces of the strong
unstable fibers. Since B1 = 1/

√
2 for A1 = 0, it is easy to show that q(x) =

√
2/x + O(1/x2) so

that q′ ∈ L2. Thus, the first component of the solution to (2.10) supplies a nonzero element of the
null space of the linearized operator L∗ on L2

even(R,Cn), and therefore also in C0
even(R,Cn), which

contradicts Hypothesis 3. This completes the proof of Theorem 1.

We remark that a similar blow-up can be carried out for the adjoint variational equation that
appears in Remark 1.1. Combining the resulting estimate with the one for qx(x) obtained above
shows that the Melnikov integral in (1.5) converges.
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2.2 Turing instabilities: Existence

For Turing instabilities, we shall follow closely the strategy that we employed in the previous
section to handle pitchfork bifurcations. A Turing instability that meets Hypotheses 5 and 6 causes
a reversible 1:1-resonance at the equilibrium (u, v) = 0. In particular, the center eigenspace is
four-dimensional. We focus on the construction and continuation of the two-dimensional unstable
manifold through the bifurcation point to µ > 0 within the four-dimensional center manifold. Once
this is achieved, the arguments given in Section 2.1 apply verbatim, thus completing the proof by
showing transversality of the relevant unstable manifold and the fixed-point space of R in the full
phase space R2n.

Hence, we restrict our attention to the four-dimensional center manifold. As shown in [5] (see also
[25, Proposition 2.18]), appropriate transformations of the parameter µ, suitable µ-dependent time
rescalings, normal-form transformations up to cubic order and appropriate scalings of the variables
(A,B) ∈ C2 on the center manifold can be utilized to bring the reduced vector field into the form

Ax = iA+B + iAP (|A|2, i[AB −AB];µ) (2.11)

Bx = −µA+ iB +A|A|2 + iBP (|A|2, i[AB −AB];µ) +AQ(|A|2, i[AB −AB];µ) +R(A,B;µ).

Here, P (I, J ;µ) and Q(I, J ;µ) are real polynomials in their real arguments (I, J) with coefficients
that depend smoothly on µ. We also have P (0, 0; 0) = 0, Q(0, 0; 0) = ∂IQ(0, 0; 0) = ∂µQ(0, 0; 0) = 0,
and the remainder term R satisfies R = O(|A|2m+3 + |B|2m+3) where m is an arbitrarily large, but
fixed, natural number.

We focus on the construction and continuation of the unstable manifold for µ ≥ 0 since the case
µ < 0 is completely analogous to the construction in the preceding section. As before, we use the
coordinates

A1 =
A

|A|
∈ S1, B1 =

B

|A|2
∈ C, µ1 =

µ

|A|2
∈ R

in the A-directional blow-up chart and introduce the complex variable

N = A1B1 = Nr + iNi, Nr, Ni ∈ C.

Equation (2.11) becomes

A′1 = iA1 + |A| [B1 −A1Nr] + iA1|A|2P̌ (|A|2, Ni;µ1)

B′1 = iB1 + |A| [(1− µ1)A1 − 2B1Nr] + iB1|A|2P̌ (|A|2, Ni;µ1) +A1|A|2Q̌(|A|2, Ni;µ1)

+|A|2m+1Ř(|A|, A1, B1;µ1)

µ′1 = |A| [−2µ1Nr] (2.12)

|A|′ = |A|2Nr

where ′ = d/dx. Note that P̌ , Q̌, Ř are smooth but do not necessarily vanish at (A1, B1, µ1, |A|) = 0;
with a slight abuse of notation, we shall omit their dependence on µ1 from now on. The normal-form
part of (2.12), i.e. the equation without the remainder term Ř, respects the continuous symmetry

(A1, B1) 7−→ eiφ(A1, B1), φ ∈ R (2.13)
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which is generated by the evolution of the linear part of the equation. To exploit this symmetry
and eliminate the linear part, we introduce the new coordinates

a1 = A1e−ix ∈ S1, b1 = B1e−ix ∈ C

so that (2.12) becomes

a′1 = |A| [b1 − a1nr] + ia1|A|2P̌ (|A|2, ni)

b′1 = |A| [(1− µ1)a1 − 2b1nr] + ib1|A|2P̌ (|A|2, ni) + a1|A|2Q̌(|A|2, ni)

+|A|2m+1Ř(|A|, a1eix, b1eix)

µ′1 = |A| [−2µ1nr]

|A|′ = |A|2 nr

where n = a1b1 = A1B1 = N . We eliminate the Euler multiplier |A| by replacing the independent
variable x by the new independent variable y via dy/dx = |A| so that x = ϕ(y) and dϕ/dy = 1/|A|.
We obtain

ȧ1 = b1 − a1nr + ia1|A|P̌ (|A|2, ni)

ḃ1 = (1− µ1)a1 − 2b1nr + ib1|A|P̌ (|A|2, ni) + a1|A|Q̌(|A|2, ni) + |A|2mŘ(|A|, a1eiϕ, b1eiϕ)

µ̇1 = −2µ1nr (2.14)
˙|A| = |A|nr

ϕ̇ = |A|−1

where ˙ = d/dy. If we further substitute ψ = |A|2ϕ, we get

ȧ1 = b1 − a1nr + ia1|A|P̌ (|A|2, ni)

ḃ1 = (1− µ1)a1 − 2b1nr + ib1|A|P̌ (|A|2, ni) + a1|A|Q̌(|A|2, ni)

+|A|2mŘ(|A|, a1eiψ/|A|2 , b1eiψ/|A|2)

µ̇1 = −2µ1nr (2.15)
˙|A| = |A|nr

ψ̇ = |A|+ 2ψnr.

We remark that the right-hand side is Cm−1 in its arguments and all derivatives are bounded up
to and including the point |A| = 0. The transformation back to the original variables is regular at
all points for which |A| = δ > 0.

We begin by investigating the flow associated with (2.15) inside the invariant singular sphere |A| = 0
with ψ = 0. It is convenient to introduce the invariant polynomial n = a1b1 = nr + ini associated
with the symmetry (2.13) as a new variable which satisfies

ṅr = 1− µ1 + n2
i − 2n2

r

ṅi = −3ninr (2.16)

µ̇1 = −2µ1nr.
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Note that the plane ni = 0 is invariant under (2.16): The vector field on this plane is given by

ṅr = 1− µ1 − 2n2
r

µ̇1 = −2µ1nr

which coincides with (2.3) once nr is identified with B1. We see that (2.16) has the singular
equilibria

p±s = (nr, ni, µ1) =
(
± 1√

2
, 0, 0

)
and the wave equilibria

pw(k) = (nr, ni, µ1) =
(
0, k, 1 + k2

)
.

Inside the Eckhaus boundary |k| < 1/
√

2, the wave equilibria have one unstable and one stable
eigenvalue in addition to the neutral eigenvalue that arises from the parameter k. Furthermore,
if we identify nr with B1 and set ni = 0, then (2.7) shows that the unstable manifold of the
equilibrium pw(0) connects to the sink p+

s in such a fashion that nr increases while µ1 decreases
along the heteroclinic connection ni.

In the (a1, b1)-coordinates, the above flow is augmented by an additional neutral phase variable
that arises due to the equivariance of the normal form with respect to the action (2.13): each
(a1, b1) = (eiφa0

1, e
iφb01) with φ ∈ R corresponds to the same n = a0

1b
0
1.

As a result, the wave equilibria are relative equilibria with respect to the phase rotation (2.13),

pw = (a1, b1, µ1) = (e−iky,−ike−iky, 1 + k2).

They persist for |A| > 0 as a family of reversible periodic orbits whose unstable manifolds depend
smoothly on the parameter |A| which measures the distance to the invariant sphere: the most
convenient way to prove this is to use the rescaling chart in which the existence of Turing patterns
is well known [17, §3.1].

The singular equilibria form two circles1 given by

p±s = (a1, b1, µ1) =
(

eiφ,
±1√

2
eiφ, 0

)
, φ ∈ R.

If we omit the artifical ψ-direction, the eigenvalues of the singular equilibrium p+
s are

λc = 0, λs = −2/
√

2, λss ∈ {−3/
√

2,−4/
√

2}, λu = 1/
√

2, (2.17)

where the unstable eigenvector points into the direction normal to the sphere2.

For later reference, we calculate the expansion of the unstable manifold of p+
s : Since its unstable

eigenvector points into the |A|-direction, the unstable manifold is given by

W u
loc(p

+
s ) =

{
(a1, b1, |A|) =

(
eiφ + O(r2),

1√
2
eiφ + O(r2), r

)
; |r| � 1

}
.

1Cylinders, in fact, if we take the artificial ψ-direction into account.
2The eigenvalues of the singular equilibrium p−s have the same modulus but the opposite sign.
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Transforming this expansion back to the original coordinates (A,B), we obtain

W u
loc(0) =

{
(A,B) = (a1|A|, b1|A|2) =

(
reiφ,

r2eiφ

√
2

)
+ O(r3); |r| � 1

}
. (2.18)

The next step is to track the unstable manifolds W u(pw(|A|)) of the wave equilibria for small
positive |A| as they pass near the singular equilibria and to compare the distance of W u(pw(|A|))
after passage to the unstable manifolds of the singular equilibria, measured at a finite distance
|A| = δ from the singular equilibria. We analyse this transition in Appendix B as it is more
involved. The result proved in Appendix B states that the distance of the unstable manifold
W u(pw(|A|)) of the wave equilibria from the unstable manifold of the singular equilibria, measured
at a finite distance |A| = δ from the singular equilibria, is of order O(µ).

This proves that the unstable manifold of the small-amplitude periodic patterns inside the Eckhaus
stability boundary is close to the singular unstable manifold for sufficiently small µ > 0. The rest
of the proof of Theorem 3 is completely analogous to the one given in Section 2.1 for pitchfork
bifurcations: First, extend the above statement to µ < 0. Afterwards, the unstable manifolds
in the full phase space are obtained by complementing the unstable manifolds inside the center
manifold with the strong unstable fibers of the center manifold. Transversality of the center-
unstable manifold and the fixed-point space of the reverser follows as in Section 2.1 since solutions
in the singular unstable manifold of the origin decay again algebraically for µ = 0 with their
asymptotics given by |A| =

√
2/x+ O(1/x2).

2.3 Oscillatory instabilities: Existence

We seek time-periodic pulses of
ut = Duxx + f(u;µ)

with temporal frequency ω. Using the new time variable τ with t = ωτ , these can be found as
solutions to the modulated-wave equation

ux = v (2.19)

vx = D−1[ω∂τu− f(u;µ)]

where (u, v)(x) ∈ Y = H1/2(S1,R2n) × L2(S1,R2n) are 2π-periodic functions of τ for each fixed
x ∈ R. We view (2.19) as a dynamical system in the spatial variable x where the temporal frequency
ω ≈ ω∗ is a parameter. Our strategy of finding oscillatory pulses follows closely the one employed
for pitchfork and Turing instabilities.

As a dynamical system on Y , (2.19) is equivariant with respect to the S1-action generated by the
temporal time-shift τ 7→ τ + τ̌ on Y and reversible with respect to the linear reversers

R0 : Y −→ Y [R0(u, v)](τ) = (u,−v)(τ)

Rπ : Y −→ Y [Rπ(u, v)](τ) = (u,−v)(τ + π).
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Note that R0 detects symmetric modulated pulses, while Rπ seeks out the asymmetric modulated
waves shown in Figure 3. The action of the reversers on

Y` =
{

ei`τ (u0, v0); (u0, v0) ∈ R2n
}
⊂ Y, ` ∈ Z

is given by

R0 : Y` −→ Y` (u0, v0) 7−→ (u0,−v0) (2.20)

Rπ : Y` −→ Y` (u0, v0) 7−→ (−1)`(u0,−v0).

In particular, solutions with initial data in Fix(R0) are even in x, while solutions with initial data
in Fix(Rπ) ∩ Y` are even in x for even ` and odd in x for odd `.

The fixed-point subspace of the S1-action is Y0, which consists precisely of all functions (u, v) ∈ Y
that do not depend on τ , and the dynamics of (2.19) on Y0 is given by the dynamics of the
usual standing-wave ODE (1.3). In particular, Hypothesis 11 states that, inside this fixed-point
subspace, there exists a homoclinic orbit (q, q′)(x) to the hyperbolic equilibrium (u, v) = 0, and
(q, q′)(x) decays exponentially as ξ → ±∞.

With the help of [16], we infer from Hypothesis 7 that the equilibrium (u, v) = 0 has a four-
dimensional, locally invariant center manifold W c(0) in the space Y and an infinite-dimensional
center-unstable manifold W cu(0) which is fibered smoothly over W c(0). Furthermore, we know
from [16] that the invariant manifolds and their fibers depend smoothly on µ and that all solutions
to (2.19) that remain close to (u, v) = 0 as x→ −∞ lie necessarily in the center-unstable manifold
W cu(0).

