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Abstract

We investigate the dynamics of weakly-modulated nonlinear wave trains. For
reaction-diffusion systems and for the complex Ginzburg–Landau equation, we es-
tablish rigorously that slowly varying modulations of wave trains are well approxi-
mated by solutions to the Burgers equation over the natural time scale. In addition
to the validity of the Burgers equation, we show that the viscous shock profiles
in the Burgers equation for the wave number can be found as genuine modulated
waves in the underlying reaction-diffusion system. In other words, we establish the
existence and stability of waves that are time-periodic in appropriately moving co-
ordinate frames which separate regions in physical space that are occupied by wave
trains of different, but almost identical, wave number. The speed of these shocks
is determined by the Rankine–Hugoniot condition where the flux is given by the
nonlinear dispersion relation of the wave trains. The group velocities of the wave
trains in a frame moving with the interface are directed toward the interface. Us-
ing pulse-interaction theory, we also consider similar shock profiles for wave trains
with large wave number, that is, for an infinite sequence of widely separated pulses.
The results presented here are applied to the FitzHugh–Nagumo equation and to
hydrodynamic stability problems.
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NOTATION 1

Notation

Throughout this paper, we denote possibly different constants by the same
symbol C. We denote by Hm

ul the space of locally square-integrable functions on R
whose first m weak derivatives exist and are uniformly bounded in local L2 spaces
and for which the spatial translation y 7→ u(·+ y) is continuous with respect to the
Hm

ul -norm. Their norm is defined by

‖u‖Hm
ul

= sup
x∈R

‖u‖Hm(x,x+1)

where the Sobolev norm ‖ · ‖Hm(x,x+1) is, for each fixed x ∈ R, given by

‖u‖Hm(x,x+1) =
m∑

j=0

‖∂j
xu‖L2(x,x+1).

We also use the weighted Sobolev spaces Hm(n) which we equip with the norm

‖u‖Hm(n) = ‖u ρn
w‖Hm

where ρw(x) =
√

1 + |x|2.
u(x, t) solution to reaction-diffusion system
u0(ωt− kx; k) wave train (2π-periodic in argument θ)
θ = ωt− kx travelling-wave coordinate (wave train)
k wave number
ω temporal frequency
ωnl(k) nonlinear dispersion relation
cp = ωnl(k)/k phase velocity
cg = dωnl(k)/dk group velocity
λ temporal eigenvalue
λlin(ν) linear dispersion relation in comoving frame
ν complex spatial Floquet exponent
` imaginary part of spatial Floquet exponent ν = i`
Φ(X,T ) slowly varying phase
q(X,T ) slowly varying wave number
0 < δ � 1 multi-scale expansion parameter
(X,T ) = (δ(x− cgt), δ2t) slow space and time variables
c∗ speed of viscous shock
ω∗ frequency of viscous shock
ξ = x− c∗t travelling-wave coordinate (shock)
τ = ω∗t rescaled time (2π-periodic)
σ = τ − k0ξ co-rotating coordinate (wave train)
û(`) = [Fu](`) Fourier transform of u(x)
ǔ(x, `) = [J u](x, `) Bloch transform of u(x)

When we fix a wave number k0, we will denote the associated frequency, group
and phase velocities evaluated at k0 by ω0 = ωnl(k0), c0p and c0g, respectively. When
confusion is unlikely, we will drop the index 0.





CHAPTER 1

Introduction

We begin in §1.1 with a grasshopper’s guide which contains a brief outline of
our results and the plan of the paper. In the rest of the introduction, starting
with §1.2, we explain our results and their proofs in more detail. We finish the
introduction in §1.6 with references to related work and a brief discussion of open
problems.

1.1. Grasshopper’s guide

The issue investigated in this paper is the dynamics of slow modulations of
nonlinear spatially-periodic travelling waves, in the following referred to as wave
trains, in reaction-diffusion equations

∂tu = D∂xxu+ f(u), x ∈ R, u ∈ Rd.

Let u(x, t) = u0(ωt − kx; k) be such a wave train whose profile u0(θ; k) is 2π-
periodic in θ, and whose temporal frequency ω and spatial wave number k are
related through the nonlinear dispersion relation ω = ωnl(k). We define the group
velocity of the wave trains to be cg = ω′nl(k) and denote their linear dispersion
relation by λlin(ν). If we modulate the wave number k of the wave trains over large
spatial scales, we are led to an ansatz of the form

u(x, t) = u0(ωt− kx− Φ(X,T ); k + δ∂XΦ(X,T )), (X,T ) =
(
δ(x− cgt), δ2t

)
with 0 < δ � 1, which turns out to satisfy the underlying reaction-diffusion sys-
tem formally to leading order provided the wave-number modulation q(X,T ) =
∂XΦ(X,T ) is a solution of the (viscous) Burgers equation

∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2).

In this manuscript, we investigate the following issues:

• Validity results for the Burgers equation (setup: §4.1; results: §4.4; proofs:
§5):
We establish rigorous error estimates for the approximation of slowly-
varying modulated wave trains via the Burgers equation over the natural
time scale of order δ−2. The error estimates are uniform in the spatial
variable x provided the wave-number modulation q(X,T ) approaches lim-
its as X → ±∞. These results are formulated and proved separately
for the complex Ginzburg–Landau equation (§3) and for general reaction-
diffusion systems. For the latter case, we also present approximation
results for the inviscid Burgers equation over time scales of order δ−1

(§6).

3



4 1. INTRODUCTION

• Modulation equations near sideband instabilities (§7):
When the underlying wave trains become sideband unstable, the Burgers
equation does no longer provide an accurate description of the dynamics of
slow modulations. Instead, depending on the form of the linear dispersion
relation, it is the Korteweg–de Vries or the Kuramoto–Sivashinsky equa-
tion that takes its role. We discuss their validity properties for reaction-
diffusion systems.

• Existence and stability of weak shocks (setup: §4.1; results: §4.5; proofs:
§8):
We show that the viscous shock fronts in the Burgers equation correspond
to genuine modulated waves of the underlying reaction-diffusion system.
In other words, we construct stable waves that are time-periodic in an
appropriately moving coordinate frame and whose profile converges, as
x → ±∞, to two wave trains with different, but almost identical, wave
number. The speed of these interfaces is determined by the Rankine–
Hugoniot condition with the flux given by the nonlinear dispersion relation
of the wave trains. The group velocities of the asymptotic wave trains,
computed in a frame moving with the interface, are directed toward the
interface.

• Global analysis of trains of well-separated pulses (§9):
In the limit of infinite wavelength (or zero wave number), wave trains are
made up by an infinite number of well-separated pulses whose dynamics
can be described formally by a lattice dynamical system. In this descrip-
tion, modulated fronts that connect two such wave trains can be found
as heteroclinic orbits to a certain delay equation. We show that these
heteroclinic solutions exist between any two wave trains.

• Applications (§10):
The results presented here are applied to the FitzHugh–Nagumo equation
and to the Taylor–Couette problem.

1.2. Slowly-varying modulations of nonlinear wave trains

We shall investigate the dynamics of weakly-modulated nonlinear wave trains
in partial differential equations (PDEs) on the real line. To set the scene, suppose
that we are given a reaction-diffusion system

(1.1) ∂tu = D∂xxu+ f(u), x ∈ R, u ∈ Rd.

Starting point of our investigation are wave trains which are solutions u(x, t) =
u0(ωt − kx) of (1.1) that are 2π-periodic in their argument θ = ωt − kx. Thus, ω
may be interpreted as the temporal frequency of the wave train and k as its spatial
wave number; their quotient cp = ω/k gives the wave speed, or phase velocity, of the
nonlinear wave. Typically, wave trains exist for an entire range1 of wave numbers
k, and both the profile u0(θ) and the frequency ω will depend on the choice of k.
To reflect this fact, we write the travelling wave as

(1.2) u(x, t) = u0(ωt− kx; k)

and denote the frequency ω selected by the wave number k by ωnl(k); we shall refer
to this function as the nonlinear dispersion relation.

1See §4.1 for details.
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We will assume that the wave trains are spectrally stable: If we transform (1.1)
into the frame θ = ωt − kx and linearize the resulting equation about the wave
trains u0(θ; k), we obtain the linear operator

(1.3) Lu = k2D∂θθu− ω∂θu+ f ′(u0(θ; k))u.

Since the coefficients appearing in (1.3) are 2π-periodic in θ, a complex number
λ ∈ C is in the spectrum of L, considered for instance on L2(R), if, and only if,
there is a wave number ` ∈ R and a nonzero 2π-periodic function v(θ; `) such that

Lu = λu, u(θ) := ei`θv(θ; `).

Elements λ of the spectrum of L come in curves λ(i`) that are parameterized by
` ∈ R. In particular, translation invariance of (1.1) implies2 that there is a spec-
tral curve λlin(i`) with λlin(0) = 0; the associated eigenfunctions v(θ; `) have the
expansion

v(θ; `) = ∂θu0(θ; k)− `∂ku0(θ; k) + O(`2).
Spectral stability of the wave train therefore means that the spectrum of L lies
in the open left half-plane except for the curve λlin(i`) for which we assume that
λ′′lin(0) > 0.

The fact that wave trains exist for wave numbers k in an open, nonempty
interval of real numbers has interesting implications. We may, for instance, pick two
wave numbers k− and k+ from the admissible range and prepare an initial condition
which coincides with u0(−k−x; k−) on R− and with u0(−k+x; k+) on R+, perhaps
with some smooth transition between the two patterns near x = 0. The dynamical
behaviour of the resulting solution will reflect the interaction properties of the two
wave trains with wave numbers k− and k+. Worded differently, the region where
the transition from wave number k− to k+ occurs can be thought of as an interface
between the two patterns described by the chosen wave trains. Of interest is then
the dynamics of this interface.

More generally, we are interested in the dynamics of modulated wave trains. To
motivate the ansatz in which we shall seek solutions, we begin with a brief heuristic
discussion of local wave numbers; Figure 1.1 contains a graphical illustration. Since
u0(θ) is 2π-periodic in its argument, we can interpret the number k in the wave train
u0(−kx) as the number of waves per unit interval: its wave number, in other words.
For functions of the form u0(−φ(x)), we may therefore regard the derivative ∂xφ(x)
as the local wave number of u0(−φ(x)) near x. This concept becomes more plausible
and credible if ∂xφ varies very little in x. Thus, pick a function Φ(X) and choose
a small multi-scale parameter δ with 0 < δ � 1. The function u0(−kx − Φ(δx))
has indeed, locally at x, a wave number that is given by k + δ∂XΦ(δx). This
interpretation may become more clear when specializing to Φ(X) = X in which
case u0(−kx − Φ(δx)) = u0(−(k + δ)x) so that local and global wave numbers
coincide.

Thus, exploiting the freedom we have in selecting the wave number, we choose
a smooth real-valued function Φ(X) and consider a slowly modulated wave train of
the form

(1.4) u(x) = u0(−kx− Φ(δx); k + δ∂XΦ(δx))

for 0 < δ � 1, where we think of δ as a small parameter that determines the
length scale over which the wave number is modulated by the function ∂XΦ. For

2See §4.1 for details.
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cp
cg

Figure 1.1. The left panel shows a wave train that travels with
its phase velocity cp, while the right panel contains a modulated
wave train with its local wave number q shown on top. The slowly-
varying modulation of the wave number propagates with the group
velocity cg.

δ > 0 sufficiently small, it is reasonable to expect that the solution of (1.1) with
initial condition (1.4) remains a slowly modulated wave train: it should still be
of the form (1.4) for a function Φ(X) that now also depends on time. If this is
true, then it ought to be possible to derive an effective evolution equation for the
time-dependent modulation Φ.

Evolution equations that describe slowly-modulated wave trains have indeed
been derived in the literature, starting with the seminal work [23], and we shall
now describe the outcome of these analyses. First, we make the modulation ansatz

(1.5) u(x, t) = u0(ωnl(k)t− kx− Φ(X,T ); k + δ∂XΦ(X,T ))

for 0 < δ � 1. The variables (X,T ) represent the relevant length and time scales
over which the slowly-varying modulation of the wave number evolves. The correct
choice for (X,T ) turns out to be

(1.6) (X,T ) =
(
δ(x− cgt), δ2t

)
,

where

(1.7) cg = ω′nl(k)

is what we shall refer to as the group velocity of the wave trains. In these coordi-
nates, the local wave number q(X,T ) := ∂XΦ(X,T ) satisfies, to leading order and
on a formal level, the Burgers equation3

(1.8) ∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2),

while the phase Φ(X,T ) itself satisfies the integrated Burgers equation

(1.9) ∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2.

At this point, two questions arise naturally:
• First, assuming that the description via (1.8) is correct, what do we learn

from it with regard to the dynamics of modulated wave trains of the
reaction-diffusion equation (1.1)?

• Second, can we prove that (1.5) and (1.8) together describe the dynam-
ics of modulated wave trains accurately? In other words, given a solu-
tion q(X,T ) to the Burgers equation, is there a solution to the reaction-
diffusion equation (1.1) which differs from (1.5) by terms that go to zero
sufficiently fast as δ → 0?

3The term Burgers equation is often reserved for the inviscid Burgers equation without the
diffusion term in (1.8). We break with this convention and shall refer to (1.8) as the Burgers
equation.
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wave number

wave train

modulated
wave

modulation with zero mean modulation with nonzero mean

Figure 1.2. The difference between localized modulations with
zero (left) and nonzero (right) mean is illustrated. The upper row
shows the local wave number as a function of x, the resulting mod-
ulated wave is plotted in the center row, and the original wave
train is shown in the third row for comparison. The phases of
the modulated wave and the wave train at x = ±∞ coincide for
wave-number modulations with zero mean, while modulations with
nonzero mean generate a phase difference equal to the mean.

1.3. Predictions from the Burgers equation

To address the first question (whose answer will motivate why we may want to
look into the second issue), we briefly review4 some key features of solutions to the
Burgers equation. First, we record that solutions q(X,T ) of the Burgers equation
with sufficiently localized initial data decay to zero in L1∩L∞ as T →∞. In terms
of (1.1), this means that localized perturbations of the wave number of the wave
trains will decay to zero.

Localized solutions Φ(X,T ) of (1.9), which correspond to solutions q = ∂XΦ of
(1.8) with vanishing spatial mean, look very much like a Gaussian when renormal-
ized appropriately and, in particular, remain localized near X = 0 for all T . Taking
into account the frame (1.6) in which the Burgers equation has been derived, we
see that sufficiently localized perturbations of the phase of wave trains decay to
zero in L1 ∩ L∞ while being localized near x = cgt when suitably renormalized.
This justifies the term group velocity for the quantity cg: it is the velocity with
which localized perturbations in phase or wave number propagate in time (see also
Figure 1.1). Localization of the wave number q(X,T ) simply means that the wave
trains at X = ±∞ are the same. The phase Φ(X,T ) is localized precisely when
q(X,T ) has vanishing spatial mean:

Φ(X,T ) =
∫ X

−∞
q(Y, T ) dY, Φ(∞, T )− Φ(−∞, T ) =

∫ ∞

−∞
q(X,T ) dX.

Localization of the phase function Φ(X,T ) therefore means that the wave trains at
X = ±∞ are in phase, and the effect of (1.5) is simply to move some of the interior
waves forth and back. We refer to Figure 1.2 for an illustration.

Next, we shall focus on nonlocalized solutions of the Burgers equation. Of
particular interest are the viscous Lax shocks of (1.8). For any two given numbers
q−, q+ ∈ R, the Burgers equation admits a travelling wave q(X,T ) = q∗(X − c∗T )
with q∗(X − c∗T ) → q± as X → ±∞ if, and only if,

(1.10) ω′′nl(k)(q+ − q−) < 0.

4Details can be found in §2.
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Thus, q− < q+ for ω′′nl(k) < 0 and q+ < q− for ω′′nl(k) > 0. If (1.10) is met, then
the wave speed c∗ is given by

(1.11) c∗ =
1
2
ω′′nl(k)(q+ + q−),

and the front q∗(X− c∗T ) is asymptotically stable. The Burgers equation (1.8) is a
viscous conservation law, and the inverse slopes of its characteristics to either side
of the front q∗ are given by

c±g = ω′′nl(k)q±.

In particular, using (1.10) and (1.11), we have

(1.12) c−g > c∗ > c+g ,

and the characteristics therefore point toward the front interface which confirms
that the fronts q∗ are viscous Lax shocks. Of course, if (1.10) is not met, then the
characteristics point away from the transition area near X = 0, and we expect the
solution q(X,T ) of (1.8) to behave in a way that is similar to rarefaction waves in
conservation laws.

Starting from a wave train with wave number k in the reaction–diffusion system,
the Lax shocks q∗(X−c∗T ) of the associated Burgers equation correspond formally,
via (1.5), to coherent structures of the reaction-diffusion system (1.1) that move
with speed c∗ = cg+δc∗ and connect the wave train with wave number k− = k+δq−
at X = −∞ to the wave train with wave number k+ = k + δq+ at X = ∞ (see
Figure 1.3). Since the group velocities of the asymptotic wave trains are given by

ω′nl(k + δq±) = cg + ω′′nl(k)δq± = cg + δc±g ,

we can therefore conclude from (1.12) that

ω′nl(k + δq−) > cg + δc∗ > ω′nl(k + δq+).

Using the definitions k± = k + δq± and c∗ = cg + δc∗, we finally get

ω′nl(k−) > c∗ > ω′nl(k+).

Using the interpretation of the group velocity as the speed with which perturbation
propagate along the wave train, we therefore see that the asymptotic wave trains
transport perturbations toward the interface that separates them since its speed is
c∗ = cg + δc∗. Coherent structures with this property are often referred to as sinks
[50].

This ends our discussion of the dynamics of the Burgers equation and how
it relates to the underlying reaction-diffusion equation. In the next section, we
outline our approach for proving validity of the Burgers equation as the system
that governs modulations of nonlinear wave trains and the existence of the Lax
shocks we discussed above in the reaction-diffusion equation.

1.4. Verifying the predictions made from the Burgers equation

We will prove in §8 that the coherent structures which we discussed in the
previous section indeed exist. More precisely, for given constants k− and k+, we
are interested in solutions to (1.1) of the form u(x, t) = u∗(x − c∗t, ω∗t), where
u∗(ξ, τ) is 2π-periodic in τ and

u∗(x− c∗t, ω∗t) → u0(ω±t− k±x− φ±; k±)
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c∗ ≈ cg

c∗ ≈ cg

ω′′
nl(k) > 0

k+ k−
k

ω

c∗

ω′′
nl(k) < 0

ω

k
k− k+

c∗

Lax shock

interface

Lax shock

interface

Figure 1.3. The relation between concave (top) and convex (bot-
tom) dispersion relations and the resulting weak shock profiles is
illustrated. The velocity c∗ of the interface, given by the Rankine–
Hugoniot condition (1.13) and therefore by the slopes labelled c∗ in
the insets, is close to the group velocity cg = ω′nl, which is positive
for the dispersion relations shown to the left.

as x → ±∞ for appropriate phase constants φ± ∈ R. Solutions u∗(x − c∗t, ω∗t)
of the above form are spatially asymptotic to the wave trains with wave numbers
k− and k+. They are also temporally periodic with frequency ω∗ when considered
in a coordinate frame that moves with speed c∗. It turns out that the assump-
tion of temporal periodicity determines the wave speed via the Rankine–Hugoniot
condition

(1.13) c∗ =
ωnl(k+)− ωnl(k−)

k+ − k−
,

which coincides with the speed prediction (1.11) once the moving frame (1.6) is
taken into account. The temporal frequency ω∗ is given by

ω∗ =
ωnl(k−)k+ − ωnl(k+)k−

k+ − k−
.

We shall show that u∗ exists, and is nonlinearly stable with respect to (1.1), when-
ever the wave numbers k± are sufficiently close to each other5 and the Lax condition

ω′nl(k−) > c∗ > ω′nl(k+)

is satisfied. Thus, the group velocities of the asymptotic wave trains, computed in
a frame moving with the interface, are again directed toward the interface, which
illustrates further why these structures correspond to the Lax shocks of the Burgers
equation.

We can only prove the existence of u∗ when k+ and k− are close to each
other5, so that the coherent structures are really weak shocks. It is an interesting
consequence of (1.13) that c∗ → cg(k0) as k± → k0. Thus, the speed of the interface
between the two asymptotic wave trains becomes the group velocity cg when the
wave trains approach each other.

5More precisely, when both the wave numbers and the profiles of the associated wave trains,
in the 2π-periodic θ-variable, are sufficiently close to each other.
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The idea of the existence (and stability) proof is to use spatial dynamics and the
Kirchgässner reduction [18, 29, 41]: If the weak shocks were independent of time,
they would satisfy an ordinary differential equation (ODE) in the spatial variable
ξ = x− c∗t. Since the weak shocks are periodic in time, a similar approach works:
Writing the weak shock as u∗(ξ, τ) = u∗(x − c∗t, ω∗t), we see that (u, v)(ξ, τ) =
(u∗, ∂ξu∗)(ξ, τ) has period 2π in τ and satisfies the modulated-wave equation

∂ξu = v(1.14)

∂ξv = D−1[ω∗∂τu− c∗v − f(u)],

where (u, v)(ξ, ·) lies for each ξ in the space H1
per(0, 2π)×H

1/2
per (0, 2π) of functions

that are 2π-periodic in τ . In this spatial-dynamics formulation, wave trains corre-
spond to periodic orbits of (1.14), while weak shocks are heteroclinic orbits that
connect them. Since (1.14) is autonomous in ξ, periodic orbits of (1.14) will always
have one neutral Floquet exponent. If we choose c∗ := cg(k0) to be the group veloc-
ity of the wave train with wave number k0, then the periodic orbit corresponding
to this wave train turns out to have two neutral Floquet exponents, and the vector
field on the two-dimensional center manifold coincides with the equation describing
viscous shock profiles in the Burgers equation. Thus, we obtain the weak shocks
from the Lax shocks of the flow on the center manifold.

Next, we discuss the validity of the Burgers equation itself over time intervals
[0, T0/δ

2] for some fixed T0 > 0. To illustrate the key ideas and difficulties, we focus
first on the complex Ginzburg–Landau equation (CGL)

∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2,
where A(x, t) is complex-valued. For simplicity, we consider the wave train with
wave number k = 0 which is given explicitly by

A0(x, t) = e−iβt

and whose group velocity vanishes. Exploiting the invariance of the CGL with
respect to A 7→ Aeiγ , we introduce the amplitude and phase deviations (r, φ) of
this wave train via

A(x, t) = (1 + r(x, t))ei(−βt+φ(x,t)).

Substituting this ansatz into the Ginzburg–Landau equation and using the local
wave number ψ = ∂xφ as a new variable, we obtain the equation

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3(1.15)

∂tψ = ∂xxψ + ∂x

(
α∂xxr

1 + r
− αψ2 +

2(∂xr)ψ
1 + r

− 2βr − βr2
)
,

which depends only on r and ψ = ∂xφ but not on the phase φ itself. Thus, we have
successfully decomposed the underlying PDE into an equation for the local wave
number ψ and an equation for the remainder r. The equation for ψ is a conservation
law, which somewhat resembles the Burgers equation, while the equation for r is
exponentially damped due to the linear term −2r.

Given a solution q(X,T ) of the Burgers equation on the time interval [0, T0],
we now wish to examine whether there is a solution (r, ψ)(x, t) of (1.15) that stays
close to the slowly-varying modulation (0, δq(δx, δ2t)) for t ∈ [0, T0δ

−2] and 0 <
δ � 1. Our approach follows closely the general strategy that has been developed
over the past decade to establish validity of amplitude and modulation equations.
First, using a formal power-series expansion in the scaled variables (X,T ), we can
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calculate corrections to the initial approximation (0, δq(δx, δ2t)) to obtain functions
(rn, ψn)(X,T ) that satisfy (1.15) up to residuals of the order O(δn) (with n chosen
as large as we wish). This suggests that we try to control the full solution by
making the ansatz

(1.16) (r, ψ)(x, t) = (rn, ψn)(x, t) + δn+1(Rs,Rc)(x, t)

for solutions of (1.15), which leads to a certain evolution equation for the error
(Rs,Rc). Roughly speaking, we expect that the equation for Rs will again be ex-
ponentially damped, and that its solutions therefore stay bounded by Gronwall’s
lemma as long as its right-hand side remains bounded, while the equation for the
error Rc will retain the conservation-law structure exhibited by (1.15). Corrobo-
rating these assertions requires diagonalizing (1.15) in an appropriate sense which
we postpone until the actual proof. Instead, we shall focus on the model problem

(1.17) ∂tRc = ∂xxRc + ∂x

(
δaRc + O(δ2)

)
, a = a(x, t) ∈ L∞(R× R+)

which turns out to share the key features with the actual equation for Rc.
The issue at hands is to control the growth of the solution Rc of (1.17) over

the time interval [0, T0/δ
2]. Using the variation-of-constant formula, we find

Rc(t) =
∫ t

0

e∂xx(t−s)∂x

[
δa(·, s)Rc(s) + O(δ2)

]
ds.

The estimate
‖e∂xxt∂x‖L2→L2 ≤ C0√

t
of the linear semigroup gives

‖Rc(t)‖L2 ≤
∫ t

0

C0√
t− s

[
δ‖a‖L∞‖Rc(s)‖L2 + O(δ2)

]
ds

≤ C1 +
∫ t

0

δC0√
t− s

‖Rc(s)‖L2 ds, ∀ t ∈ [0, T0/δ
2].

We can now use the version6 of Gronwall’s inequality proved in [22] to conclude
boundedness of the error Rc(t). This is further illustrated by the calculation∫ t

0

δC0√
t− s

ds ≤ δC0

√
t ≤ C0

√
T0

which is valid for t ∈ [0, T0/δ
2].

In summary, it is the factor ∂x in (1.17), i.e. its conservation-law structure, that
allows us to conclude that the error stays bounded over the desired time interval.
We shall see in §3.9 that the leading-order term in the equation for the error of the
Ginzburg–Landau equation is indeed of order O(δ) so that we could not possibly
infer boundedness over time intervals of length δ−2 if the factor ∂x were not present.

To apply the same analysis to reaction-diffusion equations, we need to extract
an equation of conservation-law form for the local wave number. This is accom-
plished in §5: Starting with an arbitrary slowly-varying phase function φ(x, t), we
change the independent variable x via x = y + φ(y, t). The resulting PDE in the
y-variable turns out to depend only on the derivatives of φ but not on φ itself. This
allows us to derive an effective equation for the wave number upon using Bloch-wave
transforms and mode filters.

6See Lemma 3.12 in §3.9.
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The Burgers equation is formulated in terms of the wave number, and any va-
lidity result therefore needs to take into account the reconstruction of the phase Φ
from the wave number ∂XΦ. This reconstruction turns out to impose a number
of limitations on how well the dynamics in the reaction-diffusion system can be
approximated via solutions of the associated Burgers equation: While our approx-
imation results are uniform in the variable y that we introduced above, it turns
out that we cannot expect uniform validity for x ∈ R but only for x in intervals
of large but finite length. Moreover, we have to allow a global x-independent shift
between the approximation and the solution. For this shift, we can only prove an
O(1)-estimate on the time interval of the order O(1/δ2).

We emphasize, however, that the quality of the approximation by the Burgers
equation improves dramatically for solutions with additional properties. One ex-
ample are solutions to the Burgers equation that converge sufficiently fast toward,
possibly different, limits as X → ±∞. In particular, this class of solutions includes
sufficiently localized solutions Φ(X,T ) of the integrated Burgers equation (1.9). For
all these solutions, the approximation is uniform in x ∈ R.

1.5. Related modulation equations

We derived the Burgers equation by choosing a scaling of the (x, t) that resem-
bles the self-similarity scaling of the linear heat equation. Alternatively, following
[23], we may also employ the ansatz

(1.18) u(x, t) = u0(ωnl(k)t− kx−Φ(X,T )/δ; k+ ∂XΦ(X,T )), (X,T ) = (δx, δt)

which leads to the inviscid Burgers equation7

(1.19) ∂T q + ∂Xωnl(k + q) = 0

for the wave number q = ∂XΦ. Equation (1.19) is a hyperbolic conservation law
and therefore allows the formation of shocks. Thus, we can only expect to obtain
validity results that hold over time intervals [0, T1/δ] where T1 > 0 is sufficiently
small depending on the chosen solution q(X,T ). This is indeed the result that we
shall establish in §6 for reaction-diffusion equations. While the profile of solutions
is again approximated well, its position is known only up to an error of the order
O(‖q‖2/δ). We emphasize though that this estimate is good enough to prove that
the group velocity provides the speed with which perturbations are transported
along the wave train. Lastly, we remark that a similar approximation result has
been proved in [40] for the complex Ginzburg–Landau equation.

The description via the Burgers equation breaks down once the wave trains
undergo sideband instabilities which occur when the coefficient λ′′lin(0) changes sign.
In particular, the Burgers equation (1.8) becomes ill-posed near these instabilities,
which shows the need of taking higher-order derivatives into account that regularize
the equation. Depending on the next nonvanishing term in the linear dispersion
relation λlin(ν), it is either the Korteweg–de Vries equation (KdV)

∂T q −
1
6
λ′′′lin(0)∂3

Xq +
1
2
ω′′nl(k)∂X(q2) = 0

7Strictly speaking, the term inviscid Burgers equation refers to the conservation law with
nonlinearity q∂Xq (i.e. with a quadratic flux). Within the context of this paper, we think of
the Burgers equation as a shortcut for the modulation equation for the wave number and shall
therefore, with a slight abuse of notation, always refer to (1.19) as the inviscid Burgers equation.
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or the Kuramoto-Sivashinsky equation8

∂T q −
1
24
λ′′′′lin(0)∂4

Xq + κ2∂XXq +
1
2
ω′′nl(k)∂X(q2) = 0

which describe the dynamics of modulated sideband-unstable wave trains. Validity
results for both of these equations are presented in §7 though the results for the
KdV equation are again quite unsatisfactory due to its hyperbolic nature. Since we
chose not to exploit the regularity properties of the KdV equation, our results are
limited to time intervals [0, T1δ

−3] where 0 < T1 � 1 is sufficiently small.

1.6. References to related works

The mathematics and physics literature contains a large body of works pertain-
ing to phase and modulation equations. We shall put here our work in perspective
by citing those papers that influenced us most but do not attempt to give a com-
prehensive literature review.

Howard and Kopell [23] were, to our knowledge, the first to consider phase
equations in reaction-diffusion equations. They formally derived the inviscid Burg-
ers equation for reaction-diffusion systems using multi-scale expansions similar in
spirit to the approach pioneered by Whitham [56] in his work on conservative PDEs.
Howard and Kopell also proved the existence of weak shocks in λ-ω systems where
weak shocks satisfy an ODE. Lastly, they commented on the difficulties that arise
for general reaction-diffusion systems when weak shocks are sought via the spatial-
dynamics approach since the resulting equation is ill-posed.

