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Abstract

We study spinodal decomposition and coarsening when initiated by localized disturbances in the

Cahn-Hilliard equation. Spatio-temporal dynamics are governed by multi-stage invasion fronts.

The first front invades a spinodal unstable equilibrium and creates a spatially periodic unstable

pattern. Secondary fronts invade this unstable pattern and create a coarser pattern in the wake.

We give linear predictions for speeds and wavenumbers in this process and show existence of corre-

sponding nonlinear fronts. The existence proof is based on Conley index theory, a priori estimates,

and Galerkin approximations. We also compare our results and predictions with direct numerical

simulations and report on some interesting bifurcations.
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1 Introduction and main results

We are interested in the Cahn-Hilliard equation in its simplest, one-dimensional form,

ut = −(uxx + u− u3)xx, u ∈ R, (1.1)

posed on the real line x ∈ R. The equation was originally introduced as a model for phase-separation in

binary alloys, and has since been used to describe the formation and annihilation of patterns in many

contexts, including phase transitions in material science [13], polymer- and protein dynamics [39, 1],

and pattern formation in fluids [28]. Phenomenologically, this equation reproduces qualitatively and

sometimes even quantitatively the spontaneous formation of patterns from homogeneous equilibrium

and a subsequent evolution of characteristic wavelengths through a coarsening process. In bounded, one-

dimensional domains, equipped with Neumann boundary conditions ux = uxxx = 0 at x = 0, L or with

periodic boundary conditions, the dynamics of the Cahn-Hilliard equation are fairly well understood.

As t → ∞, solutions converge to the global attractor, which consists of equilibria and heteroclinic

orbits between them. Equilibria and their stability properties can be characterized completely, and, to

some extent, existence of heteroclinic connections is known.

The equation possesses a Lyapunov function (or free energy),

V (u(·)) =

∫ L

0

(
1

2
u2x −

1

2
u2 +

1

4
u4
)

dx, (1.2)

that is,
d

dt
V (u(t, x)) 6 0,

for any solution u(t, x), when t > 0. Moreover, the equation preserves mass,

m(u(·)) =
1

L

∫ L

0
u(x) dx, (1.3)

that is,
d

dt
m(u(t, ·)) = 0,

for any solution u(t, x).

Spatially homogeneous equilibria are unstable for m ∈ (−1/
√

3, 1/
√

3), which is usually referred to as

the spinodal regime. In this regime, stable equilibria are monotone (for Neumann boundary conditions)

and resemble a sharp interface separating u = ±1 when L� 1.

Phenomenologically, perturbations of the unstable homogeneous state grow into patterns, while con-

serving mass. The emerging spatial variations in u are in many applications understood as a phase

separation or unmixing. Values u ∈ {±1} correspond to pure, unmixed phases.

Quantitatively, spinodal decomposition is usually understood as initial, almost linear motion on the

strong unstable manifold of a homogeneous equilibrium, with selected wavenumber predicted by the

linear approximation. This assumes that initial perturbations of an idealized unstable equilibrium

state excite relevant unstable modes in a uniform fashion. After this initial stage, dominated by the

linearized dynamics, the dynamics evolve the pattern slowly towards the monotone, stable equilibria

through a coarsening process that eliminates phase boundaries.

2



Our work here is concerned with a slightly different situation, where perturbations of the unstable

equilibrium are confined to a small region in physical space x ∈ R. One observes that those per-

turbations evolve into fronts that invade the unstable homogeneous background and leave behind a

patterned state. In other words, spinodal decomposition progresses spatially rather than temporally.

This primary front of spinodal decomposition is then followed by a coarsening process, that progresses

spatially via secondary (and tertiary, etc.) invasion fronts; see Figure 1.2, below.