We claim that the center-unstable manifold W cu(0) at the bifurcation point µ = 0 intersects both
Fix(R0) and Fix(Rπ) transversely along two-dimensional manifolds that are invariant under the S1-
action introduced above. To prove this claim, we first note that the intersection contains the point
(q(0), q′(0)) which lies in Fix(S1). Furthermore, Fredholm theory [21] shows that the intersection
is at least two-dimensional. We now argue by contradiction and assume that the intersection of
the tangent space of W cu(0) at (q, q′)(0) with either Fix(R0) or Fix(Rπ) in Y is of dimension equal
to at least three. In particular, this intersection provides a three-dimensional space of reversible
solutions of the linearization

ux = v (2.21)

vx = D−1[ω∗∂τu− fu(q(x); 0)u]

of (2.19) about (q, q′)(ξ) with ω = ω∗. On the other hand, using that the homoclinic orbit converges
to zero exponentially and exploiting Hypothesis 7 in the same fashion as in [16, §3.3], we see that
the space of initial data in T(q,q′)(0)W

cu(0) that lead to solutions that are bounded for x → −∞
is of codimension two: it consists of the strong unstable subspace and the two-dimensional space
of solutions that converge to constants as x → −∞. Since we started with a three-dimensional
subspace of initial data, we therefore obtain at least one nonzero reversible bounded solution of
(2.21). Since the spaces Y` are invariant under (2.21), [16, Lemma 3.4] and the statement following

21



(2.20) imply that any such solution corresponds to an element in the null space of L∗ − iω∗` on
C0

even(R,Cn) for some ` ∈ Z or on C0
odd(R,Cn) for some odd ` ∈ Z. This, however, contradicts

Hypothesis 11, and therefore proves our original claim.

The transversality statement that we just proved allows us to pull back the µ-dependent intersec-
tions W cu(0;µ) ∩ Fix(Rj) for j = 0, π along the strong unstable fibration and project them onto
the center manifold W c(0;µ). This procedure results in two surfaces Γ0(µ) and Γπ(µ) that are
contained in W c(0;µ) and depend smoothly on µ. As a consequence, any solution of (2.19) within
the center manifold W c(0;µ) that intersects Γ0(µ) (or Γπ(µ)) can be lifted uniquely to a solution
in the center-unstable W c(0;µ) whose trajectory intersects Fix(R0) (or Fix(Rπ)). Thus, we restrict
our attention to the center manifold and construct solutions that intersect one of the surfaces Γj(µ)
with j = 0, π.

The vector field on the four-dimensional center manifold has been derived in [25, §2.4.3]: If uh(x) de-
notes the complex Hopf eigenfunction of L∗ belonging to the eigenvalue iω∗, then we can parametrize
the generalized Hopf eigenspace of L∗ via (u, v) = (aeiτuh, beiτuh) where (a, b) ∈ C2 are complex
coordinates. Using these coordinates to parametrize the center manifold, we recover, to leading
order, the unscaled version of the complex Ginzburg-Landau equation (1.8). In fact, as shown in
[25, §2.4.3], the vector field on W c(0;µ) is given by

ax = b (2.22)

bx =
1

1 + iα
[
−(µ+ iω̌)a+ (1 + iβ)|a|2a+ O(|ab2|+ |a|5 + |b|5)

]
,

where the coefficients α, β are as in Section 1.4 and where we wrote ω = ω∗ + ω̌ for the temporal
frequency ω appearing in (2.19).

Since we wish to find solutions to (2.22) that intersect the surfaces Γj(µ), we need to find repre-
sentations of Γj(µ) in terms of (a, b). First, since the τ -independent primary pulse q persists in
Y0, the surfaces Γj(µ) intersect the origin (a, b) = 0 for all µ small. Each surface is also invariant
under the action of the temporal τ -shift symmetry (a, b) 7→ (eiφa, eiφb). Lastly, exploiting again
Hypothesis 11, each surface intersects the line b = 0 transversely, since the null space of the opera-
tor L∗ − iω∗ would otherwise be nontrivial. For j = 0, π, we can therefore write the surfaces Γj as
graphs

a = ρj(µ)b+ O(|b|3) (2.23)

for certain smooth functions ρj(µ).

We have now collected the information necessary for proceeding with the blow-up of (2.22). Instead
of a full-fledged blow-up, it suffices to consider the rescaling chart for µ > 0 whose coordinates scale
according to

a =
√
µA, b = µB, ω̌ = µΩ, x =

X
√
µ
. (2.24)

In these coordinates3, (2.22) becomes

AX = B (2.25)
3We break here with the convention used in the previous sections that capital letters denote the coordinates before

blow-up to keep in line with the usual conventions for the variables in the CGL.
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Figure 7: The geometry in phase space of the Nozaki–Bekki hole and the reversibility surfaces Γj(µ)
for the rescaled complex Ginzburg–Landau equation is shown.

BX =
1

1 + iα
[
−(1 + iΩ)A+ (1 + iβ)|A|2A+ O(µ)

]
,

while the reversibility surfaces Γj(µ) are now given by

Γj(µ) = {(A,B); A =
√
µρj(0)B + O(|µB|)} , j = 0, π. (2.26)

For µ = 0, we see that (2.25) becomes (1.9), while the reversibility surfaces Γj(0) are then both equal
to Fix(Rcgl), whereRcgl(A,B) = (−A,B) is the reverser for (1.9). We can now exploit Hypothesis 9
where we assumed that the Nozaki–Bekki hole Anb(X) connects the wave train Aw(X;κ∗) with
wavenumber κ∗ at X = −∞ to Fix(Rcgl) at X = 0 provided we choose Ω = Ω∗ = Ωnl(κ∗). We also
assumed that the intersection Anb(X) of W cu(Aw(·;κ∗)) and Fix(Rcgl) is transverse with respect
to varying the real parameter Ω near Ω∗ (see Figure 7).

Thus, since Γj(0) = Fix(Rcgl) at µ = 0, we can find, for each small µ > 0, a number Ω close to
Ω∗ such that the intersection between W cu(Aw) and Γj(µ) is non-empty: we denote the resulting
solution by Anb(X;µ). Since the periodic orbit Aw(X) of (1.9) with µ = 0 has a simple Floquet
exponent at zero by Hypothesis 9, it persists in the center manifold for all small µ > 0. Thus,
the connection Anb(X;µ) that we constructed above converges indeed to a spatially-periodic orbit
with wavenumber close to κ∗. The first component of the corresponding reversible heteroclinic
orbit Qj(x, τ ;µ) to (2.19) is the oscillating pulse qj(x, τ ;µ) of Theorem 5. The expansions for
wavenumber and temporal frequency can be obtained by inverting the coordinate transformation
(2.24) and recalling, in particular, that the spatial variable has also been rescaled in (2.24).

For later use, we remark that

(anb, bnb)(0;µ) = O(µ),
(

danb

dx
,
dbnb

dx

)
(0;µ) = (O(µ),O(µ2)), (2.27)

where (anb, bnb) corresponds to the solution Anb(X;µ) under the scaling (2.24). Furthermore, we
have

sup
x∈[−L,0]

‖q0(x, τ ;µ)− q(x)‖Y = O(µ) (2.28)

for each fixed L� 1.
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3 Stability for pitchfork and Turing bifurcations

Our strategy to prove asymptotic or spectral stability of the bifurcating standing pulses will be
basically identical for pitchfork and for Turing instabilities. First, we locate the essential spectra
of the bifurcating pulses. Afterwards, we need to exclude the possibility that isolated eigenvalues
emerge from the essential spectrum and move into the right half-plane during the bifurcation.
To exclude these edge bifurcations, we decompose the phase space into three different subspaces:
the strong stable and unstable subspaces consist of all initial data that lead to solutions of the
linearized equation which decay to zero exponentially with a uniform rate as x→∞ and x→ −∞,
respectively. Solutions to initial data that lie in the remaining complementary center subspace
decay or grow algebraically, or at most exponentially with a small rate, as |x| → ∞. These three
subspaces depend smoothly on the prospective eigenvalue parameter λ and on the bifurcation
parameter µ. The issue is then to construct a splitting of the center space into two subspaces of
equal dimension that continue the unstable and stable subspaces through the bifurcation point and
that depend again smoothly on λ and µ. Once this splitting is obtained, spectral stability is a
straightforward consequence of the fact that the simple eigenvalue at zero remains at the origin
due to translational invariance.

The smooth continuation of the splitting in the center bundle relies on the same blow-up technique
that we employed when proving existence: we construct the two subspaces by establishing the
existence of certain singular heteroclinic orbits between the rescaling and the singular chart and
tracking these orbits as they pass near the singular equilibrium. This procedure can be interpreted
as a factorization of the Evans function for the bifurcating pulse into a product of the nonzero
singular Evans function of the singular heteroclinic orbit and the Evans function of the standing
pulse at the bifurcation point. We emphasize that these constructions are not standard as the pulse
q(x) decays only algebraically at the bifurcation point, and techniques such as the Gap Lemma fail
in this situation. We mention that we used similar ideas in [20] to which we refer for additional
details.

3.1 Essential spectra

The essential spectrum of the bifurcating pulses is given by the essential spectra of the asymptotic
states. For pitchfork bifurcations, the spectrum of the asymptotic bifurcating equilibria is given,
to leading order in µ, by

λpf(k;µ) = λ(0;µ) +
1
2
λkk(0; 0)k2 + O(|µ|k2 + k4).

Exploiting that the kinetic ODE (1.4) has a stable eigenvalue in the center manifold, we see that
λ(0;µ) < 0 for µ 6= 0. Since, by assumption, λkk(0; 0) < 0, we conclude that the essential spectrum
of the standing pulse is contained in the open left half-plane for µ 6= 0.

The analysis for Turing instabilities has been carried out in [17, §3.3]: For µ > 0, the essential
spectrum near λ = 0 consists of two curves: one of these curves lies in the open left half-plane,
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while the second one can be parametrized by

λturing(γ;µ) =
1
2
λkk(0; 0)µ2γ2 + O(|µγ|3)

where λkk(0; 0) < 0 inside the Eckhaus stable band.

3.2 The Evans function

To prove Theorem 2, it therefore suffices to exclude spectrum in Reλ ≥ 0 with the exception of an
algebraically simple eigenvalue at the origin λ = 0. We rewrite the eigenvalue problem

Duxx + fu(q(x;µ);µ)u = λu

for the linearization at the pulse q(x;µ) as

ux = v (3.1)

vx = D−1[λ− fu(q(x;µ);µ)]u.

Hypothesis 4 and regular perturbation theory imply that any potential eigenvalue λ with Reλ ≥ 0
lies inside a small neighborhood |λ| ≤ δ of the origin. Furthermore, a complex number λ belongs
to the point spectrum if, and only if, there exists a nontrivial bounded solution (u, v) to (3.1).

For each λ to the right of the essential spectrum (i.e. in the connected component of the resolvent set
that contains the positive real axis), there exist unique analytic families of n-dimensional subspaces
Eu
−(λ;µ) and Es

+(λ;µ) that consist precisely of those initial data that lead to solutions of (3.1)
which are bounded on R− and on R+, respectively. The point spectrum is therefore given by
the set of all λ to the right of the essential spectrum for which Eu

−(λ;µ) and Es
+(λ;µ) intersect

nontrivially. Choosing bases (euj )1≤j≤n and (esj)1≤j≤n of these two spaces that depend analytically
on λ and are continuous in µ, we see that the point spectrum clearly coincides with the roots λ of
the analytic function

E(λ;µ) = det[eu1 , . . . , e
u
n, e

s
1, . . . , e

s
n]

for each fixed µ. Spectral stability of the bifurcating pulses will be a consequence of the following
two propositions which we will in §3.3-3.4.

Proposition 3.1 For both pitchfork and Turing instabilities, the bundles Eu
−(λ;µ) and Es

+(λ;µ) for
the bifurcating pulses can be extended continuously in µ as C2-functions of γ =

√
λ into Re γ ≥ 0.

To the right of the essential spectrum, the bundles Eu
−(λ;µ) and Es

+(λ;µ) consists precisely of all
solutions to (3.1) that are bounded on R− and R+, respectively. In particular, the Evans function
Ě(γ;µ) := E(γ2;µ) is C2 in γ and C0 in µ.

Proposition 3.2 For both pitchfork and Turing instabilities, the Evans function E(λ;µ) is C1 in
λ for Reλ ≥ 0, and we have E(0; 0) = 0 and Eλ(0; 0) 6= 0.
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Proof of Theorems 2 and 4. Using the bundles constructed in Proposition 3.1, we extend the
Evans function Ě(γ;µ) as a C0-function in µ and a C2-function in γ to a neighborhood of γ = 0
in Re γ ≥ 0. We also see that E(λ;µ) is C1 in λ for Reλ ≥ 0. Since E(λ, 0) has a simple root at
the origin, the implicit function theorem guarantees that there exists a unique root of E(λ;µ) in a
neighborhood of the origin for all µ close to zero. Since the derivative ∂xq(x;µ) of the bifurcating
pulses supply a bounded solution of (3.1) with λ = 0, this root stays at λ = 0 for all µ, and we
conclude that there does not exist any unstable spectrum in a neighborhood of the origin. This
proves Theorems 2 and 4.

We will suppress the dependence on µ. Using exponential dichotomies, we conclude as in [17, 20]
that there are analytic families of subspaces Ecu

− (λ), Ecs
+ (λ) ⊂ C2n, which are given as ranges

of analytic projections P cu
− (λ) and P cs

+ (λ), such that initial data at x = 0 to solutions of (3.1)
that decay as x → ∞ lie in Ecs

+ (λ), while initial data to solutions that decay as x → −∞ lie
in Ecu

− (λ). The dimensions of these subspaces are n + 1 for pitchfork bifurcations and n + 2 for
Turing instabilities. In general, solutions in Ecs

+ (λ) may grow exponentially as x → ∞, but they
do so only with a small exponential rate as long as λ is small. Similarly, solutions in Ecu

− may
grow exponentially with a small rate as x→ −∞. We can write these subspaces as direct sums of
analytic subspaces

Ecu
− (λ) = Ec

−(λ)⊕ Euu
− (λ), Ecs

+ (λ) = Ec
+(λ)⊕ Ess

+(λ).