Kuramoto [31] investigated more systematically the different types of phase
equations that arise through formal multi-scale expansions depending on the sym-
metries of the underlying PDE and the stability and symmetry properties of the
underlying periodic pattern (see also [43] for a comprehensive overview).

Other formal derivations of various phase equations for the Ginzburg–Landau
equation and for general reaction-diffusion equations can be found, for instance,
in [3, 4, 20, 30, 35]. For further references, we refer to the survey articles and
textbooks [1, 10, 32, 34, 44, 45]. These also contain references to many of the
works that have focused on multi-dimensional phase equations, starting with the
seminal paper [11] by Cross and Newell.

There do not appear to be many mathematically rigorous results regarding the
existence of weak shocks or the validity of phase equations. Kapitula proved in [25]
the nonlinear stability, in polynomially weighted spaces, of the weak shocks in λ-ω
systems that were found by Howard and Kopell. In [27], he considered the existence
and stability of not necessarily weak shocks for the nearly real cubic Ginzburg–
Landau equation. Van Baalen [2] proved validity of the integrated Kuramoto-
Sivashinsky equation for the phase (but not the wave number) near the k = 0
wave train of the CGL. Lastly, Melbourne and Schneider established in [39, 40]
the validity of the phase diffusion equation and the inviscid Burgers equation near
the k = 0 wave train of the real and the complex Ginzburg–Landau equation,
respectively.

8We shall give the precise definition of the diffusion coefficient κ2 in §7.





CHAPTER 2

The Burgers equation

As outlined in the introduction, solutions q of the Burgers equation describe
the local wave number of an underlying travelling spatially-periodic pattern. In
this section, we review properties of these solutions.

2.1. Decay estimates

First, we recall the stability properties of the constant solutions q(X,T ) = q0
of the Burgers equation

(2.1) ∂T q = ∂XXq + ∂X(q2)

that were obtained in [6].
Thus, denote by q̃(X,T ) the deviation from the constant solution so that

q(X,T ) = q0 + q̃(X,T ) satisfies (2.1). We see that q̃(X,T ) satisfies the PDE

(2.2) ∂T q̃ = ∂XX q̃ + 2q0∂X q̃ + ∂X(q̃2)

which can be transformed back to (2.1) by the transformation

(2.3) X 7→ X + 2q0T.

Hence, without loss of generality, we can restrict ourselves to the stability of q = 0
in the equation

(2.4) ∂T q̃ = ∂XX q̃ + ∂X(q̃2).

The results for general q0 can then be obtained by transforming (2.4) into a comov-
ing frame of reference via X 7→ X − 2q0T .

The mean
∫

R q(X,T ) dX is conserved by the Burgers equation (2.4), and the
subspace of functions with vanishing mean value is therefore invariant under the
evolution of (2.4). Solutions to the linearized equation

∂T q̃ = ∂XX q̃

with vanishing mean satisfy the decay estimate

‖q̃(·, T )‖L∞ ≤ C

1 + T
‖q̃(·, 0)‖L1

for some constant C > 0. For these decay rates, the nonlinear terms ∂X(q̃2) turn
out to be asymptotically irrelevant so that solutions to the nonlinear system (2.4)
with zero mean have the same asymptotics as solutions to the linearized system
with zero mean.

Proposition 2.1 ([6]). For each ε ∈ (0, 1/2), there exist positive constants C1,
C2 such that the following is true. If

‖q̃(·, 0)‖H2(2) ≤ C1,

∫ ∞

−∞
q̃(X, 0) dX = 0,

15
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then there exists an A ∈ R such that∥∥∥(1 + T )q̃
(√

TX, T
)
−AXe−X2/4

∥∥∥
H2(2)

≤ C2

(1 + T )
1
2−ε

.

Consequently,

‖q̃(X,T )‖L1 ≤ C2√
1 + T

, ‖q̃(X,T )‖L∞ ≤ C2

1 + T
.

Remark 2.2. The local phase Φ, which is related to the wave number q through
q = ∂XΦ, satisfies the integrated Burgers equation

(2.5) ∂T Φ = ∂XXΦ + (∂XΦ)2.

For this equation, we have the following asymptotics. For each initial condition
Φ(·, 0) for which ‖Φ(·, 0)‖H2(2) is sufficiently small, there exists an A ∈ R such that∥∥∥(1 +

√
T )Φ

(√
TX, T

)
−Ae−X2/4

∥∥∥
H2(2)

≤ C2

(1 + T )
1
2−ε

,

so that the renormalized phase converges toward a Gaussian.

Next, we consider localized solutions q̃ ∈ L1 of (2.4) with nonzero mean. The
Cole–Hopf transformation

Q(X,T ) = e
R X
−∞ q̃(Y,T ) dY

transforms (2.4) into the heat equation

∂TQ = ∂XXQ.

Since the Burgers equation conserves the quantity
∫

R q̃(X,T ) dX, we are interested
in the long-term profiles of solutions to the heat equation with initial conditions
that satisfy

lim
X→−∞

Q(X, 0) = 1, lim
X→∞

Q(X, 0) = 1 +A.

The results in [6] show that

lim
T→∞

Q
(√

TX, T
)

= 1 +A erf(X) + O
(

1√
T

)
.

Using that the inverse Cole–Hopf transformation is given by

q̃(X,T ) =
∂XQ(X,T )
Q(X,T )

,

we see that solutions q̃ to the Burgers equation (2.4) with localized initial conditions
in H2(2) satisfy

lim
T→∞

√
T q̃
(√

TX, T
)

=
A erf ′(X)

1 +A erf(X)
=

d
dX

ln(1 +A erf(X)) =: f∗A(X)

with rate O(1/
√
T ). The limiting profile f∗A(X) satisfies limX→±∞ f∗A(X) = 0.

Therefore, the renormalized solutions converge toward a non-Gaussian limit.

Proposition 2.3 ([6]). For A ∈ R, define f∗A(X) := d
dX ln(1 +A erf(X)). For

each ε ∈ (0, 1/2), there are positive constants C1, C2 such that the following is true.
If ‖q̃(·, 0)‖H2(2) ≤ C1, then there exists an A ∈ R such that∥∥∥√1 + T q̃

(√
TX, T

)
− f∗A(X)

∥∥∥
H2(2)

≤ C2

(1 + T )1/2−ε
.
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Consequently,

sup
X∈R

|q̃(X,T )| ≤ C2√
1 + T

.

2.2. Fronts in the Burgers equation

Next, we recall existence and stability properties of fronts of

(2.6) ∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2)

where we assume that λ′′lin(0) > 0 and ω′′nl(k) 6= 0. While an appropriate scaling of
x and q would make both coefficients equal to one, we prefer to leave (2.6) as it is
to make the results a little easier to apply.

Thus, we seek solutions of (2.6) of the form q(X,T ) = q∗(X − c∗T ) where

(2.7) q∗(ξ) → q±, ξ → ±∞
with q− and q+ being given real numbers. Upon substituting this ansatz into (2.6),
we obtain

1
2
λ′′lin(0)q′′∗ + c∗q

′
∗ −

1
2
ω′′nl(k)(q

2
∗)
′ = 0

where we differentiate with respect to ξ = X − c∗T . Integrating in ξ, and using
that q∗(ξ) → q− as ξ → −∞ by (2.7), we get

1
2
λ′′lin(0)q′∗ + c∗q∗ −

1
2
ω′′nl(k)q

2
∗ = c∗q− −

1
2
ω′′nl(k)q

2
−.

If we also require that q∗(ξ) → q+ as ξ → ∞, we find that the wave speed c∗ is
necessarily given by

(2.8) c∗ =
1
2
ω′′nl(k)(q+ + q−),

so that the travelling-wave ODE becomes

(2.9) q′∗ =
ω′′nl(k)
λ′′lin(0)

(q∗ − q+)(q∗ − q−).

Thus, a necessary condition for obtaining a front that satisfies (2.7) is

(2.10) ω′′nl(k)(q+ − q−) < 0.

If (2.10) is met, then the front q∗(ξ) is given by

(2.11) q∗(ξ) =
q+e−ω′′nl(k)(q+−q−)ξ/λ′′lin(0) + q−

e−ω′′nl(k)(q+−q−)ξ/λ′′lin(0) + 1
, ξ = X − c∗T

with c∗ as in (2.8).
Perturbations q̃ of the front q∗ satisfy the nonlinear equation

(2.12) ∂T q̃ =
1
2
λ′′lin(0)∂ξξ q̃ + c∗∂ξ q̃ −

1
2
ω′′nl(k)∂ξ[2q∗q̃ + q̃2]

which is obtained from (2.6) by setting q = q∗ + q̃ and transforming into the
comoving frame ξ = X − c∗T . Initially, one may expect that the solutions q̃ decay
only algebraically in t. However, by considering (2.12) on the space

Xη =
{
q̃; eη|ξ|q̃(ξ) ∈ L2(R) and eη|ξ|∂ξ q̃(ξ) ∈ L2(R)

}
where η > 0 is sufficiently small, we obtain exponential decay rates: Indeed, Sturm–
Liouville theory shows that the stationary solutions obtained in this fashion are
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linearly stable, with a simple eigenvalue at the origin due to translation invariance,
when considered on Xη with η > 0 small. Using the spatially weighted norm on Xη,
spectral stability also implies nonlinear stability. We summarize these well-known
facts in the following proposition (see also Figure 1.3).

Proposition 2.4. Assume that λ′′lin(0) > 0 and ω′′nl(k) 6= 0. For any two
numbers q+ and q− that satisfy (2.10), equation (2.6) has a unique front given
by (2.11) which approaches the equilibria q± as X → ±∞. The spectrum of the
linearization of (2.12) about zero, considered on Xη for sufficiently small η > 0,
lies in the left half-plane except for a simple eigenvalue at λ = 0. In particular, the
fronts are nonlinearly stable with asymptotic phase in the spatially weighted space
Xη.

In fact, there is a constant a > 0 such that small perturbations of the nonlinear
fronts converge to zero algebraically with t−n or exponentially like exp(−aηt) in
the norms supξ∈R |ξ|n|q̃(ξ)| and supξ∈R exp(η|ξ|)|q̃(ξ)|, respectively, for 0 < η � 1
sufficiently small.



CHAPTER 3

The complex cubic Ginzburg–Landau equation

The complex cubic Ginzburg–Landau equation (CGL) in normal form is given
by

(3.1) ∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2

where the coefficients α, β ∈ R are real and where x ∈ R, t ≥ 0, and A(x, t) ∈
C. The Ginzburg–Landau equation is a universal amplitude equation that can
be derived by multiple-scales analyses: it describes slowly varying modulations,
in space and time, of the amplitude of bifurcating spatially-periodic solutions in
pattern-forming systems close to the threshold of their first instability.

Among the pattern-forming systems for which Ginzburg–Landau equations
have been derived are reaction-diffusion equations and hydrodynamic stability prob-
lems such as the Bénard and the Taylor–Couette problem. Mathematical justifi-
cations and other aspects of the reduction to the Ginzburg–Landau equation have
been investigated, for instance, in [8, 19, 37, 38, 52]. We refer to [1] and [42]
for recent reviews of the physical and mathematical aspects, respectively, of the
Ginzburg–Landau equation.

In this section, our goal is to prove that the dynamics of slow modulations
of spectrally stable wave trains of (3.1) is approximated by the dynamics of an
associated Burgers equation.

Before we embark on the analysis, we shall review related results that were
obtained for the Ginzburg–Landau equation. Firstly, the nonlinear stability of
spectrally stable wave trains in the sense of §2.1 has been proved in [5, 26]. The
existence and stability of fronts, which connect different wave trains and are of
Lax-shock type in the sense of §2.2, has been established in [5, 25] for the real CGL
and in [27] for the nearly real CGL.

We are not aware of any general results on the existence and stability of weak
shocks in the CGL. Such results can be obtained with the same methods that
we employ in this paper: in fact, the proofs for CGL are simpler than in the
general reaction-diffusion case since the existence problem reduces to an ordinary
differential equation. We note, however, that the papers [13] and [27] establish the
existence and stability, respectively, of Lax-type fronts for the nearly real CGL that
are not necessarily weak in that the asymptotic wave numbers k+ and k− are not
required to be close to each other.

3.1. Set-up

The complex Ginzburg–Landau equation has a family of time-periodic solutions

(3.2) A(x, t) = A0(ωnl(k)t− kx; k) = r(k)ei(kx−ωnl(k)t)

19
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where k, r(k), ωnl(k) ∈ R. The amplitude r, the spatial wave number k, and the
temporal frequency ω are related via

(3.3) r(k) =
√

1− k2, ωnl(k) = β + (α− β)k2.

In particular, these waves exist only for |k| < 1.
Spectral stability of these waves is checked as follows. Upon substituting the

expression

(3.4) A(x, t) = A0(ωnl(k)t− kx; k) + ei(kx−ωnl(k)t)
[
a1eλt+νx + a2eλt−νx

]
into (3.1), we see after some tedious computations that the ansatz (3.4) satisfies
(3.1) to linear order in |a1|+ |a2| provided

(3.5) λ = λlin(ν) = −cgν +
λ′′lin(0)

2
ν2 + O(|ν|3)

with

(3.6) cg = 2k(α− β),
λ′′lin(0)

2
= 1 + αβ − 2k2(1 + β2)

1− k2

(see [1, §II.D]). Therefore, if the Benjamin–Feir–Newell criterion 1+αβ > 0 is met,
then the wave trains (3.2) are spectrally stable with respect to perturbations with
small wave numbers `, where ν = i`, for appropriate values of k. We remark that
the wave trains are spectrally, and in fact also nonlinearly [26], stable in certain
regions in (α, β, k)-space, while they are spectrally unstable with respect to finite
wave numbers in other regions [20, 36].

We restrict our analysis to the following parameter regime. In particular, we do
not consider the real Ginzburg–Landau equation or spectrally unstable wave trains
as we shall choose k = 0 below.

Hypothesis 3.1. We assume α2 + β2 > 0 and 1 + αβ > 0.

3.2. Slowly-varying modulations of the k = 0 wave train: Results

To describe slowly-varying spatio-temporal wave number modulations of the
family of wave trains, we derive and validate the Burgers equation. We concentrate
on modulations of the wave trains with wave number close to zero and seek solutions
to (3.1) of the form

A(x, t) = A0(ωnl(0)t− Φ(δx, δ2t); δ∂XΦ(δx, δ2t))(3.7)

= r(δ∂XΦ(δx, δ2t))ei(Φ(δx,δ2t)−ωnl(0)t)

where 0 < δ � 1 is a small scaling parameter. We will comment below on the
differences when the basic wave number is not zero. For the above expression (3.7)
to be an approximate solution of (3.1), it is then formally necessary, as we shall see
in §3.3 below, that the phase Φ satisfies the phase equation

(3.8) ∂T Φ = (1 + αβ)∂XXΦ + (β − α)(∂XΦ)2

where we introduced X = δx and T = δ2t. Equation (3.8) can also be written as

2∂T Φ = λ′′lin(0)∂XXΦ− ω′′nl(0)(∂XΦ)2

where ω′′nl is evaluated at k = 0.
Of course, once this phase equation has been derived on a formal level, the ques-

tion that needs to be addressed is its validity. In other words, given that Φ(X,T ) is
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a solution to (3.8), we should investigate in what sense, and over which time inter-
vals, does (3.7) approximate a solution to the full Ginzburg–Landau equation (3.1).
We will answer these questions by providing estimates of the difference of the formal
approximation (3.7) and an exact solution A(x, t) of the complex Ginzburg–Landau
equation over time scales of the order O(1/δ2).

Theorem 3.2. Assume that Hypothesis 3.1 is met, and fix an integer n ≥ 3.
For each choice of C0 > 0 and T0 > 0 there exist constants δ1 > 0 and C1 > 0 such
that the following is true: For each δ ∈ (0, δ1) and each solution Φ(X,T ) of (3.8)
for which

(3.9) sup
T∈[0,T0]

‖Φ(·, T )‖Hn
ul
≤ C0,

there exists a solution A = A(x, t) of the complex Ginzburg–Landau equation (3.1)
such that

sup
t∈[0,T0/δ2]

sup
x∈R

|A(x, t)− ei[Φ(δx,δ2t)−ωnl(0)t]| ≤ C1δ
2.

In the preceding result, we only allow solutions Φ that satisfy (3.9). In partic-
ular, the phase function Φ is bounded in X, and we therefore do not change the
wave number of the underlying wave train.

Thus, to extend the preceding result, we will now consider modulations q =
∂XΦ of the local wave number which satisfy the Burgers equation

(3.10) ∂T q = (1 + αβ)∂XXq + (β − α)∂X(q2)

or, equivalently,
2∂T q = λ′′lin(0)∂XXq − ω′′nl(0)∂X(q2).

Of particular interest are solutions q(X,T ) that converge to different limits q± as
X → ±∞: such solutions describe the evolution of interfaces between wave trains
with wave number q− at x = −∞ and q+ at x = ∞. The associated phase functions
Φ are, however, unbounded in X, so that Theorem 3.2 is not applicable.

Theorem 3.3. Assume that Hypothesis 3.1 is met, and fix integers M ≥ 3 and
n ≥ M + 3. For each choice of C0 > 0 and T0 > 0, there exist constants δ1 > 0
and C1 > 0 with the following property: Pick δ ∈ (0, δ1) and a solution q(X,T ) of
the Burgers equation (3.10) for which there are numbers q± ∈ R so that

sup
T∈[0,T0]

[
‖q(·, T )‖Hn

ul
+ ‖(q(·, T )− q+)ρ2

w‖Hn
ul(R+) + ‖(q(·, T )− q−)ρ2

w‖Hn
ul(R−)

]
≤ C0

where ρw(X) =
√

1 +X2. Then there exists a higher-order approximation (qh, rh)
with

sup
T∈[0,T0]

sup
X∈R

[∣∣∣∣rh(X,T ) +
1
2
[q(X,T )2 + α∂Xq(X,T )]

∣∣∣∣+ |qh(X,T )− q(X,T )|
]
≤ C1δ

and a solution A(x, t) of the complex Ginzburg–Landau equation (3.1) such that

sup
t∈[0,T0/δ2]

sup
x∈R

|A(x, t)−Aapprox(x, t)| ≤ C1δ
M−3/2

where

Aapprox(x, t) =[
1− δ2

2
rh(δx, δ2t)

]
exp

(
i
[
δq−x+ δ

∫ x

−∞
(qh(δy, δ2t)− q−) dy − ωnl(0)t

])
.
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We remark that the higher-order approximation (qh, rh) can, in principle, be
computed from the solution q through the solutions of a recursive set of linear
PDEs. We refer to §3.4 for details.

Somewhat surprisingly, there appear to be serious limitations regarding the
quality of the approximation when the requirement that q has limits as X → ±∞
is dropped. In particular, as we shall see in Remark 3.13, we cannot expect validity
uniformly for all x ∈ R but only for x in intervals of finite length, where the length
depends on the accuracy of the approximation.

Theorem 3.4. Assume that Hypothesis 3.1 is met. For any choice of integers
M ≥ 1 and n ≥ M + 3, and real numbers C0, L0, T0 > and 0 < l < M , there exist
constants δ1 > 0 and C1 > 0 such that the following is true: Pick δ ∈ (0, δ1) and a
solution q(X,T ) of the Burgers equation (3.10) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

then there exist a global phase function φ0(t) with

sup
t∈[0,T0/δ2]

|φ0(t)| ≤ C1,

higher-order approximations (qh, rh) with

sup
T∈[0,T0]

sup
X∈R

[∣∣∣∣rh(X,T ) +
1
2
[q(X,T )2 + α∂Xq(X,T )]

∣∣∣∣+ |qh(X,T )− q(X,T )|
]
≤ C1δ,

and a solution A(x, t) of the complex Ginzburg–Landau equation (3.1) such that

sup
t∈[0,T0/δ2]

sup
|x|≤L/δl

|e−iφ0(t)A(x, t)−Aapprox(x, t)| ≤ C1δ
1+M−l

where

Aapprox(x, t) =
[
1− δ2

2
rh(δx, δ2t)

]
exp

(
i
[∫ x

0

δqh(δy, δ2t) dy − ωnl(0)t
])

.

The difficulty in justifying the Burgers equation for the Ginzburg–Landau equa-
tion is the time scale O(1/δ2). Since the admissible modulations are of order O(δ),
an application of Gronwall’s inequality would only give validity over a time scale
O(1/δ). Thus, a more refined method has to be used. We also remark that it
is not obvious why an approximation result should hold for the Burgers equation
(3.10): as shown in [53], there are examples of amplitude equations that are derived
formally in a correct way, but that do not describe the dynamics in the original
system in the desired way.

We remark that, as shown in [40], it is possible to allow modulations of order
O(1). In this case, the wave number modulation q satisfies the inviscid Burgers
equation

∂T q + ∂X [ωnl(q)] = 0.

However, validity is only expected over time scales T1/δ where, in contrast to the
situation discussed in Theorem 3.4, T1 cannot be chosen arbitrarily but comes
out of the analysis: Since the inviscid Burgers equation is a conservation law, we
expect the formation of shocks at which stage validity breaks down. Secondly,
the approach in [40] requires analytic initial data which makes it possible to trade
exponential decay in Fourier space (as k → ±∞) for temporal decay. Lastly, the
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global phase difference φ0(t) will be of order is O(1/δ) on the natural time scale of
the conservation law. We shall revisit this situation in §6.

The remainder of this section is devoted to the proofs of the results stated above.
We first derive the Burgers equation from the complex Ginzburg–Landau equation
using polar coordinates. Afterwards, we construct higher-order approximations
that are then used to formulate an approximation result for the wave numbers. The
idea is now to separate the critical modes belonging to marginally stable spectral
curve λlin(i`) from the noncritical modes that decay in time: since the relevant
eigenmodes are associated with curves of spectrum, we need to employ mode filters
to accomplish this separation of modes rigorously. The key feature that we shall
then exploit is that the equation derived in this fashion for the critical modes has
extra structure: roughly speaking, the nonlinearity is in conservation-law form. It
turns out that the same structure is present in the equations for the residuals.
The next step consists in applying Gronwall’s inequality to the system for the
residuals: the extra conservation-law structure supplies the better estimates for the
linear problem that allow us to work on the natural time scale 1/δ2. Lastly, the
results obtained for the wave numbers need then be transferred back to the original
formulation. It is at this stage that the restrictions and limitations of Theorem 3.4
arise.

3.3. Derivation of the Burgers equation

We formally derive the Burgers equation for the complex Ginzburg–Landau
equation

(3.11) ∂tA = (1 + iα)∂xxA+A− (1 + iβ)A|A|2

where α, β ∈ R, x ∈ R, t ≥ 0, and A(x, t) ∈ C. Recall that this equation admits
the wave trains

A(x, t) = A0(ωnl(k)t− kx; k) = r(k)ei(kx−ωnl(k)t)

where
r(k) =

√
1− k2, ωnl(k) = β + (α− β)k2.

We concentrate on long-wavelength modulations of the wave train with k = 0 given
by

A(x, t) = A0(ωnl(0)t; 0) = e−iβt,

and therefore introduce the amplitude and phase deviations (r, φ) of this wave train
via

A(x, t) = (1 + r(x, t))ei(−βt+φ(x,t)).

The function A(x, t) satisfies (3.11) if, and only if, (r, φ) satisfies

∂tr = ∂xxr − 2r − (∂xφ)2 − (∂xφ)2r − 2α(∂xr)(∂xφ)(3.12)
−α∂xxφ− α(∂xxφ)r − 3r2 − r3

∂tφ = ∂xxφ+ α
∂xxr

1 + r
− α(∂xφ)2 +

2(∂xr)(∂xφ)
1 + r

− 2βr − βr2.

Next, we replace the equation for the phase φ by an equation for the local wave
number ψ = ∂xφ and obtain

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3(3.13)

∂tψ = ∂xxψ + ∂x

(
α∂xxr

1 + r
− αψ2 +

2(∂xr)ψ
1 + r

− 2βr − βr2
)
.
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We emphasize that we lose information in the process of going from phases φ to
wave numbers q = ∂xφ as we need to recover the value of φ(0, t). On the other
hand, equation (3.13) is independent of φ(0, t).

To derive the Burgers equation, we assume that the wave number varies slowly
and seek solutions of the form

r(x, t) = δ2W (δx, δ2t; δ), ψ(x, t) = δΨ(δx, δ2t; δ).

Substituting this ansatz into (3.13), we get

δ4∂TW = δ2
[
δ2∂XXW − 2W −Ψ2 − δ2Ψ2W − 2δ2α(∂XW )Ψ

−α∂XΨ− δ2α(∂XΨ)W − 3δ2W 2 − δ4W 3
]

(3.14)

δ3∂T Ψ = δ3
[
∂XXΨ− ∂X(2βW + αΨ2)

+δ2∂X

(
α∂XXW

1 + δ2W
+

2(∂XW )Ψ
1 + δ2W

− βW 2

)]
where X = δx and T = δ2t. Dividing the two equations by δ2 and δ3, respectively,
we get

δ2∂TW = δ2∂XXW − 2W −Ψ2 − δ2Ψ2W − 2δ2α(∂XW )Ψ
−α∂XΨ− δ2α(∂XΨ)W − 3δ2W 2 − δ4W 3(3.15)

∂T Ψ = ∂XXΨ− ∂X(2βW + αΨ2)

+δ2∂X

(
α∂XXW

1 + δ2W
+

2(∂XW )Ψ
1 + δ2W

− βW 2

)
.

Neglecting terms of order O(δ2) and higher gives the equations

0 = −2W0 −Ψ2
0 − α∂XΨ0(3.16)

∂T Ψ0 = ∂XXΨ0 + ∂X(−αΨ2
0 − 2βW0)

for (W0,Ψ0)(X,T ) = (W,Ψ)(X,T ; 0), which we rewrite as

W0 = −1
2
(Ψ2

0 + α∂XΨ0)

∂T Ψ0 = (1 + αβ)∂XXΨ0 + (β − α)∂X(Ψ2
0).

Thus, every solution q(X,T ) of the viscous Burgers equation

(3.17) ∂T q = (1 + αβ)∂XXq + (β − α)∂X(q2)

gives a solution (W0,Ψ0) of (3.16) via

(3.18) (W0,Ψ0) =
(
−1

2
(q2 + α∂Xq), q

)
.

3.4. The construction of higher-order approximations

The higher-order approximations mentioned in Theorem 3.4 are obtained as
follows. Upon writing (W,Ψ) as a formal expansion of the form

W h
M = δ2

[
W0(δx, δ2t) + δW1(δx, δ2t) + . . .+ δMWM (δx, δ2t)

]
(3.19)

Ψh
M = δ

[
Ψ0(δx, δ2t) + δΨ1(δx, δ2t) + . . .+ δMΨM (δx, δ2t)

]
,

we find equations for (Wj ,Ψj) which are determined from (3.15) and (3.19) as long
as Ψ0 = q is given.
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First, we find Ψ1 = W1 = 0. On the next level, we obtain

∂TW0 = ∂XXW0 − 2W2 − 2Ψ0Ψ2 −Ψ2
0W0 − α∂XΨ2

−α(∂XW0)Ψ0 − α(∂XΨ0)W0 − 3W 2
0

∂T Ψ2 = ∂XXΨ2 − ∂X(2βW2 + 2αΨ0Ψ2)
+∂X(α∂XXW0 + 2(∂XW0)Ψ0 − βW 2

0 ).

The first equation is linear in W2 and can be solved for W2 as a function of
(W0,Ψ0,Ψ2). Substituting this solution for W2 into the second equation gives
a linear inhomogeneous PDE for Ψ2, which we can solve. As a consequence, the
solutions (W2,Ψ2) can be computed as long as Ψ0 = q is given.

Proceeding in this fashion, we find that Ψ2k+1 = W2k+1 = 0 for all k ∈ N.
Moreover, the functions W2k satisfy linear equations, while Ψ2k can be found as
solutions of linear inhomogeneous PDEs. These functions can be calculated as long
as q is given.

We remark that had we started with a wave number k 6= 0 in (3.2), we would
have got nonzero contributions from Ψ2k+1 and and W2k+1.

3.5. The approximation theorem for the wave numbers

The major step in proving Theorem 3.4 is the following approximation theorem
for the variables (W,Ψ).

Theorem 3.5. Fix integers M ≥ 1 and 1 ≤ m ≤ n − 3 −M and choose a
constant C0 > 0. There are then constants C1 > 0 and δ1 > 0 such that the
following is true. If q is a solution of the Burgers equation (3.17) with

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

then, for each δ ∈ (0, δ1), there exists a higher-order approximation (W h
M ,Ψh

M ) ∈
Hn

ul, see (3.19), which satisfies

sup
T∈[0,T0]

‖(W h
M ,Ψh

M )(·, T )− (W0,Ψ0)(·, T )‖Hm+1
ul

≤ C1δ

with (W0,Ψ0) as in (3.18), and a solution (W,Ψ) of (3.15) on [0, T0] such that

(3.20) sup
T∈[0,T0]

‖(W,Ψ)(·, T )− (W h
M ,Ψh

M )(·, T )‖Hm+1
ul ×Hm

ul
≤ C1δ

M .

Hence, we have an approximation result for the variables (W,Ψ) which is uni-
form in space. In particular, the limitations in the statement of Theorem 3.4 are
entirely due to the reconstruction of the phase φ from the wave number ψ.

Sections 3.6–3.9 are devoted to the proof of Theorem 3.5. We then use Theo-
rem 3.5 in §3.10 to prove the results stated in §3.2.

3.6. Mode filters, and separation into critical and noncritical modes

To prove Theorem 3.5, we need to separate the dynamics of the critical modes
corresponding to marginally stable spectrum of the wave trains from the remaining
damped modes. Upon linearizing equation (3.13) about (r, ψ) = 0, we obtain

∂tr = ∂xxr − 2r − α∂xψ

∂tψ = ∂xxψ + α∂xxxr − 2β∂xr
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Re λ1(")

Re λ2(")

Figure 3.1. The real part of the eigenvalues λj(`) is plotted as
a function of the Fourier wave number ` for 1 + αβ > 0.

which we consider on Hm+1
ul ×Hm

ul . Using the Fourier ansatz(
r
ψ

)
(x, t) = eλt+i`xf(`), f(`) ∈ C2

with ` ∈ R, we see that f needs to satisfy the equation

(3.21) Λ(i`)f = λf, Λ(i`) :=
(

−2− `2 −αi`
−i`(α`2 + 2β) −`2

)
.

We obtain two spectral curves ` 7−→ λj(`) where j = 1, 2 with λ1(0) = 0 and
λ2(0) = −2 < 0. In particular, the curve λ1(`) coincides with the linear dispersion
relation λlin(i`) calculated in (3.5). Furthermore, we find that Reλj(`) < 0 for
j = 1, 2 uniformly in ` except, of course, for λ1(`) which takes values in a small
neighbourhood of λ = 0 for ` ≈ 0.