The present paper analyzes these invasion fronts. In particular, we show that such fronts actually

exist. Since the state in the wake of any such front is unstable, existence is not immediately clear. Our

results, complemented with some numerical computations and direct simulations, show that in this

spatial spinodal decomposition and spatial coarsening process, one observes increasingly long transients

of equilibrium states. In other words, spatially localized initial conditions initiate a spatial spinodal

decomposition and subsequent coarsening process with well-defined characteristic wavenumbers that

are visible for long transients. A similar picture is also observed in the temporal spinodal decomposition

and coarsening process, which starts with white noise initial data. However, in this latter situation,

the transients are not necessarily close to actual unstable equilibrium states and therefore difficult to

describe precisely.

Our results show that the invasion process actually can occur in a coherent fashion, thus leaving behind

regular, periodic patterns. The existence of coherent invasion fronts was raised as a question in [40,

§2.11.3]. In particular, it is argued there that the instability in the wake of the front may interfere

with the primary invasion front. We will point to some phenomena associated with this interaction in

a more quantitative fashion, here.

Some of the present work is motivated by and based on joint work with Goh and Mesuro [15, 16]

on the role of invasion fronts in Liesegang pattern formation. Those works focus on the dynamically

richer class of phase-field models, which include the Cahn-Hilliard equation as a limiting case. The

main results there show that one can expect robust occurrence of pattern-forming fronts, based on a

dimension-counting argument. The key observation is that the instability of the pattern in the wake

does not interfere with the existence of a primary invasion front as long as the instability is non-

resonant. There were however no attempts to actually prove existence of such fronts in [15, 16] . The

present paper fills this gap in the somewhat simpler context of the Cahn-Hilliard equation.

At this point it is worth mentioning that there appear to be very few examples where the existence

of pattern-forming fronts has been proved. The only examples appear to be based on reduction to

Ginzburg-Landau models. We mention the seminal work by Collet and Eckmann [5], and extensions

thereof, [6, 9, 10, 19]. Most other results on invasion fronts (and arguably even the ones mentioned

here) rely on comparison principles in scalar equations.

On a technical level, our approach is based on the methods laid out in [36], where existence of pattern-

annihilating fronts in the Allen-Cahn equation was shown. Different from perturbative or comparison

techniques, we rely almost exclusively on topological tools, paired with a priori estimates and the

calculation of Morse indices as outlined in [16]. While the general approach from [36] is viable, several

complications arise. First, a priori estimates are complicated by the absence of a maximum principle

(which was used in the a priori estimates in [36]) and, worse, the conserved mass. Here, we rely on

energy estimates in uniformly local spaces combined with a priori bounds on mass transport from a

Lyapunov function. On the other hand, application of the connection matrix theory is more difficult,
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Figure 1.1: Bifurcation diagrams in the unstable regime (left, |m| < 1/
√

5) and in the transitional regime

(right, 1/
√

5 < |m| < 1/
√

3) for the Cahn-Hilliard equation with mass m and L-periodic boundary conditions.

Bifurcating equilibria form circles. The numbers associated with each branch denote the respective Morse index.

here, since bifurcation diagrams can contain subcritical branches, which complicates calculation of

relative Morse indices and introduces some mild non-uniqueness of connection graphs.

The remainder of this first section is organized as follows. We review results on equilibria in the one-

dimensional Cahn-Hilliard equation with periodic boundary conditions in Section 1.1. We then recall

information on the linearized invasion problem in Section 1.2. Finally, Section 1.3 contains a precise

characterization of invasion fronts and the statements of our main results.

1.1 Cahn-Hilliard dynamics on the interval

Consider (1.1) on [0, L] with either periodic boundary conditions

∂jxu(0) = ∂jxu(L), j = 0, 1, 2, 3, (1.4)

or Neumann boundary conditions,

∂xu(0) = ∂xu(L) = ∂3xu(0) = ∂3xu(L) = 0. (1.5)

In the case of Neumann boundary conditions, equilibria and their stability properties have been de-

scribed in [17, 18]. The following propositions adopt these results to the case of periodic boundary

conditions. The first proposition is concerned with mass near zero, the unstable regime |m| < 1/
√

5

(see again [17, 18] for nomenclature).