The subspaces Ess
+(λ) and Euu

− (λ) have dimension n − 1 for pitchfork bifurcations and n − 2 for
Turing instabilities, and solutions with initial data in Ess

+(λ) and Euu
− (λ) decay exponentially as

x→∞ and x→ −∞, respectively, with a rate that is independent of λ.

Thus, it suffices to construct a further splitting of the center bundles Ec
±(λ) that extends the spaces

Ec
−(λ) ∩Eu

−(λ) and Ec
+(λ) ∩Es

+(λ) from Reλ > 0 into Re γ ≥ 0. This construction will be carried
out first for pitchfork bifurcations. Afterwards, we explain the modifications that are necessary to
treat Turing instabilities.

3.3 Pitchfork bifurcations: Stability

To find the desired splitting of the center bundle, we consider the nonlinear and the linearized
system simultaneously:

ux = v

vx = −D−1f(u;µ) (3.2)

ǔx = v̌

v̌x = D−1[λ− fu(u;µ)]ǔ.

We are interested in bounded solutions of the last two equations in (3.2) when u(x;µ) is the
homoclinic orbit found in Theorem 1. Note that (3.2) has a natural skew-product structure since
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the equations for (u, v) do not depend on (ǔ, v̌). For (µ, λ) close to zero, the origin has a four-
dimensional center manifold. Within this invariant manifold, we recover the skew-product structure.
Furthermore, after transforming variables appropriately, the vector field on the center manifold is
given by

Ax = B

Bx = −µA+A3 +AO(|A|4 + |B|4 + |µ| |A|2 + µ2|A|)

ax = b

bx = −µa+ 3A2a+ λa+ O(|λ|2 + |A|3 + |B|3 + |µ| |A|+ µ2)(|a|+ |b|).

If we set
µ = µ0ε, λ = γ2

0ε (3.3)

with Re γ0 ≥ 0, and use the coordinate z = b/a in the projective space, we obtain

Ax = B

Bx = −µ0εA+A3 +AO(|A|4 + |B|4 + |ε| |A|2 + ε2|A|) (3.4)

zx = 3A2 + (γ2
0 − µ0)ε− z2 + O(ε2 + |A|3 + |B|3 + ε |A|).

Singular chart: Small eigenvalues

We begin by investigating small eigenvalues |λ| ≤ µ in the supercritical regime µ > 0. Thus, we set
µ0 = 1 and Re γ0 ≥ 0 with |γ0|2 ≤ 1, and employ again the blow-up procedure from Section 2.1.
Upon defining

A1 = A, B1 =
B

A2
, ε1 =

ε

A2
, z1 =

z

A
,

and after factoring the Euler multiplier A1, equation (3.4) becomes

A′1 = A1B1

B′1 = 1− ε1 − 2B2
1 + O(A1) (3.5)

ε′1 = −2ε1B1

z′1 = 3 + (γ2
0 − 1)ε1 −B1z1 − z2

1 + O(A1).

Equation (3.5) has the two singular equilibria

p+
s =

(
0,

1√
2
, 0,

√
2
)
, p−s =

(
0,

1√
2
, 0,

−3√
2

)
in the coordinates (A1, B1, ε1, z1). The singular equilibrium p+

s is exponentially attracting inside
the singular sphere A1 = 0 with stable eigenvalues −2/

√
2, −4/

√
2 and −5/

√
2, while it is unstable

in the direction A1 normal to the sphere with unstable eigenvalue 1/
√

2. The eigenvector es and
the associated adjoint eigenvector e∗s that correspond to the leading stable eigenvalue −2/

√
2 are

given by

es =

(
0,
−1√

2
, 1,

√
2γ2

0

3

)
, e∗s = (0, 0, 1, 0) . (3.6)
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We now set A1 = 0. In addition to the singular equilibria p±s , we find the wave equilibria

p±w =
(

0, 0, 1,±
√

2 + γ2
0

)
.

They have a one-dimensional unstable manifold whose (B1, ε1)-component contains the explicit
heteroclinic solution (2.7)

(B1, ε1)(x) =

(√
2

4

(
1 + tanh

(
x√
2

))
,
1
2

(
1− tanh

(
x√
2

)))
or, equivalently,

B1(x) =
1− ε1(x)√

2
, ε1(x) =

1

1 + e
√

2x
. (3.7)

Note that 0 < ε1(x) < 1 for all x. The expression for the z1-component of the unstable manifold
of p±w is less explicit. It is straightforward to check, however, that Re z′1 > 0 whenever Re z1 = 0:
indeed, using Re z1 = 0, |γ2

0 | ≤ 1, and 0 < ε1 < 1 in the last equation of (3.5), we obtain

Re z′1 = 3 + (Re γ2
0 − 1)ε1(x)− Re(z2

1) ≥ 1 + |z1|2 > 0. (3.8)

Thus, the heteroclinic orbit from p+
w with Re

√
2 + γ2

0 > 0 actually connects to the singular equi-
librium p+

s with Re z1 > 0 (see [20, §3.4] for details). We remark that the last equation in (3.5)
corresponds to the singular Sturm–Liouville eigenvalue problem

a′′ = [3 + (γ2
0 − 1)ε1(x)]a−B1(x)a′.

The conclusion we derived from the estimate (3.8), namely that the unstable manifold of the wave
equilibrium p+

w connects to the singular equilibrium p+
s , is in fact equivalent to the absence of

nontrivial eigenvalues γ0 for the singular Sturm–Liouville problem as a connecting orbit to p−s
would generate such an eigenvalue of the singular Sturm–Liouville problem.

Next, we consider the region A1 > 0 outside the singular sphere A1 = 0. We see that the wave
equilibria

p±w =
(
A1, 0, 1 + O(A1),±

√
2 + γ2

0 + O(A1)
)

and their unstable manifolds can be continued uniquely for all small A1. For positive A1 and
Re
√

2 + γ2
0 > 0, the equilibrium p+

w represents the unstable subspace of the linearization about the
asymptotic state of the bifurcating wave.

We fix a small positive constant δ > 0. We are then interested in the value zout
1 of z1 upon tracking

the unstable manifold of the wave equilibria that correspond to small A1 with δ � A1 > 0 until
it hits the cross-section A1 = δ. The computation of zout

1 requires again an analysis of the passage
near the singular equilibrium p+

s . Hence, we define two affine cross-sections Σin and Σout via

Σin = {p = (A1, B1, ε1, z1); 〈e∗s , p− p+
s 〉 = ε1 = δ}, Σout = {(A1, B1, ε1, z1); A1 = δ},

where we used the expression (3.6) for e∗s . Equation (3.7) guarantees that the unstable manifold
of p+

w hits Σin at a point pin since its ε1-component is never zero. Since the remaining stable
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eigenvalues produce much stronger decay, we see, upon using Shilnikov variables [2] and exploiting
the expression

〈e∗s , pin − p+
s 〉 = ε1 = δ,

that the (ε1, z1)-component of pin is given by

(εin1 , z
in
1 ) =

(
δ,
√

2 +
√

2δ
3

(γ2
0 + oδ(1))

)
,

where oδ(1) depends smoothly on γ2
0 . Using again Shilnikov variables [2], we obtain the estimates

Ain
1 = δe−T/

√
2[1 + oT (1)], zout

1 =
√

2 +
√

2δ
3

(γ2
0 + oδ(1))e−2T/

√
2[1 + oT (1)]

for the value of A1 in Σin and of z1 in Σout, where oT (1) → 0 as T →∞. Thus, we obtain

zout
1 =

√
2 +

√
2

3δ
(γ2

0 + oδ(1)) (Ain
1 )2 [1 + oAin

1
(1)].

Since ε = ε1A
2
1 = δA2

1, and therefore A2
1 = ε/δ, in Σin, and z = z1δ in Σout, we get

zout =
√

2
[
δ +

(γ2
0 + oδ(1))ε

3δ
[1 + oε(1)]

]
, (3.9)

where oδ(1) depends smoothly on γ2
0 . Using the scaling (3.3) with µ0 = 1, we finally obtain

zout =
√

2
[
δ +

λ+ µ oδ(1)
3δ

[1 + oµ(1)]
]
,

where oδ(1) depends smoothly on λ/µ. Thus, we see that zout is C2 in γ =
√
λ and C1 in λ in the

region |λ| ≤ µ that we considered here. In summary, we proved that we can define and continue
the unstable subspace within the center space through the bifurcation point, at least for |λ| ≤ µ.

Rescaling chart: Small parameters

In the next step, we analyse (3.4) for small µ0 with |γ0|2 = 1. It is convenient to introduce the
ε-directional blow-up chart whose coordinates are given by

A2 =
A√
ε
, B2 =

B

ε
, ε2 = ε, z2 =

z√
ε
.

After factoring the Euler multiplier ε, equation (3.4) becomes

A′2 = B2

B′2 = −µ0A2 +A3
2 + O(

√
ε2)

ε′2 = 0

z′2 = γ2
0 − µ0 + 3A2

2 − z2
2 .

We restrict our analysis to the region where µ0 ≥ 0, |γ0|2 = 1 and Re γ0 ≥ 0 which corresponds to
the spectral region λ ∈ C \ R− where the cut is taken along the absolute spectrum R−.
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In this chart, the wave equilibria are given by

pw =
(
√
µ0, 0, ε2,

√
γ2

0 + 2µ0

)
where the square root is assigned to ensure that Re z2 ≥ 0. For ε = 0, the wave equilibria are
connected to the singular equilibrium p+

s in the A-directional blow-up chart by the heteroclinic
orbit

A2 = −√µ0 coth
(√

µ0

2
x

)
, B2 =

1√
2
(A2

2 − µ0)

which exists provided µ0 > 0 but has a smooth limit as µ0 → 0 for each finite x. For ε > 0
small and Re γ0 > 0, the one-dimensional weak unstable manifolds of the wave equilibria depend
smoothly on ε since the equilibria are normally hyperbolic for µ0 > 0 (the limit µ0 = 0 in the (A,B)-
components has been considered in Section 2.1). As shown in [20, §3.3], the unstable manifold in
the z2-equation can then be continued smoothly up to Re γ0 = 0 using the variation-of-constants
formula and the contraction-mapping principle in spaces of bounded functions with weight 1/|x|.
Since the unstable manifold always has a nonzero component in the direction of A2, we can change
coordinates to the A-directional blow-up chart where ε1 = ε/A2 = 1/A2

2 is bounded for the part of
the unstable manifold outside a fixed neighborhood of the wave equilibrium. We monitor ε1 along
the heteroclinic until we hit the section Σin. The same computation as for µ0 = 1 shows that the
expression (3.9) is still valid with uniform error estimate in |γ0|2 + |µ0| = 1 for µ0 ≥ 0.

Lastly, the case µ0 < 0 is very similar as we have to follow the unstable manifold of the wave
equilibrium at µ0 = 0 to negative values of µ0. Since this can be achieved by utilizing the ε-
directional blow-up chart as in the case µ0 > 0, we decided to omit the details.

The Evans function near zero

In summary, we demonstrated that the bundles Eu and Es can be continued in the fashion claimed
in Proposition 3.1, at least in a neighborhood of the asymptotic state |A| = δ. To extend these
bundles to x = 0, where we shall match with Fix(R), we simply transport the bundles with the
linearized flow. Since the bifurcating pulses are continuous in µ, the linearized equation depends
continuously on µ and γ, we see that the bundles, evaluated at x = 0, depend on λ and µ in the
fashion stated in Proposition 3.1.

It remains to prove Proposition 3.2. We have to show that the derivative of E , considered as a
real-valued function of λ ≥ 0, does not vanish. First, by Hypothesis 3, there are no roots of the
Evans function that correspond to even eigenfunctions. Thus, we can redefine the Evans function
to measure only eigenvalues associated with odd eigenfunctions, which we may achieve by using
the definition

E(λ) = det[eu1 , . . . , e
u
n, e

−R
1 , . . . , e−R

n ] (3.10)

where (e−R
j )j is a basis of Fix(−R). Next, we notice that the null space of the matrix in the

definition (3.10) of the Evans function is one-dimensional since the intersection of Eu
−, evaluated

at x = 0, and Fix(−R) is one-dimensional and is not contained in the strong unstable subspace
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Euu
− . Using the reduction to the center-bundle, we may calculate the Evans function in the section

|A| = δ near the singular sphere. We obtain the expansion

E(λ) = zout(λ)− z−R(λ) + o(λ)

where z−R(λ) denotes the location of Fix(−R) transported backwards from x = 0 to the section.
Now, we argue by contradiction and assume that Eλ(0) = 0. Upon differentiating (3.2) with respect
to λ, we see that the derivative zout

λ (x) corresponds to a solution of the system

ux = v (3.11)

vx = −D−1[fu(q(x); 0)u+ qx(x)]

on (−∞, 0] and that zout
λ (0) ∈ Fix(−R). Thus, to reach a contradiction to Hypothesis 4, we

need to show that the solution associated with zout
λ (x) is a generalized eigenfunction of λ = 0 in

C0
unif(R,Cn), i.e., that it is bounded as x→ −∞. First, observe that

zout
λ =

(
b

a

)
λ

=
(ax
a

)
λ

= (ln a)xλ. (3.12)

On the other hand, using the results in this section and in Appendix B, it is not hard to see that

∂λz1(y) = C1e−y/
√

2[1 + oy(1)]

for some C1 6= 0, where oy(1) → 0 as y → −∞. Using the relation dy/dx = |A|, we see that this
translates into zout

λ (x) = x[C2 + ox(1)] as x → −∞ for some constant C2. Upon substituting this
result into (3.12) and integrating over x, we obtain

x2[C3 + o(1)] = (ln a)λ =
aλ
a

for some constant C3. Since a(x) = qx(x) = x−2[C4 + ox(1)], we finally get aλ(x) = C5 + ox(1)
as x → −∞ which shows that the solution of (3.11) that corresponds to zout

λ (x) indeed lies in
C0

unif(R,Cn). As outlined above, this contradicts Hypothesis 4 and therefore proves Proposition 3.2.