We shall denote the eigenvectors (r, ψ)(`) that belong to the rightmost curve
λ1(`) = λlin(i`) of spectrum by f̂1(`) and refer to them as the critical modes when
` ≈ 0. We also use the notation Λ̂(`) for the 2 × 2 matrix Λ(i`). To separate the
nonlinear dynamics of the critical modes from the remaining temporally damped
noncritical modes, we introduce mode filters.

First, there is an `1 > 0 such that λ1(`) is the rightmost eigenvalue of Λ̂(`) for
all ` with |`| ≤ `1. Thus, for all such `, the integral

Q̂c(`) =
1

2πi

∫
Γ

[λ− Λ̂(`)]−1 dλ

defines an Λ̂(`)-invariant projection onto the subspace spanned by f̂1(`), provided
we choose Γ ⊂ C to be a small circle that surrounds λ1(`) counter-clockwise in the
complex plane but does not intersect the rest of the spectrum of Λ̂(`). In particular,
we have Q̂c(`)f̂1(`) = f̂1(`).

Since we wish to select only the critical modes, i.e. those belonging to |`| � 1,
we pick a C∞0 -cutoff function χ : R → [0, 1] with values in [0, 1] so that

(3.22) χ(`) =
{

1 for |`| ≤ 1,
0 for |`| ≥ 2,

and define

P̂ c(`) := Q̂c(`)χ
(

2`
`1

)
, P̂ s(`) := 1− Q̂c(`)χ

(
8`
`1

)
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as well as

P̂ c
mf(`) := Q̂c(`)χ

(
4`
`1

)
, P̂ s

mf(`) := 1− Q̂c(`)χ
(

4`
`1

)
.

Any two of these matrices commute for each fixed `, and we have

(3.23) (1− P̂ c)P̂ c
mf = 0, (1− P̂ s)P̂ s

mf = 0, P̂ c
mf + P̂ s

mf = 1

which shows that the operators P̂ c
mf and P̂ c together behave to some extent similar

to projections. Lastly, we set
λ̂c(`) := λ1(`)

and define scalar-valued projections p̂c(`) and p̂c
mf(`) implicitly by

[p̂c(`)v]f̂1(`) = P̂ c(`)v, [p̂c
mf(`)v]f̂1(`) = P̂ c

mf(`)v, ∀ v ∈ C2.

We now employ multiplier theory to transfer these operators from Fourier space
back to physical space. Throughout this paper, the Fourier transform of a variable
u is denoted by û. To each multiplication operator M̂ in Fourier space, we associate
the operator

(3.24) M : u 7−→ F−1(M̂Fu)
where F denotes the Fourier transform. Thus, in x-space, we denote operators by
the same symbol but with the superscript ˆ being dropped. The following multiplier
theorem gives estimates for the operator M in the physical spaces Hm

ul .

Lemma 3.6 ([52, Lemma 5]). Let W1, W2 be Hilbert spaces and fix m ∈ Z. If

M̂ : R −→ L(W1,W2), ` 7−→ M̂(`)

is a map such that ` 7→ (1 + `2)m/2M̂(`) lies in C2
b(R, L(W1,W2)), then, for each

q ∈ N0 with q +m ≥ 0, the operator M defined through (3.24) can be extended to
a bounded operator

M : Hq
ul(R,W1) −→ Hq+m

ul (R,W2)

whose norm satisfies

‖M‖L(Hq
ul(R,W1),H

q+m
ul (R,W2))

≤ C(q,m)‖(1 + | · |2)m/2M̂(·)‖C2
b(R,L(W1,W2)),

where C(q,m) does not depend on M̂.

Remark 3.7. The above lemma also holds for multilinear mappings.

We record that the mappings P̂ c
mf , P̂

c, p̂c
mf , p̂

c and f̂1 have compact support
in `. Thus, an application of Lemma 3.6 with W1 = W2 = C2 shows that P c

mf , P
c,

pc
mf , p

c and f̂1 are bounded linear operators from H1
ul × L2

ul into Hm+1
ul ×Hm

ul for
each m ≥ 0. Similarly, P s

mf and P s are bounded linear operators on Hm+1
ul ×Hm

ul

for each m ≥ 0.
We are now well prepared to establish the desired splitting into critical and

noncritical modes in Fourier as well as in physical space. Using the notation v =
(r, ψ), we write (3.13) as

(3.25) ∂tv = Λv +N (v).

We seek solutions of this equation by considering the system

∂tŵ
c(`) = Λ̂(`)ŵc(`) + P̂ c

mf(`)N̂ (ŵc + ŵs)(`)(3.26)

∂tŵ
s(`) = Λ̂(`)ŵs(`) + P̂ s

mf(`)N̂ (ŵc + ŵs)(`)
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for (ŵc, ŵs), where we require that

(3.27) (1− P̂ c(`))ŵc(`) = 0, (1− P̂ s(`))ŵs(`) = 0, ∀ ` ∈ R

for all t ≥ 0. Upon applying 1−P̂ c(`) and 1−P̂ s(`) to the first and second equation
in (3.26), respectively, and using (3.23), we see that (3.23) leaves Fix P̂ c(`) and
Fix P̂ s(`) invariant: in other words, if (3.27) holds true initially at t = 0, then it
is met for all t > 0. Most importantly, given a solution (ŵc, ŵs) of (3.26) which
satisfies (3.27), we see from (3.23) that the function v = wc + ws satisfies (3.25).
Lastly, we record that any initial condition can indeed be decomposed into ŵc and
ŵs.

Since ŵc(`) lies in a one-dimensional subspace of C2 for each fixed Fourier wave
number `, we may introduce the scalar function v̂c(`) by ŵc(`) = v̂c(`)f̂1(`). To
keep the notation consistent, we also set v̂s := ŵs. Thus, (v̂c, v̂s) satisfies

∂tv̂
c(`) = λ̂c(`)v̂c(`) + p̂c

mf(`)N̂ (v̂cf̂1 + v̂s)(`)(3.28)

∂tv̂
s(`) = Λ̂s(`)v̂s(`) + P̂ s

mf(`)N̂ (v̂cf̂1 + v̂s)(`),

where Λ̂s(`) = Λ̂(`)P̂ s. By construction, we then have pcvcf̂1 = vc and P svs = vs.
Inspecting the equation for ψ in (3.13), we see that its right-hand side is of

the form ∂x[. . .] which, in Fourier space, corresponds to a term of the form i`[. . .].
Since ψ is related to the critical modes, we may expect that this feature survives
the splitting into critical and noncritical modes. The following lemma shows that
this is indeed the case. As already alluded to in §3.2, we will exploit this important
property in the later stages of the proofs of the approximation theorems.

Lemma 3.8. There exists a smooth nonlinear mapping N c which maps Hm+1
ul ×

Hm
ul into Hs

ul for each s ≥ 0 and a smooth function ρ̂ with |ρ̂(`)| ≤ C|`| for some
constant C > 0 such that

p̂c
mf(`)N̂ (v̂cf̂1 + v̂s)(`) = ρ̂(`)N̂ c(v̂cf̂1 + v̂s)(`).

Proof. The eigenfunctions of

Λ(i`) =
(
−2 0

0 0

)
+ O(`),

see (3.21), have the expansion

f̂1 =
(

0
1

)
+ O(`), f̂2 =

(
1
0

)
+ O(`)

near ` = 0, while the adjoint eigenfunctions satisfy

f̂∗1 =
(

0
1

)
+ O(`), f̂∗2 =

(
1
0

)
+ O(`).

Furthermore, upon inspecting (3.15), we see that the nonlinearity N from (3.25)
satisfies

N̂ =
(

O(1)
O(`)

)
.

Hence,
p̂c
mfN̂ = 〈f̂∗1 , N̂ 〉 = O(`)

as claimed. �
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Using the notation of the preceding lemma, equation (3.28) becomes

∂tv
c = λcvc + ρN c(vc, vs)(3.29)

∂tv
s = Λsvs +N s(vc, vs),

which we shall solve for (vc, vs) where

vc ∈ X c
m := Hm+1

ul ∩Rg(pc|Fix P c), vs = (r, ψ) ∈ X s
m :=

(
Hm+1

ul ×Hm
ul

)
∩FixP s.

From now on, as there is little danger of confusion, we shall denote both spaces X c
m

and X s
m simply by Xm.

Since the variable vc has compact support in Fourier space, it lies, in fact, in
Hs

ul for every s ≥ 0; more precisely, we have vcf1 ∈ Hs+1
ul ×Hs

ul for each s. We also
record that ρ is a possibly nonlocal linear operator that acts similar to ∂x.

3.7. Estimates of the linear semigroups

The semigroup associated with the linear part of (3.29) has the following prop-
erties.

Lemma 3.9. The operators λc and Λs are sectorial in Xm. Furthermore, there
are constants C0, σ > 0 such that the semigroups eλct and eΛst generated by these
operators satisfy

‖eλct‖Xm→Xm
≤ C0

‖eλctρ‖Xm→Xm ≤ C0√
t

‖eΛst‖Xm→Xm ≤ C0e−σt

for all t > 0 and each m ≥ 0, where ρ is the function found in Lemma 3.8 with
|ρ̂(`)| ≤ C|`|.

Proof. The operator Λ differs by a relatively bounded perturbation from the
sectorial operator (

∂xx −α∂x

α∂xxx ∂xx

)
and is therefore also sectorial. On account of [22], Λ generates an analytic semi-
group, and the growth rates of eΛt are determined by the position of the spectrum.
In particular, eΛst decays with strictly negative exponential rate. The factor t−1/2

for the critical part is obtained by noticing the parabolic form of Reλc at k = 0
and applying Lemma 3.6 to

M̂(`) = eδ−2λ̂c(δ`)T ρ̂(δ`)

with T = δ2t. �

Taking the assertions of the Lemmas 3.8 and 3.9 together, we see that we gain
a factor t−1/2 in the equation for the critical modes vc: this factor becomes smaller
for larger t, and exploiting this additional decaying factor will be crucial in the
forthcoming analysis.
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3.8. Estimates of the residual

We are now in a position to begin the proof of the approximation theorems.
Thus, pick a solution q(X,T ) of the Burgers equation (3.17) which satisfies the
assumptions laid out in Theorem 3.5. The issue at hands is to see whether the
function (δq(δx, δ2t), 0) constructed from q is a good approximation of solutions
(vc, vs) of (3.29) over sufficiently large time scales.

More generally, we may use the higher-order approximations (Ψh
M ,W h

M )(X,T )
considered in §3.4 to construct a better approximation (δV c, δ2V s)(δx, δ2t) of solu-
tions to (3.29). A measure for the quality of these approximations are the residuals
Resc(δV c, δ2V s) and Ress(δV c, δ2V s) defined by

Resc(vc, vs) := −∂tv
c + λcvc + ρN c(vc, vs)(3.30)

Ress(vc, vs) := −∂tv
s + Λsvs +N s(vc, vs)

for given functions (vc, vs). In other words, the residuals contain all terms that do
not cancel out after substituting the ansatz (vc, vs) into the PDE.

Equation (3.14) shows that the residuals of (δq, 0) satisfy

Resc(δq, 0) = δ3
[
−∂T q +

λ′′1(0)
2

∂XXq +
β − α

2
∂X(q2)

]
+ O(δ4) = O(δ4)

Ress(δq, 0) = N s(δq, 0) = O(δ2).

The following lemma asserts that we can always find approximations whose residuals
go to zero with an arbitrarily large, but fixed, algebraic rate as δ goes to zero.

Lemma 3.10. Pick positive integers n,m,M with n ≥ M +m + 3, then there
exist functions (V c, V s)(δ·, T ) ∈ Xn and positive constants δ1 > 0 and Cres > 0
such that

sup
T∈[0,T0]

‖V c(δ·, T )− q(δ·, T )‖Xm ≤ Cresδ

sup
T∈[0,T0]

(‖V c(δ·, T )‖Xm + ‖V s(δ·, T )‖Xm) ≤ Cres(3.31)

sup
t∈[0,T0/δ2]

‖Resc(δV c(δ·, δ2t), δ2V s(δ·, δ2t))‖Xm ≤ Cresδ
M+3

sup
t∈[0,T0/δ2]

‖Ress(δV c(δ·, δ2t), δ2V s(δ·, δ2t))‖Xm ≤ Cresδ
M+2

is true for all δ ∈ (0, δ1).

Proof. Similar to the calculations in §3.4, we expand (vc, vs) into a formal
series of the form

δV c = δ(V c
0 + δV c

1 + . . .+ δMV c
M )

δ2V s = δ2(V s
0 + δV s

1 + . . .+ δMV s
M )
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and find equations for (V c
j , V

s
j )(δx, δ2t), which we subsequently solve recursively for

given V c
0 = q and V s

0 = 0. In detail, we use the relations

∂tV
c
j = δ2∂TV

c
j

∂tV
s
j = δ2∂TV

s
j

λcV c
j =

δ2∂νν λ̂
c(0)

2
∂XXV

c
j + O(δ3)

ΛV s
j = Λ̂(0)V s

j + O(δ)

ρN c = δρ̂′(0)∂XN c + O(δ3)

and obtain the system

∂TV
c
0 =

∂νν λ̂
c(0)

2
∂XXV

c
0 −

1
2
(α− β)∂X(V c

0 )2

0 = Λ̂s(0)V s
0 + O(‖V c

0 ‖2)

for V c
0 and V s

0 . Since Λs(0) = −2, we can solve the second equation for V s
0 , while

the first equation is the Burgers equation as claimed.
Next, the equations for V c

1 and V s
1 are of the form

∂TV
c
1 =

∂νν λ̂
c(0)

2
∂XXV

c
1 + O(|V c

0 |(1 + |V c
1 |+ |V s

0 |+ |V c
0 |))

0 = Λ̂s(0)V s
1 + O(|V c

0 |(1 + |V c
1 |+ |V s

0 |+ |V c
0 |)).

Again, the second equation can be solved for V s
1 . The first equation is a linear para-

bolic PDE in V c
1 since the higher-order terms contain at most first-order derivatives

of V c
1 . Thus, V s

1 and V c
1 exist as long as V c

0 is given.
A similar analysis can be carried out recursively for all V s

j and V c
j . As a

consequence, the residual can be made as small as we wish with respect to powers
of δ. The assertions about regularity follow by counting derivatives in the preceding
expansions of λc, Λs and the nonlinearities. �

We remark that, from now on, we do not distinguish in our notation whether
the approximations V c and V s are regarded as functions in (X,T ) or (x, t) through
(X,T ) = (δx, δ2t).

3.9. Estimates of the errors

Having constructed initial approximations with very small residuals, it remains
to prove that the error, defined as the difference between genuine solutions of (3.29)
and the initial approximations, is also small. Anticipating the expected scaling of
the errors, we define the critical and noncritical parts Rc and Rs of the error via

vc(x, t) = δV c(δx, δ2t) + δM+1Rc(x, t)

vs(x, t) = δ2V s(δx, δ2t) + δM+2Rs(x, t),

where we assume that the left-hand sides satisfy (3.29). Substituting this ansatz
into (3.28), we obtain the system

∂tR
c = λcRc + ρgc(Rc, Rs, t)(3.32)

∂tR
s = ΛsRs + gs(Rc, Rs, t)
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for (Rc, Rs). We remark that we shall always work with the initial data

(3.33) (Rc, Rs)|t=0 = 0.

We claim that the nonlinear terms satisfy the estimates

‖gc(Rc, Rs, t)‖Xm ≤ δC1‖Rc‖Xm + δ2CRes

+δ2C1‖Rs‖Xm + δM+1C2(Dc, Ds)(3.34)
‖gs(Rc, Rs, t)‖Xm−2 ≤ CRes + C1‖Rc‖Xm

+δC1‖Rs‖Xm + δMC2(Dc, Ds)

for

(3.35) ‖Rc‖Xm ≤ Dc, ‖Rs‖Xm ≤ Ds

with constants Dc and Ds that are independent of 0 < δ � 1 and will be chosen
later. The specific form of (3.34) arises as follows: First, quadratic interactions of
δV c with δM+1Rc lead to O(δ) terms1 in the equation for Rc and to O(1) terms in
the equation for Rs. Next, quadratic interactions with δ2V s lead again to higher-
order terms, while quadratic interactions of δM+1Rc with itself leads to O(δM+1)
terms in the equation for Rc and to O(δM ) terms in the equation for Rs. Lemma 3.8
shows that we do not have any loss of regularity for the nonlinearity gc.

Our goal is to prove that the solution (Rc, Rs) of (3.32)–(3.33) stays bounded,
uniformly in 0 < δ � 1, over the time interval [0, T0/δ

2].
Since the nonlinearity gs is bounded on bounded sets, and given the exponential

decay of the semigroup generated by the linear operator Λs, we do not expect any
problems from the second equation in (3.32). However, Lemma 3.9 shows that the
semigroup associated with the critical part λc is merely bounded: thus, the term
C1δ‖Rc‖Xm

in the estimate (3.34) of the nonlinearity gc may cause trouble when
integrated over [0, T0/δ

2]. It is here where the special structure of (3.32) becomes
crucial. If we subsume the factor ρ in (3.32) into the semigroup generated by λc,
we can exploit the improved estimate

‖eλctρ‖Xm→Xm ≤ C0t
−1/2

which we established in Lemma 3.9. Integrating t−1/2 over [0, T0/δ
2] gives only a

contribution of order 1/δ, instead of the factor 1/δ2 when integrating a constant,
which can now be taken care of by the term C1δ‖Rc‖Xm

.
In the remaining part of this section, we carry out the details. We begin by

recording that (3.13) and (3.29), and therefore also (3.32), are quasilinear. This is
further reflected in the estimate (3.34) which shows that the nonlinear terms map
Xm into Xm−2 (and not into Xm−1). Thus, we shall treat (3.32) as a fully nonlinear
equation making extensive use of the results in [33] regarding long-time existence,
uniqueness and optimal regularity of solutions. First, we have the following esti-
mate.

Lemma 3.11 ([33, Theorems 4.3.1(iii) & 4.4.1(ii)]). Fix 0 < γ < 1, then there
exists a constant C3 > 0 with the following property: For each t1 with 0 < t1 ≤ ∞
and each function N s ∈ C0,γ([0, t1],Xm−2) with N s(t) = P sN s(t) and N s(0) ∈ Xm,
there is a unique solution Rs of

∂tR
s = ΛsRs +N s(t), Rs|t=0 = 0

1The term −α∂X(ψ2) in the second equation in (3.15) shows that this quadratic term will
indeed be present.
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on [0, t1], and
‖Rs‖C0,γ([0,t1],Xm) ≤ C3‖N s‖C0,γ([0,t1],Xm−2).

Since Rc has compact support in Fourier space and the operator λc in the first
equation in (3.32) is bounded, there is a constant C5 > 0 such that

(3.36) ‖Rc‖C0,γ([0,t1],Xm) ≤ C5‖Rc‖C0([0,t1],Xm) + ‖N c‖C0([0,t1],Xm)

for the solution Rc of

∂tR
c = λcRc +N c(t), Rc|t=0 = 0

on [0, t1] where N c(t) = P cN c(t). The constant C5 does not depend on t1.
The results in [33, §8.1], and specifically [33, Theorems 8.1.1 & 8.1.3, Propo-

sition 8.2.1], show that the nonlinear system (3.32)–(3.33) can be solved as long
as the C0,γ([0, t],Xm)-norm of the solution (Rc, Rs) stays bounded: To apply the
cited results, we need to check the compatibility condition gs(0, 0, 0) ∈ Xm (see
also Lemma 3.11) which is met since the residuals are sufficiently smooth due to
Lemma 3.10. In the rest of the proof, we shall also exploit that the Hölder norm
of the residuals is bounded uniformly in δ.

We define

Sc(t) = ‖Rc‖C0,γ([0,t],Xm), Ss(t) = ‖Rs‖C0,γ([0,t],Xm),

and record that these functions increase monotonically in t. We claim that Sc(t)
and Ss(t) stay bounded uniformly in t for t ≤ T0/δ

2 and δ ∈ (0, δ1) for some
fixed δ1 > 0. To prove the claim, we argue by contradiction. Thus, we shall pick
appropriate positive constants Sc

∗ and Ss
∗, which will be chosen in (3.40) below

independently of δ, and assume that there are sequences δj ↘ 0 and tj < T0/δ
2
j so

that Sc(t) < Sc
∗ and Ss(t) < Ss

∗ for all 0 < t < tj and Sc(tj) ≥ Sc
∗ and Ss(tj) ≥ Ss

∗.
We proceed as follows to reach the desired contradiction. Throughout the

forthcoming estimates, we restrict ourselves to 0 ≤ t ≤ tj ≤ T0/δ
2
j . Applying the

variation-of-constant formula to the equation for Rc in (3.32)–(3.33), we get

Rc(t) =
∫ t

0

eλc(t−τ)ρgc(Rc, Rs, ·)(τ) dτ.

The estimates provided in (3.34) and Lemma 3.9 show that

‖Rc(t)‖Xm ≤
∫ t

0

‖eλc(t−τ)ρ‖L(Xm,Xm)‖gc(Rc, Rs, ·)(τ)‖Xm dτ

≤
∫ t

0

C0(t− τ)−1/2
[
δC1‖Rc(τ)‖Xm + δ2CRes

+δ2C1‖Rs(τ)‖Xm + δM+1C2(Sc
∗, S

s
∗)
]
dτ

≤
√
T0C0

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]

+
∫ t

0

δC0C1√
t− τ

‖Rc(τ)‖Xm dτ.

Using the rescaled time variable T := δ2t, we see that

‖Rc(T/δ2)‖Xm ≤
√
T0C0

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]

(3.37)

+
∫ T

0

C0C1√
T − τ

‖Rc(τ/δ2)‖Xm dτ
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for T ≤ Tj := tjδ
2
j ≤ T0. We are now ready to apply the following version of

Gronwall’s inequality.

Lemma 3.12 ([22, Lemma 7.1.1]). Assume that b and T0 are positive constants
and 0 < d < 1, then there is a constant C4 = C(b, d, T0) such that the following is
true. Suppose that a ≥ 0 and u : [0, T0] → R+ is continuous with

u(T ) ≤ a+
∫ T

0

bu(τ)
(T − τ)d

dτ

for all T ∈ [0, T0], then
sup

T∈[0,T0]

u(T ) ≤ aC4.

Applying Lemma 3.12 to (3.37) with u(t) := ‖Rc(t/δ2)‖Xm
, we get

‖Rc(t)‖Xm ≤
√
T0C0C4

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]
.

Using (3.36), we finally get

(3.38) Sc(t) ≤
√
T0C0C4C5

[
δCRes + δC1S

s
∗ + δMC2(Sc

∗, S
s
∗)
]

for all t with 0 ≤ t ≤ tj .
Next, we focus on the equation for Rs in (3.32)–(3.33). Applying Lemma 3.11

together with the estimates from (3.34) and Lemma 3.9, we obtain

Ss(t) ≤ C3‖gs(Rc, Rs, ·)‖C0,γ([0,t],Xm−2)

≤ C3

(
CRes + Sc(t) + δSs(t) + δMC2(Sc

∗, S
s
∗)
)

≤ C3

(
CRes + Sc

∗ + δSs
∗ + δMC2(Sc

∗, S
s
∗)
)

(3.39)

for all t with 0 ≤ t ≤ tj .
In summary, if we choose

(3.40) Sc
∗ = 2, Ss

∗ = 2 + C3(2 + CRes),

then we get from (3.38) and (3.39) together with the assumption δj → 0 that

Sc(tj) ≤ 1, Ss(tj) ≤ 1 + C3(2 + CRes)

for all sufficiently large j. This is the desired contradiction which establishes that
the solutions (Rc, Rs) of (3.32)–(3.33) exist on [0, T0/δ

2] and are bounded uniformly
in δ.

3.10. Proofs of the theorems from §3.2

3.10.1. Proof of Theorem 3.4. We use Theorem 3.5 to prove Theorem 3.4.
The starting point of our analysis is the relation

A(x, t) = (1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψ(δy, δ2t) dy + iφ0(t)− iβt
)

which defines a solution A of the complex Ginzburg–Landau equation (3.11) in
terms of an arbitrary solution (W,Ψ) of (3.15). We wish to compare this solution
with the function

Aapprox(x, t) = (1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy − iβt

)
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where (W h
M ,Ψh

M ) are the improved approximations obtained from a solution q of
the Burgers equation (3.17) via the expressions (W0,Ψ0) from (3.18). We estimate
the difference of A and Aapprox as follows:

|e−iφ0(t)A(x, t)−Aapprox(x, t)|

≤
∣∣∣∣(1 + δ2W (δx, δ2t)) exp

(
iδ
∫ x

0

Ψ(δy, δ2t) dy − iβt
)

−(1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy − iβt

)∣∣∣∣
≤

∣∣∣∣(1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψ(δy, δ2t) dy
)

−(1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
+
∣∣∣∣(1 + δ2W (δx, δ2t)) exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)
−(1 + δ2W h

M (δx, δ2t)) exp
(

iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
≤

∣∣1 + δ2W (δx, δ2t)
∣∣×

×
∣∣∣∣exp

(
iδ
∫ x

0

Ψ(δy, δ2t) dy
)
− exp

(
iδ
∫ x

0

Ψh
M (δy, δ2t) dy

)∣∣∣∣
+δ2

∣∣W (δx, δ2t)−W h
M (δx, δ2t)

∣∣
Thm. 3.5
≤ Cδ

∣∣∣∣∫ x

0

|Ψ(δy, δ2t)−Ψh
M (δy, δ2t)|dy

∣∣∣∣+ CδM+2

Thm. 3.5
≤

∣∣∣∣∫ x

0

CδM+1 dy
∣∣∣∣+ CδM+2

≤ Cδ(δM+1 + δM |x|).
Restricting x to the region |x| ≤ Lδ−l, we obtain the desired estimate of the left-
hand side by CδM−l. The limitation comes from the phase which is obtained as
the integral of the wave number which is not necessarily integrable over R.

Lastly, inspecting the right-hand side of the φ-equation in (3.12), given by

∂tφ = ∂xxφ+ α
∂xxr

1 + r
− α(∂xφ)2 +

2(∂xr)(∂xφ)
1 + r

− 2βr − βr2,

we see that ∂tφ(0, t) = O(δ2) and therefore

sup
t∈[0,T0/δ2]

|φ(0, t)| = O(1).

Remark 3.13. We emphasize that, in general, we cannot expect better approx-
imation properties. To see this, take Ψ = δ2 and q = 0. In the above estimates, we
would then need to prove that the difference of eiδ2x and 1 is smaller than o(δ). A
uniform estimate over R can only be expected for special solutions.

3.10.2. Proof of Theorem 3.3. The idea of the proof is as follows. By as-
sumption, the solution q(X,T ) of the Burgers equation that we start with converges
to constants algebraically as x → ±∞, and our ansatz therefore satisfies the com-
plex Ginzburg–Landau equation at x = ±∞. We shall see that this implies that the
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residuals are also algebraically localized, which enables us to solve the equation for
the errors in appropriate spaces of algebraically localized functions. When we then
transfer the approximation result from wave numbers to phases, we can exploit the
algebraic 1/x2-decay of the wave number to see that the phase, computed as the
integral of the wave number in x over R, stays bounded.

Thus, we introduce the space Hm(n; δ) which is equal to Hm(n) but equipped
with the norm

‖u‖Hm(n;δ) := ‖u(·)ρn
w(δ·)‖Hm

where ρw(x) =
√

1 + x2. To prove Theorem 3.3, we first repeat the steps in the proof
of Theorem 3.5. It is not hard to see that the residuals lie in X̃m := Hm+1(2; δ)×
Hm(2; δ). Furthermore, the estimates in Lemma 3.10 stay the same except that the
terms δM+3 and δM+2 on the right-hand side of the last two equations in (3.31) are
replaced by δM+5/2 and δM+3/2, respectively, due to the scaling properties of L2-
spaces. Next, Lemma 3.11 and the estimates (3.34) of the nonlinear terms remain
true in X̃m. Likewise, the estimates of the semigroups in Lemma 3.9 are true in X̃m

since the δ-dependent norm in Hm(n; δ) ensures that the constants arising in the
estimates of the critical semigroup remain are O(1) in δ over the long time scale
O(1/δ2). Thus, we see that Theorem 3.5 remains true with Xm replaced by X̃m

except that the term δM on the right-hand side of (3.20) needs to be replaced by
δM−1/2.

It remains to transfer the result from wave numbers to phases. Without loss of
generality, we may assume that q− = 0. We now have to compare the solution

A(x, t) = (1 + δ2W (δx, δ2t)) exp
(

iδ
∫ x

−∞
Ψ(δy, δ2t) dy − iβt

)
of the complex Ginzburg–Landau equation (3.11) with the approximation

Aapprox(x, t) = (1 + δ2W h
M (δx, δ2t)) exp

(
iδ
∫ x

−∞
Ψh

M (δy, δ2t) dy − iβt
)
.

The key is that the integrals in the expressions above exist, and are O(1) in δ, since∣∣∣∣δ ∫ x

−∞

(
1 + δ2y2

)−1
dy
∣∣∣∣ ≤ ∫ ∞

−∞

(
1 + y2

)−1
dy <∞.

Thus, as in §3.10.1, we obtain

|A(x, t)−Aapprox(x, t)| ≤ Cδ

∣∣∣∣∫ x

−∞
[Ψ(δy, δ2t)−Ψh

M (δy, δ2t)] dy
∣∣∣∣+ CδM+2

≤ Cδ

∫ x

−∞
|δM−1/2(1 + (δy)2)−2|dy + CδM+2

≤ CδM−3/2

uniformly for x ∈ R.

3.10.3. Proof of Theorem 3.2. To prove Theorem 3.2, we follow the same
strategy as in the proof of Theorem 3.5. However, instead of using equation (3.13)
for the wave number ψ as in §3.5, we use only the equation (3.12) for the phase
φ. This is feasible, of course, since we begin with a solution Φ(X,T ) of the phase
equation (3.8) rather than with a solution q(X,T ) of the Burgers equation (3.10).
Thus, we shall focus on (3.12) and go through the analysis presented in §3.5 to
work out the adjustments that we need to make.
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The major difference is that Lemma 3.8 is no longer true for (3.12), since the
leading order term in the critical part of the nonlinearity is now given by (∂xv

c)2,
see (3.8). In particular, we can no longer use the improved estimate in terms of
t−1/2 for the critical part of the semigroup in Lemma 3.9 but only the bound by a
constant. Thus, for the estimates of the errors in §3.9 to go through, we shall need
that the nonlinearity itself is of order O(δ2): the key is that the term (∂xv

c)2, is
indeed of the desired order O(δ2) if vc is a function of δx. Therefore, to exploit this
property, we introduce the space X1,δ which, as a vector space, is equal to X1 but
whose norm is defined via

‖u(·)‖X1,δ
:= ‖u(δ−1·)‖X1 .

