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Abstract

We investigate corners and steps of interfaces in anisotropic systems. Starting from a stable

planar front in a general reaction-diffusion-convection system, we show existence of almost

planar interior and exterior corners. When the interface propagation is unstable in some

directions, we show that small steps in the interface may persist. Our assumptions are

based on physical properties of interfaces such as linear and nonlinear dispersion, rather

than properties of the modeling equations such as variational or comparison principles. We

also give geometric criteria based on the Cahn-Hoffman vector, that distinguish between

the formation of interior and exterior corners.
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1 Introduction

We study almost planar interface propagation in 2-dimensional, anisotropic, homogeneous,

nonlinear media. The simplest example of front propagation is the scalar bistable reaction-

diffusion equation

ut = ∆x,yu+ u(1− u)(u− a),

where 0 < a < 1. Planar fronts connecting the stable homogeneous equilibria u = 0 and u = 1

may propagate in either direction n = (sinϕ, cosϕ), depending upon the initial condition. In

a recent article [8], we showed that almost planar fronts exist for a 6= 1/2: the front position,

traced for example by the level set u−1(1/2), is located on a curve that approaches two straight

lines y = ε|x| for ε > 0 small, and the interface propagates in the direction of increasing y.

Zooming out to a large spatial scale, the domain occupied by the ‘winning’ state that is left

behind the front possesses an interior corner ; see Figure 2.1, below.

Using comparison principles, the existence of such fronts can be established for large angles ε;

see [3] for a related result. All these nonplanar fronts share the property that the asymptotic

planar part of the front propagates towards the middle, center part of the interface. The

results in [8] show that, at least for small angles ε, the existence and asymptotic stability of

these interior corners is a universal feature in isotropic reaction-diffusion systems, u ∈ RN ,

that exhibit stable planar fronts. We point out that unstable, or pulsating, fronts may lead to

different types of interfaces such as exterior corners, steps, or holes; see Figure 2.1. All these

almost planar interfaces are referred to as corner defects.

Our focus here is on anisotropic media, where convection and diffusion do not respect the

rotational symmetry of the plane. A simple example is given by

ut = ∆x,yu+ u(1− u)(u− a) + µg(u,∇u),

with µ small. The planar fronts that propagate in arbitrary directions for µ = 0 still exist for

µ > 0 small, but the speed of propagation c will typically depend on the direction, c = c(ϕ).

Our main results here establish the existence of almost planar interfaces as described above

for general anisotropic reaction-diffusion systems. However, the direction of propagation and

the angle at the corner relative to the direction of propagation now crucially depend on the

function c(ϕ). In particular, we show that the corners propagate in the tangential direction

with speed c′(ϕ). Moreover, the domain occupied by the winning state behind the front may

possess an exterior corner on the large spatial scale, as well.

Our work is motivated by a number of specific examples of front propagation in anisotropic

media. As a first example, we cite models of cardio-vascular tissue [11]. Conductivity along

fibers is larger by several orders of magnitude than across fibers. The electric potential can be
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modeled by a diffusion equation with a nonlinear source term and different diffusion coefficients

for the directions across and along fibers, respectively. In one-domain models, these different

diffusivities can be accounted for by a simple anisotropic rescaling. However, in two-domain

models for intra- and extra-cellular tissue, the ratios of diffusivities typically differ and the

resulting reaction-diffusion system is inherently anisotropic.

As a second example, we cite catalytic surface reaction, where diffusion rates of the reactants

depend on the crystalline structure of the surface. Particularly well studied is the CO-oxidation

on Pt-surfaces, where anisotropy may lead to breathing stripes and spatio-temporal chaos; [1].

We would also like to mention a slightly different approach to front propagation. The position

of the front traces a curve in the plane, and on suitable spatio-temporal scales, the evolution

of this curve is described by an eikonal equation; see, for example, [4] in the isotropic case

and [2] in an anisotropic setting. All these results exploit comparison principles that are not

available in our context of reaction-diffusion systems. Moreover, our results differ from these

approaches in that we consider non-compact interfaces, which causes a number of technical

difficulties due to essential spectrum in the linearized operators. Also, our almost planar

interfaces are not smooth in the sharp interface limit: the asymptotic planar interfaces form

an angle of contact at the center.

This paper is organized as follows. In Section 2, we describe our basic setup and hypotheses.

We then state our main results on the existence of interior and exterior corners in Section 3.

Section 4 contains the proofs of the theorems and we give some examples in Section 5. We

conclude with results in the case of lateral instabilities in Section 6 and a brief discussion.

Acknowledgments This work was partially supported by the MRT through grant ACI

JC 1039 (M. H.) and by the NSF through grant DMS-0203301 (A. S.).

2 Corner defects and hypotheses

Corner defects

We consider the general reaction-diffusion system

ut = ∇ · (a∇u) + f(u,∇u) + c(n · ∇)u, (2.1)

with u = (um)1≤m≤N ∈ RN depending upon time t and space x = (x1, x2) ∈ R2. Here

a = (amij )
1≤m≤N
1≤i,j≤2 such that

(∇ · (a∇u))m = amij∂iju
m,

and
∑

ij a
m
ij yiyj ≥M

∑
i y

2
i , for someM > 0 independent of y = (y1, y2). The last term in (2.1)

is induced by passing to a moving coordinate frame in the direction n = (sinϕ, cosϕ) ∈ S1
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with speed c, so that steady solutions to (2.1) are travelling waves propagating in the direction

n with speed c. The nonlinearity f is assumed to be smooth. Obviously, the last term could

be absorbed into the nonlinearity f but we prefer to preserve the idea of a fixed (laboratory)

reference frame for our considerations, in particularly when varying the speed c.

Throughout, we assume that for a given direction n = n∗ (or angle ϕ = ϕ∗) the system

(2.1) possesses a planar traveling-wave solution connecting two homogeneous equilibria. More

precisely, we make the following assumption.

Hypothesis 2.1 (Existence) We assume that there exist a direction n = n∗, a positive speed

c = c∗ ≥ 0, and asymptotic states q± such that (2.1) possesses a smooth planar traveling-wave

solution u(t, x) = q∗(n∗ · x) connecting q− and q+, i.e.

q∗(ζ) → q±, as ζ → ±∞.

The profile q∗ solves

(an · n)u′′ + f(u, nu′) + cu′ = 0, (2.2)

with n = n∗, c = c∗, where ′ denotes differentiation with respect to ζ = n ·x, the vector (an ·n)

is regarded as a diagonal N ×N -matrix, and nu′ stands for the tensor product.

We are interested in almost planar interfaces. Denote by ξ := n⊥ ·x the direction perpendicular

to the direction of propagation, in which n⊥ = n′(ϕ) = (cosϕ,− sinϕ). We recall below the

definition and classification of corner defects.

Definition 2.2 (Corner defects) We call a solution u to (2.1) an almost planar interface

δ-close to q∗, if u is of the form

u(x) = q∗(ζ + h(ξ)) + u1(ξ, ζ), (2.3)

with h ∈ C2(R) and

sup
ξ∈R

|h′(ξ)| < δ, sup
ξ∈R

‖u1(ξ, ·)‖H1(R,RN ) < δ, |c− c∗| < δ.

We say that u is a planar interface if h′′ ≡ 0.