3.4 Turing bifurcations: Stability

We prove Propositions 3.1 and 3.2 for Turing instabilities. Our strategy is similar to the one
pursued in the preceding section where we treated pitchfork bifurcations.

First, we reduce the eigenvalue problem in a neighborhood of the origin to an eight-dimensional
center manifold. After carrying out the usual normal-form transformations on the center manifold,
the vector field becomes (see [17] for details)

Ax = B + iA(1 + P )

Bx = −µA+ |A|2A+ iB(1 + P ) +AQ+R

ax = b+ ia+ r1(a, b, a, b, λ)

bx = (λ− µ)a+ 2|A|2a+A2a+ r2(a, b, a, b, λ)

ax = b+ ia+ r3(a, b, a, b, λ)

bx = (λ− µ)a+ 2|A|2a+A2a+ r4(a, b, a, b, λ)
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where P , Q and R have been introduced in (2.11), and the remainder terms rj account for higher-
order terms. Note that (a, b) does not denote the complex conjugate of (a, b). We scale λ = εγ2

0

and µ = εµ0, and use the |A|-directional blow-up variables

A1 =
A

|A|
, B1 =

B

|A|2
, ε1 =

ε

|A|2
, a1 = a, b1 =

b

|A|
, a1 = a, b1 =

b

|A|
.

After passing to a co-rotating frame

(A1, B1, a1, b1, a1, b1) 7−→ eix(A1, B1, a1, b1, a1, b1),

introducing the additional fast angular variable ψ = |A|2eix and the invariant N := A1B1, and
rescaling the independent variable to factor out the Euler multiplier |A|, we obtain the equation

Ȧ1 = B1 −A1Nr + O(|A|)

Ḃ1 = (1− µ0ε1)A1 − 2B1Nr + O(|A|)

ε̇1 = −2ε1Nr

˙|A| = |A|Nr

ψ̇ = |A|+ ψNr (3.13)

ȧ1 = b1 + O(|A|)

ḃ1 = (γ2
0 − µ0)ε1a1 + 2a1 +A2

1a1 −Nrb1 + O(|A|)

ȧ1 = b1 + O(|A|)

ḃ1 = (γ2
0 − µ0)ε1a1 + 2a1 +A2

1a1 −Nrb1 + O(|A|).

Note the first five equations coincide with (2.15). The higher-order terms in (3.13) respect the
skew-product structure and linearity of the equations for (a1, b1, a1, b1).

In the singular sphere |A| = 0, the eigenvalue problem decouples into the two Sturm–Liouville
eigenvalue problems

ä+ = [3 + (γ2
0 − µ0)ε1]a+ −Nrȧ+

ä− = [1 + (γ2
0 − µ0)ε1]a− −Nrȧ−

for a+ = a1 + a1 and a− = a1 − a1, where (Nr, ε1) are evaluated at the singular heteroclinic orbit
(3.7). Transforming to z± = ȧ±/a± and arguing as in (3.8), we see that neither of these eigenvalue
problems has unstable spectrum in |arg γ0| < π/4 + δ for some small δ > 0.

As in the preceding section, we write the four linear equations for (a1, b1, a1, b1) as a nonlinear
system on the Grassmannian with coordinates (b1, b1) = Z1(a1, a1). The complex 2× 2-matrix Z1

satisfies the matrix Riccati equation

Ż1 = M0 +M1Z1 − Z2
1 , (3.14)

where

M0 =

(
(γ2

0 − µ0)ε21 + 2 1
1 (γ2

0 − µ0)ε21 + 2

)
, M1 =

(
−Nr 0

0 −Nr

)
.

32



At the wave equilibrium (B1, ε1) = (0, 1), the Z1-equation has a unique equilibrium with the
property that it is stable inside the Z1-equation. This equilibrium represents the unstable subspace
of the linearization about the asymptotic Turing pattern. Within the (A1, B1, ε1)-subspace, the
wave equilibrium has a one-dimensional unstable manifold that points into the |A|-direction and
that connects to the singular equilibrium (A1, B1, ε1) = (0, 1/

√
2, 0). The Z1-equation evaluated at

the singular equilibrium has a unique equilibrium

Zs =

(
3 1
1 3

)

which is stable within the Z1-equation with algebraically simple eigenvalues at −3/
√

2 and −5/
√

2,
and a geometrically double eigenvalue at −4/

√
2. In particular, as for pitchfork bifurcations, the

leading eigenvector of the full linearization of (3.13) does not lie in the Z1-subspace. We claim
that the unstable manifold of the wave equilibrium in the full space connects to the stable singular
equilibrium: Indeed, the flow on the Grassmannian is gradient-like, and convergence to an unsta-
ble equilibrium would generate an eigenvalue for the aforementioned Sturm–Liouville eigenvalue
problems for Re a1 and Im a1 which we precluded, however.

We can now proceed as before and compute the asymptotics for the Z1-equation at the point |A| = δ

in terms of the value of |A| at the wave equilibrium. The component Zout
1 can be calculated from

(3.14) using the expansion
ε1(y) = εin1 e2y/

√
2[1 + oy(1)]

for ε1 that follows from equation (B.8) in Appendix B. In particular, following the arguments
presented in the preceding section, we have

Zout
1 = Zout

1,0 + Zout
1,1 γ

2
0µ0ε1 + o(ε1).

A similar analysis for the γ-rescaling chart completes the picture and shows that the bundle Eu
−

can be extended as stated in Proposition 3.1.

It remains to outline the proof of Proposition 3.2. As in the case of pitchfork instabilities, we
prove that Eu

− and Fix(−R) intersect along a one-dimensional subspace that is generated by the
derivative of the pulse. In the cross-section |A| = δ on the center-bundle, this corresponds to an at
least one-dimensional null space of Zout − Z−R where Z−R is the point on the Grassmannian that
corresponds to the intersection of Fix(−R) with the four-dimensional center bundle, transported to
|A| = δ. If the dimension of the intersection were larger than one, the dimension of the null space
of L∗ would be at least two in contradiction to Hypothesis 4. The projection of the derivative with
respect to λ of the linearized equation onto the one-dimensional null space of Zout − Z−R is zero
if, and only if, there exists a pre-image of q′ in L2. This finishes the proof of Proposition 3.2.

4 Stability for oscillatory bifurcations

We shall prove Theorem 6 for the symmetric defect q0(x;µ). Since the spectrum of the asymptotic
wave trains is inherited from the Ginzburg–Landau equation, it is marginally stable on account
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of Hypothesis 10. We therefore concentrate on point spectrum near the Floquet exponent λ = 0.
We remark that [21, Theorem 6.1] together with our existence proof implies that the symmetric
(and the asymmetric) pulse will have two Floquet exponents at zero, which are generated by the
invariance with respect to translations in space and time. This is a peculiar situation as the primary
pulse had only a single eigenvalue (at the origin). We shall see that the Nozaki–Bekki holes will
contribute two Floquet exponents to the spectrum of the modulated pulses, yielding a total of
three Floquet exponents close to zero. As argued above, two of these exponents are at the origin.
As we shall see, the remaining eigenvalue is associated with a change of the relative phase of the
asymptotic wave trains to the left and right of the pulse.

Floquet exponents of the symmetric pulse are determined by the existence of bounded nonzero
solutions u(x, t) to

ω0(µ)uτ = Duxx + [fu(q0(x, τ/ω0(µ);µ);µ)− λ]u, x ∈ R (4.1)

that have temporal period 2π. We write this equation as

ux = v (4.2)

vx = D−1[ω0(µ)∂τ − fu(q0(x, τ/ω0(µ);µ);µ) + λ]u

where (u, v)(x) ∈ Y = H1/2(S1,C2n) × L2(S1,C2n) for each fixed x. We will often write the
modulated-wave equation (2.19) in the form

Ux = A0U + F(U ;µ), U = (u, v) ∈ Y

and use the notation Q0(x;µ) = (q0, ∂xq0)(x, τ/ω0(µ);µ) ∈ Y for the modulated pulse. With the
obvious notation, (4.2) can then be written as

Ux = [A0 + FU (Q0(x;µ);µ) + λB]U. (4.3)

Since the modulated pulse q0(x, t;µ) is symmetric with respect to the reverser R0, it suffices to find
bounded nonzero solutions (u, v)(x, τ) of (2.21) for x ∈ R− that satisfy the boundary condition

(u, v)(0, ·) ∈ Fix(R0) (4.4)

or
(u, v)(0, ·) ∈ Fix(−R0). (4.5)

We will focus on (4.5) as it is the more complicated case.

Since the modulated pulse q0(x, t;µ) is constructed by gluing together the standing pulse q(x) and
the Nozaki–Bekki holes Anb(X), we will construct solutions to (4.2) by gluing together eigenfunc-
tions of the linearization of (1.1) about the standing pulse and of the complex Ginzburg–Landau
equation linearized about the Nozaki–Bekki holes (see [14] for similar ideas).
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4.1 The linearization near the origin

We again reduce the modulated-wave equation (2.19) and its linearization (4.2) simultaneously to
the center-unstable and the eight-dimensional center manifold. We also straighten out the strong
unstable fibers inside the center-unstable manifold. As a consequence, the vector field on the
center manifold decouples from the flow on the unstable fibers, and the vector field corresponding
to (4.2) inside the center-unstable manifold is therefore of skew-product form. In particular, the
linearization on the center manifold about the modulated wave decoules and is, in fact, given by
the linearization about the projection of the modulated pulse onto the center manifold along the
unstable foliation. Using the scaling

a = A, b =
√
µB, a = A, b =

√
µB, x =

X
√
µ
, λ = µλ̌, (4.6)

this linearization is given by

Ax = B + O(|µ|(|A|+ |B|+ |A|+ |B|))

Bx =
1

1 + iα
[
−(1 + iΩ)A+ 2(1 + iβ)|Anb(X;µ)|2A+ (1 + iβ)Anb(X;µ)2A+ λ̌A

]
(4.7)

+O(|µ|(|A|+ |B|+ |A|+ |B|))

Ax = B + O(|µ|(|A|+ |B|+ |A|+ |B|))

Bx =
1

1− iα
[
−(1− iΩ)A+ 2(1− iβ)|Anb(X;µ)|2A+ (1− iβ)Anb(X;µ)2A+ λ̌A

]
(4.8)

+O(|µ|(|A|+ |B|+ |A|+ |B|))

where the perturbed Nozaki–Bekki hole Anb(X;µ) lies in the surface Γ0(µ) for X = 0. In particular,
for µ = 0, (4.7) is simply the linearization of the CGL about the standing Nozaki–Bekki hole. Note
that (A,B) does not denote the complex conjugate of (A,B).

For λ̌ = 0, the derivative A′nb(X;µ) and the phase-derivative iAnb(X;µ) are the unique nonzero
bounded solutions of (4.7) on R−. For Re λ̌ > 0, the linearization about the asymptotic wave trains
has two unstable and two stable Floquet exponents. As proved in [21], there is a δ0 > 0 such that
the 2 : 2 splitting with respect to the real parts of the Floquet exponents persists for all Re λ̌ ≥ −δ0.
We denote the associated linearly independent solutions of (4.7) by φj(X; λ̌, µ) for j = 1, 2 with

φ1(X; 0, µ) = (A′nb(X;µ), B′nb(X;µ), A′nb(X;µ), B′nb(X;µ)), (4.9)

φ2(X; 0, µ) = (iAnb(X;µ), iBnb(X;µ), iAnb(X;µ), iBnb(X;µ)),

where (Anb, Bnb) denotes the complex conjugate of the perturbed Nozaki–Bekki hole. As µ → 0,
these solutions converge to solutions of the CGL linearized about the standing Nozaki–Bekki hole
for µ = 0.

In summary, the general bounded solution of (4.7) on R− is of the form

(A,B,A,B)(X) = ď1φ1(X; λ̌, µ) + ď2φ2(X; λ̌, µ) (4.10)

with ď = (ď1, ď2) ∈ C2. We shall later use the slightly more convenient coordinates

(ReA, ImA,ReB, ImB) :=
(
A+A

2
,
A−A

2i
,
B +B

2
,
B −B

2i

)
.
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Lastly, we remark that solutions with initial data in the strong unstable component W will always
decay exponentially to zero as x→ −∞.

4.2 The linearization near the standing pulse

Using the estimate (2.28), we can write (4.3) on [−L, 0] as

Ux = [A0 + FU (q, q′; 0) + λB + O(|µ|)]U =: [A(x) + λB + O(|µ|)]U (4.11)

with U ∈ Y , where q denotes the standing pulse at µ = 0. We seek solutions U(x) of (4.11) that
satisfy

U(0) ∈ Fix(−R0). (4.12)

We will choose L later but emphasize that it will depend only on properties of (4.11) at (µ, λ) = 0:
in particular, its choice depends only on properties of the primary pulse.