In this space, we obtain the estimate

(3.41) ‖eλct‖X0,δ→X1,δ
≤ C

(
1 +

1
δ
√
t

)
for the critical part of the linear semigroup. As in §3.9, we make the ansatz

vc = V c + δMRc(3.42)

vs = δ2V s + δM+2Rs

and seek functions Rc and Rs in X1,δ and Xm, respectively. Note that since Rc

has compact support in Fourier space, we have that Rc ∈ Xm. Furthermore, the
approximations V c and V s lie in both X1,δ and Xm. Upon substitution our ansatz
into the analogue of (3.28), we obtain the equation

∂tR
c = λcRc + gc(Rc, Rs, t)

∂tR
s = ΛsRs + gs(Rc, Rs, t)

for the errors, where the nonlinearity obeys the estimate

‖gc(Rc, Rs, t)‖X0,δ
≤ δ2CRes + δ2C‖Rc‖X1,δ

+ δ3C‖Rs‖Xm

+δMC(Dc, Ds)[‖Rc‖X1,δ
+ ‖Rs‖Xm ]2

‖gs(Rc, Rs, t)‖Xm−2 ≤ CRes + C‖Rc‖X1,δ
+ δC‖Rs‖Xm

+δMC(Dc, Ds)[‖Rc‖X1,δ
+ ‖Rs‖Xm ]2

when restricted to

‖Rc‖X1,δ
≤ Dc and ‖Rs‖Xm ≤ Ds

with constants Dc and Ds as in §3.9. We record that we used here that the right-
hand side depends only on ∂xV

c = O(δ) but not on V c = O(1), see (3.12).
From this point on, the rest of the proof follows exactly as in §3.9 upon utilizing

the estimate (3.41) instead of the estimates provided in Lemma 3.9.





CHAPTER 4

Reaction-diffusion equations: Set-up and results

4.1. The abstract set-up

Consider the reaction-diffusion system

(4.1) ∂tu = D∂xxu+ f(u)

where u ∈ Rd, x ∈ R, D is a diagonal matrix with strictly positive entries, and
f : Rd → Rd is smooth.

We assume that, for some nonzero temporal frequency ω = ω0 and a certain
nonzero spatial wave number k = k0, there exists a nonconstant travelling wave
train u(x, t) = u0(ω0t − k0x) of (4.1) where u0(θ) is 2π-periodic in its argument.
Substituting this ansatz into (4.1), we see that u0(θ) must be a 2π-periodic solution
of the ordinary differential equation

(4.2) k2D∂θθu− ω∂θu+ f(u) = 0

for ω = ω0 and k = k0. Linearizing this equation about u0, we obtain the linear
operator L0, given by

(4.3) L0 = k2D∂θθ − ω∂θ + f ′(u0(θ)),

again with ω = ω0 and k = k0, which defines a closed and densely defined operator
on L2

per(0, 2π) with domain D(L0) = H2
per(0, 2π). We assume that λ = 0 is a

simple eigenvalue of L0 on L2
per(0, 2π), so that its null space is one-dimensional,

and therefore spanned by the derivative ∂θu0 of the wave train.
We may now vary the parameter k in (4.2) near k = k0 and again seek 2π-

periodic solutions of (4.2). The derivative of the boundary-value problem (4.2) with
respect to ω, evaluated in the solution u0, is given by ∂θu0. Since λ = 0 is a simple
eigenvalue of L0 on L2

per(0, 2π), we see that ∂θu0 does not lie in the range of L0,
and the linearization of the boundary-value problem (4.2) with respect to (u, ω) is
therefore onto. Thus, exploiting the translation symmetry of (4.2), we can solve
uniquely for (u, ω), up to translations in θ, and obtain the wave trains

(4.4) u(x, t) = u0(ωnl(k)t− kx; k), ω = ωnl(k)

of (4.1) where ωnl(k0) = ω0. In particular, u0(θ; k) satisfies the ODE

(4.5) k2D∂θθu− ωnl(k)∂θu+ f(u) = 0

for all k close to k0. We call ωnl the nonlinear dispersion relation and define the
group velocity of the wave train with wave number k to be

(4.6) cg =
dωnl

dk
(k).

39
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The phase speed of each wave train is given simply by cp := ωnl(k)/k. We
shall assume that the nonlinear dispersion relation is genuinely nonlinear so that
ω′′nl(k0) 6= 0.

We will need additional assumptions on the stability of the wave train u0 as a
solution to the reaction-diffusion system (4.1). We therefore linearize (4.1) in the
frame θ = ω0t−k0x that moves with the phase speed cp = ω0/k0 of the wave trains
and get

(4.7) ∂tu = k2
0D∂θθu− ω0∂θu+ f ′(u0(θ))u.

The spectrum of the linear operator defined by the right-hand side of (4.7) on the
space L2(R) can be computed using the Floquet or Bloch-wave ansatz

(4.8) u(θ) = e−νθ/k0v(θ; ν)

where ν ∈ iR and v(θ; ν) is 2π-periodic in θ. Substituting this ansatz, we obtain a
family of operators Lν given by

(4.9) Lνv = k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v,

each of which is a closed operator on L2
per(0, 2π) with dense domain H2

per(0, 2π).
In particular, Lν has compact resolvent, and its spectrum is discrete. Thus, its
eigenvalues λj(ν) with j ∈ N can be ordered with descending real part so that
Reλj+1(ν) ≤ Reλj(ν). The curves ν 7→ λj(ν) are analytic except possibly at a
discrete set where the values of two or more curves λj(ν) for different indices j
coincide. We denote the associated eigenfunctions by vj(θ; ν).

Since we assumed that L0 has an algebraically simple eigenvalue at λ = 0, we
find an analytic curve of eigenvalues given by λ = λlin(ν) for ν ∈ iR close to zero
for which

(4.10) N(Lν − λlin(ν)) 6= {0}.

We call λ = λlin(ν) the linear dispersion relation. As we shall see below, we can
compute the derivative dλ/dν and recover the group velocity as defined via the
nonlinear dispersion relation:

dλlin

dν

∣∣∣
ν=0

= cp −
dωnl

dk
(k0) = cp − cg.

We remark that the phase velocity cp appears in the above equation simply because
we computed the linear dispersion relation in the frame moving with speed cp, while
the nonlinear dispersion relation was computed in the steady frame. Note also that
the signs of the second derivatives of the linear and nonlinear dispersion relation
are, in general, not related. We assume that Reλ′′lin(0) > 0.

We summarize the assumptions that we stated so far in the following two
hypotheses.

Hypothesis 4.1. We assume that there exists a wave-train solution to (4.1)
whose linearization L0 has a simple eigenvalue at λ = 0 when considered on
L2

per(0, 2π). We also assume that the nonlinear dispersion relation is genuinely
nonlinear so that ω′′nl(k0) 6= 0

Hypothesis 4.2. The linear dispersion relation satisfies λ′′lin(0) > 0.
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Our last assumption is concerned with temporally oscillatory solutions of the
linearization (4.7). We assume that, for each fixed ν ∈ iR, and for every λ in the
spectrum of Lν , we have

(4.11) λ 6= (cp − cg)ν

except, of course, when ν = 0 and λ = 0. Recall that cp and cg denote the phase
and group velocity, respectively, of the wave trains. In the original steady frame,
this assumption is equivalent to requiring the absence of solutions to the linearized
equation of the form exp(i(ωt − kx)) for which the phase speed of the modula-
tion, ω/k, is equal to the group velocity cg of the wave trains. This hypothesis
is automatically met if we assume that the wave trains are spectrally stable, see
Hypothesis 4.4 below.

Hypothesis 4.3. We require the absence of resonant spectrum in the dispersion
relation as stated in (4.11).

When we derive and validate the Burgers equation, we shall need the follow-
ing, more restrictive hypothesis which assumes spectral stability of the wave trains
u0(ω0t− k0x).

Hypothesis 4.4. We assume that, for any ν ∈ iR and any eigenvalue λ of Lν ,
we have either Reλ < 0 or else λ = 0 and ν ∈ ik0Z.

In other words, we assume that λlin(ν) = λ1(ν), and remark that Hypothe-
sis 4.4 implies Hypothesis 4.3. As indicated above, the stronger Hypothesis 4.4 is
only needed for the validity of the Burgers equation and for the stability of small-
amplitude shocks but not for their existence.

4.2. Expansions of the linear and nonlinear dispersion relations

In this section, we derive certain useful expansions for the linear and nonlinear
dispersion relations. In particular, we show that their first derivatives coincide (up
to their sign).

We start with the nonlinear dispersion relation, and consider the nonlinear
boundary-value problem (4.2)

(4.12) k2D∂θθu− ω∂θu+ f(u) = 0

with periodic boundary conditions. By assumption, we know that λ = 0 is a simple
eigenvalue of the linearization L0, posed on L2

per(0, 2π), of (4.12) about the solution
u0(θ). The null space of L0 is therefore spanned by ∂θu0. We denote by uad the
nontrivial function in the null space of the adjoint operator

Ladu = k2
0D∂θθu+ ω0∂θu+ f ′(u0(θ))Tu

with the normalization

(4.13) 〈uad, ∂θu0〉L2(0,2π) = 1.

We now proceed as follows. The above hypothesis on L0 implies that there is a
solution u0(θ; k) and ω = ωnl(k) of (4.12) for each k close to k0, and that the solution
u ∈ H2

per(0, 2π) as well as ωnl(k) depend smoothly on k. Thus, we substitute both
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u = u0(θ; k) and ω = ωnl(k) into (4.12) and take the first two derivatives of (4.12)
with respect to k evaluated at k = k0. We obtain

L0∂ku0 = −2k0D∂θθu0 + ω′nl(k0)∂θu0(4.14)
L0∂kku0 = −4k0D∂θθ∂ku0 + 2ω′nl(k0)∂θ∂ku0 − 2D∂θθu0(4.15)

+ω′′nl(k0)∂θu0 − f ′′(u0)[∂ku0, ∂ku0].

In particular, we conclude from these equations that the right-hand sides of both
(4.14) and (4.15) lie in the range of the operator L0. Therefore, the L2-product of
these right-hand sides with the adjoint solution uad vanishes. Writing down these
scalar products, and using the normalization (4.13), we obtain

ω′nl(k0) = cg = 〈uad, 2k0D∂θθu0〉L2(4.16)
ω′′nl(k0) = 〈uad, 4k0D∂kθθu0 − 2cg∂kθu0 + 2D∂θθu0(4.17)

+f ′′(u0)[∂ku0, ∂ku0]〉L2 .

Combining (4.14) and (4.16) shows that ∂ku0 satisfies

(4.18) L0∂ku0 = −2k0D∂θθu0 + cg∂θu0 = −2k0 [D∂θθu0 − 〈uad, D∂θθu0〉L2∂θu0] .

We remark that we can arrange for

(4.19) 〈uad, ∂ku0〉L2 = 0

since we can always shift wave trains arbitrarily in θ. Shifting appropriately in
a k-dependent fashion allows us to replace ∂ku0 by ∂ku0 + a∂θu0. Choosing a
appropriately gives (4.19).

Next, we turn to the linear dispersion relation. We consider the linear boundary-
value problem (4.9)

(4.20) k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v = λlin(ν)v

near ν = 0. We proceed as above and take the first two derivatives of this equation
with respect to ν evaluated at ν = 0. Upon using that v = ∂θu0 at ν = 0, we obtain

L0∂νv = (λ′lin(0)− cp)∂θu0 + 2k0D∂θθu0(4.21)
L0∂ννv = λ′′lin(0)∂θu0 + 2λ′lin(0)∂νv + 4k0D∂θ∂νv(4.22)

−2cp∂νv − 2D∂θu0.

Proceeding as above, and comparing the above equations with (4.16) and (4.18),
we can arrange that ∂νv = −∂ku0, see also (4.19), and

λ′lin(0) = cp − cg = 〈uad, cp∂θu0 − 2k0D∂θθu0〉L2(4.23)

λ′′lin(0) = 〈uad, 4k0D∂kθu0 + 2D∂θu0〉L2 .

Remark 4.5. It is sometimes more convenient to use speed vs period instead
of spatial vs temporal frequency formulations of the nonlinear dispersion relation
ωnl(k). Using

(4.24) L =
2π
k
, cp =

ωnl(k)
k

,

we obtain the phase velocity cp = c(L) as a function of L. A trivial application of
the chain rule gives

(4.25) cg =
dωnl

dk
= c(L)− L

dc
dL

, λ′lin(0) = L
dc
dL

,
d2ωnl

dk2
=
L3

2π
d2c

dL2
.
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Thus, the signs of −c′(L) and the relative group velocity cg− cp coincide. Further-
more, the signs of c′′(L) and ω′′nl(k) are the same.

4.3. Formal derivation of the Burgers equation

We are interested in slowly varying modulations of the wave trains u0(ωnl(k)t−
kx; k) to the reaction-diffusion system (4.1)

(4.26) ∂tu = D∂xxu+ f(u).

Thus, we fix a wave number k and seek solutions to (4.26) of the form

u(x, t) = u0(ωnl(k)t− kx− Φ(X,T ; δ); k + δ∂XΦ(X,T ; δ))(4.27)
+δ2u1(ωnl(k)t− kx,X, T ; δ)

where the variables (X,T ) depend on (x, t) and are given by

(4.28) X = δ(x− cg(k)t), T = δ2t.

We shall assume that both Φ(X,T ; δ) and u1(θ,X, T ; δ) are smooth in δ. The
functions Φ(X,T ; δ) and q(X,T ) := ∂XΦ(X,T ; δ) describe the slowly varying phase
and wave number modulations, respectively.

The strategy is now to derive, on a formal level, the equation that Φ(X,T ; 0),
or equivalently q, ought to satisfy in order to turn (4.27) into a solution of (4.26).
In the process of the derivation, we will also choose a normalization that makes the
correction u1(θ,X, T ; δ) unique. The validity proof of the equation for Φ(X,T ; 0)
derived in this fashion then amounts to providing estimates for Φ(X,T ; δ) and
u1(θ,X, T ; δ) for 0 < δ � 1 over time scales of order O(1) in T .

Throughout the derivation, we use the abbreviations

(4.29) θ = ωnl(k)t− kx,

ω = ωnl(k), and u0 = u0(θ; k). For any function h(θ−Φ(X,T ; δ); k+δ∂XΦ(X,T ; δ)),
we then have

d
dt
h = [ω + δcg∂XΦ− δ2∂T Φ]∂θh− δ2cg(∂XXΦ)∂kh+ O(δ3)

d
dx
h = −[k + δ∂XΦ]∂θh+ δ2(∂XXΦ)∂kh

d2

dx2
h = −δ2(∂XXΦ)(∂θh) + [k + δ∂XΦ]2∂θθh− 2kδ2(∂XXΦ)∂kθh+ O(δ3)

where h is evaluated at (θ − Φ(X,T ; δ); k + δ∂XΦ(X,T ; δ)). Therefore, we obtain
formally

−∂tu+D∂xxu+ f(u)
= −(ω + δcg∂XΦ− δ2∂T Φ)∂θu0 + δ2cg(∂XXΦ)∂ku0 − δ2ω∂θu1

+D
[
−δ2(∂XXΦ)(∂θu0) + (k + δ∂XΦ)2∂θθu0 − 2kδ2(∂XXΦ)∂kθu0

+δ2k2∂θθu1

]
+ f(u0 + δ2u1) + O(δ3)

= −ω∂θu0 + k2D∂θθu0 + f(u0) + δ [2k(∂XΦ)D∂θθu0 − cg(∂XΦ)∂θu0]

+δ2 [cg(∂XXΦ)∂ku0 + (∂T Φ)∂θu0

+D
(
−(∂XXΦ)∂θu0 + (∂XΦ)2∂θθu0 − 2k(∂XXΦ)∂kθu0

)
−ω∂θu1 + k2D∂θθu1 + f ′(u0)u1

]
+ O(δ3)
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where u0 = u0(θ − Φ(X,T ; 0); k + δ∂XΦ(X,T ; 0)) and u1 = u1(θ,X, T ; 0). In the
next step, we expand u0 further

u0(θ − Φ; k + δ∂XΦ) = u0(θ − Φ; k) + δ(∂XΦ)∂ku0(θ − Φ; k)

+
δ2

2
(∂XΦ)2∂2

ku0(θ − Φ; k) + O(δ3)

and note that analogous expansions hold for ∂θu0 and ∂θθu0. We will next substi-
tuting these expansions into the above equation for −∂tu + D∂xxu + f(u). From
this point on, we regard (θ,X, T ) as independent variables and neglect that they
depend on x and t through (4.28) and (4.29). We shall also set

Φ(X,T ) := Φ(X,T ; 0).

Upon substitution, we obtain, with u0 = u0(θ−Φ(X,T ); k) and u1 = u1(θ,X, T ; 0),
that

−∂tu+D∂xxu+ f(u)
= −ω∂θu0 + k2D∂θθu0 + f(u0)

+δ(∂XΦ)[−ω∂kθu0 + k2D∂kθθu0 + f ′(u0)∂ku0 + 2kD∂θθu0 − cg∂θu0]

+
δ2

2
[2cg(∂XXΦ)∂ku0 − ω(∂XΦ)2∂kkθu0 + k2D(∂XΦ)2∂kkθθu0

+(∂XΦ)2f ′(u0)∂kku0 + (∂XΦ)2f ′′(u0)[∂ku0, ∂ku0] + 4k(∂XΦ)2D∂kθθu0

−2cg(∂XΦ)2∂kθu0 + 2(∂T Φ)∂θu0 + 2D(−(∂XXΦ)∂θu0 + (∂XΦ)2∂θθu0

+2k(∂XXΦ)∂kθu0) + L0u1] + O(δ3)
= −ω∂θu0 + k2D∂θθu0 + f(u0)

+δ(∂XΦ)[L0∂ku0 + 2kD∂θθu0 − cg∂θu0]

+
δ2

2
[2L0u1 + (∂XΦ)2(L0∂kku0 + f ′′(u0)[∂ku0, ∂ku0] + 4kD∂kθθu0

−2cg∂kθu0 + 2D∂θθu0) + 2(∂T Φ)∂θu0 − 2D(∂XXΦ)(∂θu0 + 2k∂kθu0)

+2cg(∂XXΦ)∂ku0] + O(δ3)

where L0 has been defined in (4.3). Equations (4.12) and (4.14) imply that the
terms of order O(δ0) and O(δ) in the above expression vanish identically. We can
then use (4.15) to simplify the term of order O(δ2) to get

−∂tu+D∂xxu+ f(u)

= δ2
[
L0u1 +

1
2
ω′′nl(k)(∂XΦ)2∂θu0 + (∂T Φ)∂θu0 −D(∂XXΦ)(∂θu0 + 2k∂kθu0)

+cg(∂XXΦ)∂ku0] + O(δ3).

Thus, we require that the term of order O(δ2) vanishes identically which results in

L0u1 = −(∂T Φ)∂θu0 −
1
2
ω′′nl(k)(∂XΦ)2∂θu0(4.30)

+D(∂XXΦ)(∂θu0 + 2k∂kθu0) + cg(∂XXΦ)∂ku0.

We can solve this equation uniquely for u1 = u1(θ,X, T ; 0) provided we require
that 〈uad, u1〉L2 = 0 and provided we choose Φ(X,T ) so that the right-hand side is
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in the range of L0, that is, provided〈
uad,−(∂T Φ)∂θu0 −

1
2
ω′′nl(k)(∂XΦ)2∂θu0 +D(∂XXΦ)(∂θu0 + 2k∂kθu0)

+cg(∂XXΦ)∂ku0〉L2 = 0

Exploiting (4.19), this solvability condition becomes

〈uad, ∂θu0〉L2 ∂T Φ

= 〈uad, D(∂θu0 + 2k∂kθu0)〉L2 ∂XXΦ− ω′′nl(k)
2

〈uad, ∂θu0〉L2 (∂XΦ)2.

Using (4.13) and (4.23), we eventually obtain the eikonal equation

(4.31) ∂T Φ =
λ′′lin(0)

2
∂XXΦ− ω′′nl(k)

2
(∂XΦ)2

for the phase Φ(X,T ) or, alternatively, the Burgers equation

∂T q =
λ′′lin(0)

2
∂XXq −

ω′′nl(k)
2

∂X(q2)(4.32)

=
λ′′lin(0)

2
∂XXq − ω′′nl(k) q∂Xq

for the wave number modulation q(X,T ) = ∂XΦ(X,T ).

4.4. Validity of the Burgers equation

We start with the wave trains

u(x, t) = u0(ωnl(k)t− kx; k)

of the reaction-diffusion system (4.1) for a fixed wave number k. It turns out to
be convenient to replace the spatial variable x by θ = ωnl(k)t − kx. In these
coordinates, (4.1) becomes

(4.33) ∂tu = k2D∂θθu− ωnl(k)∂θu+ f(u),

and the wave trains are simply given by

(4.34) u(θ, t) = u0(θ; k).

To get into the spirit of the results we shall prove, we will begin with statements
that are relatively easy to formulate but may not be the most general or relevant
ones (the latter ones can be found toward the end of this section).

Therefore, we shall first consider slowly-varying modulations of the wave trains
(4.34) that admit the following representation. Pick a phase function φ(ϑ, t) with
|∂ϑφ(ϑ, t)| ≤ 1/2 uniformly in (ϑ, t) and consider the change of coordinates defined
implicitly via

(4.35) θ = ϑ+ φ(ϑ, t).

Due to our assumption on φ, we can solve (4.35) for ϑ as a function ϑ(θ) of θ, which
will allow us to write solutions of (4.33) in the form u(θ, t) = U(ϑ, t), where ϑ and
θ are related via (4.35).

Initially, for the sake of clarity, we shall formulate results in terms of the vari-
ables ϑ; results for the original variable θ are stated toward the end of this section.



46 4. REACTION-DIFFUSION EQUATIONS: SET-UP AND RESULTS

First, we consider modulation of the phase. Thus, pick a solution Φ(X,T ) of
the phase equation

(4.36) ∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2

with X ∈ R and T ∈ [0, T0], and set

(4.37) φ(ϑ, t) := Φ
(
δ((cp − cg)t− ϑ/k), δ2t

)
.

We then have the following approximation result.

Theorem 4.6. Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix an
integer n ≥ 3. For each choice of constants C0 > 0 and T0 > 0, there exist constants
δ1 > 0 and C1 > 0 such that the following is true: Pick a solution Φ(X,T ) of (4.36)
with

sup
T∈[0,T0]

‖Φ(·, T )‖Hn ≤ C0

and define

Uapprox(ϑ, t) = u0 (ϑ; k(1 + δ∂XΦ(X,T ))) , (X,T ) :=
(
δ((cp − cg)t− ϑ/k), δ2t

)
then there exists a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33)
such that

sup
t∈[0,T0/δ2]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
2

uniformly in δ ∈ (0, δ1), where the variables ϑ and θ are related through (4.35) and
(4.37).

The preceding theorem is weaker than Theorem 3.2 which we stated for the
complex Ginzburg–Landau equation in §3.2, since Φ has to lie in Hn instead of
Hn

ul. The reason is of a technical nature: we do not know of estimates for quadratic
interactions of Hn

ul-functions which retain the scaling with respect to the Bloch
variable `, while such estimates exist for Hn-functions [54].

Solutions with a richer dynamics can be obtained by modulating the wave
number instead of the phase, and we are therefore interested in solutions q(X,T ) =
∂XΦ0(X,T ) of the Burgers equation

(4.38) ∂T q =
1
2
λ′′lin(0)∂XXq −

1
2
ω′′nl(k)∂X(q2).

In this situation, we have the following result.

Theorem 4.7. We assume that Hypotheses 4.1, 4.2 and 4.4 are met. For each
choice of integers M ≥ 1 and n ≥ M + 3 and constants C0 > 0 and T0 > 0, there
exist constants δ1 > 0 and C1 > 0 with the following properties: For each solution
q(X,T ) of the Burgers equation (4.38) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul

≤ C1
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and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
1+M ,

where
Uapprox(ϑ, t) = u0 (ϑ; k(1 + δqh(ϑ, t))) + δ2rh(ϑ, t).

Again, ϑ and θ are related through (4.35) with

φ(ϑ, t) := δ

∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The functions (qh, rh)(x, t; δ) are obtained as higher-order approximations to
the solution q(X,T ) of the Burgers equation. As outlined in §4.3, they can, in
principle, be computed by solving a recursive set of linear inhomogeneous PDEs.

For practical purposes, the approximation results stated so far are quite useless
as they are formulated in terms of the coordinate ϑ which is defined implicitly by
θ = ϑ + φ(ϑ, t), an expression that obviously involves the knowledge of the phase
function φ. Hence, we now transfer our assertions from the ϑ to the θ variable.

First, we state an approximation result for solutions q(X,T ) to (4.38) that
approach different constants q± as X → ±∞. Such solutions are of particular
interest, since they describe the temporal evolution of interfaces between wave
trains with wave numbers k + δq± at X = ±∞.

Theorem 4.8. Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix in-
tegers M ≥ 3 and n ≥ M + 3. For each choice of C0 > 0 and T0 > 0, there exist
constants δ1 > 0 and C1 > 0 such that the following is true: Pick a δ ∈ (0, δ1)
and a solution q(X,T ) of the Burgers equation (4.38) for which there are numbers
q± ∈ R with

sup
T∈[0,T0]

[
‖q(·, T )‖Hn

ul
+ ‖(q(·, T )− q+)ρ2

w‖Hn
ul(R+) + ‖(q(·, T )− q−)ρ2

w‖Hn
ul(R−)

]
≤ C0

where ρw(X) =
√

1 +X2. Then there are functions (qh, rh)(ϑ, t) with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul

≤ C1

and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
θ∈R

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
M−3/2,

where uapprox is given by

uapprox(θ, t) = u0 (ϑ(θ); k(1 + δqh(ϑ(θ), t))) + δ2rh(ϑ(θ), t),

and ϑ(θ) is the solution of

θ = ϑ+ φ(ϑ, t), φ(ϑ, t) := δq−ϑ+ δ

∫ ϑ

−∞

(
qh(ϑ̃, t)− q−

)
dϑ̃.

Lastly, we state the most general approximation result that we were able to
prove. We will encounter the same limitations that we found earlier for the complex
Ginzburg–Landau equation: We cannot expect validity to hold uniformly in θ ∈ R
but only for θ in bounded intervals where the length of the interval depends on
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the accuracy of the initial approximation. Furthermore, we need to add a global
x-independent phase shift φ0(t) which will be of order O(1) in δ: therefore, only
the profile of modulations but not their exact location is approximated over the
relevant natural time scales.

Theorem 4.9. Assume that Hypotheses 4.1, 4.2 and 4.4 are met, and fix inte-
gers n,M and a real number l with M ≥ 1, n ≥ M + 3 and 0 < l < M . For each
choice of C0 > 0 and T0 > 0, there exist constants δ1 > 0 and C1 > 0 such that the
following is true: Pick a solution q(X,T ) of the Burgers equation (4.38) for which

sup
T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0

and δ ∈ (0, δ1), then there are functions (qh, rh) ∈ Hn
ul with

sup
t∈[0,T0/δ2]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ2t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T0/δ2]

‖rh(·, t)‖Hn
ul

≤ C1,

a phase function φ0(t) with

sup
t∈[0,T0/δ2]

|φ0(t)| ≤ C1,

and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T0/δ2]

sup
|θ|≤L/δl

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
1+M−l,

where uapprox is given by

uapprox(θ, t) = u0 (ϑ(θ); k(1 + δqh(ϑ(θ), t))) + δ2rh(ϑ(θ), t),

and ϑ(θ) is the solution of

θ = ϑ+ φ(ϑ, t), φ(ϑ, t) := φ0(t) + δ

∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The proofs of the theorems stated in this section can be found in §5.

4.5. Existence and stability of weak shocks

We are interested in solutions to (4.1) that are spatially bi-asymptotic to wave
trains and time-periodic with temporal frequency ω∗ in a frame moving with an
appropriate speed c∗. In other words, we seek solutions u(x, t) = u∗(x − c∗t, ω∗t)
such that

u∗(x− c∗t, ω∗t) = u∗(x− c∗t, ω∗t+ 2π)(4.39)
u∗(x− c∗t, ω∗t) −→ u0(ω±t− k±x; k±) as x→ ±∞.(4.40)

Here, the convergence is understood to be uniformly in t for u and its derivatives
∂xu and ∂tu. More precisely, upon using the new independent variables ξ = x− c∗t
and τ = ω∗t, we require that∥∥∥∥u∗(ξ, ·)− u0

(
ω± − k±c∗

ω∗
· −k±ξ; k±

)∥∥∥∥
H1

per(0,2π)

(4.41)

+
∥∥∥∥∂ξu∗(ξ, ·)− ∂ξu0

(
ω± − k±c∗

ω∗
· −k±ξ; k±

)∥∥∥∥
H

1/2
per (0,2π)

−→ 0
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as ξ → ±∞. The speed c∗ and the asymptotic wave numbers k± are, in principle,
free parameters. Note, however, that the asymptotic frequencies ω± are necessarily
fixed through the nonlinear dispersion relation ω± = ωnl(k±). In particular, since
(4.39) requires that the solution has frequency one in τ , we see that the asymptotics
required in (4.41) imply that

ωnl(k+)− k+c∗
ω∗

= 1 =
ωnl(k−)− k−c∗

ω∗
so that

(4.42) ωnl(k+)− k+c∗ = ω∗ = ωnl(k−)− k−c∗.

Hence, for k− 6= k+, we find that the average speed c∗ of our solution is determined
by the Rankine–Hugoniot condition

(4.43) c∗ =
ωnl(k+)− ωnl(k−)

k+ − k−

with the genuinely nonlinear flux function ωnl. Using (4.42), we see that the corre-
sponding frequency ω∗ is then given by

(4.44) ω∗ =
k+ωnl(k−)− k−ωnl(k+)

k+ − k−
.

We have c∗ → cg and ω∗ → k0(cp − cg) as k+, k− → k0. We say that the solution
is a viscous shock if

(4.45) c−g > c∗ > c+g

where c±g = ω′nl(k±) or, equivalently, if

(4.46) ω′nl(k−) >
ωnl(k+)− ωnl(k−)

k+ − k−
> ω′nl(k+).

In particular, viscous shocks correspond to the viscous Lax shocks of the Burgers
equation found in §2.2. The interpretation of (4.45) is that the asymptotic wave
trains transport toward the interface between them. For k± close to k0, (4.46)
implies that k− < k0 < k+ for concave dispersion relations with ω′′nl(k0) < 0, while
we have k+ < k0 < k− for convex dispersion relations with ω′′nl(k0) > 0 (see also
Figure 1.3).