Proposition 1.1 (unstable) For |m| < 1/
√

5, the bifurcation diagram for equilibria is depicted in

Figure 1.1. Equilibria bifurcate supercritically from the trivial equilibrium u(x) ≡ m at L = jLmin,

j = 1, 2, . . ., with Lmin = 2π/kmax, kmax =
√

1− 3m2. The linearization at the equilibrium bifurcating

at jLmin possesses 2(j − 1) unstable eigenvalues and precisely one zero eigenvalue. The remainder of

the spectrum is real, negative.

The second proposition is concerned with mass near 1/
√

3, the transitional regime |m| > 1/
√

5.

Proposition 1.2 (transitional) For 1/
√

5 < |m| < 1/
√

3, the bifurcation diagram for equilibria is

depicted in Figure 1.1. Equilibria bifurcate subcritically from the trivial equilibrium u(x) ≡ m at

L = jLmin, j = 1, 2, . . ., with Lmin = 2π/kmax, kmax =
√

1− 3m2. The linearization at the equilibrium

bifurcating at jLmin possesses 2j− 1 unstable eigenvalues before and 2(j− 1) unstable eigenvalues after

undergoing a saddle-node bifurcation, and precisely one zero eigenvalue. The remainder of the spectrum

is real, negative.
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We proof Propositions 1.1 and 1.2 in the Appendix.

Remark 1.3 Some information is known on the ordering of equilibria relative to their energy V . In

the unstable regime, the energy of the supercritically bifurcating equilibria is lower than the energy of the

trivial branch, energies are ordered according to Morse indices. In the transitional regime, the energy

of the subcritical branch is higher than the energy of the trivial equilibrium. Only after the saddle-node,

but for L below the primary bifurcation point, does the energy of the bifurcating equilibria become lower

than the energy of the trivial branch; see [17, Theorem 4.1].

1.2 Linear spreading speeds and selected wavenumbers

We review results on linear spreading speeds and pointwise growth for the Cahn-Hilliard equation.

Consider the Cahn-Hilliard equation linearized at the trivial solution u∗(x) ≡ m on the real line, in a

comoving frame ξ = x− st,

ut = −(uξξ + (1− 3m2)u)ξξ + suξ, x ∈ R. (1.6)

The equation possesses solutions u(t, x) = eλt+νξ when λ, ν are roots of the dispersion relation

ds(λ, ν) = d0(λ− sν, ν), d0(λ, ν) = −ν2(ν2 + (1− 3m2))− λ. (1.7)

In order to determine temporally selected wavenumbers, one restricts to ν = ik ∈ iR and maximizes the

real part of λ. One finds that wavenumbers with |k| 6
√

1− 3m2 give Reλ > 0 and the maximum is

attained for k = ktemp =
√

(1− 3m2)/2.

For fixed λ, the dispersion relation has four complex roots ν(λ). For λ→ +∞, Re ν(λ)→ +∞ for two

roots and Re ν(λ)→ −∞ for the two other roots. We say (λ∗, ν∗) is a double root when

ds(λ∗, ν∗) = 0, ∂νds(λ∗, ν∗) = 0.

We say that a double root (λ∗, ν∗) satisfies the pinching condition when there exist two continuous

branches of roots ν±(λ) with

ν+(λ∗) = ν−(λ∗) = ν∗ and Re ν±(λ)→ ±∞ along some curve Reλ↗∞,

Lemma 1.4 Solutions to the linearized equation (1.6) with compactly supported initial conditions decay

pointwise, u(t, x)→ 0 for t→∞, for any fixed x, if and only if Reλ∗ 6 0 for all double roots (λ∗, ν∗)

with pinching condition.

Proof. The lemma is a well-known result in the context of absolute and convective instabilities, see

for instance [2, 3]. We sketch a proof here. One calculates the time evolution using Laplace transform.