First, we set (µ, λ) = 0. Equation (4.11) is then simply the linearization

Ux = A(x)U (4.13)

of the modulated-wave equation (2.19) about the standing pulse Q(x) = (q, q′). Note that (4.13)
leaves the spaces Y` from §2.3 invariant, and recall also that Q decays to zero exponentially.

The action of R0 on Y` has been determined in (2.20): we see that −R0 acts like Rπ on each Y`

with ` odd. Specifically, −R0 acts as Rπ on Y1. It follows that the center-unstable manifold W cu(0)
of the origin intersects Fix(−R0) in a three-dimensional subspace spanned by the derivative Q′(x)
of the pulse Q = (q, q′) in Y0 and two solutions Rj(x) with j = 1, 2 in Y1 such that R1(−L) and
R2(−L) are an orthogonal basis of the tangent space of the surface Γπ(0) at the origin (see again
§2.3). In particular, R1(−L) and R2(−L) lie in the center component. Note that the solutions
R1(x) and R2(x) grow linearly in x for large x due to (2.25) and (2.26). There are two other,
linearly independent solutions, denoted by V c

0 (x), that lie asymptotically in the four-dimensional
center space of the linearization about U = 0: Since Q decays to zero exponentially, these solutions
can be chosen to have B = 0 for all large x once we transform into the coordinates (A,B,W ) from
the preceding section.

In summary, we have

Fix(−R0) ∩ TQ(0)W
cu(0) = span{Q′(0), R1(0), R2(0)} (4.14)[

Fix(−R0) + TQ(0)W
cu(0)

]⊥ = span{Q∗(0)},

and we can find subspaces Yrev of Fix(−R0) and Yu of TQ(0)W
u(0) so that

span{Q′(0), R1(0), R2(0)} ⊕ span{Q∗(0)} ⊕ Yrev ⊕ Yu ⊕ Yc = Y. (4.15)

Here, Yc = span{Y c
0 (0)}, while Q∗(x) denotes the unique (up to constant multiples) bounded

nonzero solution of the adjoint variational equation about the standing pulse in Y0. Lastly, we de-
note the center stable, strong unstable, and strong stable evolutions of (4.13) by Φcs(x, y), Φu(x, y),
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and Φs(x, y), respectively. In particular, there are constants C > 0 and η > 0 such that

‖Φcs(y, x)‖L(Y ) ≤ C|x− y|, ‖Φu(x, y)‖L(Y ) ≤ Ceη(x−y), ‖Φs(y, x)‖L(Y ) ≤ Ce−η(y−x) (4.16)

for x ≤ y ≤ 0. Throughout the rest of this section, various different constants, which are all
independent of L, µ and λ, are denoted by C.

We make the ansatz

U(x) = d0Q
′(x) +

√
µ(d1R1(x) + d2R2(x)) + V (x) =: R(x)d+ V (x)

with d = (d0, d1, d2) ∈ C3 and remark that

‖Rd‖ := sup
x∈[−L,0]

|R(x)d|Y ≤ C(|d0|+
√
µL(|d1|+ |d2|)). (4.17)

Any bounded solution U(x) of (4.13) on (−L, 0) for µ > 0 can now be obtained via a solution V to
the fixed-point equation

V (x) = Φs(x,−L)V s
0 + Φu(x, 0)V u

0 + V c
0 (x) (4.18)

+
∫ x

0
Φu(x, y) [λB + O(µ)] (V (y) +R(y)d) dy

+
∫ x

−L
Φcs(x, y) [λB + O(µ)] (V (y) +R(y)d) dy

on C0([−L, 0], Y ), where V u
0 ∈ Yu. Using the estimate (4.16), we obtain the estimate

r.h.s. of (4.18) ≤ C
(
|V c

0 |+ |V s
0 |+ |V u

0 |+ L2(|λ|+ µ|)(‖V ‖+ ‖Rd‖)
)

for the right-hand side of (4.18), where ‖V ‖ = supx∈[−L,0] |V (x)|Y . Thus, choosing µ and λ small
compared with L, we can solve (4.18) uniquely for V using the contraction-mapping principle. The
solution V (x) satisfies

‖V ‖ ≤ C (|V c
0 |+ |V s

0 |+ |V u
0 |+ L(|λ|+ |µ|)‖Rd‖)

V (0) = Φs(0,−L)V s
0 + V u

0 + V c
0 (0) +

∫ 0

−L
Φcs(0, y) [λB + O(µ)] (V (y) +R(y)d) dy

= V u
0 + V c

0 (0) +
∫ 0

−L
Φcs(0, x) [λB + O(µ)]R(x)d dx (4.19)

+O
(
e−ηL|V s

0 |+ L2(|λ|+ |µ|)(|V u
0 |+ |V c

0 |+ |V s
0 |) + L4(|λ|+ |µ|)2‖Rd‖

)
V (−L) = V s

0 + Φu(−L, 0)V u
0 + V c

0 (−L) +
∫ −L

0
Φu(−L, y) [λB + O(µ)] (V (y) +R(y)d) dy

= V s
0 + V c

0 (−L) + O
(
e−ηL|V u

0 |+ (|λ|+ |µ|)(|V u
0 |+ |V c

0 |+ |V s
0 |+ ‖Rd‖)

)
.

4.3 Matching

First, we need to ensure that U(0) ∈ Fix(−R0) where

U(0) = R(0)d+ V (0)

= d0Q
′(0) +

√
µ(d1R1(0) + d2R2(0)) + V u

0 + V c
0 (0) +

∫ 0

−L
Φcs(0, x) [λB + O(µ)]R(x)d dx

+O
(
e−ηL|V s

0 |+ L2(|λ|+ |µ|)(|V u
0 |+ |V c

0 |+ |V s
0 |) + L4(|λ|+ |µ|)2‖Rd‖

)
.
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We see that there are unique elements (V u
0 , V

c
0 (0)) ∈ Yu × Yc so that the components of U(0) in

Yu × Yc are zero. The elements Y u
0 and Y c

0 (0) are linear in (Y s
0 , d) and satisfy

|Y u
0 |+ |Y c

0 | ≤ C
(
(e−ηL + L2(|λ|+ |µ|))|V s

0 |+ L2(|λ|+ |µ|)‖Rd‖
)

since R(0) ∈ Fix(−R0). Using (4.14), (4.15) and R(0) ∈ Fix(−R0), we find that U(0) ∈ Fix(−R0)
is equivalent to solving∫ 0

−L
〈Q∗(x), [λB + O(µ)]R(x)d〉dx+ O

(
(e−ηL + L2(|λ|+ |µ|))|V s

0 |+ L4(|λ|+ |µ|)2‖Rd‖
)

= 0.

(4.20)
Before solving (4.20), we shall match near the origin. We first make sure that U(−L) lies in the
tangent space of the center-unstable manifold. Afterwards, we match the center part of U(−L) to
the solutions (4.9).

Using the expression for V (−L) in (4.19) together with the fact that R(−L) lies in the tangent
space of the center-unstable manifold, we obtain that U(−L) is in the tangent space of the center-
unstable manifold provided we set V s

0 = 0. Thus, we have solved uniquely for (V u
0 , V

c
0 , V

s
0 ) which

satisfy the estimate

|V u
0 |+ |V c

0 | ≤ CL(|λ|+ |µ|)(|d0 +
√
µL(|d1|+ |d2|)), V s

0 = 0. (4.21)

At this point, we should say precisely how we choose L. We note that [15, (4.3)] and the fact that
the eigenvalue λ = 0 of the primary pulse Q(x) is simple imply that∫ 0

−∞
〈Q∗(x),BQ′(x)〉dx 6= 0.

We then define

M0 :=
∫ 0

−L
〈Q∗(x),BQ′(x)〉dx (4.22)

which is O(e−ηL) close to the nonzero integral at L = ∞. Thus, we choose L � 1 so large that
M0 6= 0 and so that the preceding calculations work out for (µ, λ) = 0, which requires that the eror
terms O(e−ηL) are small enough. This choice of L is fixed from now on, and (µ, λ) are chosen small
compared to L.

The preceding analysis shows that the condition (4.12) is equivalent to (4.20) which, upon substi-
tuting the estimate (4.21), becomes

M0λd0 + O
(
(|µ|+ |λ|2)|d0|+ (|λ|+√

µ)(|λ|+ |µ|)(|d1|+ |d2|)
)

= 0. (4.23)

On the other hand, we have shown that U(−L) is in the tangent space of the center-unstable
manifold, and its center component is given by

U c(−L) = V c
0 (−L) +

√
µ(d1R1(−L) + d2R2(−L)).

We need to match U c(−L) with the general bounded solution (4.10) of the center part of the
linearization. Since (4.10) is expressed in scaled variables, we apply the scaling (4.6) also to U c(−L).
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Using the estimate (4.21) together with the fact that the B-component of V c
0 (−L) vanishes, we

obtain
U c(−L) 7−→ d1r1(−L) + d2r2(−L) + O(µ)|d0|+ O(µ3/2)(|d1|+ |d2|)

where, in the (ReA, ImA,ReB, ImB) coordinates,

r1(−L) = (
√
µRe ρπ(0),

√
µ Im ρπ(0), 1, 0), r2(−L) = (−√µ Im ρπ(0),

√
µRe ρπ(0), 0, 1) (4.24)

since Rj(−L) ∈ Γπ(0). The resulting matching condition is given by

d1r1(−L) + d2r2(−L) + O(µ)|d0|+ O(µ3/2)(|d1|+ |d2|) = ď1φ1(X; λ̌, µ) + ď2φ2(X; λ̌, µ). (4.25)

4.4 Sharper estimates

It will be convenient to revise our ansatz slightly. Instead of using d0Q
′(x), we shall use the

derivative d0Q
′
0(x;µ) of the modulated pulse Q0(x;µ). Note that ‖Q′ − Q′0(x;µ)‖ = O(µ) on

[−L, 0] by (2.28). Since we still have R(0) ∈ Fix(−R0), the arguments above are still valid, except
that the center component of U(−L) now contains a contribution from the center part of Q′0(−L;µ).
Transforming the expression (2.27) using the scaling (4.6), we see that the center part of Q′0(−L;µ)
is O(µ) in the coordinates (A,B). Thus, the error estimates in (4.25) remain true. On the other
hand, Q′0(x;µ) is an exact solution at λ = 0 of the µ-dependent linearization. Therefore, the O(µ)d0

term in (4.23) becomes O(µ2)d0. In addition, we need to replace M0 by M0 + O(µ), since we need
to evaluate the right-hand side of (4.22) at Q′0(x;µ) instead of Q′(x). Thus, in summary, equation
(4.23) is replaced by

(M0 + O(|µ|))λd0 + O
(
(|µ|2 + λ2)|d0|+ (|λ|+√

µ)(|λ|+ |µ|)(|d1|+ |d2|)
)

= 0, (4.26)

while (4.25) is unchanged:

d1r1(−L) + d2r2(−L) + O(µ)|d0|+ O(µ3/2)(|d1|+ |d2|) = ď1φ1(X; λ̌, µ) + ď2φ2(X; λ̌, µ). (4.27)

4.5 The reduced eigenvalue problem

It therefore remains to determine all λ for which (4.26) and (4.27) have a nonzero solution (d, ď).
Since (4.26) and (4.27) are linear in (d, ď), it suffices to seek roots of the associated determinant
which is given by

E(λ̌, µ) :=

∣∣∣∣∣ O(µ) r1(−L) r2(−L) φ1(0; λ̌, µ) φ2(0; λ̌, µ)
E0(µλ̌, µ) O(µ3/2) O(µ3/2) 0 0

∣∣∣∣∣
where the complex-valued function

E0(λ, µ) = (M0 + O(|µ|))λ+ O(|µ|2 + |λ|2)

denotes the d0-dependent term in (4.26). Since E0 is smooth in its argument, we have

E0(µλ̌, µ) = µ[M0λ̌+ O(|µ|)]. (4.28)
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If we define
Enb(λ̌, µ) :=

∣∣r1(−L) r2(−L) φ1(0; λ̌, µ) φ2(0; λ̌, µ)
∣∣ ,

then the Evans function E(λ̌, µ) can be written as

E(λ̌, µ) = E0(µλ̌, µ)Enb(λ̌, µ) + O(µ5/2). (4.29)

We already derived the expansion (4.28) for E0 and focus therefore next on Enb. First, we em-
phasize that roots λ̌ of Enb(λ̌, 0) are in one-to-one correspondence, counting multiplicity, with odd
eigenvalues of the linearization of (1.8), posed in C0

odd, about the Nozaki–Bekki holes Anb. Hy-
pothesis 10(ii) therefore implies that Enb(λ̌, 0) has a simple root at λ̌ = 0 and no other roots in the
closed right-half plane: in particular,

Mnb := ∂λ̌Enb(0, 0) 6= 0.