Theorem 4.10 (Existence). Assume that Hypotheses 4.1, 4.2 and 4.3 are met,
then the following is true for all wave numbers k− and k+ that are sufficiently
close to k0 and for which c−g > c+g . There exists a viscous shock solution u(x, t) =
u∗(x− c∗t, ω∗t) of (4.1) whose temporal frequency ω∗ and speed c∗ are determined
by the Rankine–Hugoniot conditions (4.43)-(4.44). Furthermore, the viscous shock
is unique, up to translations in x and t, in the class of solutions that are close to
u0 and satisfy (4.39)-(4.40).

Remark 4.11. We emphasize that the existence statement of Theorem 4.10
remains true if λ′′lin(0) < 0 in Hypothesis 4.2. The resulting modulated waves,
however, are sources, and not shocks, and satisfy c−g < c∗ < c+g . The rest of
Theorem 4.10 remains true as stated.

Under slightly more restrictive assumptions on the linear dispersion relation,
the small-amplitude viscous shocks u∗(ξ, τ) that we found in the preceding theorem
are spectrally stable.
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We formulate the stability result in exponentially weighted spaces. For each
η− and η+ ∈ R, we define

L2
η−,η+

(R) :=
{
u ∈ L2

loc(R); ‖u‖L2
η−,η+

<∞
}

(4.47)

‖u‖2L2
η−,η+

:=
∫ 0

−∞
|u(x)eη−x|2 dx+

∫ ∞

0

|u(x)eη+x|2 dx.

We also define H1
η−,η+

as the subset of functions u in H1
loc for which both u and ux

belong to L2
η−,η+

.

Theorem 4.12 (Stability). Assume that Hypotheses 4.1, 4.2 and 4.4 are met.
Let u∗(x−c∗t, ω∗t) be the viscous shock solution found in Theorem 4.10 with asymp-
totic wave numbers k±. There exist then extremal weights ηmin(k±) and ηmax(k±)
such that, for each fixed choice of η± with ηmin < η− < 0 < η+ < ηmax, the
viscous shock is nonlinearly asymptotically stable with respect to perturbations in
H1

η−,η+
. More precisely, fix η± with ηmin < η− < 0 < η+ < ηmax, then there

are positive numbers δ, ρ and C such that each solution u(x, t) of (4.1) for which
‖u(·, 0)− u∗(·, 0)‖H1

η−,η+
< δ satisfies

(4.48) ‖u(·, t)− u∗(· − c∗t, ω∗t)‖H1
η−,η+

≤ Ce−ρt‖u(·, 0)− u∗(·, 0)‖H1
η−,η+

.

The optimal exponential rate of convergence is given by

ρ = min{|(c−g − c∗)η−|, |(c+g − c∗)η+|}.

The theorem asserts that localized perturbations do not cause a shift in the
position or the phase of the front. In particular, the linearization of the reaction-
diffusion system about the viscous shock solution does not have a neutral eigenvalue
at the origin when considered in the exponentially weighted spaces used in the
theorem. Note also that stronger exponential weights enhance the exponential rate
with which perturbations decay in time.

At a first glance, this statement may appear to contradict the assertion in
Proposition 2.4 that the viscous Lax shocks in the Burgers equation do have a
neutral eigenvalue at the origin in the same exponentially weighted spaces. The
explanation is as follows. The exponential weights require that perturbations of
the viscous shocks in the reaction-diffusion system are localized. In particular, the
phases of the asymptotic wave trains cannot be changed by perturbations in these
spaces. The phase modulation is modelled by the eikonal equation

(4.49) ∂T Φ =
1
2
λ′′lin(0)∂XXΦ− 1

2
ω′′nl(k)(∂XΦ)2

for the phase Φ =
∫
q, i.e. by the integrated Burgers equation, instead of the

Burgers equation for the wave number q. The linearization of (4.49) about the Lax
shock does not possess a zero eigenvalue in our exponentially weighted spaces since
Φx = q is not localized. Equivalently, we can view perturbations of (4.49) that
are localized in Φ as perturbations of the Burgers equation that have zero mass∫
q = 0: these perturbations, however, preserve the position of the viscous shock.

The absence of the zero eigenvalue can also be inferred directly from the properties
of the viscous shock in the reaction-diffusion system. Any eigenfunction of λ = 0
for the linearization of the reaction-diffusion system about the shock solution is
a linear combination of the derivatives of the shock solution with respect to time
and space; we would obtain an eigenvalue at λ = 0 in the exponentially weighted
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spaces considered above if an appropriate linear combination is localized in space.
We shall prove, however, that localized linear combinations do not exist: Moving
the interface in space and time will always change the phases of at least one of the
asymptotic wave trains since phase speeds of the two wave trains differ (see also
[50, Proposition 5.5] where it is shown that the absence of zero eigenvalues is a
generic feature of sinks regardless of their amplitude).

The proofs of the theorems stated in this section can be found in §8.





CHAPTER 5

Validity of the Burgers equation in
reaction-diffusion equations

In this section, we prove the theorems that we stated in §4.4. In §5.1–5.4,
we carry out the proof of Theorem 4.7, while we discuss in §5.5 the modifications
needed for the other theorems.

5.1. From phases to wave numbers

The first step is to extract an equation for the phase, and henceforth for the
wave number, from a general reaction-diffusion system. Note that the formal deriva-
tion in §4.3 uses a multi-scale expansion which we cannot assume apriori. We re-
mark that the S1-symmetry respected by the Ginzburg–Landau equation provided
an avenue for deriving directly an equation for the phase. This symmetry, however,
is, in general, not respected in reaction-diffusion systems.

Instead, we proceed as follows for the reaction-diffusion system

(5.1) ∂tu = D∂xxu+ f(u).

First, we change coordinates via

θ = ωt− kx

and obtain

(5.2) ∂tu = k2D∂θθu− ω∂θu+ f(u).

Our starting point is a given stationary wave train u0(θ; k) of (5.2) with period 2π,
which therefore satisfies

(5.3) k2D∂θθu0 − ω∂θu0 + f(u0) = 0.

Given a smooth phase function φ(ϑ, t), we shall now seek solutions of the form

(5.4) u(θ, t) = u0(ϑ; k(1 + ∂ϑφ(ϑ, t))−1) + w(ϑ, t),

where the phase φ(ϑ, t) and the coordinates θ and ϑ are related by

(5.5) θ = ϑ+ φ(ϑ, t).

We shall assume that ∂ϑφ is small, uniformly in ϑ, but remark that φ itself might
be unbounded.

Through the ansatz (5.4), we add an additional degree of freedom by introduc-
ing φ: we shall later add additional conditions on φ and w, via mode filters, to
make the decomposition (5.4) unique.

Remark 5.1. It might seem more natural to make the ansatz

(5.6) u(θ, t) = u0(θ − φ(θ, t); k(1− ∂θφ(θ, t))) + w(θ, t)

53
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instead of (5.4). Eventually, we need to be able to relate the dynamics of u(θ, t)
back to properties of the wave train u0(θ; k). It is desirable to allow the phase
function φ(θ, t) to be unbounded. Thus, to transform back to the wave train, we
would need to express u(θ, t) in terms of the variable ϑ = θ − φ(θ, t) which yields

u0(θ − φ(θ, t); k(1− ∂θφ(θ, t))) 7−→ u0(ϑ; k(1− ∂θφ(θ(ϑ, t), t)))

which involves the inverse θ(ϑ, t) of the function ϑ = θ−φ(θ, t). The occurrence of
this inverse would make the forthcoming analysis much more complicated which is
why we proceed with (5.4).

Remark 5.2. Suppose that we found a phase function φ(ϑ, t) with small de-
rivative ∂ϑφ(ϑ, t) so that (5.4) satisfies (5.2). Using the implicit function theorem,
we can then, a posteriori, solve (5.5) for ϑ as a function of θ which is of the form
ϑ = θ − φ̃(θ, t), where

φ̃(θ, t) = φ(ϑ, t) = φ(θ − φ̃(θ, t), t).

In particular, we see that u0(ϑ; k(1 + ∂θφ(ϑ, t))−1) becomes

(5.7) u0(θ − φ(θ − φ̃(θ, t), t); k(1 + ∂θφ(θ − φ̃(θ, t), t))−1)

and
d
dθ
φ(θ − φ̃(θ, t), t) = (1− ∂θφ̃(θ, t))∂θφ(θ − φ̃(θ, t), t)

= ∂θφ(θ − φ̃(θ, t), t) + O(|∂θφ(θ − φ̃(θ, t), t)|2).
Thus, to leading order, the solution (5.7) is, in fact, of the desired form (5.6) with
φ(θ, t) replaced by φ(θ − φ̃(θ, t), t).

We now substitute the ansatz (5.4) into (5.2) and derive the resulting PDE in
ϑ. We shall use the notation

uφ
0 := u0(ϑ; k(1 + ∂ϑφ)−1)(5.8)

∂ju
φ
0 := (∂ju0)φ := (∂ju0)(ϑ; k(1 + ∂ϑφ)−1), j = ϑ, k.

Assuming that ∂ϑφ is small, we obtain the relations
dϑ
dt

=
−∂tφ

1 + ∂ϑφ

dϑ
dθ

=
1

1 + ∂ϑφ

d
dθ

=
1

1 + ∂ϑφ

d
dϑ

d2

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

)2

and therefore
du
dt

=
−∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 −

k

(1 + ∂ϑφ)2

(
−∂ϑϑφ∂tφ

1 + ∂ϑφ
+ ∂ϑ∂tφ

)
∂ku

φ
0

du
dθ

=
1

1 + ∂ϑφ
∂ϑ u

φ
0 −

k∂ϑϑφ

(1 + ∂ϑφ)3
∂ku

φ
0

d2u

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

− k∂ϑϑφ

(1 + ∂ϑφ)3
d
dk

)2

uφ
0
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and
dw
dt

=
∂w

∂t
− ∂w

∂ϑ

∂tφ

1 + ∂ϑφ

dw
dθ

=
1

1 + ∂ϑφ

∂w

∂ϑ

d2w

dθ2
=

(
1

1 + ∂ϑφ

d
dϑ

)2

w.

Thus, we get

− ∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 +

k

(1 + ∂ϑφ)2

(
∂ϑϑφ

∂tφ

1 + ∂ϑφ
− ∂ϑ∂tφ

)
∂ku

φ
0(5.9)

+∂tw −
∂tφ

1 + ∂ϑφ
∂ϑw

= k2D

((
1

1 + ∂ϑφ

∂

∂ϑ
− k∂ϑϑφ

(1 + ∂ϑφ)3
∂

∂k

)2

uφ
0 +

(
1

1 + ∂ϑφ

∂

∂ϑ

)2

w

)

−ω 1
1 + ∂ϑφ

(
∂ϑu

φ
0 −

k(∂ϑϑφ)
(1 + ∂ϑφ)2

∂ku
φ
0 + ∂ϑw

)
−(k2D∂ϑϑu0 − ω∂ϑu0 + f(u0)) + f(uφ

0 + w)

where we used (5.3) in the last equation.
Our next goal is to separate the critical modes, which involve the dynamics of

φ, from the damped noncritical modes using the eigenfunctions of the linearization
L given by

Lv = k2D∂ϑϑv − ω∂ϑv + f ′(u0(ϑ; k))v.
This will be accomplished using Bloch waves which we introduce next.

5.2. Bloch-wave analysis

We briefly recall from §4.1 some of the properties of the operator L as they
serve as a motivation to introduce the Bloch-wave transform. In the notation of
(4.8), the eigenfunctions v(ϑ) of the linearization L about u0(ϑ; k) on L2(R) are
given by

(5.10) v(ϑ) = e−i`ϑ/kv(ϑ; i`).

For our purposes, it is more convenient to parametrize solutions by the imaginary
wave number `, and we shall therefore use the notation

v̌(ϑ, `) := v(ϑ; i`)

throughout the rest of §5. As shown in §4.1, for each ` ∈ R, the functions v̌(·, `)
are the 2π-periodic eigenfunctions of the operator Ľ` given by

Ľ`v̌ = k2D

(
∂ϑ −

i`
k

)2

v̌ − ω0

(
∂ϑ −

i`
k

)
v̌ + f ′(u0(ϑ))v̌.

We observe that Ľ` coincides with the operator Lν for ν = i` discussed in §4.1. It
is convenient in this section, however, to indicate explicitly when operators act on
2π-periodic functions which we shall do by using the superscript .̌

We also record that

(5.11) v̌(ϑ, `+ k) = eiϑv̌(ϑ, `),
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and we can therefore restrict ` to the interval [−k/2, k/2). Furthermore, as in §4.1,
we denote by v̌j(ϑ, `) the eigenfunctions associated with the ordered branches λj(i`)
of eigenvalues of L` for j ∈ N. In particular, by Hypothesis 4.4, we have λ1 = λlin.

We now turn to the Bloch-wave transform J which can be considered as a
generalization of the Fourier transform F . We will state only those properties of
the Bloch-wave transform that we shall need subsequently and refer to [46, 51, 54]
for their proofs and also for additional properties of the Bloch-wave transform. For
every sufficiently smooth and rapidly enough decaying function w in ϑ-space, there
are functions w̌(ϑ, `) that are 2π-periodic in ϑ and satisfy

(5.12) w̌(ϑ, `+ k) = eiϑw̌(ϑ, `)

with the property that w is represented via

(5.13) w(ϑ) =
∫ k/2

−k/2

e−i`ϑ/kw̌(ϑ, `) d`.

We shall write

w̌ = Jw.

The rationale for the Bloch transform is as follows: If we denote the, slightly
rescaled, Fourier transform of w by ŵ, then we have

w(ϑ) =
∫ ∞

−∞
e−i`ϑ/kŵ(`) d` =

∑
j∈Z

∫ k/2

−k/2

e−iϑ(`+jk)/kŵ(`+ jk) d`

=
∫ k/2

−k/2

e−i`ϑ/k

∑
j∈Z

e−ijϑŵ(`+ jk)

 d` =:
∫ k/2

−k/2

e−i`ϑ/kw̌(ϑ, `) d`,

which is the desired Bloch-wave representation. Similar to the Fourier transform,
the Bloch-wave transform can be defined for tempered distributions. We remark
that the Bloch transform of the product of two functions w1 and w2 in ϑ-space is
given by the convolution

(5.14) J [w1 · w2](ϑ, `) = [w̌1 ∗J w̌2](ϑ, `) =
∫ k/2

−k/2

w̌1(ϑ, `− ˜̀)w̌2(ϑ, ˜̀) d˜̀

of their Bloch transforms w̌1 and w̌2 in Bloch space. Furthermore, if w1(ϑ) is
2π-periodic in ϑ and the support of the Fourier transform ŵ2 of a complex-valued
function w2(ϑ) lies in (−1/2, 1/2), then we have

J [w1w2](ϑ, `) =
∑
j∈Z

F [w1w2](j + `)eijϑ =
∑
j∈Z

eijϑ

∫ 1
2

− 1
2

ŵ1(j + `− ˜̀)ŵ2(˜̀) d˜̀

=
∑
j∈Z

eijϑ

∫ 1
2

− 1
2

ŵ1(j)ŵ2(˜̀)δ`−˜̀d˜̀ =
∑
j∈Z

ŵ1(j)eijϑŵ2(`)

= w1(ϑ)ŵ2(`)

so that

(5.15) J [w1w2](ϑ, `) = w1(ϑ)ŵ2(`).
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The analytic properties of the Bloch-wave transform are based on a generalization
of Parseval’s identity∫ ∞

−∞
|u(ϑ)|2 dϑ = 2πk

∫ 2π

0

∫ k/2

−k/2

|ǔ(ϑ, `)|2 d`dϑ.

As a consequence, the Bloch-wave transform is an isomorphism from the space
Hm(n), equipped with the norm

‖u‖Hm(n) = ‖uρn
w‖Hm ρw(ϑ) =

√
1 + ϑ2,

into the space Hm,n
Bloch of functions ǔ(ϑ, `) that are 2π-periodic in ϑ, satisfy (5.12),

and whose norm

‖ǔ‖Hm,n
Bloch

=
m∑

i=0

n∑
j=0

∫ 2π

0

∫ k/2

−k/2

|∂i
ϑ∂

j
` ǔ(ϑ, `)|

2 d`dϑ

is finite. As mentioned above, the proofs of the preceding statements can be found
in [46, 51, 54].

Bloch-wave transform allows us to analyse differential operators with spatially-
periodic coefficients. In Bloch space, such operators are multiplication operators.
Since we are interested in functions without prescribed behaviour at infinity, i.e. in
functions which do not necessarily decay to zero, we employ a method already used
in [52] to extend multiplication operators from the space L2 of square-integrable
functions to the space L2

ul of uniformly locally square-integrable functions equipped
with the norm

‖u‖L2
ul

= sup
x∈R

∫ x+1

x

|u(y)|2 dy.

We recall the definition

Hm
ul =

{
u : R → R; ‖u‖Hm

ul
= ‖u‖Hm(x,x+1) <∞ with lim

y→0
‖u− Tyu‖Hm

ul
→ 0

}
where [Tyu](x) := u(x+ y).

Lemma 5.3. Let m, s ∈ Z with m+ s ≥ 0 and m ≥ 0. Consider a function

M̌ : R −→ L(Hm+s
per (0, 2π),Hm

per(0, 2π)), ` 7−→ M̌(`)

which is at least C2 with respect to the Bloch wave number `. The bounded linear
operator M defined by

M : Hm+s(2) −→ Hm(2), u 7−→ J−1(M̂J u)
can then be extended to a bounded linear operator

M : Hm+s
ul −→ Hm

ul ,

which we denote by the same letter, with norm

‖M‖L(Hm+s
ul ,Hm

ul )
≤ C(m, s)‖M̌‖C2

b((−k/2,k/2),L(Hm+s
per ,Hm

per))

where C(m, s) does not depend on M.

Proof. Choose a function χ ∈ C∞0 so that its support is contained in [−1, 1]
and

∑
j∈Z χ(x + j) ≡ 1. Next, pick u ∈ Hm+s

ul and set uj(x) = u(x)χ(x − j).
Since uj ∈ Hm+s(2), we know that Muj ∈ Hm(2) on account of the results in [54,
Lemma 5.4] (this is the crucial step which allows us now to extend the operator).
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We define (Mu)(x) :=
∑

j∈Z(Muj)(x): While this sum does not converge in Hm
ul ,

it converges locally to a function in Hm
ul with a norm bounded from above by

C(m, s)‖M̌‖C2
b((−k/2,k/2),L(Hm+s

per ,Hm
per))

‖u‖Hm+s
ul

since Muj is concentrated around x = j and decays like 1/(1 + |x− j|2). �

Remark 5.4. It is not difficult to see that this lemma can be extended to
multilinear operators.

5.3. Mode filters, and separation into critical and noncritical modes

Our goal is to separate the dynamics of the eigenmodes v̌1(ϑ, `) associated with
the critical eigenvalues λ1(i`) = λlin(i`) from the remaining damped noncritical
modes. We shall use mode filters to obtain this splitting.

First, there exists a number `1 with 0 < `1 � 1 so that the eigenvalue λ1(i`)
of Ľ` is to the right of the rest of the spectrum for each ` with |`| < `1. Therefore,
there exists an Ľ`-invariant projection

Q̌c(`) =
1

2πi

∫
Γ

[λ− Ľ`]−1 dλ

onto the space spanned by v̌1(ϑ, `), where Γ ⊂ C is a small circle that surrounds
λ1(i`) counter-clockwise in the complex plane and does not intersect the rest of the
spectrum of L` for this fixed `.

Next, we choose a decreasing C∞0 -cutoff function χ : R → [0, 1] with

(5.16) χ(`) =
{

1 for |`| ≤ 1
0 for |`| ≥ 2.

We can now define

P̌ c
fs(`) = Q̌c(`)χ

(
4`
`1

)
, P̌ s

fs(`) := 1− Q̌c(`)χ
(

4`
`1

)
,

P̌ c
mf(`) = Q̌c(`)χ

(
8`
`1

)
, P̌ s

mf(`) := 1− Q̌c(`)χ
(

8`
`1

)
and

P̌ c(`) = Q̌c(`)χ
(

2`
`1

)
, P̌ s(`) := 1− Q̌c(`)χ

(
16`
`1

)
.

It is easy to check that these operators commute for each fixed ` and satisfy

(1− P̌ c)P̌ c
fs = 0 = (1− P̌ c

fs)P̌
c
mf , (1− P̌ s)P̌ s

fs = 0 = (1− P̌ s)P̌ s
mf(5.17)

P̌ c
fs + P̌ s

fs = 1, P̌ c
mf + P̌ s

mf = 1.

Lastly, we set
λ̌c(`) = λ1(i`)

and define scalar-valued operators p̌c
fs(`) and p̌c

mf(`) implicitly by

(5.18) [p̌c
fs(`)ǔ]v̌1(·, `) = P̌ c

fs(`)ǔ, [p̌c
mf(`)ǔ]v̌1(·, `) = P̌ c

mf(`)ǔ

for 2π-periodic functions ǔ(ϑ). An application of Lemma 5.3 shows that each of the
operators above extends to a bounded operator on Hm+s

ul . The resulting operators
will be denoted by the same letter but with the superscript ˇ being dropped.

The mode filters pc
mf and P s

mf obtained in this fashion will now be used to
separate the critical and noncritical modes in (5.9) posed on R. We will use the
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operators pc
fs and P s

fs to limit the Fourier support of the critical modes. First, we
write (5.9), given by

− ∂tφ

1 + ∂ϑφ
∂ϑu

φ
0 +

k

(1 + ∂ϑφ)2

(
∂ϑϑφ

∂tφ

1 + ∂ϑφ
− ∂ϑ∂tφ

)
∂ku

φ
0

+∂tw −
∂tφ

1 + ∂ϑφ
∂ϑw

= k2D

((
1

1 + ∂ϑφ

∂

∂ϑ
− k∂ϑϑφ

(1 + ∂ϑφ)3
∂

∂k

)2

uφ
0 +

(
1

1 + ∂ϑφ

∂

∂ϑ

)2

w

)
(5.19)

−ω 1
1 + ∂ϑφ

(
∂ϑu

φ
0 −

k(∂ϑϑφ)
(1 + ∂ϑφ)2

∂ku
φ
0 + ∂ϑw

)
−(k2D∂ϑϑu0 − ω∂ϑu0 + f(u0)) + f(uφ

0 + w)

as

(5.20) [−B0 +B1(∂ϑφ,w)]∂tφ+ ∂tw = −L̃0∂ϑφ+ Lw +G(∂ϑφ,w),

where

B0∂tφ = (∂ϑu0 + k∂ku0∂ϑ)∂tφ

L̃0∂ϑφ = L(k∂ϑφ∂ku0) + k2D(2∂ϑφ∂ϑϑu0 + ∂ϑϑφ∂ϑu0)− ω∂ϑφ∂ϑu0

= k [−L(∂ϑφ∂νv1) + kD(2∂ϑφ∂ϑϑu0 + ∂ϑϑφ∂ϑu0)− cp∂ϑφ∂ϑu0](5.21)

B1(∂ϑφ,w)∂tφ =

(
∂ϑu0 −

∂ϑu
φ
0

1 + ∂ϑφ

)
∂tφ

+k

(
∂ϑϑφ∂ku

φ
0

(1 + ∂ϑφ)3
∂tφ+

(
∂ku0 −

∂ku
φ
0

(1 + ∂ϑφ)2

)
∂ϑ∂tφ

)

− ∂ϑw

1 + ∂ϑφ
∂tφ

and G is comprised of the remaining terms. In the calculation above, we used that
∂νv1 = −∂ku0, a fact we established in §4.2. Before continuing, we also remark
that

B1(∂ϑφ,w) = O(|∂ϑφ|+ |w|)
G(∂ϑφ,w) = O(|∂ϑφ|2 + |w|2).

Our goal is to replace (5.20) with the system

∂tP
c
fsB0φ = P c

fsL̃0∂ϑφ+ P c
mfB1(∂ϑφ,w)∂tφ− P c

mfG(∂ϑφ,w)(5.22)

∂tw = Lw + P s
fsB0∂tφ− P s

fsL̃0∂ϑφ− P s
mfB1(∂ϑφ,w)∂tφ

+P s
mfG(∂ϑφ,w)

for (φ,w). Subtracting the first from the second equation and using (5.17), we see
that solutions of (5.22) give solutions of (5.20). Alternatively, we may consider the
system

∂tp
c
fsB0φ = pc

fsL̃0∂ϑφ+ pc
mfB1(∂ϑφ,w)∂tφ− pc

mfG(∂ϑφ,w)(5.23)

∂tw = Lw + P s
fsB0∂tφ− P s

fsL̃0∂ϑφ− P s
mfB1(∂ϑφ,w)∂tφ

+P s
mfG(∂ϑφ,w)
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for (φ,w), where the first equation is now scalar-valued. Inspecting (5.18) and
exploiting that the eigenfunctions v̌1(ϑ, `) satisfy a linear equation, we see that
(5.22) and (5.23) are equivalent. To make (5.23) well-posed, we shall require that
(φ,w) satisfy

(5.24) suppF [φ] ⊂ I :=
{
`; χ

(
4`
`1

)
= 1
}

and

(5.25) (1− P s)w = 0

for all t ≥ 0. Since P s commutes with L, it follows from (5.17) and (5.23) that
(5.25) is true for all t > 0 whenever it is met at t = 0.

It remains to check whether (5.24) is respected by (5.23) and to calculate the
operator pc

fsB0 to see whether (5.23) is well posed. Due to the properties of the
multiplier pc

mf , we know that

suppF [pc
mf(B1(∂ϑφ,w)∂tφ−G(∂ϑφ,w))] b I

for any sufficiently smooth function φ. Next, we see from (5.21) that the operators
B0 and L̃0 have 2π-periodic coefficients in ϑ and are multipliers in Bloch space
which allows us to use Lemma 5.3. For any function φ that satisfies (5.24), we then
obtain

P̌ c
fsJ [B0φ] = P̌ c

fs(`)J [B0φ](ϑ, `)
(5.15)
= φ̂(`)χ

(
4`
`1

)
Q̌c(`) (∂ϑu0(ϑ) + O(`))

= φ̂(`)χ
(

4`
`1

)
(1 + O(`)) v̌1(ϑ, `)

(5.24)
=

[
(1 + O(`1)) φ̂(`)

]
v̌1(ϑ, `),

where the O(`1) term is a multiplier. In particular, the term [. . .](`) has support in
I. Therefore, using the definition (5.18) of pc

fs and denoting the operator associated
with the O(`1) term by B3, we get

(5.26) pc
fsB0φ = (1 +B3)φ

for all φ that satisfy (5.24), where B3 has norm ‖B3‖ = O(`1) and respects (5.24),
i.e. suppF [B3φ] ⊂ I. Since similar arguments apply to the multiplier L̃0, we see
that (5.24) is indeed preserved by (5.23) as claimed.

Next, for all (φ,w) for which (∂ϑφ,w) is small and φ satisfies (5.24), the first
equation of (5.23) can be written as

∂tφ = [1 +B3 + pc
mfB1(∂ϑφ,w)]−1

[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]
.

Substituting this expression for ∂tφ into the second equation of (5.23) for w, we
arrive at the system

∂tφ = [1 +B3 + pc
mfB1(∂ϑφ,w)]−1

[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]

∂tw = Lw − P s
fsL̃0∂ϑφ+ P s

mfG(∂ϑφ,w)(5.27)

+ [P s
fsB0 − P s

mfB1(∂ϑφ,w)] [1 +B3 + pc
mfB1(∂ϑφ,w)]−1 ×

×
[
pc
fsL̃0∂ϑφ− pc

mfG(∂ϑφ,w)
]
.
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Thus, we accomplished an effective splitting of the critical modes φ and the non-
critical modes w.

We now replace φ by ψ = ∂ϑφ and obtain

∂tψ = ∂ϑ [1 +B3 + pc
mfB1(ψ,w)]−1

[
pc
fsL̃0ψ − pc

mfG(ψ,w)
]

∂tw = Lw − P s
fsL̃0ψ + P s

mfG(ψ,w)(5.28)

+ [P s
fsB0 − P s

mfB1(ψ,w)] [1 +B3 + pc
mfB1(ψ,w)]−1 ×

×
[
pc
fsL̃0ψ − pc

mfG(ψ,w)
]
.

which we also write in short as

(5.29) ∂tV = ΛV +N (V),

where V = (ψ,w), Λ is a linear operator, and N (V) = O(|V|2). We record that it
is easy to check, using (4.21), (4.22) and (5.15), that the spectrum of the operator

∂ϑ(1 +B3)−1pc
mf L̃0

near λ = 0 is indeed given by the linear dispersion curve λ̌c(`) with the associated
eigenmodes given approximately by the Fourier modes exp(−i`ϑ/k). Since the
linear part of the system (5.28) is lower-triangular, we can find a bounded lower-
triangular operator S that diagonalizes (5.29) so that

(5.30) S−1ΛS = diag(λc,Λs).

In particular, if we set (vc, vs) := S−1V, then we have vc = ψ and P svs = vs. In
these coordinates, (5.29) becomes

∂tv
c = λcvc + ∂ϑp

c
mfN (vc, vs)(5.31)

∂tv
s = Λsvs + P s

mfN (vc, vs),

where N is a smooth nonlinear mapping from Hm+2
ul × Hm+2

ul into Hm
ul for every

m ≥ 1, and
N c(vc, vs) := ∂ϑp

c
mfN (vc, vs)

maps Hm+2
ul ×Hm+2

ul into Hs
ul for each s ≥ 0.

We emphasize that (5.31) therefore has the same properties as (3.28), whence
we can follow the proofs in §3 almost line by line to finish the proof of the approx-
imation result for reaction-diffusion equations.

5.4. Estimates for residuals and errors

We shall solve (5.31) for (vc, vs) in the space Xm ×Xm, where Xm := Hm
ul . We

remark that vc will, in fact, lie in Hs
ul for each s ≥ 0.

Lemma 5.5. The operators λc and Λs are sectorial in Xm for every m ≥ 0.
Furthermore, there exist constants C0 > 0 and σ > 0 such that the semigroups eλct

and eΛst generated by these operators satisfy

‖eλct‖Xm→Xm ≤ C0

‖eλct∂ϑ‖Xm→Xm ≤ C0t
−1/2

‖eΛst‖Xm→Xm ≤ C0e−σt

for all t ≥ 0 and m ≥ 0.



62 5. VALIDITY OF THE BURGERS EQUATION IN REACTION-DIFFUSION EQUATIONS

The second estimate in the preceding lemma provides decay of the semigroup
for large t � 1 which we shall exploit below when we estimate the growth rate of
solutions to (5.31).