We call u a corner defect if it is of the form (2.3), with h′′ 6≡ 0, and h′(ξ) → η± as ξ → ±∞.

We say that

• u is an interior corner if η+ < η−;

• u is an exterior corner if η− < η+;
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• u is a step if η+ = η− 6= 0;

• u is a hole if η+ = η− = 0;

see Figure 2.1.

(a) (b) (c) (d)

ϑ+

ϑ+ ϑ+

Figure 2.1: Schematic plot of the four different types of corner defects: interior corner (a),

exterior corner (b), step (c), and hole (d). The middle arrows indicate the speed of the defect,

whereas the left and right arrows indicate the normal speed of propagation of the asymptotic

planar interfaces. The asymptotic slopes are η± = tanϑ±.

Linear transport

We linearize the system (2.1) at the solution q∗ and obtain the linearized operator

L∗u = ∇ · (a∇u) + f∗1u+ f∗2∇u+ c∗(n∗ · ∇)u,

where

f∗1 = ∂1f(q∗, n∗q′∗), f∗2 = ∂2f(q∗, n∗q′∗).

With the Fourier decomposition into transverse wavenumbers k, u = v(n∗ ·x)eik(n⊥∗ ·x), we find

L(k)v = (an∗ · n∗)v′′ + ik((a+ aT )n∗ · n⊥∗ )v′ − k2(an⊥∗ · n⊥∗ )v + f∗1 v + f∗2 (n∗v′ + ikn⊥∗ v) + c∗v
′.

At k = 0, we recover the one-dimensional linearized problem

L0v := (an∗ · n∗)v′′ + f∗1 v + f∗2 (n∗v′) + c∗v
′. (2.4)

The following stability hypothesis reflects the typical case of fronts that are asymptotically

stable in one space-dimension and also stable with respect to transverse perturbations in two

space-dimensions. It is the essential ingredient to our construction of interior and exterior

corners in Section 3.

Hypothesis 2.3 (Stability) We assume that the spectrum of L0 is contained in {λ ∈ C :

Reλ < 0} ∪ {0}, and the spectrum of L(k), k 6= 0, is contained in {λ ∈ C : Reλ < 0}.
Moreover, we assume that L0 is Fredholm with index zero, has a one-dimensional generalized

kernel spanned by q′∗, and that the algebraically simple eigenvalue λ = 0 of L0 continues to an

eigenvalue λ(k) to L(k), for small k, with λ′′(0) < 0.
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Notice the symmetry λ 7→ λ̄, k 7→ −k, which implies that Reλ and Imλ are even and odd

in k, respectively. In particular, the even, respectively odd, order derivatives of λ at k = 0

are real, respectively purely imaginary, such that the stability assumption is merely a sign

condition on λ′′(0).

We set e0 = q′∗, which typically belongs to the one-dimensional kernel of L0 due to the

translation invariance in ζ. We denote by ead
0 the unique vector in the kernel of the adjoint

Lad
0 normalized through (e0, ead

0 ) = 1, and by e(k) the unique family of eigenvectors to the

eigenvalue λ(k) of L(k) obtained by normalizing (ead
0 , e(k)) = 1. (We use the notation (·, ·)

for the scalar product in L2(R).) Differentiating the eigenvalue problem

L(k)e(k) = λ(k)e(k),

with respect to k at k = 0, then taking the scalar product with ead0 and exploiting that ead0 is

perpendicular to the image of L0, we find

λ′(0) = (L′(0)e0, ead
0 ) = i(((a+ aT )n∗ · n⊥∗ )e′0 + f∗2 (n⊥∗ e0), e

ad
0 ) ∈ iR.

We call cg := iλ′(0) the (linear) group velocity.

Nonlinear transport

We now focus on the traveling-wave equation (2.2), which we consider with parameters n and

c. We are especially interested in the dependence of c on n (or the angle ϕ that determines

n). In order to find traveling waves for nearby directions of propagation n ∼ n∗, we have to

solve the one-dimensional system

T (u; c, n) := (an · n)u′′ + f(u, nu′) + cu′ = 0, (2.5)

near u = q∗, c = c∗, and n = n∗. Since ∂cT (q∗; c∗, n∗) = q′∗ = e0 does not lie in the range

of L0, the linearization with respect to u and c is onto and we may solve for c = c(ϕ) and

u = u(ϕ). More precisely, we have the following result.

Lemma 2.4 Assume that Hypotheses 2.1 and 2.3 hold. Then there exists a positive constant

ε, such that for each angle ϕ with |ϕ− ϕ∗| < ε, the one-dimensional system (2.5) possesses a

traveling-wave solution q(ϕ) connecting q− and q+, and which propagates with speed c = c(ϕ)

in the direction n = n(ϕ). Moreover, this traveling-wave satisfies Hypothesis 2.3 on stability,

such that λ(0;ϕ) = 0 and λ′′(0;ϕ) < 0 1.

We call c = c(ϕ) the nonlinear dispersion relation.
1For the ϕ-dependent linear dispersion λ(k; ϕ) we shall always use ′ to denote the partial derivative with

respect k.
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We point out that linear and nonlinear dispersion are related at linear level. Indeed, differ-

entiating (2.5) with respect to ϕ, substituting n′(ϕ) = n⊥(ϕ), and taking the scalar product

with ead0 , we find that

c′(ϕ) = iλ′(0;ϕ) = cg(ϕ).

In particular, the derivative c′(ϕ) is precisely the (linear) group velocity.

Directional dispersion

The nonlinear dispersion c = c(ϕ) gives the speed of propagation in the direction n(ϕ). We

also consider the speed of propagation in the direction n = n∗ of the primary front, and

therefore introduce the directional dispersion

d(ϕ) =
c(ϕ)

cos(ϕ− ϕ∗)
.

Notice that in the case of isotropic media, c(ϕ) = c∗, and the traveling waves q(ϕ) = q∗ are

simply obtained by rotating the primary front. In that case the quadratic term of d appeared as

the flux function in a Burgers transport equation after a suitable formal asymptotic expansion.

We therefore sometimes refer to d as the flux. Moreover, we say that

• d is convex if d′′ > 0;

• d is concave if d′′ < 0;

• d is flat if d′′ ≡ 0;

for angles ϕ in a neighborhood of ϕ∗.

3 Stable interior and exterior corners

We present our first results on existence, non-existence, and stability of interior and exterior

corners.

Existence

We first state the results on existence and non-existence of interior and exterior corners. The

proof of the following theorem is given in Section 4.

Theorem 1 (Existence of corner defects) We assume existence of a planar interface q∗
propagating in the direction n∗ with speed c∗, Hypothesis 2.1, that satisfies the stability as-

sumption, Hypothesis 2.3. Then there exists a positive constant δ > 0 such that the following

hold.
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If cg 6= 0, there are no almost planar traveling waves propagating in the direction n∗ with speed

c close to c∗, |c− c∗| < δ.

If cg = 0, we have the following three cases.

• If the flux d is convex, then for each speed c > c∗, |c − c∗| < δ, there exists an interior

corner defect propagating in the direction n∗ which is unique up to translation in x. For

c < c∗, |c− c∗| < δ, there are no almost planar traveling waves.

• If the flux d is concave, then for each speed c < c∗, |c− c∗| < δ, there exists an exterior

corner defect propagating in the direction n∗ which is unique up to translation in x. For

c > c∗, |c− c∗| < δ, there are no almost planar traveling waves.