On the other hand, we can compute Enb(0, µ) as follows: We substitute (4.24) for rj(−L) and (4.9)
for φj at λ̌ = 0. Next, we note that (Anb, Bnb)(0;µ) ∈ Γ0(µ), where Γ0(0) is given in (2.26). Thus,
we obtain

Enb(0, µ) =

∣∣∣∣∣∣∣∣∣∣

√
µRe ρπ(0) −√µ Im ρπ(0) 1 −√µ Im ρ0(0) + O(µ)

√
µ Im ρπ(0)

√
µRe ρπ(0) O(

√
µ)

√
µRe ρ0(0) + O(µ)

1 0 O(
√
µ) 0

0 1 O(
√
µ) 1 + O(µ)

∣∣∣∣∣∣∣∣∣∣
=

√
µRe(ρ0(0)− ρπ(0)) + O(µ)

from which we conclude that

Enb(λ̌, µ) = Mnbλ̌+
√
µRe(ρ0(0)− ρπ(0)) + O(

√
µ|λ̌|+ |µ|+ |λ̌|2) (4.30)

near (λ̌, µ) = 0 with Mnb 6= 0.

Substituting the expansions (4.28) and (4.30) into the equation

E0(µλ̌, µ)Enb(λ̌, µ) + O(µ5/2) = 0

and dividing by µ, we obtain the reduced equation[
M0λ̌+ O(µ)

] [
Mnbλ̌+

√
µRe(ρ0(0)− ρπ(0)) + O(

√
µ|λ̌|+ |µ|+ |λ̌|2)

]
+ O(µ3/2) = 0, (4.31)

where M0,Mnb 6= 0. Thus, we see that (4.31) has precisely two roots, given by

λ̌ = O(µ), λ̌ =
√
µ

Re(ρπ(0)− ρ0(0))
Mnb

+ O(µ), (4.32)

in the region Re λ̌ > −δ for some δ > 0.

The scaling (4.6) allowed us to find all eigenvalues λ of order O(µ). To exclude small eigenvalues
that do not obey this scaling, we use the rescaling

µ = µ̌|λ|, λ = eiφ|λ|.

Proceeding as above, we recover (4.7) in the center manifold with λ̌ replaced by eiφ and where the
CGL is now linearized about the Nozaki–Bekki hole of size O(µ̌). Since the small Nozaki–Bekki
holes do not have any O(1)-eigenvalues with eigenfunctions that satisfy (4.5), we see that we already
accounted for all eigenvalues.
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4.6 The Floquet spectra of the symmetric and asymmetric source

We computed the eigenvalues (4.32) belonging to eigenfunctions of the linearization about the
symmetric modulated pulse that lie in Fix(−R0). The analysis for the eigenfunctions in Fix(−R0)
is, in fact, easier since the only contribution comes from Enb: we find a single eigenvalue λ̌2 = O(µ).
Thus, the Floquet spectrum near zero in the original eigenvalue parameter λ =

√
µλ̌ consists of three

eigenvalues. We proved in [21, Theorem 6.1] that the linearization about a source has precisely two
Floquet exponents at zero which are generated by spatial and temporal translations. The remaining
Floquet exponent is given by

λ0 = Λµ3/2 + O(µ2), Λ =
Re(ρπ(0)− ρ0(0))

Mnb
.

The Floquet spectrum of the asymmetric pulse looks the same except that the nonzero Floquet
exponent λπ is given by

λπ = −Λµ3/2 + O(µ2) = −λ0 + O(µ2), Λ =
Re(ρπ(0)− ρ0(0))

Mnb
. (4.33)

In particular, if Re ρ0(0) 6= Re ρπ(0), then one of the two pulses is spectrally stable, while the other
is spectrally unstable. The dynamics created by the eigenvalues λ0 and λπ is a relative phase shift
of the wave trains to the left and right of the pulse: Thus, if the symmetric pulse is unstable, say,
then we expect that solutions nearby will evolve towards the asymmetric pulse simply by changing
the relative phase of the asymptotic wave trains to the left and right.

5 Compatibility of our hypotheses

In this section, we prove Theorem 7.

First, we argue that our hypotheses are robust: If they are satisfied for a specific reaction-diffusion
system, then they are also true for all nearby systems (where we work in the Ck-topology for k
sufficiently large). Clearly, linear instabilities of the kind described in Hypotheses 1 and 2 for
pitchforks, Hypotheses 5 and 6 for Turing instabilities, and in Hypotheses 7 and 8 for oscillatory
instabilities are robust. Next, our blow-up constructions show that the unstable manifolds of the
origin at onset depend smoothly on perturbations of the nonlinearity which guarantees robustness
of Hypothesis 3, while standard perturbation theory for homoclinic orbits shows that Hypothesis 11
is robust. Similarly, the marginal-stability Hypotheses 4 and 12 are robust since the Evans function
depends continuously on parameters. Lastly, Hypotheses 9 and 10 for the Nozaki–Bekki holes are
transversality conditions which are again robust since the coefficients in the CGL equation depend
smoothly on the data of the reaction-diffusion system.

It therefore remains to prove that the three classes are not empty. Our strategy is to take a reaction-
diffusion system that admits a stable pulse and to couple it to another system that exhibits a linear
pitchfork, Turing or Hopf instability. We shall omit the example for pitchfork bifurcations as it is
virtually identical to the one for Turing instabilities; note that the equation

ut = uxx + µu− u3 + u5
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satisfies all hypotheses for pitchforks except that the linearization about the pulse has a single
simple unstable eigenvalue.

5.1 The reaction-diffusion system with a stable standing pulse

We choose to work with the reaction-diffusion system

∂tu1 = ∂xxu1 − u1 + u3
1 +

1
2
u1u2 (5.1)

∂tu2 =
1
δ2

[
1
δ2
∂xxu2 − 12.5 δ2u2 −

1
2
u2

1 + c0u
2
1u2

]
that has been investigated recently in [3]. It has been proved in [3, Theorems 2.2 and 4.7] that
there are positive constants c0, c1 > 0 such that (5.1) has, for each 0 < δ � 1, a stable symmetric
standing pulse q(x): We have q(x) → 0 as |x| → ∞, the spectrum of the linearization of (5.1) about
q(x) is contained in the open left-half plane with the exception of an algebraically simple eigenvalue
at λ = 0, and the first component of the pulse given by

q1(x) =
√

2(1 + c1) sech(
√

1 + c1x) + O(δ)

where the O(δ) term is uniform in x ∈ R and valid in the C2-topology. We fix 0 < δ � 1 so small
that q1(x) achieves its nondegenerate positive maximum M at x = 0.

5.2 Turing instabilities: An example

We shall prove that there is a function g : R → R and an 0 < ε� 1 such that the system

∂tu1 = D1∂xxu1 + f1(u1, u2)

∂tu2 = D2∂xxu2 + f2(u1, u2)

∂tv1 = ∂xxv1 − v1 + 2v2 (5.2)

∂tv2 =
1
6
∂xxv2 −

1
3
v1 +

1
2
v2 +

1
3
µv2 −

1
9
v3
2 −

1
3
εg(u1),

with the first two equations given by (5.1), satisfies the assumptions of Theorems 3 and 4.

First, we set ε = 0 and linearize about v = 0 to get

Lµ =

 ∂xx − 1 2

−1
3

1
6∂xx + 1

2 + 1
3µ

 .

The spectrum of Lµ lies strictly to the left of the imaginary axis except for the critical dispersion
relation given by

λ(k) = −2
5
(k − 1)2 +

2
5
µ+ O(|µ|2 + |µ| |k − 1|+ |k − 1|3),

which verifies Hypothesis 5.
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From now on, we set µ = 0 and consider the standing-wave equation

v′1 = v3

v′2 = 6v4 (5.3)

v′3 = v1 − 2v2

v′4 =
1
3
v1 −

1
2
v2 +

1
9
v3
2 +

1
3
εg(q1(x))

associated with (5.2), where we already substituted the pulse of (5.1). First, we again set ε = 0 in
which case the four-dimensional center manifold of (5.3) is given simply by the equation for v. It
is convenient to parametrize the center manifold using the complex coordinates (A,B) ∈ C2 given
by

v1

v2

v3

v4

 =


1 i 1 −i
1 0 1 0
i 0 −i 0
i
6

1
6 − i

6
1
6




A

B

A

B

 ,


A

B

A

B

 =
1
2


0 1 −i 0
−i i −1 6
0 1 i 0
i −i −1 6




v1

v2

v3

v4

 . (5.4)

Transforming (5.3) for ε = 0 into these coordinates, and observing that the nonlinearity in (5.3)
with ε = 0 is cubic, we can find an additional coordinate transformation of the form “identity plus
at least cubic terms in (A,B)” to bring the vector field on the center manifold into normal form (up
to order five, say). Since there are no quadratic terms present in the first place, this transformation
does not change the coefficient of the |A|2A term which is easily seen to be one. Accounting now
for the εg(u1) term, we finally obtain the representation

Ax = iA+B + iAP (5.5)

Bx = iB +A|A|2 + εg(q1(x)) + iBP +AQ+ O(|A|5 + |B|5 + (|A|+ |B|)|εg(q1(x))|)

where P and Q are as in (2.11). In particular, we have established Hypothesis 6.

To verify the remaining Hypotheses 3 and 4, it suffices to prove that the unstable manifold of the
origin intersects Fix(R) transversely at the homoclinic orbit. In the coordinates (5.4), the reverser
R of (5.3) becomes

R : (A,B) 7−→ (A,−B)

(see [25, Lemma 2.11]) with fixed-point space

Fix(R) = {(A,B) = (a, ib); a, b ∈ R}.

For ε = 0, we have the expansion (2.18):

W u(0) =
{

(A,B) =
(
reiφ,

r2eiφ

√
2

)
+ O(r3); |r| � 1

}
. (5.6)

In particular, the pulse (u, v) = (q, 0) lies in both Fix(R) and W u(0). However, the tangent space
of the unstable manifold at the origin is given by

T0W
u(0) = {(A, 0); A ∈ C}
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so that Fix(R) and W u(0) are clearly not transverse for ε = 0. Thus, we shall continue the unstable
manifold up to x = 0 and expand it in terms of ε.

We introduce a new variable τ via

τ := tanh(κx), x =
1
2κ

ln
1 + τ

1− τ

where κ > 0 is chosen to be smaller than a fourth of the exponential decay rate of the pulse q1(x).
We can then write (5.5) as the smooth autonomous system

Ax = iA+B + iAP (5.7)

Bx = iB +A|A|2 + εg(q1(τ)) + iBP +AQ+ O(|A|5 + |B|5 + (|A|+ |B|)|εg(q1(τ))|)

τx =
1− τ2

κ
.

The asymptotic system at x = −∞ corresponds now to τ = −1 with the τ -direction being the strong
unstable direction within the unstable manifold of the origin. For ε = 0, the (A,B)-components of
(5.7), and therefore also the strong unstable fibers, do not depend on τ . Since the unstable foliation
is smooth in ε, we can expand it at τ = 0 (i.e. at x = 0) and get

W u(0) = reiφ

(
1
r√
2

)
+ ε

(
dA

dB

)
+ O(r3 + εr + ε2). (5.8)

Next, we compute the coefficients dA, dB which are given by the Melnikov integrals(
dA

dB

)
=
∫ 0

−∞
e−ix

(
1 −x
0 1

)(
0

g(q1(x))

)
dx =

∫ 0

−∞
e−ix

(
−xg(q1(x))
g(q1(x))

)
dx

which involve the perturbation g and the evolution of the linearization of (5.5) about (A,B) = 0.
As we shall see below, we need that

Re dB =
∫ 0

−∞
g(q1(x)) cosxdx < 0. (5.9)

Recall that the pulse achieves its unique positive maximum M at x = 0. Thus, upon defining g(u1)
by

g(u1) =

{
−1 M − δ0 < u1

0 u1 < M − 2δ0

for some 0 < δ0 � 1 with g′(u1) ≥ 0, we can ensure that (5.9) is true.

We are now prepared to find intersections of W u(0) and Fix(R) at τ = 0 which are given as
solutions to the equation(

a

ib

)
= reiφ

(
1
r√
2

)
+ ε

(
dA

dB

)
+ O(r3 + εr + ε2)
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in C2, where a, b ∈ R, 0 ≤ r � 1 and φ ∈ R. Decomposing this equation into real and imaginary
part, we get

a = r cosφ+ εRe dA + O(r3 + εr + ε2)

0 = r sinφ+ ε Im dA + O(r3 + εr + ε2)

0 =
r2√
2

cosφ+ εRe dB + O(r3 + εr + ε2)

b =
r2√
2

sinφ+ ε Im dB + O(r3 + εr + ε2)

The first and fourth equation can be solved for (a, b). To solve the remaining two equations, we
scale (r, φ) =

√
ε(R,Φ) and get

0 = RΦ + Im dA + O(
√
ε) (5.10)

0 =
R2

√
2

+ Re dB + O(
√
ε).

Since Re dB < 0 by (5.9), we can solve the system for ε = 0 and obtain

R∗ =
√√

2|Re dB|, Φ∗ =
− Im dA√√

2|Re dB|
.

The derivative of the right-hand side of (5.10) at (R∗,Φ∗) is given by(
Φ∗ R∗√
2R∗ 0

)

with determinant −
√

2R2
∗ 6= 0. This proves that the solution persists for ε > 0 as a regular root

and establishes therefore also transversality.

5.3 Oscillatory instabilities: An example

We will prove that there are constants 0 < ε � 1, m1,m2 ∈ R and a function g : R → R with
g(u1) = 0 for u1 close to zero such that the system

∂tu1 = ∂xxu1 − u1 + u3
1 +

1
2
u1u2 + v1 + v2

∂tu2 =
1
δ2

[
1
δ2
∂xxu2 − 12.5 δ2u2 −

1
2
u2

1 + c0u
2
1u2

]
∂tv1 = ∂xxv1 + [µ− v2

1 − v2
2]v1 − [1 + β(v2

1 + v2
2)]v2 + εm2g(u2

1) (5.11)

∂tv2 = ∂xxv2 + [1 + β(v2
1 + v2

2)]v1 + [µ− v2
1 − v2

2]v2 + εm1g(u2
1)

satisfies the assumptions of Theorems 5 and 6.