Proof. The operator Λ differs from the sectorial operator D∂ϑϑ by a relatively
bounded perturbation and is therefore also sectorial. Thus, by [22], Λ generates an
analytic semigroup, and the growth rates of eΛt are determined by the spectrum of
Λ. In particular, eΛst decays with some exponential rate. The singularity t−1/2 for
the center part is due to the parabolic profile of Reλc at ` = 0 which allows us to
apply Lemma 5.3 to M(`) = δ`eδ−2λ̌c(δ`)T with T = δ2t. �

We are now in a position to compute the evolution of residuals and errors.
Upon substituting the ansatz

(vc, vs) =
(
δq
(
δ((cp − cg)t− ϑ/k), δ2t

)
, 0
)

into (5.31) and computing the residual, we obtain

Resc(δq, 0) = δ3
[
−∂T q +

λ′′lin(0)
2

∂XXq +
ω′′nl(k)

2
∂X(q2)

]
+ O(δ4)

Ress(δq, 0) = O(δ2).

Indeed, the second equation follows by using that the nonlinearity is quadratic,
while the first equation follows from the calculation in §4.3. Thus, we see again
that q(X,T ) should satisfy the Burgers equation

(5.32) ∂T q =
λ′′lin(0)

2
∂XXq +

ω′′nl(k)
2

∂X(q2).

Thus, we fix integers M ≥ 1 and n ≥M + 3, and pick a solution q ∈ C([0, T0],Hn
ul)

of the Burgers equation (5.32). To derive error estimates, it is advantageous to add
higher-order corrections to the above approximation.

Lemma 5.6. Fix positive integers n,m,M with n ≥M+m+3, then there exists
an improved approximation (V c, V s) ∈ C([0, T0/δ

2],Hn
ul) such that the following is

true. There exist δ0 > 0 and Cres > 0 such that

sup
t∈[0,T0/δ2]

‖V c(·, t; δ)− q(δ·, δ2t)‖Xm ≤ Cresδ

sup
t∈[0,T0/δ2]

(‖V c(·, t; δ)‖Xm + ‖V s(·, t; δ)‖Xm) ≤ Cres

sup
t∈[0,T0/δ2]

‖Resc(δV c(·, t; δ), δ2V s(·, t; δ))‖Xm ≤ Cresδ
M+3

sup
t∈[0,T0/δ2]

‖Ress(δV c(·, t; δ), δ2V s(·, t; δ))‖Xm ≤ Cresδ
M+2

for all δ ∈ (0, δ0).

Proof. Higher-order corrections Φ(X,T ; δ) and u1(ϑ,X, T ; δ) in physical co-
ordinates can be obtained as outlined in §4.3. Afterwards, we use the mode filters
to transform these solutions into (vc, vs) form. While V c has compact support in
Fourier space, Φ and q do not. However the difference by the cut-off in Fourier space
is O(δn) due to the concentration at the Bloch wave number ` = 0 (see [54]). We
identified Bloch space with Fourier space since vc for fixed ` is one-dimensional. �
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Using the higher-order approximations, we introduce the scaled errors Rc and
Rs by setting

vc = δV c + δM+1Rc

vs = δ2V s + δM+2Rs.

Substituting this ansatz into (3.28), and using the approximation properties of
(V c, V s), we obtain exactly the same system as the one investigated in §3.9. Thus,
following the analysis presented in §3.9, we obtain the following result which finishes
the proof of Theorem 4.7.

Proposition 5.7. For each fixed positive integers n,m,M with n ≥M+m+3,
there exists constants δ1 > 0 and C1 > 0 such that we have

sup
t∈[0,T0/δ2]

‖Rc(t)‖Xm + sup
t∈[0,T0/δ2]

‖Rs(t)‖Xm ≤ C1

for all δ ∈ (0, δ1).

5.5. Proofs of the theorems from §4.4

The proof of Theorem 4.6 follows closely that of Theorem 3.2 except that we
adapt the proof of Theorem 4.7 instead of Theorem 3.5, and we therefore omit the
details.

To prove Theorem 4.8, we observe that admissible solutions q(X,T ) lead to
finite phase differences. In detail, we obtain

lim
θ→∞

|ϑ(θ)− ϑapprox(θ)| ≤ C1δ
m,

where ϑ(θ) and ϑapprox(θ) are computed from the true solution φ(ϑ, t) and the
approximation δV c(δϑ, ϑ2t). We can then reconstruct the phase from the wave
number by integrating starting at −∞.

Lastly, we comment on the proof of Theorem 4.9. From Proposition 5.7, one
finds the estimate

|ϑ(θ)− ϑapprox(θ + φ0(t))| ≤ CδM+1|θ|
and therefore

|u(θ, t)−uapprox(θ, t)| ≤ C1|ϑ(θ)−ϑapprox(θ+φ0(t))|+C1|∂ϑφ−V c| ≤ CδM+1(|θ|+1).

Furthermore, we know that

∂tφ0(t) = ∂tφ(0, t) = O(δ2)

which yields the required estimate on the phase.





CHAPTER 6

Validity of the inviscid Burgers equation in
reaction-diffusion systems

We discuss the evolution of modulated wave trains for wave-number modu-
lations of small, but finite, size. The relevant ansatz in this situation is of the
form

(6.1) u0(ωnl(k0)x− k0x− δ−1Φ(X,T ); k0 + ∂XΦ(X,T )), (X,T ) = (δx, δt).

This is the scaling considered by Howard and Kopell [23] who showed formally that
Φ(X,T ) ought to satisfy the inviscid phase equation

(6.2) ∂T Φ + ωnl(k0 + ∂XΦ)− ωnl(k0) = 0,

while the wave number q(X,T ) = ∂XΦ(X,T ) satisfies the hyperbolic conservation
law

(6.3) ∂T q + ∂Xωnl(k0 + q) = 0.

Since (6.3) is a conservation law, shocks will typically form in finite time. Due to
the break-down of regularity during the formation of shocks, we can only expect
to prove validity results over time intervals [0, T1/δ], where T1 > 0 is so small that
the solution q(X,T ) has no shocks on [0, T1].

6.1. An illustration: The Ginzburg–Landau equation

To illustrate the concepts, we briefly review the set-up considered in [40] for
the Ginzburg–Landau equation.

Our starting point is once more equation (3.13)

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3(6.4)

∂tψ = ∂xxψ + ∂x

(
α∂xxr + 2(∂xr)ψ

1 + r
− αψ2 − 2βr − βr2

)
for amplitude and wave number corrections of the wave trains of the Ginzburg–
Landau equation with k = 0.

In line with (6.1), we substitute the long-wave ansatz

(r, ψ)(x, t) = (W, q)(X,T ), (X,T ) = (δx, δt)

into (6.4), and get

δ∂TW = δ2∂XXW − 2W − q2 − q2W − 2δα(∂XW )q − δα∂Xq

−δα(∂Xq)W − 3W 2 −W 3

∂T q = δ∂XXq − ∂X(2βW + αq2 + βW 2) + ∂X

(
δ2α∂XXW + 2δ∂XW

1 +W

)
.

65
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Choosing 0 < δ � 1 and neglecting terms that are formally of order O(δ), we
obtain the system

0 = −2W − q2 − q2W − 3W 2 −W 3

∂T q = −∂X(2βW + αq2 + βW 2).

For |q| < 1, the first equation is satisfied by W =
√

1− q2 − 1. Substituting this
expression into the second equation, we see that the modulation q(X,T ) ought to
satisfy the inviscid Burgers equation

∂T q + ∂X

(
(α− β)q2

)
= 0,

which we may also write as

(6.5) ∂T q + ∂Xωnl(q) = 0,

where ωnl(k) denotes the nonlinear dispersion relation (3.3) of the Ginzburg–Landau
equation. Local existence and uniqueness of solutions to the scalar first-order con-
servation law (6.5) are guaranteed by the method of characteristics or, for analytic
initial data, by the Cauchy–Kowalevskaya theorem.

For various technical reasons, the validity results established in [40] are formu-
lated for solutions q(δx, δt) whose Fourier transform lives in the space

LF (%,m) :=
{
û ∈ L1(R,C); ‖û‖ =

∫
R
|û(`)|e%|`|(1 + |`|m) d` <∞

}
for % > 0 and sufficiently large integers m > 0. For each û in L(%,m), the inverse
Fourier transform u is analytic in a complex strip {z ∈ C; | Im z| < %} [28]. We
shall use this and similar spaces in our analysis of reaction-diffusion systems.

6.2. Formal derivation of the conservation law

We repeat the formal derivation of the inviscid Burgers equation presented in
[23, §2C] for reaction-diffusion systems which proceeds as in §4.3. Upon substituting
the ansatz

(6.6) u(x, t) = u0(ωnl(k0)t− k0x− δ−1Φ(X,T ); k0 + ∂XΦ(X,T ))

with (X,T ) = (δx, δt) into the reaction-diffusion system

∂tu = D∂xxu+ f(u),

we obtain formally that

(ωnl(k0)− ∂T Φ)∂θu0 = D(k0 + ∂XΦ)2∂θθu0 + f(u0) + O(δ).

Setting formally δ = 0 and rearranging terms, we get

(6.7) D(k0 + ∂XΦ)2∂θθu0 − (ωnl(k0)− ∂T Φ)∂θu0 + f(u0) = 0,

where u0 and its derivatives are evaluated as in (6.6). Formally treating (x, t) and
(X,T ) as independent variables, we find that the effective wave number k of the
function u0(·; k0 + ∂XΦ) in (6.7) is equal to k0 + ∂XΦ. Thus, comparing (6.7) with
(4.5), we see that

ωnl(k0)− ∂T Φ = ωnl(k0 + ∂XΦ),

so that Φ(X,T ) should indeed satisfy the inviscid phase equation

∂T Φ + ωnl(k0 + ∂XΦ)− ωnl(k0) = 0.
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Taking the derivative with respect to X, we see that the wave number q = ∂XΦ
should therefore be a solution of the inviscid Burgers equation

(6.8) ∂T q + ∂Xωnl(k0 + q) = 0.

6.3. Validity of the inviscid Burgers equation

Throughout this section, we assume that we are in the set-up introduced in
§4.1 and §4.4.

Theorem 6.1. Assume that Hypothesis 4.1 is met. For any choice of %0 > 0
and integers M ≥ 1 and n ≥ 3, there are positive constants δ1, ε1, C1, T1 such that
the following is true. For each solution q(·, T ) ∈ Hn

ul of the conservation law (6.8)
on the interval [0, T1] with

sup
T∈[0,T1]

‖q(·, T )‖F−1LF (%0,0) ≤ ε1

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) in Hn
ul with

sup
t∈[0,T1/δ]

‖qh(·, t)− q(δ·, δt)‖Hn
ul

≤ C1δ

sup
t∈[0,T1/δ]

‖rh(·, t)‖Hn
ul

≤ C1 sup
T∈[0,T1]

‖q(·, T )‖2Hn
ul

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T1/δ]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C2δ
M ,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + qh(ϑ, t))) + rh(ϑ, t),

and ϑ and θ are related through (4.35) with

φ(ϑ, t) :=
∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

The preceding theorem implies the following approximation result in the orig-
inal variables (θ, t).

Theorem 6.2. Assume that Hypothesis 4.1 is met. For any choice of %0 > 0
and integers M ≥ 1 and n ≥ 3, there are positive constants ε1, C1, T1 and δ1 such
that the following is true. For each solution q(·, T ) ∈ Hn

ul of the conservation law
(6.8) on the interval [0, T1] with

sup
T∈[0,T1]

‖q(·, T )‖F−1LF (%0,0) ≤ ε1

and each δ ∈ (0, δ1), there are functions (qh, rh)(ϑ, t) in Hn
ul with

sup
t∈[0,T1/δ]

‖qh(·, t)− q(δ·, δt)‖Hn
ul

≤ C1δ

sup
t∈[0,T1/δ]

‖rh(·, t)‖Hn
ul

≤ C1 sup
T∈[0,T1]

‖q(·, T )‖2Hn
ul
,

a phase function φ0(t) with

sup
t∈[0,T1/δ]

|φ0(t)| ≤
1
δ

sup
T∈[0,T1]

‖q(·, T )‖2Hn
ul
,
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and a solution u(θ, t) of the reaction-diffusion system (4.33) such that

sup
t∈[0,T1/δ]

sup
ϑ∈R

|u(θ, t)− uapprox(θ, t)| ≤ C1δ
M ,

where
uapprox(θ, t) = u0(ϑ(θ); k(1 + qh(ϑ(θ), t))) + rh(ϑ(θ), t),

and ϑ and θ are related through (4.35) with

φ(ϑ, t) := φ0(t) +
∫ ϑ

0

qh(ϑ̃, t) dϑ̃.

Thus, our results indicate that the solution profile is approximated accurately
and, for the reasons outlined in Remark 3.13, we expect that the estimates for the
profile are optimal for solutions with no additional properties. The position of the
solution is given only up to an error of order C1‖q‖2/δ. We again believe that this
is optimal.

The inviscid Burgers equation (6.8) can be written as

∂T q + ω′nl(k0 + q)qX = 0,

and we can think of its solutions q(X,T ) initially as waves that travel formally with
speed ω′nl(k0 + q). In particular, the profile will, to leading order, move with the
speed given by the group velocity cg, and the estimate O(‖q‖2/δ) confirms this be-
haviour over time scales O(1/δ). In this sense, Theorem 6.2 justifies that we named
cg the group velocity and interpreted it as the speed with which perturbations are
transported along the wave train.

6.4. Proof of the theorems from §6.3

First, we note that Theorem 6.2 follows from Theorem 6.1 as in the proof of
Theorem 4.9 in §5.5 except that ∂tφ(0, t) is no longer of O(δ2): To get the correct
estimate for φ(0, t), we first infer from (5.27) that

∂tφ(0, t) = [1 + O(|`1|)]pc
mf

(
L̃0q(δϑ, δt) + O(δ + ‖q‖2)

)
.

on account of the estimates obtained in Theorem 6.1. On the other hand, proceeding
as in the derivation of (5.26), we obtain

pc
mf(L̃0q(δϑ, δt)) = O(δ).

Thus, ∂tφ(0, t) = O(δ + ‖q‖2) as claimed and, consequently, supt∈[0,T1/δ] |φ0(t)| =
O(1 + ‖q‖2/δ).

It therefore suffices to prove Theorem 6.1. As in the case of the Ginzburg–
Landau equation [40], we restrict the class of admissible solutions of (6.8). For
% > 0, we set

LJ (%,m) :={
ǔ ∈ L1([−k0/2, k0/2],Hm); ‖ǔ‖LJ (%,m) :=

∫ k0/2

−k0/2

‖ǔ(·, `)‖Hme%|`| d` <∞

}
and remark that the 2π-periodic spatial variable x is not scaled in this space.
Denoting the Bloch transform of a function u by ǔ, we define the Banach space

X %
m =

{
u : R → Cd; ǔ ∈ LJ (%,m)

}
, ‖u‖X%

m
:= ‖ǔ‖LJ (%,m).
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Due to Sobolev embedding theorems, there is a constant C(m) > 0 for each m ≥ 1
so that

‖ǔ ? v̌‖LJ (%,m) ≤ C(m)‖ǔ‖LJ (%,m)‖v̌‖LJ (%,m)

for any two functions ǔ, v̌ ∈ LJ (%,m). Since uv = J−1(ǔ ? v̌), we therefore obtain

(6.9) ‖uv‖X%
m
≤ C(m)‖u‖X%

m
‖v‖X%

m
.

In particular, X %
m is an algebra under multiplication for m ≥ 1. The constant C(m)

does not depend on % > 0.
Fix %0 > 0 and integers M ≥ 1 and n ≥ 3. We also pick a solution q(X,T ) of

the inviscid Burgers equation (6.8) in the space F−1LF (%0, 0) on the time interval
[0, T0]. Scaling the independent variables via (X,T ) = (δ(ϑ − cpt), δt), we obtain
that q(δ·, T ) ∈ X %0/δ

n for all T ∈ [0, T0]. As before, it is advantageous to add
corrections to the approximation.

Lemma 6.3. For any %1 ∈ (0, %0), there exist numbers δ1 > 0 and Cres > 0
such that the following is true. For each δ ∈ (0, δ0), there are functions (V c, V s)
such that

sup
t∈[0,T0/δ]

‖V c(·, t)− q(δ·, t)‖X%1/δ
m

≤ Cresδ

sup
t∈[0,T0/δ]

‖V c(·, t)‖X%1/δ
m

≤ Cres

sup
t∈[0,T0/δ]

‖V s(·, t)‖X%1/δ
m

≤ Cres sup
T∈[0,T0]

‖q(·, T )‖2Hn
ul

sup
t∈[0,T0/δ]

‖Resc(V c(·, t), V s(·, t))‖X%1/δ
m

≤ Cresδ
M

sup
t∈[0,T0/δ]

‖Ress(V c(·, t), V s(·, t))‖X%1/δ
m

≤ Cresδ
M .

Proof. This follows as in Lemma 3.10 upon exploiting the diagonalization
leading to (5.31). �

We introduce the critical noncritical parts δMRc and δMRs of the error by

vc = V c + δMRc

vs = V s + δMRs.

Substitution into (3.28) leads to

∂tR
c = λcRc + ρgc(Rc, Rs)

∂tR
s = ΛsRs + gs(Rc, Rs).

For fixed constants Dc and Ds, there are constants so that the nonlinear terms
satisfy

‖gc(Rc, Rs)‖X%
m

≤ CRes + C‖Rc‖X%
m

+ C‖Rs‖X%
m

+ δMC(Dc, Ds)

‖gs(Rc, Rs)‖X%
m−2

≤ CRes + C‖Rc‖X%
m

+ C‖Rs‖X%
m

+ δMC(Dc, Ds),

uniformly in % ∈ [0, %1/δ], provided

‖Rc‖X%
m
≤ Dc, ‖Rs‖X%

m
≤ Ds,

It becomes clear now that we cannot pursue the strategy used previously in §3.9 to
prove that the errors are bounded, since this approach would require a factor δ1/2
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in front of the estimates of gc to work. Instead, we proceed as in [40], where the
scale X %

m of Banach spaces has been used.
Pick a constant K0 > 0. For each constant K1 > 0, we may define a linear

operator B via its symbol B̌(`) = −K1|`|. We choose K1 � 1 so large that the
spectrum λK1(`) of λc +B satisfies

ReλK1(`) ≤ −K0|`|

for the constant K0 > 0 chosen above (thus, if the wave train is not sideband-
unstable, any positive constant K1 > 0 works). Next, we make the exponent % in
the family X %

m of Banach spaces smaller at a linear rate as time evolves by setting

(6.10) %(t) :=
%1

δ
−K1t.

The requirement that % > 0 therefore limits us to 0 ≤ t ≤ T1/δ for some T1 > 0.
Next, we define the operator S(t) via its symbol Š(t) = e(%1/δ−K1t)|`| and

introduce
Rc(t) := S(t)Rc(t), Rs(t) := S(t)Rs(t).

Note that Rc(0) ∈ X %1/δ
m is equivalent to Rc(0) ∈ X 0

m. The new error variables Rc

and Rs satisfy

∂tRc = λcRc +BRc + ρGc(Rc,Rs)(6.11)
∂tRs = ΛsRs +BRs + Gs(Rc, Rs).

We shall work from now on in the space Xm := X 0
m and denote its norm by ‖ · ‖m.

In this space, it has been shown in [40, §3.2] that the nonlinear terms obey the
estimates

‖Gc(Rc,Rs)‖Xm ≤ Cres + Cq‖Rc‖Xm + Cq‖Rs‖Xm + δMC(Dc, Ds)

‖Gs(Rc,Rs)‖Xm−2 ≤ Cres + Cq‖Rc‖Xm + Cq‖Rs‖Xm + δMC(Dc, Ds)

for
‖Rc‖Xm

≤ Dc, ‖Rs‖Xm ≤ Ds

and any fixed choice of positive constants Dc and Ds. Furthermore, we have that
Cq → 0 for ‖q‖ → 0. The key is now the following optimal-regularity result proved
in [40, §3.3].

Lemma 6.4 ([40, §3.3]). Fix 0 < γ < 1, then there exists a constant C2 > 0 with
the following property: Pick any functions f c and f s with f c = pcf c and f s = P sf s

for which f c(0) and f s(0) lie in the domains of λc + B and Λs + B, respectively.
The system

∂tRc = (λc +B)Rc + ρf c, Rc(0) = 0
∂tRs = (Λs +B)Rs + f s, Rc(0) = 0

then has a unique solution on [0, T1/δ], and

‖Rc‖C0,γ([0,T1/δ],Xm) ≤ C2‖f c‖C0,γ([0,T1/δ],Xm)

‖Rs‖C0,γ([0,T1/δ],Xm) ≤ C2‖f s‖C0,γ([0,T1/δ],Xm−2).

The crucial assertion of the preceding lemma is, of course, the boundedness of
solutions over the O(1/δ) times scale.
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Using Lemma 6.4 together with property Cq → 0 as ‖q‖ → 0, we can now
proceed as in §3.9 to prove that there are constants C3 > 0 and δ1 > 0 so that

sup
t∈[0,T1/δ]

‖Rc(t)‖Xm + sup
t∈[0,T1/δ]

‖Rs(t)‖Xm ≤ C3,

uniformly in δ ∈ (0, δ1), for the solutions Rc and Rs of the full nonlinear problem
(6.11). We omit the details.





CHAPTER 7

Modulations of wave trains near sideband
instabilities

7.1. Introduction

In this section, we consider the dynamics of modulations of wave trains at
the onset of sideband instabilities. A sideband instability is characterized by the
condition that the second derivative λ′′lin(0) of the linear dispersion relation changes
sign as an appropriate systems parameter is varied. This sign change will lead to
an instability of the wave train with respect to long-wavelength perturbations (i.e.
perturbations with small wave number).

To be more precise, we denote the systems parameter by µ and assume that
the wave train with wavenumber k exists for all µ close to zero, say. We expand
the linear dispersion relation to get

(7.1) λlin(ν;µ) = λ′lin(0;µ)ν+
1
2
λ′′lin(0;µ)ν2+

1
6
λ′′′lin(0;µ)ν3+

1
24
λ′′′′lin(0;µ)ν4+O(ν5)

where derivatives are taken with respect to ν. We are interested in the case where
λ′′lin(0;µ) changes sign at µ = 0. Thus, if λ′′′′lin(0; 0) < 0, which is a natural scenario
in this context as it implies that the wave train is spectrally stable for µ < 0, say,
then the resulting instability for µ > 0 is indeed induced by small wave numbers
`. In particular, sideband instabilities are modulational in nature, and we may
therefore expect that they can be captured by adding appropriate corrections to
the Burgers equation

(7.2) 2∂T q = λ′′lin(0;µ)∂XXq − ω′′nl(0;µ)∂X(q2),

which itself becomes ill-posed once λ′′lin(0;µ) < 0.
Our goal is to provide various validity results in this direction. The resulting

equations depend on parameter scalings, and we therefore denote by 1/δ the typical
spatial length scale of modulations that we wish to capture.

Firstly, if we focus on the regime |µ| ≤ Cδ2, then the Korteweg–de Vries equa-
tion (KdV) is the correct modulation equation that replaces the Burgers equation
(7.2). Next, if we choose the scaling µ = µ̃δ with µ̃ < 0, then the resulting modu-
lation equation is given by a dissipative Burgers-KdV equation.

A particularly interesting scenario arises if the third derivative λ′′′lin(0;µ) also
vanishes at µ = 0. This typically requires the adjustment of two parameters, or
the presence of additional symmetries, and is therefore of codimension two. In this
case, the Kuramoto–Sivashinsky equation takes the role of the Burgers equation in
describing modulations of wave trains.

Lastly, we mention that there are other mechanisms that lead to the destabiliza-
tion of wave trains. One such scenario are Hopf bifurcations where a second branch
of the linear dispersion relation crosses the imaginary axis away from zero. In this

73
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case, we encounter a coupled system of two PDEs, namely the Burgers equation (de-
scribing wave-number modulations) and the complex Ginzburg–Landau equation
(describing amplitude modulations of the Hopf modes) [17].

7.2. An illustration: The Ginzburg–Landau equation

Several different equations have been derived as phase equations for wave trains
in the complex Ginzburg–Landau equation [2, 3, 20, 30, 39].

We concentrated in §3 on the wave train with k = 0. As can be read off (3.6),
this wave train becomes sideband unstable at 1 + αβ = 0. The linear dispersion
relation λlin(ν) of the k = 0 wave train is quite degenerate: since the linearization
is invariant under the reflection x 7→ −x, all odd derivatives d2n+1λlin/dν2n+1(0)
vanish at ν = 0. We also record from [1, (21)] that

(7.3) λ′′′′lin(0) = −1
2
α2(1 + β2) < 0

for the wave train with k = 0. In particular, the governing equation near the
sideband instability at 1 + αβ = 0 is the Kuramoto–Sivashinsky equation. Its
validity for phase modulations (but not for modulations of the wave number) has
recently been proved in [2] near the sideband instability of the k = 0 wave train of
the CGL. In §7, we shall give an approximation result for wave-number modulations
in reaction-diffusion equations that should carry over to the CGL.

Sideband instabilities for wave trains with k 6= 0 yield the Korteweg–de Vries
equation [20], at least when α 6= β (i.e. away from the real Ginzburg–Landau limit),
since the third-order derivative of the linear dispersion relation at ν = 0 does not
vanish [1, (21)].

To illustrate how this higher-order PDEs arise as modulation equations, we
shall derive the Kuramoto–Sivashinsky equation for the k = 0 wave train near its
sideband instability which occurs when 1 + αβ = 0. Starting point is, once again,
equation (3.13)

∂tr = ∂xxr − 2r − ψ2 − ψ2r − 2α(∂xr)ψ − α∂xψ − α(∂xψ)r − 3r2 − r3(7.4)

∂tψ = ∂xxψ + ∂x

(
α∂xxr + 2(∂xr)ψ

1 + r
− αψ2 − 2βr − βr2

)
for amplitude and wave number corrections r and ψ of the k = 0 wave trains of
the Ginzburg–Landau equation. We denote by δ the spatial length scale of the
modulations we wish to capture. After picking an arbitrary constant κ2 ∈ R, we
unfold the sideband instability in parameter space by setting

(7.5) 1 + αβ = κ2δ
2.

Substituting the ansatz

r = δ6W (δx, δ4t), ψ = δ3Ψ(δx, δ4t)
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into (7.4), and dividing the factors δ6 and δ7 in the equations for W and Ψ, respec-
tively, we obtain

δ4∂TW = δ2∂XXW − 2W −Ψ2 − δ6WΨ2 − 2δ4α(∂XW )Ψ
−αδ−2∂XΨ− δ4α(∂XΨ)W − 3δ6W 2 − δ12W 3

∂T Ψ = δ−2∂XXΨ− ∂X(2βW + αΨ2)

+δ2∂X

(
α∂XXW

1 + δ6W
+ δ2

2(∂XW )Ψ
1 + δ6W

− δ4βW 2

)
where X = δx and T = δ4t. Upon refining the leading-order solution W =
−δ−2α∂XΨ/2 + O(1) to the first equation, we obtain that

W = − α

2δ2
∂XΨ− Ψ2

2
− α

4
∂3

XΨ + O(δ2)

satisfies the first equation up to terms of order O(δ2). Substituting the expression
for W into the equation for Ψ and using (7.5) gives

∂T Ψ = δ−2(1 + αβ)∂XXΨ + (β − α)∂X(Ψ2)− α(α− β)
2

∂4
XΨ + O(δ2)

= κ2∂XXΨ + (β − α)∂X(Ψ2)− α(α− β)
2

∂4
XΨ + O(δ2).

Thus, setting q := Ψ|δ=0, we find that q ought to satisfy the Kuramoto–Sivashinsky
equation

(7.6) ∂T q = −α(α− β)
2

∂4
Xq + κ2∂XXq + (β − α)∂X(q2).

The factor in front of the fourth-order derivative coincides with (7.3) upon using
that 1 + αβ = 0.

As pointed out above, van Baalen considered sideband instabilities of the k = 0
wave train in [2]. He derived the Kuramoto–Sivashinsky equation

(7.7) ∂T Φ = −α(α− β)
2

∂4
XΦ + κ2∂XXΦ + (β − α)(∂XΦ)2

for the phase Φ (and not the wave number q) and proved its validity in certain
Sobolev spaces of spatially periodic functions under the technical assumption that
α2 < 1/2.

7.3. Validity of the Korteweg–de Vries and the Kuramoto–Sivashinsky
equation

We consider the reaction-diffusion system

(7.8) ∂tu = D∂xxu+ f(u;µ)

with parameter µ ∈ Rp, and assume that the Hypotheses 4.1 and 4.4 from §4.1 are
met at µ = 0. In particular, the wave trains persist for all µ close to zero, and their
linear dispersion relations are therefore given by

(7.9) λlin(ν;µ) = λ′lin(0;µ)ν+
1
2
λ′′lin(0;µ)ν2+

1
6
λ′′′lin(0;µ)ν3+

1
24
λ′′′′lin(0;µ)ν4+O(ν5)

where the coefficients depend smoothly on µ, and derivatives are taken with respect
to ν. Transforming into the θ-variables, we get

(7.10) ∂tu = k2D∂θθu− ωnl(k;µ)∂θu+ f(u;µ).
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We shall make frequent use of the notation introduced in §4.4. For the sake
of clarity, we formulate the results in this section using only the ϑ-variables. We
emphasize that all results transfer to the θ-variables in the same way as in §4.4.

We begin with the Kuramoto–Sivashinsky equation.

Hypothesis 7.1. We assume that λ′′lin(0; 0) = λ′′′lin(0; 0) = 0 and λ′′′′lin(0; 0) < 0.

We typically need to adjust a two-dimensional parameter µ ∈ R2 to encounter
the situation documented in Hypothesis 7.1.

Theorem 7.2. Assume that Hypotheses 4.1, 4.4 and 7.1 are met. Suppose that
there is a smooth curve µ∗(δ), defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

(7.11) λ′′lin(0;µ∗(δ)) = κ2δ
2 + O(δ3), λ′′′lin(0;µ∗(δ)) = κ3δ + O(δ2)

for appropriate constants κj ∈ R. For each choice of integers M ≥ 1 and n ≥M+5,
and constants C0 > 0 and T0 > 0, there are constants δ1 > 0 and C1 > 0 such
that the following is true. For each δ ∈ (0, δ1) and each solution q(X,T ) of the
Kuramoto–Sivashinsky equation

(7.12) ∂T q =
1
24
λ′′′′lin(0; 0)∂4

Xq +
1
6
κ3∂

3
Xq +

1
2
κ2∂XXq −

1
2
ω′′nl(k)∂X(q2)

on [0, T0] with
sup

T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

there are functions (qh, rh) with

sup
t∈[0,T0/δ4]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ4t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T0/δ4]

‖rh(·, t)‖Hn
ul

≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ)
such that

sup
t∈[0,T0/δ4]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+3,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ3qh(ϑ, t))) + δ6rh(ϑ, t).