• If the flux d is flat, there are no almost planar traveling waves propagating in the direction

n∗, for any speed c with |c− c∗| < δ.

Moreover, the corner defects above are to leading order given by

q(x) = q∗(ζ + h(ξ)) + O(|c− c∗|),

in which ζ = n∗ · x, ξ = n⊥∗ · x, and the derivative of h satisfies

h′(ξ) =
λ′′(0)
d′′(ϕ∗)

β tanh(βξ) + O(|c− c∗|e−2|βξ|), β =

√
2(c− c∗)d′′(ϕ∗)

λ′′(0)
< 0.

The corner defects that we construct in this theorem are by definition asymptotically planar.

More precisely, at ξ = ±∞ we find the planar interfaces

q±(ζ + η±ξ) = q∗(ζ + η±ξ) + O(|c− c∗|),

in which η± = limξ→±∞ h′(ξ). The normal directions to these interfaces n± = (sinϕ±, cosϕ±)

are obtained from the equality tan(ϕ± − ϕ∗) = η±, and their normal propagation speed from

the nonlinear dispersion relation c± = c(ϕ±). Since both interfaces propagate with speed c

in the direction n∗ of the primary interface, we can directly calculate the angles ϕ± from the

directional dispersion,

c = d(ϕ±).

Now, if the flux d is convex, then necessarily c > c∗, and there are precisely two planar

interfaces with angles ϕ+−ϕ∗ ∼ −(ϕ−−ϕ∗), for each speed c close to c∗. If the flux d is concave,

then c < c∗, and there are again two planar interfaces with angles ϕ+ −ϕ∗ ∼ −(ϕ−−ϕ∗), for

each speed c close to c∗. Finally, if the flux d is flat, we have d(ϕ) = c∗, for angles close to ϕ∗,

so that all planar interfaces move with the same speed c∗ in the direction n∗. In particular,
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this shows that asymptotically planar corner defects can only exist in the first two cases, and

that they propagate in the direction n∗ with speed c = d(ϕ±).

Corner defects in case of non-zero group velocities

The condition on the group velocity cg in Theorem 1 can be interpreted in a slightly different

fashion. We can pass in the system (2.1) to a comoving frame x 7→ x−cgn⊥∗ t, which then adds

a drift term cg(n⊥∗ · ∇)u to the nonlinearity f . With this new nonlinearity, a straightforward

computation shows that c̃g = 0. The nonlinear dispersion relation is easily obtained from the

speed of propagation in the normal direction, corrected by −cg sin(ϕ− ϕ∗), such that

d̃(ϕ) =
c(ϕ)− cg sin(ϕ− ϕ∗)

cos(ϕ− ϕ∗)
= d(ϕ)− cg tan(ϕ− ϕ∗),

and, in particular, d̃′′(ϕ∗) = d′′(ϕ∗).

Consequently, interior and exterior corners “always” exist, for convex and concave flux, re-

spectively, but drift along the interface with speed approximately given by the group velocity

cg: the drift speed for small linear perturbations actually determines the drift of nonlinear,

corner-like defects along the interface.

We point out that the third possibility, d′′ ≡ 0 has to be checked in the frame moving with

the group velocity along the interface, that is it has to be checked for the modified flux d̃.

Remark 3.1 In the context of material science, propagation of interfaces in anisotropic media

has been studied in the sharp interface limit. To leading order, the evolution of the interface is

governed by an eikonal equation, where the direction of propagation of points on the interface is

given by the so-called Cahn-Hoffmann vector [5, 6]. In our context, the Cahn-Hoffmann vector

is given by the sum of tangential group velocity and normal speed of propagation, cgn⊥ + cn.

Our results show that indeed small defects in interfaces propagate in the direction of the Cahn-

Hoffmann vector.

Stability

The corner defects found in Theorem 1 have the same stability properties as the interior corners

constructed in the isotropic case in [8, Theorems 2 and 3]. The results in [8] can be easily

extended to the present situation and we therefore refer to [8] for the precise statements of these

results and for the proofs. Roughly speaking, they show that the interior and exterior corners

in Theorem 1 are asymptotically stable with respect to perturbations which are exponentially

localized in the direction perpendicular to the direction of propagation.

The first result asserts asymptotic stability for fully localized perturbations

v(x) = cosh(δξ)−1w(ξ, ζ), w ∈ H2(R2,RN ),
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in which δ is chosen sufficiently small, δ = O(|c − c∗|1/2); [8, Theorem 2]. The second result

gives asymptotic stability with asymptotic phase for a class of non-localized perturbations

which allow for changing the position of the corner. These perturbations are localized in any

spatial direction except along the corner interface; [8, Theorem 3].

The proofs rely upon a careful analysis of the spectrum of the linearization about the corner

defect. The spectrum is strictly contained in the left complex half-plane, for fully localized

perturbations, with an additional geometrically double eigenvalue at the origin, for the non-

localized perturbations. The eigenvectors associated to this eigenvalue are the derivatives with

respect to ξ and ζ of the corner defect, and therefore allow for changing the position of the

corner. Nonlinear stability is then obtained by a standard fixed point argument.

4 Spatial dynamics - existence of corners

We give here the proof of Theorem 1. We mainly follow the proof from the isotropic case given

in [8], and will therefore refer to [8] for arguments which remain unchanged.

Proof. [of Theorem 1]

We start by rewriting the stationary equation to (2.1) with n = n∗ as a dynamical system

in which the time-like variable is ξ = n⊥∗ · x, the direction perpendicular to the direction of

propagation of the planar front. In the coordinates (ξ, ζ) = (n⊥∗ · x, n∗ · x) we find

(an⊥∗ · n⊥∗ )uξξ + ((a+ aT )n∗ · n⊥∗ )uξζ + (an∗ · n∗)uζζ + f(u, n∗uζ + n⊥∗ uξ) + cuζ = 0.

We set v = uξ, u = (u, v)T , and obtain the first-order system

uξ = A(c)u + F(u), (4.1)

where

A(c) =

(
0 id

−(an⊥∗ · n⊥∗ )−1 ((an∗ · n∗)∂ζζ + c∂ζ) −(an⊥∗ · n⊥∗ )−1((a+ aT )n∗ · n⊥∗ )∂ζ

)
,

and

F(u) =

(
0

−(an⊥∗ · n⊥∗ )−1f(u, n∗uζ + n⊥∗ v)

)
.

At c = c∗ the system has a line of equilibria obtained from the primary planar front u = q∗(·)
together with the translations q∗(·+ h),

qh∗ =

(
q∗(·+ h)

0

)
. (4.2)
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The linearization of (4.1) about q0
∗ is given by the operator

A∗ =

(
0 id

2L′′(0)−1L0 −2L′′(0)−1(iL′(0))

)

in which L0 is the linear operator defined in (2.4), L′(0) represents the derivative with respect

to k of L(k) at k = 0,

iL′(0)v = −((a+ aT )n∗ · n⊥∗ )v′ − f∗2 (n⊥∗ v),

and L′′(0) the second derivative given by

L′′(0) = −2(an⊥∗ · n⊥∗ ).