For ε = 0, the last two equations written in complex notation A = v1 + iv2 are

At = Axx + (µ+ i)A− (1 + iβ)|A|2A.
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Thus, the critical dispersion relation is given by λ = ±i−k2, and the origin undergoes a generic Hopf
bifurcation at µ = 0. In particular, Hypotheses 7 and 8 are satisfied. Upon choosing β sufficiently
close to zero, Proposition 1.2 shows that Hypotheses 9 and 10 are met. These hypotheses continue
to be met for ε > 0 since g(u2

1) will vanish for all u1 close to zero and does therefore not affect the
above arguments.

It remains to verify Hypotheses 11 and 12. Note that the equation for u decouples for ε = 0.
In particular, (5.11) admits the pulse (u, v) = (q, 0), which is still transversely constructed and
therefore persists for all 0 < ε� 1 with

(u, v)(ε) = (q, 0) + O(ε).

Next, we denote the linearization of (5.11) at µ = 0 about the pulse by Lε. It is clear from our
construction that λ = 0 is a simple eigenvalue of Lε and that λ = i` is not in the spectrum for all
` ∈ Z \ {0,±1} provided we choose ε > 0 small enough. Thus, it suffices to prove that the null
space of Lε − i is trivial in C0(R,C4).

We begin by setting ε = 0. We have

L0 − i =

(
Lu − i B

0 Lv − i

)
, B =

(
1 1
0 0

)
, Lv =

(
∂xx −1
1 ∂xx

)
(5.12)

where Lu is the linearization of (5.1) about the pulse q. The eigenvalue problem

[L0 − i]

(
u

v

)
= 0 (5.13)

has a unique (up to constant multiples) bounded nontrivial solution (u∗, v∗) given by

v∗ =

(
i
1

)
, u∗ = [Lu − i]−1Bv∗.

Note that (Lu − i) is invertible on C0(R,C2) since the pulse of (5.1) is stable. In particular, the
null space of (L0 − i) is not trivial.

For later reference, we note that u∗1(x) is even and vanishes at most on a discrete set: Indeed, u∗1
satisfies

∂xxu1 +
(

3q1(x)2 − 1 +
1
2
q2(x)

)
u1 +

1
2
q1(x)u2 = 1.

Since u2 is bounded and q1(x) → 0, we see that u1 cannot vanish identically. On the other hand,
since the pulse q(x) is analytic, so is the solution u∗1(x), which proves our claim. We also mention
that the unique bounded solution of the adjoint eigenvalue problem [L∗0 + i]Q∗ = 0 is given by

Q∗(x) =


u1

u2

v1

v2

 =


0
0
i
1

 . (5.14)
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Note that the eigenvalue at λ = ±i lies on the absolute spectrum given by λ = ±i − k2. Such
eigenvalues can disappear in edge bifurcations upon adding perturbations [9]. We shall prove that
this indeed happens for our system if we choose ε > 0 small enough. The idea is to calculate
the Evans function associated with the eigenvalue problem (5.13) and to expand it in terms of
γ =

√
λ− i and ε. We refer to [9] for the relevant theory that we shall apply below.

The Evans function at ε = 0 is simply the Wronskian of an appropriate set of solutions of

[L0 − (i + γ2)]

(
u

v

)
= 0

which, due to (5.12), is upper triangular. Thus, its Wronskian is the product of the Wronskians for
the blocks on the diagonal. We shall only need the determinant of the constant-coefficient problem
Lv − (i + γ2) which, in the coordinates (v, v′), is given by

E(γ, 0) = det


i i −i −i
1 1 1 1
iγ −iγ −i

√
2i + γ2 i

√
2i + γ2

γ −γ
√

2i + γ2 −
√

2i + γ2

 = −16
√

2iγ + O(γ2). (5.15)

Next, we need to compute the derivative of the Evans function with respect to ε at γ = 0. The
procedure for this computation can be found in [9, §4]: The result is that

∂εE(0, 0) =
W

|Q∗(0)|2

∫ ∞

−∞

〈
Q∗(x), ∂εLε|ε=0

(
u∗

v∗

)〉
dx (5.16)

where

W = det


0 i −i −i
0 1 1 1
i −iγ −i

√
2i + γ2 i

√
2i + γ2

1 −γ
√

2i + γ2 −
√

2i + γ2

 = −8(1 + i), |Q∗(0)|2 = 2.

Thus, we need to compute ∂εLε|ε=0 which is composed of two contributions: the explicit ε-
dependence εg(u2

1)(0, 0,m2,m1) on the right-hand side of (5.11) and terms coming from the un-
known ε-dependence of the persisting pulse. The derivative of the former term is given simply
by

2q1(x)g′(q21(x))u
∗
1(x)


0
0
m2

m1

 .

Since the u-component of Q∗ vanishes, we need to account only for the ε-dependence of the pulse
in Lv. However, the nonlinearity in the v-equation is cubic: Since the perturbed pulse is O(ε)-close
to (q, 0), the effect on the linearized operator is actually of order O(ε2), and does therefore not
contribute to ∂εLε|ε=0. In summary, using also that u∗1 is even, (5.16) becomes

∂εE(0, 0) = −16(1 + i)(m1 + im2)
∫ ∞

0
q1(x)g′(q21(x))u

∗
1(x) dx. (5.17)
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We claim that we can find a function g(u1) that vanishes near u1 = 0 so that

d0 :=
∫ ∞

0
q1(x)g′(q21(x))u

∗
1(x) dx 6= 0.

Indeed, we have seen that u∗1 vanishes at most at a discrete set. Thus, there are numbers 0 < x∗ � 1
and 0 < δ1 � x∗ so that q1(x) is strictly decreasing on J := (x∗ − δ1, x∗ + δ1) and u∗1(x) 6= 0 for
x ∈ J . Denote by ǧ the continuous, piecewise linear function

ǧ(u2
1) =



0 q1(x∗ − δ1) ≤ u1
u1−q1(x∗−δ1)

q1(x∗+δ1)−q1(x∗−δ1) q1(x∗ + δ1) < u1 < q1(x∗ − δ1)

1 q1(L) ≤ u1 ≤ q1(x∗ + δ1)
2 q1(L)−u1

q1(L) q1(L)/2 < u1 < q1(L)

0 0 ≤ u1 ≤ q1(L)/2

for some L� 1, so that ǧ′ is piecewise constant:

ǧ′(u2
1) =



0 q1(x∗ − δ1) ≤ u1

1 q1(x∗ + δ1) < u1 < q1(x∗ − δ1)
0 q1(L) ≤ u1 ≤ q1(x∗ + δ1)
1 q1(L)/2 < u1 < q1(L)
0 0 ≤ u1 ≤ q1(L)/2

Furthermore, let ηδ2(x) be the standard mollifier function (so that ηδ converges to the delta-function
as δ2 → 0). We then define g := ηδ2 ? ǧ (with ? denoting convolution) and note that g′ → ǧ′ in
L1(R) as δ2 → 0. In particular, we see that

d0 =
∫ ∞

0
q1(x)g′(q21(x))u

∗
1(x) dx −→ 2δ1q1(x∗)u∗1(x∗) + O(δ21 + e−αL)

for some α > 0 that depends only on the parameters in (5.1), and therefore d0 6= 0 for δ1, δ2
sufficiently small.

Thus, we obtain the expansion

E(γ, ε) = −16
√

2iγ − 16(1 + i)(m1 + im2)d0 + O(γ2 + ε2)

for the Evans function. Its roots are given by

γ∗(ε) =
−(1 + i)d0√

2i
(m1 + im2)ε+ O(ε2).

Roots γ of the Evans function with Re γ > 0 correspond to eigenvalues λ = i+γ2 of the operator Lε,
while roots with Re γ < 0 are resonance poles (the associated “eigenfunctions” grow exponentially).
Since d0 6= 0, there exist numbers m1,m2 ∈ R so that Re γ∗ < 0 for all 0 < ε� 1. Hence, the null
space of (Lε − i) is trivial for all small enough ε > 0, which verifies Hypotheses 11 and 12.
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6 Discussion

We have demonstrated that a branch of standing pulses can be continued in a unique way through
parameter values where its background state undergoes a pitchfork or Turing instability. For
pitchfork instabilities, the standing pulse selects one of the two equilibria that arise in the pitchfork
bifurcation. For Turing instabilities, the only degree of freedom is the choice of the wavenumber
of the asymptotic Turing pattern which can be specified arbitrarily in the Eckhaus stable band,
while the bifurcating pulses select the phase of the Turing pattern. We emphasize that, beyond the
pitchfork or Turing instability, pulses that are asymptotic to the trivial rest state cease to exist.

If the background state undergoes a transcritical bifurcation, ut = µu − u2, a straightforward
adaptation of the methods presented in this paper show that the pulse can again be continued
in a unique fashion through the bifurcation point and that it is asymptotic to the unique stable
equilibrium that emerges in the transcritical bifurcation. For saddle-node bifurcations, the pulse
disappears with the stable equilibrium. Together with the large pulse, an unstable small-amplitude
pulse that is asymptotic to the stable equilibrium disappears at the bifurcation point.

Oscillatory instabilities are somewhat different. The primary standing pulse persists as is usual
in oscillatory bifurcations. On the other hand, two different oscillatory pulses emerge from this
bifurcation, one of which is symmetric, the other one anti-symmetric. We emphasize that the
bifurcating oscillatory pulses can be interpreted as sources in that the group velocities (and, in
fact, the phase velocities) of the small-amplitude travelling waves at their tails point away from the
oscillatory pulse. We refer to [21] for more details and references regarding sources.

Boundary layers and inhomogeneities

The analysis presented in this paper gives also some insight into phenomena involving boundary
layers. Consider, for example, the reaction-diffusion system (1.1) on the half line x ∈ R− with
boundary conditions b(u, ux) = 0 at x = 0 or, more specifically, u(0, t) = 1, say. If the origin u = 0
is a stable equilibrium for the reaction-diffusion system on x ∈ R, the boundary conditions typically
introduce a boundary layer q(x) with b(q, qx) = 0 so that q(x) → 0 exponentially as x → −∞.
If the rest state u = 0 undergoes a Turing instability, a phenomenon equivalent to Theorem 1
occurs: at criticality, q(x) typically decays only algebraically q(x) = O(1/x) while, above onset,
all stable Turing patterns coexist with the boundary. The phase of the Turing patterns relative to
the boundary is uniquely determined. To see this, we follow the proofs of Theorems 1 and 2 but
replace the matching subspace Fix(R) by the manifold defined by b(u, v) = 0.

In fact, strongly localized inhomogeneities can be treated in a similar fashion. Stationary localized
solutions q(x) to (1.1) for a nonlinearity f that satisfies f(x, u;µ) → f(u;µ) exponentially fast
as |x| → ∞ can be continued through Turing bifurcations but converge then to an arbitrarily
prescribed stable Turing pattern.

The situation is different, and in fact easier to handle, for boundary conditions that are compatible
with the trivial state (Neumann boundary conditions ux = 0, for instance, are always compatible) or
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if the inhomogeneity in the medium is weak so that its size is comparable to the bifurcating Turing
patterns. Both scenarios are similar to degenerate Turing instabilities where the pulse converges
exponentially, and not algebraically, as |x| → ∞. In this case, the pulse therefore lies in the strong
unstable fiber of u = 0, which makes this bifurcation much easier to analyse as we shall see now.

For simplicity, consider pitchfork bifurcations when the pulse converges exponentially at onset. We
can project Fix(R) ∩W cu(0) along the smooth strong unstable fibrations onto W c(0) which gives
a curve ΓR in the center manifold. Typically, we expect that this curve intersects the unstable
manifold transversely so that ΓR reduces to the line A = 0 in the rescaling chart. Upon varying the
parameter µ1 that drives the instability and a parameter µ2 which unfolds the degeneracy, we find
two wedges |µ2| ≥ C

√
µ1 where precisely one of the two homogeneous equilibria that arise in the

local pitchfork bifurcation is selected by the pulse. In the parameter region between these wedges,
ΓR intersects the small-amplitude heteroclinic orbits that connect the two equilibria on the center
manifold. In particular, we obtain pulses that converge to either one of the asymptotic equilibria:
these pulses are formed by concatenating the large pulse with part of the small-amplitude layer
between the two equilibria.

For Turing instabilities, ΓR is given by the complex plane B = 0 which intersects the stable and
unstable manifold of Eckhaus-stable Turing patterns transversely along the defect A = tanh(x/

√
2).

Thus, we conclude that there exist again wedges in parameter space within which a unique Turing
pattern (with prescribed wavenumber) is selected. Outside these wedges, two possible phase selec-
tions are possible with a phase difference of approximately π. We suspect that only one of the two
possible phases leads to a stable pulse.

Evans functions versus algebraic decay

The algebraic relaxation that we typically encounter at onset cannot be encoded as spectral infor-
mation in L2. Indeed, the degeneracy of exponential decay at the bifurcation point corresponds to
an eigenvalue in an exponentially weighted space L2

η with norm

|u|2L2
η

=
∫

R
eηx|u(x)|2 dx.