The phase function φ0(t) needed for the formulation in the θ-variables satisfies
supt∈[0,T0/δ4] |φ0(t)| = O(1).

Next, we consider validity of the dissipative Korteweg–de Vries equation.

Hypothesis 7.3. Assume that λ′′lin(0; 0) = 0 and λ′′′lin(0; 0) 6= 0.

Theorem 7.4. Assume that Hypotheses 4.1, 4.4 and 7.3 are met. Suppose that
there is a smooth curve µ∗(δ), defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

λ′′lin(0;µ∗(δ)) = κ2δ + O(δ2)

for some positive constant κ2 > 0. For each choice of integers M ≥ 1 and n ≥
M + 4, and constants C0 > 0 and T0 > 0, there are constants δ1 > 0 and C1 > 0
such that the following is true. For each δ ∈ (0, δ1) and each solution q(X,T ) of

(7.13) ∂T q =
1
6
λ′′′lin(0; 0)∂3

Xq +
1
2
κ2∂XXq −

1
2
ω′′nl(k)∂X(q2)
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on [0, T0] with
sup

T∈[0,T0]

‖q(·, T )‖Hn
ul
≤ C0,

there are functions (qh, rh) with

sup
t∈[0,T0/δ3]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ3t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T0/δ3]

‖rh(·, t)‖Hn
ul

≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ)
such that

sup
t∈[0,T0/δ3]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+2,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ2qh(ϑ, t))) + δ4rh(ϑ, t).

The phase function φ0(t) satisfies supt∈[0,T0/δ3] |φ0(t)| = O(1).

The result that we shall prove for the conservative Korteweg–de Vries equation
is less satisfactory. We cannot exploit that the linear dispersion relation is dissi-
pative at ` = 0 since dissipativeness becomes noticeable only over time scales of
length δ−4. On the other hand, solutions to the Korteweg–de Vries equation exist
for all times so that we should not run into the restrictions that we encountered
and discussed in §6. However, we shall not exploit these properties, and our result
below is therefore weaker and can probably be improved considerably.

Theorem 7.5. Assume that Hypotheses 4.1, 4.4 and 7.3 are met. Suppose also
that µ∗(δ) is a smooth curve, defined for 0 ≤ δ � 1 with µ∗(0) = 0, such that

(7.14) λ′′lin(0;µ∗(δ)) = O(δ2).

For any choice of %0 > 0 and integers M ≥ 1 and n ≥ 3, there are positive constants
δ1, ε1, C1, T1 such that the following is true. For each δ ∈ (0, δ1) and each solution
q(X,T ) of the Korteweg–de Vries equation

(7.15) ∂T q =
1
6
λ′′′lin(0; 0)∂3

Xq −
1
2
ω′′nl(k)∂X(q2)

on [0, T1] with
sup

T∈[0,T1]

‖q(·, T )‖X%0
n
≤ ε1,

there are functions (qh, rh) with

sup
t∈[0,T1/δ3]

∥∥qh(·, t)− q
(
δ((cp − cg)t− ϑ/k), δ3t

)∥∥
Hn

ul
≤ C1δ

sup
t∈[0,T1/δ3]

‖rh(·, t)‖Hn
ul

≤ C1

and a solution u(θ, t) = U(ϑ, t) of the reaction-diffusion system (7.10) for µ = µ∗(δ)
such that

sup
t∈[0,T1/δ3]

sup
ϑ∈R

|U(ϑ, t)− Uapprox(ϑ, t)| ≤ C1δ
M+2,

where
Uapprox(ϑ, t) = u0(ϑ; k(1 + δ2qh(ϑ, t))) + δ4rh(ϑ, t).

The phase function φ0(t) satisfies supt∈[0,T1/δ3] |φ0(t)| = O(1).
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We shall prove Theorems 7.2 and 7.5 in §7.4 and 7.5, respectively. We omitted
the proof of Theorem 7.4 since it is similar to the one given for Theorem 7.2 except
for the different scalings.

7.4. Proof of Theorem 7.2

We proceed in exactly the same way as in §3 and §5.4. Our starting point is
again the system (5.31)

∂tv
c = λcvc − pc

mf∂ϑN (vc, vs)(7.16)
∂tv

s = Λsvs − P s
mfN (vc, vs).

The operators λc and Λs generate semigroups with properties analogous to those
established in §5.4.

Lemma 7.6. Both λc and Λs are sectorial in Xm, respectively. Moreover, for
each integer m ≥ 0, there are constants C0 > 0 and σ > 0 such that the semigroups
eλct and eΛst satisfy

‖eλct‖Xm→Xm ≤ C0

‖eλct∂ϑ‖Xm→Xm ≤ C0

t1/4

‖eΛst‖Xm→Xm ≤ C0e−σt

for all t ≥ 0.

Proof. The first and third inequality follow as in Lemma 3.9. The reason
that the second inequality is valid is due to the fact that λc is, by construction,
the multiplication operator in Bloch space associated with the linear dispersion
relation. More precisely, Hypothesis 7.1 implies that Reλc(`) ≈ −`4. The factor
t−1/4 is now a consequence of Lemma 3.6 applied to the function

M̌(`) = δ`eδ−4λ̌c(δ`)T

with T = δ4t. �

Starting with a solution q(X,T ) of the Kuramoto–Sivashinsky equation (7.12),
we substitute the ansatz

(vc, vs) =
(
δ3q
(
δ((cp − cg)t− ϑ/k), δ4t

)
, 0
)

into (7.16) and obtain the residuals

Resc(δ3q, 0) = δ7
(
−∂T q +

1
2
κ2∂XXq +

1
6
κ3∂

3
Xq

+
1
24
λ̌c′′′′(0)∂4

Xq −
1
2
ω′′nl(k)∂X(q2)

)
+ O(δ8)

= O(δ8)

Ress(δ3q, 0) = −P̌ s(`)Ň (δ3q)(`) = O(δ6)

where we used (7.11). Next, we record that the formal procedures outlined in §3.8
and §4.3 can again be used to provide approximations with smaller residuals.
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Lemma 7.7. With m,n,M chosen as in Theorem 7.2, there are positive con-
stants δ1 > 0 and Cres > 0 such that the following is true. For each δ ∈ (0, δ1),
there exist functions (V c, V s) such that

sup
t∈[0,T0/δ4]

‖V c(·, t)− q(δ·, t)‖Xm ≤ Cresδ

sup
t∈[0,T0/δ4]

‖V s(·, t)‖Xm ≤ Cres

sup
t∈[0,T0/δ4]

‖Resc(δ3V c(·, t), δ6V s(·, t))‖Xm ≤ Cresδ
M+7

sup
t∈[0,T0/δ4]

‖Ress(δ3V c(·, t), δ6V s(·, t))‖Xm ≤ Cresδ
M+6

uniformly in δ.

We define the scaled errors Rc and Rs relative to the approximations obtained
in the preceding lemma via

vc = δ3V c + δM+3Rc

vs = δ6V s + δM+6Rs.

Substitution into (7.16) gives the system

∂tR
c = λcRc + ∂ϑg

c(Rc, Rs)
∂tR

s = ΛsRs + gs(Rc, Rs).

There is a constant C0 such that

‖gc(Rc, Rs)‖Xm ≤ δ3C0‖Rc‖Xm + δ4CRes + δ6C0‖Rs‖Xm
(7.17)

+δM+3C(Dc, Ds)
‖gs(Rc, Rs)‖Xm−2 ≤ CRes + C0‖Rc‖Xm + δ3C0‖Rs‖Xm

+δMC(Dc, Ds)

where

‖Rc‖Xm ≤ Dc, ‖Rs‖Xm ≤ Ds

for arbitrary, but fixed, constants Dc and Ds.
The rest of the proof proceeds as in §3.9. Using Lemma 7.6 and Gronwall’s

lemma 3.12 over the time scale T = δ4t gains the crucial factor δ which, taken
together with the factor δ3 on the right-hand side of (7.18), shows that the scaled
errors stay bounded.

With regard to the θ-variables, we record that ∂tφ(0, t) = O(δ4) so that the
phase shift supt∈[0,T0/δ4] |φ(0, t)| = O(1) is bounded uniformly in δ as claimed.

7.5. Proof of Theorem 7.5

We proceed as in §6 to which we refer for the notation we use below. First, we
pick %0 > 0, integers M ≥ 1 and n ≥ M + 4, and a solution q(X,T ) of the KdV
equation (7.15) in X %

n . Next, we substitute the resulting ansatz

(vc, vs) =
(
δ2q
(
δ((cp − cg)t− ϑ/k), δ3t

)
, 0
)
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into (7.16) to obtain the residuals

Resc(δ2q, 0) = δ5
(
−∂T q +

1
6
λ̌c′′′(0)∂3

Xq −
1
2
ω′′nl(k)∂X(q2)

)
+ O(δ6) = O(δ6)

Ress(δ2q, 0) = −P̌ s(`)Ň (δ3q)(`) = O(δ4),

where we used (7.14). As before, we can construct approximations with smaller
residuals.

Lemma 7.8. With %0 and M,n chosen as above, there are positive constants
δ1 > 0 and Cres > 0 such that the following is true. For each δ ∈ (0, δ1), there exist
functions (V c, V s) such that

sup
t∈[0,T0/δ4]

‖V c(·, t)− q(δ·, t)‖X%
m

≤ Cresδ

sup
t∈[0,T0/δ4]

‖V s(·, t)‖X%
m

≤ Cres

sup
t∈[0,T0/δ4]

‖Resc(δ3V c(·, t), δ6V s(·, t))‖X%
m

≤ Cresδ
M+2

sup
t∈[0,T0/δ4]

‖Ress(δ3V c(·, t), δ6V s(·, t))‖X%
m

≤ Cresδ
M+4,

where % = %0/δ.

The errors Rc and Rs, defined via

vc = δ2V c + δM+2Rc

vs = δ4V s + δM+4Rs,

satisfy the system

∂tR
c = λcRc + ∂ϑg

c(Rc, Rs)
∂tR

s = ΛsRs + gs(Rc, Rs)

where, for an appropriate positive constant C0 > 0,

‖gc(Rc, Rs)‖X%
m

≤ δ2CRes + δ2C0‖Rc‖X%
m

+ δ4C0‖Rs‖X%
m

+ δM+2C(Dc, Ds)

‖gs(Rc, Rs)‖X%
m−2

≤ CRes + C0‖Rc‖X%
m

+ δ2C0‖Rs‖X%
m

+ δMC(Dc, Ds)

uniformly in % ∈ [0, %0/δ] for

‖Rc‖X%
m
≤ Dc, ‖Rs‖X%

m
≤ Ds

where Dc and Ds are arbitrary but fixed.
As in §6, we need to exploit the scale of Banach spaces given by X %

m. We begin
by picking a constant K0 > 0. For any given constant K1 > 0, we may define the
linear operator B via its symbol B̌(`) = −K1δ

2|`|. As in §6, we choose K1 � 1 so
large that the spectrum λK1(`) of λc +B satisfies

ReλK1(`) ≤ −K0δ
2|`|

for the constant K0 > 0 chosen above: note that such a choice of K1 is possible
due to (7.14 and Hypotheses 4.4 and 7.3. Next, we define the operator S(t) via its
symbol Š(t) = e(%0/δ−K1δ2t)|`| and introduce

Rc(t) := S(t)Rc(t), Rs(t) := S(t)Rs(t)
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which both live in Xm := X 0
m with ‖ · ‖m. The rescaled errors Rc and Rs satisfy

∂tRc = (λc +B)Rc + ∂ϑGc(Rc,Rs)
∂tRs = (Λs +B)Rs + Gs(Rc, Rs)

where

‖Gc(Rc,Rs)‖Xm ≤ δ2CRes + δ2Cq‖Rc‖Xm + δ4Cq‖Rs‖Xm + δM+2C(Dc, Ds)

‖Gs(Rc,Rs)‖Xm−2 ≤ CRes + Cq‖Rc‖Xm + δ2Cq‖Rs‖Xm + δMC(Dc, Ds)

for
‖Rc‖Xm

≤ Dc, ‖Rs‖Xm ≤ Ds

for positive constants Cq with Cq → 0 as ‖q‖ → 0. The rest of the proof follows
exactly as in §6, and we therefore omit it.





CHAPTER 8

Existence and stability of weak shocks

We prove Theorem 4.10 and 4.12 by introducing an appropriate spatial dynam-
ics formulation to which we apply the Kirchgässner reduction. The ideas behind
this approach go back to Kirchgässner [29] and were later extended by Mielke and
coworkers [18, 41].

8.1. Proof of Theorem 4.10

Suppose that u(x, t) = u∗(x− c∗t, ω∗t) satisfies (4.1) and (4.39), then

(u, v)(ξ, τ) = (u∗, ∂ξu∗)(ξ, τ)

has period 2π in τ and satisfies the modulated-wave equation

∂ξu = v(8.1)

∂ξv = −D−1[−ω∗∂τu+ c∗v + f(u)]

where ξ = x − c∗t and τ = ω∗t. We consider (8.1) on the function space X =
H1

per(0, 2π) ×H
1/2
per (0, 2π) and write u = (u, v) ∈ X . Equation (8.1) is equivariant

with respect to the time shift S(ρ) defined by [S(ρ)u](τ) = u(τ + ρ) for ρ ∈ [0, 2π].
In other words, if u(ξ) ∈ X is a solution of (8.1), so is S(ρ)u(ξ) for each ρ.

Instead of investigating (8.1) for arbitrary c∗ and ω∗, we will fix a primary wave
number k0 and concentrate on finding viscous shocks that have speed cg(k0) =: c0g.
Since cg(k) = ω′nl(k) and due to our assumption that ω′′nl(k0) 6= 0, we know that,
for each given number c close to cg(k0), there exists a wave number k close to k0

such that c = cg(k). Repeating the proof given below for different wave numbers k
close to k0 gives shocks with an arbitrary speed c close to c0g. Thus, it suffices to
prove Theorem 4.10 for the fixed speed c0g.

Therefore, from now on, we will set c∗ = c0g in (8.1). From (4.44), we conclude
that the frequency of shocks with speed c0g and asymptotic wave numbers k± = k0

is ω0
∗ = k0(c0p − c0g). If we choose different wave numbers for k±, the temporal

frequency of shocks will vary as well. We therefore write ω∗ = ω0
∗ + ω̄ so that ω̄

varies near zero.
We shall assume that ω0

∗ 6= 0: If ω0
∗ = 0, then we fix ω∗ = 0 and allow c∗

to vary near c0g. The associated weak shocks are travelling waves which satisfy
(8.1) with ω∗ = 0, i.e. an ODE. The primary wave train appears as a saddle-node
periodic orbit in this ODE. Unfolding the vector field on the two-dimensional center
manifold using the speed c∗ gives the desired weak shocks as heteroclinic orbits.
We shall omit the details since the analysis is similar to (but far easier than) the
forthcoming analysis of the case ω0

∗ 6= 0.

83
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Using the definitions introduced above, (8.1) becomes

∂ξu = v(8.2)

∂ξv = −D−1[−(ω0
∗ + ω̄)∂τu+ c0gv + f(u)]

where (u, v) ∈ X . The wave train with wave number k0,

u = u0(ω0t− k0(ξ + c0gt)) = u0(k0(c0p − c0g)t− k0ξ) = u0(τ − k0ξ),

ω0 = ωnl(k0)

provides a solution to (8.2) with ω̄ = 0. If we transform (8.2) according to

u 7−→ u0 + u

where

(8.3) u0(ξ) =
(

u0(· − k0ξ)
−k0∂θu0(· − k0ξ)

)
we obtain

∂ξu = v(8.4)

∂ξv = −D−1[−(ω0
∗ + ω̄)∂τu+ c0gv + f ′(u0(· − k0ξ))u

+g(u;u0(· − k0ξ))− ω̄∂τu0(· − k0ξ)]

where

g(u;u0) := f(u0 + u)− f(u0)− f ′(u0)u =
1
2
f ′′(u0)[u, u] + O(‖u‖3).

We write this equation (8.4) abstractly as

(8.5) ∂ξu = B∗(ξ)u + ω̄N (u + u0) + G(u, ξ)

where

B∗(ξ) =
(

0 1
−D−1[−ω0

∗∂τ + f ′(u0(· − k0ξ))] −D−1c0g

)
N =

(
0 0

D−1∂τ 0

)
, G(u, ξ) =

(
0

−D−1g(u;u0(· − k0ξ))

)
.

Alternatively, we can consider (8.4) in the temporally comoving frame σ = τ − k0ξ
which gives

∂ξu = k0∂σu+ v(8.6)

∂ξv = k0∂σv −D−1[−ω0
∗∂σu+ c0gv + f ′(u0(·))u

+g(u;u0(·))− ω̄∂σ(u+ u0(·))]

or, in abstract form,

(8.7) ∂ξu =
[
k0T + B0

∗
]
u + ω̄N (u + u0) + G0(u)

where T = diag(∂σ, ∂σ) generates the temporal shift and

B0
∗ =

(
0 1

−D−1[−ω0
∗∂σ + f ′(u0(·))] −D−1c0g

)
G0(u) =

(
0

−D−1g(u;u0(·))

)
.
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Solutions to (8.5) and (8.7) are conjugated by the shift generated by k0T . We also
consider the linearized equations

(8.8) ∂ξu = B∗(ξ)u
and

(8.9) ∂ξu =
[
k0T + B0

∗
]
u.

The coefficient matrix of (8.8) is periodic in ξ, while the coefficient matrices of (8.9)
do not depend on ξ. From [41] we conclude that the Floquet exponents of (8.8)
form a discrete set in the complex plane and that there exists a strongly continuous
family of center projections Pc(ξ) that are 2π/k0-periodic in ξ and have finite-
dimensional range. Thus, on account of [41, Theorem 3.4], the nonlinear equation
(8.5) admits a nonautonomous center manifold E(ξ) = E(ξ+2π/k0) that is tangent
to Rg(Pc(ξ)) at (u, ω̄) = 0 and that contains all small bounded solutions to (8.5).
Conjugation with the shift evolution S(k0ξ) associated with ∂ξu = k0T u gives an
invariant center-manifold to (8.7) whose center subspace consists of the generalized
eigenspace to the center eigenvalues ν ∈ iR of k0T + B0

∗. We remark that there
does not seem to exist a center-manifold theorem for the equations of the type
(8.7) where a hyperbolic structure T is mixed with a pseudo-elliptic structure B0

∗.
Still, smooth center-manifolds of (8.7) exist since they can be obtained from smooth
center-manifolds of (8.5). We prefer to work with (8.7), since we avoid complications
that are caused by the ambiguity in the definition of Floquet exponents.

We need one additional property of the center manifold. Recall that (8.2) is
invariant under the action of the time-shift S(ρ). In a neighbourhood of the relative
equilibrium u0(τ − k0ξ), this action correspondence to the following equivariance
of the nonautonomous equation (8.5): if u(ξ; ξ0) is a solution, so is u(ξ+ ρ; ξ0 + ρ).
In the construction of a center manifold, G(u, ξ) is replaced by

Gmod(u, ξ) := χ(‖u‖2X )G(u, ξ)

for some smooth cut-off function χ(r) that satisfies χ(r) = 1 for r < δ � 1 and
χ(r) = 0 for r > 2δ. Since the norm of the Hilbert space X is invariant under the
time shift S, equivariance is preserved under the cut-off procedure. In particular,
the flow on the center manifold commutes with the (affine) action of the circle
group. We will use this fact extensively.

In the remaining part of the proof, we compute the generalized center eigenspace
of k0T +B0

∗ and use the result to calculate the expansion of the reduced vector field
on the center manifold. We begin with the computation of the center eigenspace.

We consider the eigenvalue problem

νu =
[
k0T + B0

∗
]
u

or, more explicitly,

νu = k0∂σu+ v

νv = k0∂σv −D−1[−ω0
∗∂σu+ f ′(u0(σ))u+ c0gv].

This boundary-value problem has a solution in X if, and only if,

(8.10) k2
0D

(
∂σ −

ν

k0

)2

u− ω0

(
∂σ −

ν

k0

)
u+ f ′(u0(σ))u = (c0p − c0g)νu

has a nontrivial 2π-periodic solution. A comparison with the operator Lν , defined
in (4.9), shows that nontrivial solutions to (8.10) exist precisely when λ = (c0p−c0g)ν
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is an eigenvalue of Lν for some ν ∈ iR. This, however, was excluded for λ 6= 0 and
ν 6= 0 in the nonresonance assumption of Hypothesis 4.3. Therefore, the only
possible center eigenvalue occurs at ν = 0. The same argument shows that the null
space of k0T +B0

∗ is one-dimensional and spanned by (∂σu0,−k0∂σσu0). It remains
to calculate generalized eigenvectors which are the solutions of the derivative of
(8.10) with respect to ν evaluated in u = ∂σu0. The point is that the eigenvalue
problem

(8.11) k2
0D

(
∂θ −

ν

k0

)2

v − ω0

(
∂θ −

ν

k0

)
v + f ′(u0(θ))v = λlin(ν)v

for the operator Lν , see (4.9), coincides to quadratic order in ν with (8.10) since

λlin(ν) = (c0p − c0g)ν + O(ν2)

as calculated in (4.23). Thus, recalling the results from §4.2, we therefore see that
the generalized eigenvector u1 exists. Its u-component is given as the unique (up
to elements of the null space) solution to

L0u1 = 2k0D∂σσu0 − c0g∂σu0,

while the v-component of the generalized eigenvector is given by

v1 = ∂σu0 − k0∂σu1.

Thus, comparing the equation for u1 with (4.18), we conclude that u1 = −∂ku0

and therefore

u1 =
(

−∂ku0

k0∂kσu0 + ∂σu0

)
.

Since λ′′lin(0) 6= 0 by assumption, we also see that the eigenvalue ν = 0 has algebraic
multiplicity equal to two.

We emphasize that the higher-dimensional eigenspace is generated precisely by
our choice of the coordinate frame—for other choices of the speed c, the generalized
center eigenspace would be one-dimensional and spanned by the translated wave
trains. Thus, the group velocity can be interpreted as the unique speed for which
the linearization about the wave train, computed in the frame moving with that
speed, develops algebraic multiplicity two.

For the computation of the projection onto the generalized eigenspace, we will
also need the generalized eigenspace of the adjoint [k0T +B0

∗]ad, where we compute
the adjoint with respect to the simpler L2-scalar product instead of the scalar
product in X . Also, as we shall see below, we only need a basis vector, denoted
by uad, of the null space of the adjoint operator. The function uad satisfies the
equation

−k0∂σu−D−1ω0
∗∂σv − f ′(u0)TD−1v = 0
−k0∂σv + u−D−1c0gv = 0.

If we set ṽ = D−1v, we obtain

k2
0D∂σσ ṽ + ω0∂σ ṽ + f ′(u0)T ṽ = 0

whose solution ṽ = uad we computed in §4.2. The null space of the L2-adjoint of
k0T + B0

∗ is therefore spanned by

uad =
(
k0D∂σuad + c0guad

Duad

)
.
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The next step is to calculate the vector field on the center manifold of (8.7).
We parametrize the two-dimensional center manifold by (θ, κ) ∈ S1 × (−δ, δ) via

u = −κu1(· − θ) + uh(θ, κ),

where uh maps R2 into the orthogonal complement of the generalized eigenspace,
belonging to the eigenvalue zero, of the adjoint [k0T +B0

∗]ad, and by simultaneously
replacing σ by σ− θ in (8.7). In particular, the time-shift symmetry acts according
to θ 7→ θ + ρ. Since, as discussed above, the vector field on the center manifold
respects this symmetry, it cannot depend on θ. To leading order, we therefore find

∂ξθ = κ+ O(|ω̄|+ |κ|2)(8.12)

∂ξκ = βωω̄ + β2κ
2 + O(|ω̄|2 + |ω̄κ|+ |κ|3).(8.13)

To compute the coefficients βω and β2, we substitute the global parameterization

(8.14) u = u0(· − θ)− κu1(· − θ) + O(θ2 + κ2)

of the center manifold into the original equation (8.2), projecting N and G onto the
center manifold using the spectral projection, and comparing the terms. We obtain

βω = −〈uad,Nu0〉
〈uad,u1〉

= −〈Duad, D
−1∂σu0〉

〈uad,u1〉
=

−1
〈uad,u1〉

β2 =
−〈Duad,− 1

2D
−1f ′′(u0)[∂ku0, ∂ku0]〉+ 〈uad, ∂σu1〉

〈uad,u1〉

=
〈uad, 2k0D∂kσσu0 − c0g∂kσu0 +D∂σσu0 + 1

2f
′′(u0)[∂ku0, ∂ku0]〉

〈uad,u1〉

=
1
2ω

′′
nl(k0)

〈uad,u1〉
.

The denominator in both expressions is determined by the linear dispersion relation:

〈uad,u1〉 = 〈k0D∂σuad + c0guad,−∂ku0〉+ 〈Duad, k0∂kσu0 + ∂σu0〉

= 〈uad, 2k0D∂kσu0 +D∂σu0〉 =
1
2
λ′′lin(0).

Alternatively, we can infer a relation between βω and β2 using the following reverse
argument. Upon inspection, we see that (8.13) has equilibria precisely when

ω̄ = − β2

βω
κ2.

On the other hand, we know that the family of wave trains exists for frequencies
ω = ωnl(k). Since κ corresponds to the detuning of the wave number, we see that

ω̄ =
1
2
ω′′nl(k0)κ2,

and comparing the equations for ω̄, we obtain the relation β2 = 1
2ω

′′
nl(k0)βω.

In summary, we have shown that the reduced vector field on the center manifold
is of the form

∂ξθ = κ+ O(|ω̄|+ |κ|2)

∂ξκ =
1

1
2λ

′′
lin(0)

(
1
2
ω′′nl(k0)κ2 − ω̄

)
+ O(|ω̄|2 + |ω̄κ|+ |κ|3)(8.15)
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where neither of the remainder terms depends on θ. On the center manifold, we find
heteroclinic solutions in the κ-equation which correspond precisely to the desired
viscous shock waves. This finishes the proof of Theorem 4.10.

The statement of Remark 4.11 follows from the fact that a sign change of λ′′lin(0)
corresponds to replacing ξ by −ξ in (8.15). Consequently, the stationary front given
in (2.11) connects the asymptotic equilibria in the opposite order, and the relative
group velocities, computed in the comoving frame, change their sign as well.

8.2. Proof of Theorem 4.12

To prove Theorem 4.12, we need to locate the spectrum of the linearization
about a modulated wave.

We denote by u∗(x − c0gt, ω∗t; ε) the solution that we constructed in Theo-
rem 4.10, where we set ε2 = ω∗ − ω0

∗. Here, we assumed that ω′′nl(k0) > 0 (the
case where the second derivative is negative can be handled in the same fashion).
Furthermore, we denote by Ψ the time-2π/ω∗-map of the reaction-diffusion system
(4.1) and by Ψ′

∗(ε) the derivative of the period map with respect to the initial
condition, evaluated at u∗(x− c0gt, ω∗t; ε).

Our goal is to show that the spectrum of the linearized period map lies strictly
inside the unit circle when we consider the operator on the exponentially weighted
function spaces

L2
η−,η+

(R) =
{
u ∈ L2

loc(R); ‖u‖L2
η−,η+

<∞
}

‖u‖2L2
η−,η+

=
∫ 0

−∞
|u(x)eη−x|2 dx+

∫ ∞

0

|u(x)eη+x|2 dx

defined in (4.47).
For each fixed choice of η± ∈ R, we consider Ψ′

∗(ε) as a bounded operator from
L2

η−,η+
into itself. For each Λ 6= 0 in the spectrum of Ψ′

∗(ε), we define its Floquet
exponent λ by

λ =
ω∗
2π

log Λ.

We distinguish between values of λ in the Floquet point spectrum, where Ψ′
∗(ε)−Λ

is Fredholm with index zero but not invertible, and values of λ in the essential
Floquet spectrum, where Ψ′

∗(ε) − ρ is not Fredholm or Fredholm with nonzero
index.

Before we state the first lemma, we recall from [49] that the function

(8.16) λ∗(ν; k) = (c0g− cp(k))ν+λlin(ν; k) = (c0g− cg(k))ν+
1
2
λ′′lin(0; k)ν2 +O(ν3),

which is defined and analytic in ν ∈ C, is the linear dispersion relation of the wave
train with wave number k computed in the frame moving with speed c0g.

Lemma 8.1. For each choice of weights η± ∈ R, the essential Floquet spectrum
of Ψ′

∗(ε) in L2
η−,η+

is strictly to the left of the essential Floquet spectrum of the
asymptotic wave trains computed in L2

η−,η+
, while the Floquet spectrum of the wave

trains computed in L2
η−,η+

is given by

λ = λ∗(i`− η±; k±), ` ∈ R.
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In particular, any element λ in the essential Floquet spectrum of the viscous shocks
satisfies

(8.17) Reλ ≤ ∓|ε|
√

2ω′′nl(k0)η± + (λ′′lin(0) + O(ε))η2
±

provided ηmin < η− < 0 < η+ < ηmax and

(8.18) min{|ηmin|, |ηmax|} = |ε|
√

2ω′′nl(k0)
λ′′lin(0)

+ O(ε2),

where λlin denotes the linear dispersion relation of the wave train with wave number
k0.

For further reference, we remark that we obtain the optimal estimate

(8.19) Reλ ≤ −ε2 ω
′′
nl(k0)

2λ′′lin(0)
+ O(ε3)

for the essential spectrum when we substitute the optimal η± from (8.18) into
(8.17).

Proof. [49, Remark 2.9 and Proposition 2.10] assert that the linearization
about the viscous shocks, computed in the frame moving with the speed c0g of the
shock, is Fredholm in the complement of the spectrum of the asymptotic wave
trains. Also, the spectra of wave trains with wave numbers k = k±, computed in
the frame moving with speed c0g, are given by the dispersion relation (8.16)

λ∗(ν; k±) = (c0g − c±g )ν +
1
2
λ′′lin(0; k±)ν2 + O(ν3)

where c±g = ω′nl(k±). Since

ε2 = ω∗ − ω0
∗ = ω′′nl(k0)(k± − k0) + O(|k± − k0|3),

we see that

k± − k0 = ∓
√

2|ε|√
ω′′nl(k0)

+ O(ε2)

where we recall that we assumed that ω′′nl(k0) > 0. Therefore,

c0g − c±g = −ω′′nl(k0)(k± − k0) + O(|k± − k0|3) = ±
√

2ω′′nl(k0)|ε|+ O(ε2).