We consider A∗ as a closed linear operator in Y = (H1×L2)(R,RN ) with domain of definition

Y 1 = (H2 ×H1)(R,RN ). Hypothesis 2.3 implies the following result on the spectrum of A∗.

Lemma 4.1 Assume that Hypothesis 2.3 holds. Then the spectrum of A∗ satisfies

spec(A∗) ∩ {ν ∈ C : |Re ν| ≤ ε} = {0},

for some ε > 0.

If cg 6= 0, the eigenvalue 0 is simple.

If cg = 0, the eigenvalue 0 is algebraically double and geometrically simple.

Proof. For ν ∈ C we have to solve

(A∗ − νid)u = f . (4.3)

Set u = (u, v), f = (f, g), and find the equivalent system

v − νu = f

2L′′(0)−1
(
L0u− iL′(0)v

)
− νv = g

so that (4.3) has for f ∈ Y a unique solution u ∈ Y 1 provided the equation

L0u− iνL′(0)u− ν2

2
L′′(0)u = f̃ :=

1
2
L′′(0)(g + νf) + iL′(0)f,

has a unique solution u ∈ H2(R,RN ). At ν = ik we find

L(k)u = f̃ ,

so that the first part of the lemma follows from Hypothesis 2.3 on stability.

11



Next, zero is a geometrically simple eigenvalue of A∗ with eigenvector e0 = (e0, 0) = (q′∗, 0).

A principal eigenvector e1 = (u1, v1) is obtained from

v1 = e0, L0u1 = iL′(0)e0.

The solvability condition for the second equation,

(iL′(0)e0, ead0 ) = 0,

is precisely the condition on the group velocity cg = 0. Consequently, zero is algebraically

simple if cg 6= 0, and at least algebraically double otherwise. Finally, the condition on the

second derivative λ′′(0) < 0 implies that if cg = 0, the algebraic multiplicity of zero is precisely

two, and the lemma is proved.

Now, we go back to the proof of Theorem 1. Assume first that cg = 0. Then the eigenvalue

of A∗ in the origin is algebraically double with kernel and generalized kernel spanned by

kerA∗ = span(e0), e0 =

(
e0

0

)
, gkerA∗ = span(e0, e1), e1 =

(
−ie′(0)

e0

)
,

with A∗e1 = e0. Here e′(0) is the derivative with respect to k at k = 0 of the eigenvectors

e(k) to L(k); see Section 2.

We construct the spectral projection onto the generalized kernel, with the help of the L2×L2-

adjoint

Aad
∗ =

(
0 2Lad

0 L′′(0)−1

id −2(iL′(0))adL′′(0)−1

)
,

where Lad
0 and L′(0)ad are the L2-adjoints of L0 and L′(0), respectively. The kernel and

generalized kernel of Aad
∗ are given by

kerAad
∗ = span(ead

0 ), ead
0 =

1
λ′′(0)

(
2(iL′(0))adead

0

L′′(0)ead
0

)
, gkerAad

∗ = span(ead
0 , e

ad
1 ),

with Aad
∗ ead

1 = ead
0 and Lad

0 e
ad
0 = 0. Here the adjoint eigenvectors are normalized such that

〈ej , ead
j 〉L2×L2 = 0, 〈e1−j , ead

j 〉L2×L2 = 1, j = 0, 1,

by taking (e0, ead
0 ) = 1. Notice that the principal vector ead

1 can be computed explicitly, as

well, but we do not need this result for the arguments below. The projection on the generalized

kernel is then given as a bounded operator on Y through

P : Y → Y, Pu = 〈u, ead
1 〉L2×L2e0 + 〈u, ead

0 〉L2×L2e1. (4.4)
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Similarly, to the shifted equilibria qh∗ we introduce the shifted linear operator Ah∗ , the shifted

eigenvector eh0 = ((q′∗)
h(·), 0), and, analogously, eh1 ,A

ad,h
∗ , ead,h

j , P h.

We now decompose

u = qh∗ + ηeh1 + wh, with P hwh = Pw = 0. (4.5)

Here h and η are real functions depending upon ξ. This provides us with coordinates in a

neighborhood of the family of equilibria qh∗ . Substituting (4.5) into (4.1), we find

hξeh0 + ηξeh1 + ηhξ∂ζeh1 + (wh)ξ = Ah∗(ηeh1 + wh) + (A(c)−A(c∗))(qh∗) (4.6)

+(A(c)−A(c∗))(ηeh1 + wh) + Gh(η,wh),

where

Gh(η,wh) = F(qh∗ + ηeh1 + wh)−F(qh∗)−DuF(qh∗)(ηe
h
1 + wh),

is smooth on R× (id− P h)Y 1 and Gh(η,w) = O(|η|2 + |w|2Y 1), uniformly in h.

We obtain a first-order system for the three unknowns h, η, and w in the same way as in [8],

by successively taking the scalar product of (4.6) with ead,h
1 and ead,h

0 , and then projecting

with id − P h. The invariance of the L2 × L2-scalar product under the ζ-shift (·)h is used to

eliminate this shift from each equation. We obtain the equation for h,

hξ = η + O(|c− c∗|+ |η|2 + |w|2Y 1), (4.7)

which decouples, and the first-order system

ηξ = O(|c− c∗|+ |η|2 + |w|2Y 1), (4.8)

wξ = A∗w + O(|c− c∗|+ |η|2 + |w|2Y 1),

in which hξ has been replaced from (4.7). Then by arguing with the center manifold theorem

as in [8] we obtain the reduced equation for η,

ηξ = O(|c− c∗|+ |η|2),

and the equation for h becomes

hξ = η + O(|c− c∗|+ |η|2).

We now use a normal form transform by replacing

η̃ = η + O(|c− c∗|+ |η|2),

such that h satisfies

hξ = η̃,
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and then η̃ verifies

η̃ξ = f0(η̃; c) = a0(c− c∗) + a1η̃
2 + O(|c− c∗|(|c− c∗|+ |η̃|) + |η̃|3). (4.9)

The coefficient a0 can be directly computed from the formula

a0(c− c∗) = 〈(A(c)−A(c∗))q0
∗, e

ad
0 〉 =

2
λ′′(0)

(c− c∗). (4.10)

In order to compute a1, we first notice that equilibria of the reduced equation (4.9) correspond

to planar traveling waves to (2.1). In particular, any equilibrium (η̃e; ce) to (4.9) gives a

solution ve(ne · (ξ, ζ)) to (4.1) with c = ce, where we set

ne = (sin(ψe − ϕ∗), cos(ψe − ϕ∗)), η̃e = tan(ψe − ϕ∗).

A straightforward calculation then shows that the profile ve satisfies the one-dimensional

system (2.5) with

n = (sinψe, cosψe), c = ce cos(ψe − ϕ∗).

Consequently, the planar waves in Lemma 2.4 provide us with the family of equilibria

(η̃; c) = (tan(ψ − ϕ∗); d(ψ)) ,

in which d(ψ) is the directional dispersion, so that

f0(tan(ψ − ϕ∗); d(ψ)) = 0, (4.11)

for any ψ close to ϕ∗. Upon comparing the Taylor expansions of f0 near (0; c∗) and of (4.11)

near ψ = ϕ∗ we find

a1 = −d
′′(ϕ∗)
λ′′(0)

.