In terms of an Evans-function analysis, this eigenvalue generates a root of an Evans function
with the “wrong” splitting between stable and unstable subspaces. A similar condition arises as
a robustness criterion for contact defects that are typical elementary defects in oscillatory media
which correspond to saddle-node homoclinic orbits in a spatial-dynamics description [20, 21].

Extensions

Our existence results are also applicable to certain classes of Hamiltonian partial differential equa-
tions such as coupled nonlinear Schrödinger equations or semilinear wave equations. Turing in-
stabilities in nonlinear Schrödinger equations correspond to resonances between the frequency of
a large pulse and a background wave with nonzero wavenumber. Supercriticality of the Turing
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instability is equivalent to a defocusing nonlinearity for the resonant waves. A detailed description
of these phenomena is the object of future work.

We also expect that the results presented here are valid for PDEs with additional symmetries. As
an example, we mention the complex cubic-quintic Ginzburg–Landau equation which has a gauge
symmetry given by an S1-action and which exhibits stable pulses that can undergo Hopf bifurcations
[10]. In systems with symmetry, the unstable manifold and the fixed-point space of the relevant
reverser will not intersect transversely along pulses with trivial isotropy. However, the direction
along the pulse’s group orbit can be used to compensate for the lack of transversality: For the gauge
symmetry in the Ginzburg–Landau equation, the relative phase between the Nozaki–Bekki holes
and the pulse provides the additional free parameter needed to solve the bifurcation equations.
We remark that this scenario also occurs in the master-modelocking equation [8]: however, this
equation includes nonlocal terms which further complicates the analysis.

A Stability of the Nozaki–Bekki holes in the real CGL limit

We shall prove Proposition 1.2. First, we remark that the verification of Hypotheses 9 and 10(i) is
well known: see, for instance, [7, Theorem 1.1] with σ = 0 and d4 = 0.

It remains to verify Hypothesis 10(ii) for α, β sufficiently small. This issue has been investigated in
[7], but the proofs of the stability theorems stated in [7] are incorrect due to a number of algebra
mistakes: specifically, the linearization [7, (4.5) and (4.6)] is wrong and the sign of ∂6

εE(0) on
[7, Page 104] is incorrect. We give the corrected statements and proofs here. Throughout the
remainder of this section, we shall closely follow the notation of [7].

First, [7, (3.22)] shows that the Evans function E(γ) has three roots at the origin when ε = 0 which
corresponds to the real Ginzburg–Landau equation. In addition, the standing hole Φ = tanh(x)
has one unstable real eigenvalue with even eigenfunction at a fixed distance away from the origin,
and there are no other roots of the Evans function in the closed right-half plane. The unstable
eigenvalue arises due to Sturm–Liouville theory since L−Φ = 0, and Φ has one zero (the statement
at the bottom of [7, Page 96] is therefore wrong). The unstable eigenvalue will persist for 0 < ε� 1
and, since the linearization of the CGL about standing pulses respects the x 7→ −x symmetry, the
associated eigenfunction is even in x.

It therefore remains to track the three small roots of the Evans function for 0 < ε� 1. Inspecting
[7, Page 87 and Figure 3], we see that the standing holes corresponding to a > 0 are sources,
namely the Nozaki–Bekki holes, in the notation of [21]. Thus, [21, Lemma 4.4] implies that the
Evans function of each Nozaki–Bekki hole has at least two roots at the origin with eigenfunctions
given by (A′nb, B

′
nb) and (iAnb, iBnb): in other words, the roots are enforced by the translational and

gauge symmetries of the CGL. Note that the eigenfunction associated with the gauge symmetry is
odd, while the translational eigenfunction is even.

It suffices now to calculate the remaining third root. We compute the Evans function for even eigen-
functions by matching decaying solutions at x = −∞ with the fixed-point space span{u1(0), u4(0)}.

51



The resulting Evans function can be written as

E(γ, ε) = Y −s (0; γ) ∧ Y −f (0; γ) ∧ u1(0) ∧ u4(0) (A.1)

where Y −s (0; 0) = u3(0) and Y −f (0; 0) = u1(0). The key is therefore an expansion of Y −f (0; γ). The
computations in [7, §4.2 and §4.4] show that

∂4
εY

−
f (0; 0) = 16a2u2(0) + c1u1(0) + c2u3(0), ∂2

γY
−
f (0; 0) = −4

3
u2(0) + c3u1(0)

where a = 2
3(d1 + d3)2. Thus, roots of (A.1) satisfy

2a2

3
ε4 − 2

3
γ2 = 0

and are therefore given by
γ = ±aε2.

Only roots with Re γ > 0 correspond to eigenvalues λ via

λ = λbp(ε) +
γ2

2
, λbp(ε) = −1

2
a2ε4,

which shows that only the root at λ = 0 persists as claimed.

In summary, the Nozaki–Bekki holes near the real Ginzburg–Landau limit have precisely three
eigenvalues in the closed right-half plane: One is located at a fixed distance away from the origin,
while the other two are locked at the origin. The eigenfunctions of the real unstable eigenvalue
and the translational eigenvalue at the origin are even, while the eigenfunction associated with the
gauge eigenvalue at the origin is odd. This proves Proposition 1.2.

We end this section with a few additional remarks. First, a similar analysis applies to the standing
holes for a > 0 in the NLS limit as they are also sources: Two of the three roots of the Evans function
near zero stay at the origin, while the third one disappears as a resonance pole. In contrast to the
real Ginzburg–Landau limit, there are no O(1)-unstable eigenvalues.

The case a < 0 (see again [7, Page 87 and Figure 3]) is slightly more complicated. As indicated
there, the standing waves corresponding to a < 0 are degenerate sinks in the notation of [21]. The
arguments in [21, Lemma 4.4] can be adapted easily to prove that one of the three small roots of
the Evans function must stay at the origin.

B Expansions of the transition map near equilibria

We analyse the transition map near the singular equilibria that we encountered in Sections 2.1
and 2.2. We shall focus on Turing instabilities since it is the more complicated case.

We shall use equation (2.14)

ȧ1 = b1 − a1nr + ia1|A|P̌ (|A|2, ni)
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ḃ1 = (1− µ1)a1 − 2b1nr + ib1|A|P̌ (|A|2, ni) + a1|A|Q̌(|A|2, ni) + |A|2mŘ(|A|, a1eiϕ, b1eiϕ)

µ̇1 = −2µ1nr (B.1)
˙|A| = |A|nr

ϕ̇ = |A|−1

instead of (2.15). The relevant singular equilibria are given by

p+
s = (a1, b1, µ1, |A|) =

(
eiφ,

1√
2
eiφ, 0, 0

)
, φ ∈ R.

Note that the ϕ-component provides a rapidly oscillating forcing in higher-order terms in the first
three equations. If we set |A| = 0 in the equations for (a1, b1, µ1), then these equations decouple
and have smooth right-hand sides. Furthermore, the linearization of the resulting equation about
the singular equilibria has one center and three stable eigenvalues; see (2.17). Near the circle of
singular equilibria, we can therefore choose coordinates

v = (vc, vs) ∈ S1 × R3,

which replace (a1, b1, µ1), so that vc parametrizes the circle of singular equilibria and vs parametrizes
the stable manifold of each singular equilibrium. Next, we rescale time for the full ODE (B.1) to
remove the factor nr in the equation for |A|: this is possible since nr is close to 1/

√
2 near the

singular equilibria. The resulting equation is of the form

v′ = g1(v) + |A|g2(v, |A|) + |A|2mg3(v, |A|, eiϕ)

|A|′ = |A| (B.2)

ϕ′ =
√

2
(1 + g4(v))|A|2

for smooth nonlinearities gj , where we used that nr = (1 + g4(v))/
√

2 for some smooth g4 with
g4(vc, 0) = 0 for all vc.

First, we show that each singular equilibrium of (B.2) has a smooth unstable manifold parametrized
by |A|. We have

|A|(x) = |A|0ex

and

ϕ(x; v) = ϕ0 +
∫ x

0

√
2e−2y

|A|20(1 + g4(v(y)))
dy (B.3)

for each given function v(x). Thus, the unstable manifold of the singular equilibrium (v0
c , 0) of

(B.2) can be obtained via a solution v to the fixed-point equation

v(x) = (v0
c , 0) (B.4)

+
∫ x

−∞
eA(x−y)

[
g1(v(y)) + |A|0eyg2(v(y), |A|0ey) + |A|2m0 e2myg3(v(y), |A|0ey, eiϕ(y;v))

]
dy

where ϕ(x; v) has been defined in (B.3) and A is the linearization of v′ = g1(v) about the circle of
equilibria v = (v0

c , 0). Note that the ODE v′ = g1(v) is of the form

v′c = 0, v′s = gs
1(ys) (B.5)
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due to normal-form symmetry of (B.1) for |A| = 0, and A does therefore not depend on vc. We
record that

‖eAy‖ ≤ C, y ≥ 0.

We want to consider (B.4) as a fixed-point equation for v in a small ball centered at zero in C0(R−)
and solve it using the contraction-mapping principle. Using (B.5), we see that, for any fixed small
|A|0 > 0, the right-hand side of (B.4) maps a small ball B in C0(R−) into itself. Furthermore, using
(B.3), it is straightforward to prove that the right-hand side of (B.4) is Cm−1 in (v, ϕ0, v

0
c ): the

factor e2my in front of g3 takes care of the exponential growth e−2y of ϕ when taking derivatives
with respect to v and ϕ0. Moreover, the Lipschitz constant of the right-hand side is smaller than
one provided we choose |A|0 > 0 small enough. Thus, we can solve (B.4) uniquely for v which gives
the desired unstable manifold.

Next, we flatten the smooth unstable manifolds of each singular equilibrium and obtain a system
of the form

v′u = vu

v′s = Asvs + gs
u(v)[vs, vu] + gs

s(v)[vs, vs] + gs
ϕ(v, eiϕ)[vs, v2m

u ] (B.6)

v′c = gc(v)[vs, vu] + gc
ϕ(v, eiϕ)[vs, v2m

u ]

ϕ′ =
√

2
(1 + ǧ(v))v2

u

where v = (vu, vs, vc). Indeed, the quadratic terms in the center direction are a consequence of
Fenichel’s normal form [6] and the fact that the vector field in the center direction vanishes for
vu = |A| = 0. The normal-form symmetry of (2.15) with respect to the phase symmetry (2.13)
implies that the matrix As = diag(−2,−3,−4) does not depend on vc. The factor vs in the equation
for vs arises since the center-unstable manifold is flat.

To analyse (B.6), we proceed as above. For a given constant T � 1 and bounded continuous
functions (vs, vc)(x) for 0 ≤ x ≤ T , we have

vu(x) = ex−T v1
u, ϕ(x; v) = ϕ0 +

∫ x

0

√
2

(1 + ǧ(v(y)))vu(y)2
dy.

The equations for the remaining variables can be put into the equivalent integral formulation

vs(x) = eAsxv0
s +

∫ x

0
eAs(x−y) (gs

u(v(y))[vs(y), vu(y)] + gs
s(v(y))[vs(y), vs(y)] (B.7)

+gs
ϕ(v(y), eiϕ(y;v))[vs(y), v2m

u (y)]
)

dy

vc(x) = v0
c +

∫ x

0

(
gc(v(y))[vs(y), vu(y)] + gc

ϕ(v(y), eiϕ(y;v))[vs(y), v2m
u (y)]

)
dy.

Arguing as above, we see that there are small constants δ0, δ1 > 0 such that the right-hand side
of (B.7) is a smooth contraction in the δ1-neighborhood of the origin in the space C0([0, T ]) with
norm

‖v̌‖ := sup
0≤x≤T

[
e2x|vs(x)|+ |vc(x)|

]
.
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The contraction constant is uniform in T and vbc := (v1
u, v

0
s , v

0
c , ϕ0) with |vbc| < δ0. In particular,

we can solve (B.7) uniquely for each T � 1 and each given vbc with norm less than δ0, and the
resulting solution is smooth in vbc. Utilizing the norm, we see that

v(0) =
(
e−T v1

u, v
0
s , v

0
c

)
(B.8)

v(T ) =
(
v1
u,O(e−2T ), v0

c + O(e−T )
)
.

We shall now exploit (B.8). Recall that we are interested in the unstable manifold of each of the
wave equilibria.

Note that these manifolds are smoothly fibered over the artificial phase variable ϕ0. We may
therefore restrict to an arbitrary but fixed value of ϕ0 in the sequel. The unstable manifold of a
wave equilibrium then intersects the sphere |vs| = δ in a circle

(vu, vs, vc) = (hu(vc), hs(vc), vc)

where the functions hu and hs are smooth. To locate the position of the shooting manifold after
the passage near the circle of singular equilibria, we need to satisfy the boundary conditions

vu(T ) = δ, vu(0) = hu(vc)

which, upon using (B.8), determines the time-of-flight

T = − log hu(vc).

The expressions for vc(T ) and T show that the unstable manifold of the wave equilibrium after the
passage near the singular equilibrium is again a graph over vc.

The distance of the unstable manifold of a wave equilibrium from the unstable manifold of the
singular equilibrium measured at distance δ away from the singular equilibrium is therefore given
by

|vs(T )| = O(e−2T ) = O
(
|hu(vc)|2

)
.

Note that we exploited here that λs = −2λu. Lastly, as for pitchfork bifurcations, we have that
hu(vc) = O(

√
µ), and we conclude that

|vs(T )| = O(µ)

as needed.

We remark that a similar result has been established simultaneously and independently by Schecter
[24].
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