We also have
λ′′lin(0; k±) = λ′′lin(0) + O(ε)

with λ′′lin(0; k±) > 0 by Hypothesis 4.2. Thus, we see that

λ(ν; k±) =
[
±
√

2ω′′nl(k0)|ε|+ O(ε2)
]
ν + [λ′′lin(0) + O(ε)]ν2 + O(ν3).

Substituting ν = −η± + i`, we obtain

Reλ(ν; k±) ≤ Reλ(−η±; k±)

=
[
∓
√

2ω′′(k0)|ε|+ O(ε2)
]
η± + [λ′′lin(0) + O(ε)]η2

± + O(η3
±)

which is strictly negative provided ηmin < η− < 0 < η+ < ηmax and

(8.20) min{|ηmin|, |ηmax|} ≤ |ε|
√

2ω′′nl(k0)
λ′′lin(0)

+ O(ε2)

for ε sufficiently close to zero. �
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Lemma 8.2. For each ε > 0 sufficiently small, the Floquet point spectrum of
the viscous shocks is contained strictly in the open left half-plane.

Before we give the proof of the lemma, we show that the two lemmata imply
Theorem 4.12.

Proof of Theorem 4.12. Define Y = H1
η−,η+

where we choose the expo-
nential weights as described in Theorem 4.12. Lemma 8.1 and 8.2 assert that the
Floquet spectrum of the linearized period map Ψ′

∗(ε) associated with the viscous
shocks on Y is contained in the open left half-plane. Therefore, [Ψ′

∗(ε)]
N is a con-

traction for some sufficiently large integer N � 1. Next, note that the nonlinearity
is actually smooth when considered as map from Y into itself, since the exponential
weights enforce functions to be localized. Thus, the variation-of-constants formula
shows that the nonlinear period map is close to the linearized period map in the
C1-topology if we restrict them to a sufficiently small neighbourhood of the viscous
shock. As a consequence, the iterated nonlinear period map is a contraction in
a sufficiently small neighbourhood of the viscous shock which proves its nonlinear
stability in Y. This proves Theorem 4.12. �

Proof of Lemma 8.2. We have to prove that the operator Ψ′
∗ − λ cannot

have exponentially localized functions in its null space for any λ near zero. To
show this, we write the Floquet eigenvalue problem as a differential equation

∂ξu = v(8.21)

∂ξv = −D−1[−ω∗∂τu− λu+ c0gv + f ′(u∗(ξ, τ ; ε))u]

in the spatial variable ξ. Theorem 4.10 shows that

u∗(ξ, τ ; ε) = u0(τ − ξ − θ∗(ξ)), ∂ξθ∗(ξ) = κ∗(ξ), κ∗(ξ) = εκ0 tanh(εξ)

where the constant κ0 can be computed easily in terms of linear and nonlinear
dispersion relation.

Our strategy is similar to the one we used to prove existence of viscous shocks.
First, for λ ≈ 0, we can reduce (8.21) to a two-dimensional nonautonomous center
manifold that contains all bounded solutions to (8.21). To compute the vector field
on the center manifold, we choose appropriate coordinates on it. We therefore pass
to the comoving frame σ = τ − k0ξ and parametrize solutions by

(8.22) u = θ̃∂σu0 + κ̃u1 − θ̃κ∗u1.

For λ = 0, the coordinates (8.22) correspond to the linearization of the coordinates
used to construct the viscous shock. In particular, using these coordinates, we
recover the linearization of (8.15) at the viscous shock. Thus, we need to calculate
only the reduced term that corresponds to λuσ. This expression, however, enters
the reduced equation in the same form as the term N enters the nonlinear problem,
at least to leading order. Therefore, we end up with a reduced eigenvalue problem

∂ξ θ̃ = κ̃+ O(ε2 + |ελ|)(8.23)

∂ξκ̃ =
1

1
2λ

′′
lin(0)

[
λθ̃ + ω′′nl(k0)κ∗(ξ)κ̃

]
+ O(|ελ|+ |ε2κ̃|).

It is not hard to see that bounded solutions occur for Reλ ≥ 0 only in the scaling
λ = ε2λ̃ and X = εξ, since we recover the heat equation outside this scaling which
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does not have bounded unstable eigenfunctions outside a bounded disk. In the
scaled coordinates, the eigenvalue problem becomes

(8.24)
1
2
λ′′lin(0)∂XX θ̃ − ω′′nl(k0) tanh(X)∂X θ̃ = λ̃θ̃ + O(ε).

This eigenvalue problem arises also through the linearization about shocks in the
eikonal equation

∂T θ̃ = ∂XX θ̃ + (∂X θ̃)2

which can be viewed as the integrated form q = ∂X θ̃ of the Burgers equation

∂T q = ∂XXq + ∂X(q2).

Since the Evans function for the linearization about viscous shocks in the Burgers
equation does not have zeros in a bounded neighbourhood of the origin except at
λ̃ = 0, the only exponentially localized eigenfunction is given by the derivative of
the shock profile at λ̃ = 0. This solution, however, is not exponentially localized
as a solution to (8.24), since ∂X θ̃(X) converges to nonzero constants as X → ±∞.
Therefore, the Evans function for the eigenvalue problem (8.24) with ε = 0 does
not vanish in Re λ̃ ≥ −a for some a > 0. A continuity argument with respect to ε
shows the absence of point spectrum and concludes the proof of Lemma 8.2. �





CHAPTER 9

Existence of shocks in the long-wavelength limit

9.1. A lattice model for weakly interacting pulses

In this section, we investigate the long-wavelength limit of wave trains. We
assume that the wave-train profile converges to a localized pulse as the wave number
k tends to zero. Thus, the wave train itself resembles an infinite chain of localized
pulses that interact weakly with each other. We are then interested in finding the
analogues of viscous shocks for the resulting lattice equation that describes weakly
interacting pulses. To be specific, we consider again the reaction-diffusion system
(4.1):

(9.1) ∂tu = D∂xxu+ f(u).

We begin by motivating the lattice equation that we are going to investigate. Thus,
assume that

u(x, t) = h(x− cpt)

is a localized travelling-wave solution to (9.1) with phase speed cp so that h(ζ) → 0
as ζ → ±∞. In particular, h(ζ) is a homoclinic orbit of the travelling-wave ODE

(9.2)
d
dζ

(
u

v

)
=
(

v

D−1[cpv − f(u)]

)
.

We shall then be interested in solutions to (9.1) of the approximate form

(9.3) u(x, t) ≈
∞∑

j=−∞
h(x− cpt+ ζj(t))

where the time-dependent positions ζj(t) account for the interaction of individual
pulses. We assume that the pulses are widely spaced to that, at least initially,
ζj+1 − ζj � 1 for all j ∈ Z.

Next, we want to write down an ODE that gives the evolution of the positions
ζj(t) of the pulses in the train (9.3). We may expect that the pulses interact, at
least to leading order, only with their nearest neighbours, so that the equation for
ζj depends only on the distances ζj+1 − ζj and ζj − ζj−1 of the jth pulse to its
nearest neighbours. If the localized pulse h(ζ) decays to zero exponentially, then
the function given in (9.3) is a solution to the reaction-diffusion equation up to an
exponentially small error that arises due to the overlapping tails. Thus, we expect
that the equation of motion for the pulse positions should be exponentially small in
the distances between consecutive pulses. For a finite number of pulses, equations of
this kind have indeed been formally derived, for instance, in [15]. Rigorous results
that validate these equations for a finite number of pulse can be found in [14, 47],
while their validity for an infinite number of pulses has recently been established
in [58].

93
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To write down the ODE, we assume that the linearization of (9.2) about the
equilibrium (u, v) = 0 is hyperbolic and that there is a unique simple eigenvalue
closest to the imaginary axis. We may then assume that this eigenvalue is stable
(the other case can be treated in exactly the same fashion), and we denote it by
ν = −b < 0 with b > 0. The resulting lattice equation is

(9.4)
dζj
dt

= ae−b(ζj−ζj−1), j ∈ Z

where we assume that a 6= 0. The equation for the jth pulse depends only on
the distance to the pulse behind, but not the pulse ahead. This reflects the fact
that, while the jth pulse sees the tails of both neighbouring pulses, the tail of the
pulse behind decays much slower due to our assumption that the stable eigenvalue
is closest to the imaginary axis. Note also that we omit all remainder terms in
(9.4). We summarize our assumptions on the coefficients that appear in (9.4) in
the following hypothesis.

Hypothesis 9.1. We assume that a 6= 0 and b > 0 in (9.4).

We remark that wave trains with large spatial period L, or small wave number
k = 1/L, correspond to the solutions ζj(t) − ζj−1(t) = L of (9.4) for j ∈ Z where
L� 1 is fixed. These wave trains have phase speed cp(L) = a exp(−bL).

Since we are interested in finding fronts that connect different wave trains as
j → ±∞, it is more convenient to use the distances

(9.5) Lj(t) = ζj(t)− ζj−1(t)

instead of the positions ζj as variables. We then obtain the equivalent lattice
equation

(9.6)
dLj

dt
= a

(
e−bLj − e−bLj−1

)
, j ∈ Z

for the distances Lj(t) between the jth and the (j − 1)th pulse. Viscous shocks
with nonzero speed c∗ that connect different asymptotic wave trains with periods
L± correspond then to travelling-wave solutions to (9.6) of the form

(9.7) Lj(t) = L∗(j − c∗t), j ∈ Z

with L∗(ξ) → L± as ξ → ±∞, where L∗(ξ) is a given function, defined for ξ ∈ R,
that describes the profile of the shock. Substituting the above ansatz into (9.6), we
obtain the delay equation

(9.8)
dL
dξ

(ξ) = − a

c∗

(
e−bL(ξ) − e−bL(ξ−1)

)
, ξ ∈ R

for the profile L∗(ξ) where ξ = j − c∗t. We can now state the main result of this
section.

Theorem 9.2. Assume that Hypothesis 9.1 is met. For any values L+ > L− >
0, there exist a constant c∗ and a strictly monotonically increasing solution L∗(ξ)
of (9.8) such that L∗(ξ) → L± as ξ → ±∞ and sign(ac∗) > 0. If L− > L+ > 0,
then a solution L∗(ξ) with the above properties does not exist for any value of c∗.

Theorem 9.2 is somewhat stronger than the corresponding Theorem 4.10 for
reaction-diffusion systems, since it is not required in Theorem 9.2 that |L+ − L−|
is small.
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9.2. Proof of Theorem 9.2

It will be convenient to use the new variable r defined by

(9.9) r = e−bL, L = − ln r
b

instead of L so that L > 0 corresponds to 0 < r < 1 (recall b > 0). Equation (9.8)
then becomes

dr
dξ

(ξ) =
ab

c∗
r(ξ)(r(ξ)− r(ξ − 1)), ξ ∈ R,

which we write as

(9.10)
dr
dξ

(ξ) = Ar(ξ)(r(ξ)− r(ξ − 1)), ξ ∈ R,

for r > 0 where
A =

ab

c∗
is arbitrary. Any constant function r(ξ) = r0 satisfies (9.10). The characteristic
equation of the linearization

(9.11)
ds
dξ

(ξ) = Ar0(s(ξ)− s(ξ − 1))

about r(ξ) = r0 is obtained by seeking solutions to (9.11) of the form s(ξ) = exp(λξ)
and is therefore given by

(9.12) ∆(λ) = λ−Ar0
(
1− e−λ

)
= 0.

We then have the following result.

Lemma 9.3 ([12]). Assume that Hypothesis 9.1 is met and fix r0 > 0. The
characteristic equation (9.12) has the root λ = 0. In addition, there is precisely one
other real root: this root is positive for Ar0 > 1, negative for Ar0 < 1, and zero
for Ar0 = 1. All remaining solutions of (9.12) have nonzero imaginary part and
strictly negative real part regardless of the value of A.

Proof. The assertions are a consequence of

∆(0) = 0,
d∆
dλ

(0) = 1−Ar0, lim
λ→∞

sign∆(λ) = 1

taken together with [12, Theorems 3.1, 3.2 and 3.12]. �

The root λ = 0 corresponds, of course, to the line of equilibria of (9.10) given
by r(ξ) = r0 where r0 > 0 is arbitrary. Interpreting (9.10) as a dynamical system
on the function space C0([−1, 0]), see [12], and using the invariant-manifold results
stated and proved in [12, Chapters VIII and IX], we can therefore conclude the
following from Lemma 9.3: The unstable manifold of the equilibrium r(ξ) = r0 is
one-dimensional if Ar0 > 1 and has dimension zero for Ar0 < 1. Analogously, the
stable manifold of r(ξ) = r0 has codimension two if Ar0 > 1 and codimension one
if Ar0 < 1. The line r = r0 ∈ R+ of equilibria forms the center manifold which has
dimension one at points where Ar0 6= 1.

In particular, since 0 < r0 < 1 for any equilibrium consistent with (9.9), we see
that A > 0 is a necessary condition to obtain a heteroclinic orbit that connects an
equilibrium r− to r+. Thus, we will only consider A > 0 from now on and define

(9.13) ` =
r

A
> 0
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so that (9.10) becomes

(9.14)
d`
dξ

(ξ) = `(ξ)(`(ξ)− `(ξ − 1)).

Lemma 9.4. If `(ξ) satisfies (9.14) for ξ ≥ 0, and `(ξ) > 0 is strictly monotone
on [−1, 0], then `(ξ) is strictly monotone for ξ ≥ −1 as long as `(ξ) > 0.

Proof. If not, take the smallest value of ξ ≥ 0 for which `′(ξ) = 0, while
`(ξ) > 0. It is then straightforward to obtain a contradiction to (9.14). �

The next lemma states that every `− > 1 connects to some `+ > 0 via a
heteroclinic solution to (9.14).

Lemma 9.5. For each `− > 1, there exists a solution `∗(ξ) to (9.14) in the
one-dimensional unstable manifold of `− such that `∗(ξ) decreases monotonically
for ξ ∈ R and `∗(ξ) → `+ for some `+ > 0.

Proof. The tangent vector to the unstable manifold of `− is equal to exp(λξ)
for some λ > 0. In particular, the solution `∗(ξ) in the unstable manifold that
corresponds to `− − ε exp(λξ) + O(ε2) for sufficiently small ε > 0 is strictly mono-
tonically decreasing in ξ for all ξ � −1. On account of Lemma 9.4, it therefore
suffices to show that `∗(ξ) is bounded away from zero in order to prove the lemma.
To this end, define p(ξ) = 1/`(ξ) so that p(ξ) = 1/`∗(ξ) satisfies the equation

p′(ξ) =
p(ξ)− p(ξ − 1)

p(ξ − 1)
.

We shall show that the monotonically increasing p(ξ) is bounded as a function of
ξ. If not, then we certainly have that p(ξ) > 4 for all ξ ≥ −1, say. Integrating the
above delay equation, we therefore obtain

∆(ξ) := p(ξ)− p(ξ − 1) =
∫ ξ

ξ−1

p(ζ)− p(ζ − 1)
p(ζ − 1)

dζ

≤ 1
4

sup
ζ∈[ξ−1,ξ]

[p(ζ)− p(ζ − 1)] =
1
4

sup
ζ∈[ξ−1,ξ]

∆(ζ)

for ξ ≥ 0. Taking the supremum on both sides gives

sup
ξ∈[τ,τ+1]

∆(ξ) ≤ 1
4

sup
ξ∈[τ,τ+1]

(
sup

ζ∈[ξ−1,ξ]

∆(ζ)

)
≤ 1

4
sup

ξ∈[τ−1,τ+1]

∆(ξ)

≤ 1
4

(
sup

ξ∈[τ−1,τ ]

∆(ξ) + sup
ξ∈[τ,τ+1]

∆(ξ)

)
so that

Mj := sup
ξ∈[j,j+1]

∆(ξ) <
1
2

sup
ξ∈[j−1,j]

∆(ξ) =
1
2
Mj−1

for all j ≥ 0. As a result, we get

p(j) = p(1) +
j∑

i=0

∆(i) ≤ p(1) +
j∑

i=0

Mi ≤ p(1) +
j∑

i=0

M1

2i
≤ p(1) + 2M1

which proves that p(ξ) is indeed bounded independently of ξ. �
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For each `− > 1, we denote by `+ = H(`−) the constant solution for which
limξ→∞ `∗(ξ) = `±, where `∗(ξ) is the heteroclinic orbit obtained in Lemma 9.5.

Lemma 9.6. The function H(`−) is continuous in `− > 1, has values in (0, 1],
and satisfies

(9.15)
H(`−)
`−

−→
{

0 `− →∞
1 `− → 1

Before we prove this lemma, we show how it implies Theorem 9.2. Choose
L+ > L− > 0, then we need to find numbers `− > 1 and A such that

H(`−) =
1
A

e−bL+ , `− =
1
A

e−bL− .

Thus, A = e−bL−/`−, and it remains to find `− > 1 such that

H(`−)
`−

= e−b(L+−L−).

Lemma 9.6 together with L+ − L− > 0 implies that such an `− exists. Thus, it
suffices to prove Lemma 9.6.

Proof of Lemma 9.6. We first prove that H(`−) ≤ 1 for all `− > 1 (note
that H is well defined and positive by Lemma 9.5). Observe that the derivative
`′∗(ξ) satisfies the variational equation

(9.16)
d`
dξ

(ξ) = [2`∗(ξ)− `∗(ξ − 1)]`(ξ)− `∗(ξ)`(ξ − 1).

about the connecting orbit `∗(ξ). The results in [9] imply that (9.16) does not admit
any nontrivial small solutions, that is, there are no nonzero solutions to (9.16) that
decay faster than any given exponential. If H(`−) > 1, then this fact implies that

`′∗(ξ) = a−λξ + O
(−2λξ

)
for some a 6= 0 and some root λ of ∆(λ), defined in (9.12), with Reλ < 0. By
Lemma 9.3, any such λ has nonzero imaginary part though, contradicting mono-
tonicity of `∗(ξ) as stated in Lemma 9.4. Therefore, we have H(`−) ≤ 1 for all
`− > 1.

Using this restriction on the range of H, continuity of H follows from the
unstable-manifold theorem for delay equations [12]. As a consequence of the above
facts, we see that H(`−)/`− → 0 as `− →∞.

It therefore remains to prove that H(`−)/`− → 1 as `− → 1. Hence, we
consider the two-dimensional center manifold of (9.14),

d`
dξ

(ξ) = `(ξ)(`(ξ)− `(ξ − 1)),

near ` = 1. Using the results in [12, Chapter IX.10], we see that the vector field on
the center manifold is given by

x′ = y

(
1 +

2x
3

+ O(x2 + y2)
)

(9.17)

y′ = y
(
2x+ O(x2 + y2)

)
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where the coordinates x and y correspond to the eigenfunction `(ξ) = 1 and the
generalized eigenfunction `(ξ) = ξ. We also used the fact that the line y = 0
consists of equilibria. Introducing the new variable

z = x′ = y

(
1 +

2x
3

+ O(x2 + y2)
)
,

(9.17) becomes

x′ = z(9.18)

z′ = 2z
(
x+

z

3
+ O(x2 + z2)

)
.

The equilibria with x > 0 have a one-dimensional unstable manifold. The solutions
inside these manifolds for which z < 0 will cross the z-axis at a finite distance. We
shall construct a trapping region that shows that each such solution converges to
an equilibrium with x < 0. Indeed, consider the line

z = T (x) = −ε2
(
1 +

x

2ε

)
=: −ε2w

where −2ε ≤ x ≤ 0 and therefore w ∈ [0, 1]. We compute(
−dT

dx

1

)
·
(
x′

z′

)
=
ε3y

2
[5− 4y + O(ε)] > 0

which shows that solutions in the unstable manifold of equilibria with x > 0 close
to zero converge to equilibria with x < 0 that are also close to zero. Interpreting
these results for the original equation proves that H(`−)/`− → 1 as `− → 1. �



CHAPTER 10

Applications

10.1. The FitzHugh–Nagumo equation

The FitzHugh–Nagumo equation is given by

∂tu = ∂xxu+ u(1− u)(u− a)− w(10.1)
∂tw = ε(u− γw),

for x ∈ R, where γ ≥ 0 and a ∈ (0, 1
2 ) are fixed. This equation is a simplification

of the Hodgkin–Huxley equation that models the propagation of impulses in nerve
axons. We are interested in travelling waves (u,w)(x, t) = (u,w)(x− ct).

It has been shown in [21] that (10.1) exhibits a localized pulse with positive
speed for all sufficiently small 0 < ε � 1. As shown in [24, 57], this pulse, which
we refer to as the fast pulse, is nonlinearly stable. Each fast pulse is accompanied
by a family of wave trains with arbitrarily large period.

Theorem 10.1 ([48, Theorem 21]). For each fixed a in the interval (0, 1
2 ), there

exists a number ε∗ = ε∗(a) with the following property. For every ε with 0 < ε < ε∗,
there is an L∗ = L∗(ε) so that the fast pulse to the FitzHugh–Nagumo system is
accompanied by periodic wave trains with period L for any L > L∗, and all these
wave trains are spectrally stable.

In fact, using the quantities νs, V s, W s and M from [48, §6.2], we may define
the constants b and Γ via

b = −νs, Γ =
〈V s,W s〉

M

so that

(10.2) λ(ν) = bΓ
(
eνL − 1

)
e−bL, c(L) = c∞ − Γe−bL

for all L� 1, where c∞ > 0 and c(L) denote the phase velocities of the fast pulse
and the wave trains with period L, respectively. From Remark 4.5, we obtain that

cg = c(L)−Lc′(L) = c(L)−bLΓe−bL < c(L) < c∞, signω′′nl(k) = sign c′′(L) < 0.

Using geometric singular perturbation theory, the results mentioned above carry
over to the modified FitzHugh–Nagumo equation

∂tu = ∂xxu+ u(1− u)(u− a)− w(10.3)
∂tw = δ2∂xxv + ε(u− γw),

with small diffusion added to the second equation, provided the diffusion coefficient
δ > 0 is chosen sufficiently small so that 0 < δ � ε � 1. Hence, the theory
developed in the preceding sections can be applied to the FitzHugh-Nagumo system
(10.3). In particular, weak viscous-shock interfaces of (10.3) travel to the right at a
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smaller speed than the wave trains, and they connect wave trains with larger period
at x = −∞ to wave trains with smaller period at x = ∞.

Lastly, we remark that Eszter [16] investigated spectral and nonlinear stability
of periodic wave trains to the FitzHugh–Nagumo system (10.1) in a different regime:
he first fixed the period L of a singular spatially-periodic wave train and then varied
ε > 0 near zero with ε < ε∗(L); the maximal allowed value ε∗(L) will tend to zero
as the period L tends to infinity.

10.2. The weakly unstable Taylor–Couette problem

In §3, we asserted that solutions to the Burgers equation can indeed, as ex-
pected, be used to approximate the dynamics of modulated wave trains in the
complex cubic Ginzburg–Landau equation. On the other hand, it is well known
that the Ginzburg–Landau equation itself approximates the dynamics near onset
of far more complex pattern-forming systems. It is the purpose of this section to
illustrate this connection by investigating the Taylor–Couette problem close to the
first instability of the stationary Couette flow.

We strongly expect that the results we established for reaction–diffusion sys-
tems are also true for hydrodynamical stability problems such as the Taylor–Couette
problem but have not yet embarked on the proofs.

The Taylor–Couette problem [7] consists of finding the velocity field of a viscous
incompressible fluid between two rotating concentric cylinders. This system has a
stationary solution, the so-called Couette flow, that has purely azimuthal form, so
that the streamlines are concentric circles. It is known that the Couette flow is
asymptotically stable for sufficiently small Reynolds number R and destabilizes for
larger Reynolds numbers. Mathematically, the fluid flow can be described by the
incompressible Navier–Stokes equation with no-slip boundary conditions.

To set up the problem, we denote by Ri and Ro the inner and outer radii of
the two concentric cylinders, with the obvious assumption Ri < Ro, and by Ωi and
Ωo their angular velocities. We write ν for the viscosity coefficient of the fluid. It
is then convenient to introduce the nondimensional parameters

Ω := Ωo/Ωi, η := Ri/Ro, R := RiΩi(Ro −Ri)/ν

that fully describe the system, whereR is called the Reynolds number. The annular
planar cross-section between the cylinders is denoted by Σ, so that the fluid fills
the three-dimensional volume Q = R×Σ. Thus, in cylindrical coordinates (x, r, ϕ),
the domain Q is defined by x ∈ R, η/(1− η) < r < 1/(1− η), and ϕ ∈ R/2πZ. The
Cartesian coordinates in the annular cross-section Σ are denoted by z = (z1, z2) ∈
Σ ⊂ R2.

The stationary Couette fluid flow is given by

UCou(x, r, ϕ) =

 U(x)

U(r)

U(ϕ)

 =
(
Ar +

B

r

) 0
0
1


A =

Ω− η2

η(1 + η)
, B =

(1− Ω)η
(1− η)(1− η2)

,

where (U(x), U(r), U(ϕ)) denote the cylindrical coordinates of the vector U . The
above fluid flow satisfies the Navier–Stokes equation on Q with no-slip boundary
conditions on ∂Q and is, in fact, exponentially stable for sufficiently small Reynolds



10.2. THE WEAKLY UNSTABLE TAYLOR–COUETTE PROBLEM 101

numbers R. The deviation (U,P ) from the Couette flow UCou satisfies the Navier–
Stokes equation

∂tU = ∆U −R[(UCou · ∇)U + (U · ∇)UCou + (U · ∇)U ]−∇P(10.4)
∇ · U = 0

with no-slip boundary conditions U = 0 at r = η/(1− η) and at r = 1/(1− η). To
solve this equation uniquely for the velocity U and pressure gradient ∇P , we need
to add the flux condition

[U(x)]Σ =
1
|Σ|

∫
z∈Σ

U(x)(x, z) dz = 0.

We refer to [7] for more details.
In the (U,P ) variables, the Couette flow corresponds to (U,P ) ≡ 0 which is

a solution for all R. This trivial branch of solutions becomes unstable when the
Reynolds number R exceeds a certain threshold value which we denote by Rc.
The translation invariance of (10.4) in the x-direction implies that the linearization
of (10.4) about (U,P ) = 0 has continuous spectrum given by dispersion curves
λ = λn(`) for n ∈ N with associated eigenmodes of the form

eλn(`)tei`xUn(`, z), z ∈ Σ

where ` ∈ R and Un(`, z) ∈ C3. We may order the dispersion curves so that
Reλn ≥ Reλn+1 for all n ∈ N. The instability scenario is then as follows.

For η close to one, there exists a number Ωb with the following property. If
we fix Ω > Ωb, then the real-valued curve ` 7→ λ1(`) crosses the imaginary axis
from left to right as R increases though Rc. On the other hand, if we fix Ω < Ωb,
then the two complex-conjugated curves ` 7→ λ1(`) and ` 7→ λ2(`) = λ1(`) cross the
imaginary axis at some nonzero wave number ` = `c 6= 0 as R passes though Rc.
In both cases, each remaining dispersion curve is strictly bounded away from the
imaginary axis. We refer to the first case as PRI and to the second case as PRII.
In the following, we focus on PRII.

To analyse the resulting bifurcation for PRII, we introduce the small parameter
ε2 = R−Rc and make the ansatz

(10.5) Uapprox = εA(ε(x− cgt), ε2t)ei`cx+iωctU1(`c, z) + c.c.

where

cg =
d Imλ1

d`
(`c), ωc = Imλ1(`c).

Using this ansatz, the Ginzburg–Landau equation

(10.6) ∂TA = c1∂XXA+ c2A− c3|A|2A

can be derived for the complex-valued amplitude A = A(X,T ) for certain complex
coefficients cj ∈ C. It has been proved in [55] that the approximation of the Taylor–
Couette system by the above Ginzburg–Landau equation is valid over the natural
time scale:

Theorem 10.2 ([55]). For each choice of positive numbers C1 and T0, there
exist constants C2 and ε0 > 0 such that the following is true for all 0 < ε < ε0. If
A ∈ C0([0, T0],H3

ul) is a solution to the Ginzburg–Landau equation (10.6) such that

sup
T∈[0,T0]

‖A(T )‖H3
ul
< C1,
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then there exists a solution U of the Taylor–Couette problem (10.4) with

sup
t∈[0,T0/ε2]

‖U(t)− Uapprox(t)‖H2
ul
≤ C2ε

2

where Uapprox has been defined in (10.5).

Remark 10.3. In the parameter region PRII of interest to us, a system of
coupled Ginzburg–Landau equations can be derived for the amplitudes A1 and
A2 corresponding to the curves λ1 and λ2 of eigenvalues. Since these equations
decouple when one of the amplitudes is set to be zero, we again obtain a family of
solutions that can be described by a single Ginzburg–Landau equation (see [55]).

The Ginzburg–Landau equation (10.6) can be put into the normal form (3.11).
Doing this in the region PRI, we obtain the coefficients α = β = 0. In the case
PRII, however, we obtain nonzero coefficients α, β 6= 0 and therefore a nontrivial
Burgers equation

(10.7) ∂τq = (1 + αβ)∂Y Y q + (β − α)∂Y (q2)

for the evolution of the wave number q of the locally preferred planform.
Combining Theorem 3.4 with Theorem 10.2 gives the following result.

Theorem 10.4. For each fixed choice of integers M ≥ 1, 0 < m < M and
n ≥ M + 3, and constants C0 > 0 and T0 > 0, there are constants C1 > 0 and
δ1 > 0 such that the following is true for each δ ∈ (0, δ1) and each solution q of the
Burgers equation (10.7) for which

sup
τ∈[0,τ0]

‖q(τ)‖Hn
ul
≤ C0.

There exist higher-order approximations (qh, rh) with

sup
T∈[0,T0]

sup
X∈R

[∣∣∣∣rh(X,T ) +
1
2
(q(X,T )2 + α∂Xq(X,T ))

∣∣∣∣+ |qh(X,T )− q(X,T )|
]

≤ C1δ

and numbers ε2 > 0 and C2 > 0 such that, for each choice of ε ∈ (0, ε2), there is a
solution U = U(x, z, t) of the Taylor–Couette problem in PRII and a global phase
φ0(t) with |φ0(t)| ≤ C2 so that

sup
t∈[0,τ0/(εδ)2]

sup
x∈[−1/(εδ)m,1/(εδ)m]

∣∣∣∣∣U(x− φ0(t), t)−

ε
[
1 + δ2rh(εδ(x− cgt), ε2δ2t)

]
×

× exp

(
i`cx+ iωc + iε2βt+ i

∫ εδ(x−cgt)

0

δqh(δY, ε2δ2t) dY

)
U1(`c, z)− c.c.

∣∣∣∣∣
≤ C1εδ

1+M−m + C2ε
2.

Proposition 2.3 shows, at least on the level of approximation of solutions of
the Taylor–Couette problem by the Burgers equation as explained by the theorems
stated in this section, that the phases of waves with the same wave number are
mixed universally in the Taylor–Couette problem in the case PRII near onset.
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