Almost planar interfaces are now found as bounded orbits to the reduced equation (4.9). This

is a scalar first-order ODE, so that any bounded orbit of the truncated equation

η̃ξ =
2

λ′′(0)

(
(c− c∗)−

d′′(ϕ∗)
2

η̃2

)
,

persists to the full equation, and it is either an equilibrium or a heteroclinic orbit. Conse-

quently, nontrivial almost planar interfaces are either interior or exterior corners. A straight-

forward analysis of this equation then leads to the existence results in the theorem, in the

case when the flux is either convex or concave. If the flux d is flat, d ≡ c∗, all equilibria above

have c = d(ψ) = c∗, so that the reduced equation (4.9) has bounded solutions only if c = c∗,

when the center manifold is filled with equilibria. We then conclude that there are no almost

planar interfaces in this case. This completes the proof of the theorem for cg = 0.
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Assume now that cg 6= 0. Then the eigenvalue of A∗ in the origin is simple with kernel spanned

by e0. Therefore, we set

u = qh∗ + wh, with P hwh = Pw = 0,

in which P is the spectral projection onto the kernel of A∗, and (·)h denotes the ζ-shift as

before. We now find the system

hξ = O(|c− c∗|+ |w|2Y 1),

wξ = A∗w + O(|c− c∗|+ |w|2Y 1).

Since the linear operator A∗ is hyperbolic on id−P , the equation for w has no small bounded

solutions, except for one equilibrium near w = 0, for c close to c∗. Consequently, the only

solutions for which the derivative hξ stays bounded are those with hξ ≡ const., and we conclude

that there are no almost planar interfaces in this case. This completes the proof of Theorem 1.

5 Examples

(i)

The simplest example is provided by an anisotropic medium where the diffusion rate depends

upon direction,

am = dmdiag (b11, b22),

where b11, b22, dm, m = 1 . . . N , are positive constants.

A straightforward calculation using the linear dispersion relation gives

cg = (de′0, e
ad
0 )(b11 − b22) sin(2ϕ).

Alternatively, we may rescale yj = xj/
√
bjj to render the medium isotropic and achieve

c̃(ϕ) ≡ co. Transforming back gives the nonlinear dispersion

c(ϕ) = co

√
b11 sin2(ϕ) + b22 cos2(ϕ),

from which we find the formula for the group velocity

cg =
c2o(b11 − b22) sin(2ϕ)

2c(ϕ)
.

In particular, this shows that (de′0, e
ad
0 ) ≡ c2o/2c(ϕ).

For the flux d we obtain

d′′(ϕ) =
c4ob11b22

c(ϕ)3
> 0,
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so that the flux is always convex. Then interior corners exist, provided Hypotheses 2.1 and

2.3 hold, which drift along the interface with nonzero speed, except for the special values of

the angle ϕ = 0, π/2, and the isotropic case b11 = b22.

(ii)

Another example is provided by viscous conservation laws

ut = ∇ · (a∇u) +∇ · F (u) + c(n · ∇)u, (5.1)

in which F = (F1, F2), Fj : RN → RN . In this case the traveling-wave equation (2.2) can be

integrated once with respect to ζ. We find

(an · n)u′ + n · F (u) + cu = const.,

and the condition for existence of shocks

n · (F (u+)− F (u−)) + c(u+ − u−) = 0,

where u± represent the asymptotic states. This yields the nonlinear dispersion relation

c(ϕ) = c1 sinϕ+ c2 cosϕ,

in which c1 and c2 only depend upon u± and F (u±), or

c(ϕ) = c∗ cos(ϕ− ϕ∗) + cg sin(ϕ− ϕ∗).

It is then straightforward to check that the flux d is flat in the frame moving with the group

velocity along the interface, so there are no almost planar interfaces in this case.

We note that here the Fredholm properties required in Hypothesis 2.3 are not satisfied in the

usual Sobolev spaces, but they can be achieved by introducing suitable weighted norms.

(iii)

We consider now a perturbed Allen-Cahn equation

ut = ∆u+ u(1− u2) + c(n · ∇)u+ εg(u,∇u). (5.2)

At ε = 0, all planar interfaces are stationary,

u∗(x) = tanh
(
n · x√

2

)
,

for c = 0. It is straightforward to check that the stability assumption, Hypothesis 2.3, holds.

We find the linear operators,

L(k)v = v′′ − k2v + v − 3u2
∗v,
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with spectra contained in (−∞,−k2 − a] ∪ {−k2}, for some positive a, and linear dispersion

relation λ(k) = −k2. However, since the nonlinear dispersion relation is trivial, c ≡ 0, there

are no corner defects for ε = 0.

For ε 6= 0, we take, for example,

g(∇u) =
∑
n≥1

gn(∂x1u)
n +

∑
n≥1

g′n(∂x2u)
n,

in which the coefficients gn and g′n satisfy

lim sup
n→∞

(|gn|1/n + |g′n|1/n) = M, (5.3)

for some positive constant M , so that g is well defined and smooth in some open ball centered

in the origin in R2. More general nonlinearities can be treated in the same way.

Planar interfaces to (5.2) verify

u′′ + u(1− u2) + εg(nu′) + cu′ = 0.

At ε = 0, we have the solution u = u∗, c = 0, above. We then proceed as for (2.5) and solve

for c = c(ϕ, ε), u = u(ϕ, ε), for small ε. A straightforward calculation then gives the nonlinear

dispersion relation

c(ϕ, ε) = −ε(g(nu
′
∗), u

′
∗)

(u′∗, u′∗)
+O(ε2) = − ε

α1

∑
n≥1

gnαn(sinϕ)n− ε

α1

∑
n≥1

g′nαn(cosϕ)n+O(ε2), (5.4)

in which

αn =
∫

R
(u′∗(ζ))

n+1dζ.

In particular,

αn+1 =
√

2(n+ 1)
2n+ 3

αn, α0 = 2,

so that the series in (5.4) converge provided M <
√

2, M being the constant in (5.3). Since

the assumptions on stability of planar fronts in Hypothesis 2.3 are verified at ε = 0, it is

straightforward to check that they hold for small ε, as well. The conditions on the flux d in

Theorem 1 are easily obtain from the nonlinear dispersion (5.4), so that for given g one can

conclude existence or non-existence of almost planar interfaces, for any sufficiently small ε.

However, we can obtain a more global description if, instead of directly applying the result

in Theorem 1 for fixed ε, small, we go back to the proof, and perform the reduction near

the planar front u∗ at ε = 0. In this way we can cover a range of asymptotic angles which

is independent of ε. In particular, on this larger center manifold we may have, for suitable

nonlinear dispersion, more than only two equilibria, for small ε, and consequently more than

only one heteroclinic connection.
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We emphasize that it is possible to choose the perturbation g in order to obtain a prescribed

nonlinear dispersion relation at order ε. Using Fourier series expansion, we can write

c(ϕ, ε) = ε
∑
n∈Z

cneinϕ + O(ε2),

in which cn ∈ C, and cn = cn for a real dispersion. We then take

g(∇u) =
∑
n∈Z

gn(∂x2u+ i∂x1u)
n,

and recover the nonlinear dispersion relation above, at order ε, when gn = −α1cn/αn.

In particular, this shows that even though the Allen-Cahn equation possesses no almost planar

interfaces, we can, however, find interior and exterior corners by a adding a suitable small

perturbation. Moreover, we can prescribe the speed and the asymptotic angles of the defect

through the nonlinear dispersion.

6 Steps generated by lateral instabilities

In this section we replace the stability Hypothesis 2.3 by an instability assumption, and focus

on existence of steps. Roughly speaking, we assume that the planar fronts q(ϕ) are stable in

one dimension, and that in two-dimensions they stay stable for angles ϕ < ϕ∗, and become

unstable for angles ϕ > ϕ∗. More precisely, we make the following assumption.

Hypothesis 6.1 (Lateral instability) Assume existence of a family of planar fronts q(ϕ)

satisfying (2.5) for angles ϕ close to ϕ∗. Consider the linearized operators L(k;ϕ) defined as

in Section 2. We make the following assumptions:

(i) The spectrum of L(0;ϕ∗) is contained in {λ ∈ C : Reλ < 0} ∪ {0}.

(ii) The operator L(0;ϕ∗) is Fredholm with index zero, and has a one-dimensional generalized

kernel spanned by the derivative of q(ϕ∗).

(iii) The algebraically simple eigenvalue λ = 0 of L(0;ϕ∗) continues to an eigenvalue λ(k;ϕ)

to L(k;ϕ), for small k and ϕ, with

λ(0;ϕ) = 0, λ′(0;ϕ∗) = λ′′(0;ϕ∗) = 0, λ′′′(0;ϕ∗) 6= 0, ∂ϕλ
′′(0;ϕ∗) > 0.

(iv) The spectrum of L(k;ϕ) is contained in {λ ∈ C : Reλ < 0} ∪ {λ(k;ϕ)}, for small k

and ϕ.
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The main result in this section is the following theorem asserting existence of steps along a

smooth curve in the parameter-space (c, ϕ).

Theorem 2 (Existence of steps) Assume that Hypothesis 6.1 holds and that the flux d is

either convex or concave, d′′(ϕ∗) 6= 0. Then there exists a smooth curve

ε 7→ (c(ε), ϕ(ε)) = (c∗ + O(ε4), ϕ∗ + O(ε2))

defined for small ε > 0, such that the reaction-diffusion system (2.1) possess a family of steady

solutions (uε)ε>0 with ε small which are steps propagating with speed c(ε) in the direction

n(ϕ(ε)).

Remark 6.2 From the proof, it will be clear that the steps are asymptotic to stable planar

interfaces. In particular, the essential spectrum of the linearization is marginally stable and

can be pushed into the negative left half plane by means of exponential weights. This is in

complete analogy with the Korteweg-de Vries equation, which can be formally derived as a

modulation equation in the present situation. We conjecture that the steps are actually spec-

trally stable, that is, the point spectrum of the linearized operator is contained in the closed left

half plane. Again, this is suggested by the KdV approximation. Although higher-order terms

do not preserve the symmetries of the KdV equation, we suspect that the spectral picture of the

KdV equation persists. Indeed, Φ =
∫
u is the physically relevant variable of the position of

the interface, when u satisfies KdV. Linearizing about Φ only gives a single root of the Evans

function in the origin, as opposed to the double root for the linearization at the KdV soliton.

This single root is pinned to the origin even when adding perturbations since the derivative of

the step in the direction along the asymptotic planar interface provides a localized solution to

the linearization at any order.

Proof. [of Theorem 2]

The reduction.

We proceed as in the proof of Theorem 1 in Section 4, and derive first a reduced system

describing the corner defects for speeds c close to c∗ and angles ϕ close to ϕ∗. In contrast to

the proof of Theorem 1, we allow here for nearby directions n ∼ n∗, by taking the angle ϕ as

a second parameter.

In the coordinates (ξ, ζ) = (n⊥∗ · x, n∗ · x) the system (2.1) becomes

(an⊥∗ · n⊥∗ )uξξ + ((a+ aT )n∗ · n⊥∗ )uξζ + (an∗ · n∗)uζζ

+f(u, n∗uζ + n⊥∗ uξ) + cñ(ϕ) · (uξ, uζ) = 0, (6.1)
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in which

ñ(ϕ) = (sin(ϕ− ϕ∗), cos(ϕ− ϕ∗)).

We write again this system as a first order-system

uξ = A(c, ϕ)u + F(u), (6.2)

by taking u = (u, v), with v = uξ, and then obtain a line of equilibria to (6.2), at c = c∗,

ϕ = ϕ∗, from the primary planar front q(ϕ∗). Due to the assumptions on the linear dispersion

λ(k;ϕ) in Hypothesis 6.1, the spectrum of the linearized operator A∗ is now slightly changed:

the eigenvalue ν = 0 is algebraically triple, but still geometrically simple. The kernel and

generalized kernel are spanned by

kerA∗ = span(e0), e0 =

(
e0

0

)
, gkerA∗ = span(e0, e1, e2),

in which e0 is again the derivative of the planar front q(ϕ∗), and A∗e1 = e0 and A∗e2 = e1.

We construct the spectral projection P onto the generalized kernel, with the help of the

L2 × L2-adjoint Aad
∗ , as in Section 4, and then the shifted eigenvector eh0 , and, analogously,

eh1 , e
ad,h
j , P h,Aad,h

∗ .

We then decompose

u = qh∗ + η1eh1 + η2eh2 + wh, with P hwh = Pw = 0, (6.3)

in which q∗ = q(ϕ∗), and h, η1, η2 are real functions depending upon ξ. We now follow the proof

of Theorem 1, and after the center manifold reduction, and the normal form transformation,

we find the system
hξ = η1,

η1ξ = η2,

η2ξ = f1(η1, η2; c, ϕ),

in which we have dropped the tilde. We then have to solve the second order ODE

η1ξξ = f1(η1, η1ξ; c, ϕ). (6.4)

Expanding the reduced system.

We compute now a Taylor expansion for f1,

f1(η1, η2; c, ϕ) = ε0
(
(c− c∗) + ε1η1 + ε2η2 + a0(ϕ− ϕ∗)2 + a1(ϕ− ϕ∗)η1

+a2(ϕ− ϕ∗)η2 + a3η
2
1 + a4η1η2

)
+O(|c− c∗|(|c− c∗|+ |ϕ− ϕ∗|+ |η1|+ |η2|)

+ |η2|2 + (|ϕ− ϕ∗|+ |η1|)3 + |η2|(|ϕ− ϕ∗|2 + |η1|2)).
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As in Section 4, we make use of the family of planar fronts q(ϕ) which provides us here with

the following family of equilibria to (6.4):

(η1; c, ϕ) =
(

tan(ψ − ϕ∗);
c(ψ)

cos(ψ − ϕ)
, ϕ

)
,

for any angles ψ and ϕ close to ϕ∗. Inserting these expressions into the Taylor expansion of

f1, we can recover the expansion of f1(η1, 0; c, ϕ) and find

ε1 = 0, a0 = −c∗
2
, a1 = c∗, a3 = −d

′′(ϕ∗)
2

.

In order to compute the remaining coefficients, we use the linear dispersion relation which

turns out to determine the stability properties of the equilibria above. We claim that any

eigenvalue ν of the linearization about such an equilibrium satisfies the equality

λ(−iν cos(ψ − ϕ∗);ψ) = c(ψ) tan(ψ − ϕ) cos(ψ − ϕ∗)ν, (6.5)

in which λ(·, ·) is the linear dispersion relation in Hypothesis 6.1 (iii). Indeed, to any eigenvalue

ν with Re ν 6= 0 we can construct stable/unstable manifolds to (6.4) with expansion

η1(ξ) = tan(ψ − ϕ∗) + η̄1eνξ + O(e2νξ),

for c = c(ψ)/ cos(ψ − ϕ), and ψ, ϕ close to ϕ∗. These yield solutions to (6.1) of the form

v0(ñ(ψ) · (ξ, ζ)) + v1(ñ(ψ) · (ξ, ζ))eν̃ñ(ψ)⊥·(ξ,ζ) + O(e2ν̃ñ(ψ)⊥·(ξ,ζ)),

in which ν̃ = ν cos(ψ − ϕ∗). A direct calculation then shows that v1 satisfies

L(−iν̃;ψ)v1 = c(ψ) tan(ψ − ϕ)ν̃v1.

This shows (6.5) and proves our claim.

Using (6.5), we can now proceed and compute the remaining coefficients

ε0 = − 6
iλ′′′(0;ϕ∗)

, ε2 = a2 = 0, a4 = −∂ϕλ
′′(0;ϕ∗)
2

.

Summarizing, we have to study the equation

η1ξξ = − 6
iλ′′′(0;ϕ∗)

(
(c− c∗)−

c∗
2

(ϕ− ϕ∗)2 + c∗(ϕ− ϕ∗)η1

−d
′′(ϕ∗)
2

η2
1 −

∂ϕλ
′′(0;ϕ∗)
2

η1η1ξ

)
+O(|c− c∗|(|c− c∗|+ |ϕ− ϕ∗|+ |η1|+ |η1ξ|)

+ |η1ξ|2 + (|ϕ− ϕ∗|+ |η1|)3 + |η1ξ|(|ϕ− ϕ∗|2 + |η1|2)).
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We look for homoclinic solutions to this second order equation. Since η±1 = limξ→±∞ η1(ξ) cor-

responds to the asymptotic slope of the corners, homoclinic orbits are precisely step solutions

of the reaction-diffusion system.

Scaling and Melnikov analysis

In order to find homoclinic solution, we first notice that the truncated equation

η1ξξ = − 6
iλ′′′(0;ϕ∗)

(
(c− c∗)−

c∗
2

(ϕ− ϕ∗)2 + c∗(ϕ− ϕ∗)η1 −
d′′(ϕ∗)

2
η2
1

)
does possess homoclinic orbits for ϕ = ϕ∗, and any c > c∗ (resp. c < c∗) if the flux is

convex (resp. concave). Our task is to show that these orbits persist for the full equation as a

family (η∗1(ε); c(ε), ϕ(ε)), with small ε. As opposed to many systems where the KdV equation

provides the leading order approximation, the present system does not possess a reversibility or

a Galilei invariance, such that parameters are necessary to show persistence of the homoclinic

orbit. Our strategy therefore involves a sequence of transformations and scalings, which

isolate a linear damping term η1ξ as the first order correction. Since the damping unfolds the

homoclinic transversely, we can then conclude persistence from the implicit function theorem.

First, we eliminate the linear terms in η1 by setting

η1 = η̄1 + α(c, ϕ), (6.6)

in which α(c, ϕ) is chosen such that

∂η1f1(α(c, ϕ), 0; c, ϕ) = 0.

Since

∂η1f1(0, 0; c∗, ϕ∗) = 0, ∂η1η1f1(0, 0; c∗, ϕ∗) = −d′′(ϕ∗) 6= 0,

the existence of α(c, ϕ) is insured by the implicit function theorem. In addition, we find the

expansion

α(c, ϕ) =
c∗

d′′(ϕ∗)
(ϕ− ϕ∗) + O(|c− c∗|+ |ϕ− ϕ∗|2).

By substituting (6.6) into the reduced system we then find

η̄1ξξ = − 6
iλ′′′(0;ϕ∗)

(
(c− c∗) +

c∗
2

(
c∗

d′′(ϕ∗)
− 1
)

(ϕ− ϕ∗)2 −
c∗∂ϕλ

′′(0;ϕ∗)
2d′′(ϕ∗)

(ϕ− ϕ∗)η̄1ξ

−d
′′(ϕ∗)
2

η̄2
1 −

∂ϕλ
′′(0;ϕ∗)
2

η̄1η̄1ξ

)
+O(|c− c∗|(|c− c∗|+ |ϕ− ϕ∗|+ |η̄1|2 + |η̄1ξ|)

+ |η̄1ξ|2 + |ϕ− ϕ∗|3 + |η̄1|2(|ϕ− ϕ∗|+ |η̄1|) + |η̄1ξ|(|ϕ− ϕ∗|2 + |η̄1|2)).
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Next, we set

c̄ = c− c∗ +
c∗
2

(
c∗

d′′(ϕ∗)
− 1
)

(ϕ− ϕ∗)2 + O(|c− c∗|(|c− c∗|+ |ϕ− ϕ∗|) + |ϕ− ϕ∗|3)

ϕ̄ = ϕ− ϕ∗,

which is a well-defined change of coordinates in a neighborhood of (c∗, ϕ∗), so that the equation

becomes

η̄1ξξ = − 6
iλ′′′(0;ϕ∗)

(
c̄− c∗∂ϕλ

′′(0;ϕ∗)
2d′′(ϕ∗)

ϕ̄η̄1ξ −
d′′(ϕ∗)

2
η̄2
1

)
+O(|η̄1|2(|c̄|+ |ϕ̄|+ |η̄1|) + |η̄1ξ|(|c̄|+ |ϕ̄|2 + |η̄1|+ |η̄1ξ|)).

We now introduce the scaling

ξ = |c̄|−1/4x, ϕ̄ = |c̄|1/4ϕ̃, η̄1 = |c̄|1/2η̃1,

and find the equation

η̃1xx = − 6
iλ′′′(0;ϕ∗)

(
sign(c̄)− c∗∂ϕλ

′′(0;ϕ∗)
2d′′(ϕ∗)

ϕ̃η̃1x −
d′′(ϕ∗)

2
η̃2
1

)
+ O(|c̄|1/4).

At lowest order, there exists a homoclinic orbit η̃∗1, for ϕ̃ = 0, and sign(c̄) = 1 (resp. sign(c̄) =

−1) if the flux is convex (resp. concave). In order to prove persistence, we view the equation

as a nonlinear equation

G(η̃1; ϕ̃, ε) = 0, (6.7)

on functions η̃1 ∈ C2(R), with values in C0(R). Here, ε = |c̄|1/4, and we replaced c̄ by ε4

and −ε4 for convex and concave flux, respectively. The homoclinic above provides a solution

G(η̃∗1; 0, 0) = 0. The linearization

∂η̃1G(η̃∗1; 0, 0) = ∂xx −
6d′′(ϕ∗)

iλ′′′(0;ϕ∗)
η̃∗1,

is formally self-adjoint with respect to the L2 inner product. The kernels of the linearization

and of the (formal) adjoint are both spanned by the derivative ∂xη̃∗1. Now, the derivative of

G with respect to the parameter ϕ̃,

∂ϕ̃G(η̃∗1; 0, 0) ∼ ∂xη̃
∗
1,

is orthogonal to the range of the linearization, so that we can solve (6.7) for (η̃1, ϕ̃) =

(η̃1(ε), ϕ̃(ε)), and small ε; see also [7] for a similar analysis. This shows persistence of the

family of homoclinics and gives the family of steps as claimed in the theorem.
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7 Discussion

Convexity of the flux and the nonlinear dispersion curve

A convenient way to represent wave propagation in anisotropic media is to plot the nonlinear

dispersion relation c = c(ϕ), introduced in Section 2, as a curve in the plane. We can plot the

vector c(ϕ)n(ϕ) and let ϕ vary, which then traces a curve Γ parameterized through

γ(ϕ) = c(ϕ)(sinϕ, cosϕ) = d(ϕ) cos(ϕ− ϕ∗)(sinϕ, cosϕ).

We call this curve nonlinear dispersion curve. It turns out that the assumptions on group

velocity and flux in Theorem 1 can be read off this curve, and that several properties of corner

defects can be detected, as well.

First, the tangent vector to Γ at γ(ϕ∗) = c∗n∗ is given by cgn∗ + c∗n
⊥
∗ . The condition cg = 0

therefore is equivalent to a first order tangency between Γ and the circle with diameter the

vector c∗n∗, or, more generally, any circle with diameter along n∗ passing through γ(ϕ∗).

Next, convexity properties of the flux d can be expressed in terms of the curvature of Γ,

K(ϕ) =
c2(ϕ) + 2c′2(ϕ)− c(ϕ)c′′(ϕ)

(c2(ϕ) + c′2(ϕ))3/2
.

At ϕ = ϕ∗, we find

K(ϕ∗) =
2

(c2∗ + c2g)1/2
− d′′(ϕ∗)

c∗

(c2∗ + c2g)3/2
.

The first term in the right hand side of this formula,

K∗ =
2

(c2∗ + c2g)1/2
,

represents the curvature of a circle C∗ whose diameter is given by the length of the tangent

vector cgn∗+ c∗n
⊥
∗ . It has a first order tangency with the curve Γ at γ(ϕ∗) when plotted with

diameter joining the points γ(ϕ∗) = c∗n∗ and cgn⊥∗ , or, in the explicit parameterization,

ϕ 7→ (c∗ cos(ϕ− ϕ∗) + cg sin(ϕ− ϕ∗))(sinϕ, cosϕ).

Then we have that the flux

• d is convex if Γ lies outside C∗ (K(ϕ∗) < K∗);

• d is concave if Γ lies inside C∗ (K(ϕ∗) > K∗);

• d flat if Γ coincides with C∗;
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Figure 7.1: Plot of the nonlinear dispersion curve Γ and of the circle C∗ in cases of convex,

concave, and flat flux d.

for ϕ in a neighborhood of ϕ∗; see Figure 7.1.

Consider now a speed c and the circle C with diameter the segment connecting cn∗ with the

origin. Then any intersection point of the circle C with the curve Γ corresponds to a planar

interface moving with speed c in the direction n∗, since the speed of such an interface in this

direction is given by c(ϕ)/ cos(ϕ − ϕ∗). Consequently, the asymptotic planar interfaces to a

corner defect propagating in a direction n∗ with speed c, can be found as intersection points

of the curve Γ with the circle C. Furthermore, we can compute the difference between the

tangent vectors tΓ to the curve Γ and tC to C at some intersection point γi, and find

tΓ − tC = d′(ϕi) cos(ϕi − ϕ∗)ni,

so that

• if d′(ϕi) < 0, the curve Γ enters the circle C at ϕi;

• if d′(ϕi) > 0, the curve Γ leaves the circle C at ϕi.

For the corner defects found in Theorem 1 we always have

d′(ϕ+) < 0 and d′(ϕ−) > 0,

and we then conclude that

• the corner defect is an interior corner, if the curve Γ lies inside the circle C for angles

ϕ between the asymptotic angles ϕ+ < ϕ−;

• the corner defect is an exterior corner, if the curve Γ lies outside the circle C for angles

ϕ between the asymptotic angles ϕ− < ϕ+;

see Figure 7.2.

25



c+n+

c−n−
c+n+ c−n−

cn∗

Γ

C

Γ
C

Figure 7.2: Plot of the nonlinear dispersion curve Γ and of the circle C in cases of interior

(left) and exterior corners (right). The points c±n± represent the asymptotic planar interfaces

of the defect with ϕ+ < ϕ∗ < ϕ− for interior corners (left), and ϕ− < ϕ∗ < ϕ+ for exterior

corners (right). (The curve Γ is oriented clockwise.)

Large corners

Beyond the (local) bifurcation analysis that we presented above, one can try to predict exis-

tence of corners for large angles between the asymptotic interfaces, based on dimension count-

ing arguments for heteroclinic orbits. The small corners that we found are robust saddle-sink

connections in a center-manifold. For large corners, such a reduction might not always be

possible, still, provided the existence of a corner is guaranteed, one can construct smooth sta-

ble and unstable manifolds and count their relative dimensions and codimensions; see [9, 10].

More precisely, let Ecu/cs
± denote the tangent space to the center-(un)stable manifolds of the

planar interfaces at ξ = ±∞, and let

i : Ecu
− × Ecs

+ 7→ Y, (u−,u+) 7→ u− − u+,

be the injection map. The corner defect will be robust if the intersection is transverse and

we will actually find a two-parameter family of corner defects corresponding to varying the

asymptotic angles ϕ±, if i is onto. Now the x- and y-derivatives of the corner defect provide

a two-dimensional kernel of i such that the Fredholm index of i needs to be two if i is onto.

An analysis analogous to [10] shows that the Fredholm index of i is two if the transport at

the asymptotic interfaces, measured by the Cahn-Hoffman vector c±n± + cg±n
⊥
±, projected on

the direction n⊥∗ parallel to the interface, is directed towards the defect, that is, if

c+(n+, n
⊥
∗ ) + cg+(n⊥+, n

⊥
∗ ) < 0 and c−(n−, n⊥∗ ) + cg−(n⊥−, n

⊥
∗ ) > 0,

or equivalently, if

d′(ϕ+) < 0 and d′(ϕ−) > 0.

Corners with these properties correspond to shock-like structures, where small perturbations

are transported and annihilated at the center of the corner. Geometrically, these are precisely

the conditions on the relative positions of the circle C and the curve Γ, found for small angles

above; see Figure 7.2.
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Open problems

In the isotropic setting, we showed in [8] how various instabilities give rise to new phenomena.

An interesting case is the sideband instability, when λ(k) ∼ −k4 +µk2, where infinitely many

interior and exterior corners, but also steps are created. In the anisotropic setup such an

instability would first occur at a specific angle, say ϕ∗, whereas other angles would still allow

for stable front propagation. In particular, we expect such an instability to create a plethora of

corner defects with asymptotic interfaces that are asymptotically stable, unlike in the isotropic

setting, where all exterior corners and steps are unstable.

A related question is the competition between transversally stable and unstable fronts at a

corner defect: suppose a corner is formed between a transversally stable and a transversally

unstable planar interface, can the corner be stable in a suitably weighted norm and do these

corners provide an alternative to fingering breakup, the typical scenario in transversally un-

stable interfaces.
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