The contour integral for the inverse Laplace transform can be deformed into the negative complex

half plane if and only if the pointwise Green’s function is analytic in Reλ > 0. Possible obstruction

to analyticity are precisely double roots of the dispersion relation, which proves the “if”-part of the

lemma. In the Cahn-Hilliard equation, one finds [40] that the most unstable double root with pinching

condition always satisfies ∂λds∂ννds < 0, which guarantees a branch point singularity of the pointwise

Green’s function and instability for Reλ∗ > 0 and stability for Reλ∗ < 0.
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This observation motivates the definition of a linear spreading speed slin,

slin = sup{s| there exists a double root with pinching condition in Reλ > 0}. (1.8)

We refer to the values of λ and ν at the double root with Imλ∗ = 0 as λlin, νlin, and write ωlin =

Imλlin, klin = ωlin/slin. In the case of the Cahn-Hilliard equation, linear spreading speeds and associated

values of λ∗, s∗, have been calculated in [40].

Lemma 1.5 We have

slin =
2

3
√

6
(2 +

√
7)

√√
7− 1 · α3/2

λlin = ±i(3 +
√

7)

√
2 +
√

7

96
· α2

Re νlin = −

√√
7− 1

24
· α1/2

Im νlin =

√√
7 + 3

8
· α1/2

klin =
3(
√

7 + 3)

8
√

(
√

7− 1)(
√

7 + 2)
· α1/2,

where α = 1− 3m2.

There are (at least) four quantities related to selected wavenumbers in spinodal decomposition scenarios:

• ktemp is the wavenumber that exhibits fastest linear growth;

• kmax is the largest wavenumber that exhibits linear growth;

• klin is the wavenumber selected through invasion;

• Im νlin is the wavenumber present in the leading edge of the invasion front.

All wavenumbers scale with
√
α and are of similar magnitude:

ktemp = 0.7071 . . .
√
α

kmax = 1.0000 . . .
√
α

klin = 0.7657 . . .
√
α

Im νlin = 0.8400 . . .
√
α.

1.3 Existence of coherent invasion fronts

Linear theory suggests the existence of front solutions of the form

u(t, x) = u∗(x− slint, ωlint), u∗(ξ, τ) = u∗(ξ, τ + 2π), (1.9)
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with

|u∗(ξ, τ)−m| = O(ξe−νlinξ), for ξ →∞, (1.10)

uniformly in τ , and

|u∗(ξ, τ)− up(klinξ + τ); klin)| → 0 for ξ → −∞. (1.11)

Here, up(kx; k) denotes the (unique) 2π/k-periodic solution to the steady-state problem with mass m,

that is stable with respect to 2π/k-periodic solutions; compare Propositions 1.1 and 1.2.

We call solutions with properties (1.9)–(1.11) critical invasion fronts, since they travel at minimal speed

with decay in the leading edge at least as strong as predicted by the linear analysis in Section 1.2. We

note that [16, Corollary 4.15] justifies to some extent the restriction to exponential decay with rate at

least Re νlin.

Theorem 1 (critical invasion fronts in the unstable regime) There exists m∗ > 1/
√

5 so that

critical invasion fronts exist for all |m| < m∗.

The quantity m∗ is related to the bifurcation diagram on the right-hand side of Figure 1.1. Choosing

L = 2π/klin, we find precisely two equilibria for values of m . 1
√

5, but several equilibria for larger

values of m. The critical value m∗ is then determined as the mass where the location of the turning

point of equilibria with Morse index 2 is located at L = 2π/klin.

In the transitional case, our results do not quite yield existence of an invasion front. In fact, in this case

we cannot exclude the possibility of a split invasion front instead of a critical invasion front. We call a

sequence of solutions u1∗, . . . , u
M
∗ , each one of the form (1.9), a split invasion front if u1∗ satisfies (1.10),

uM∗ satisfies (1.11), and if there exist distinct, nontrivial periodic solutions ujp(kx; k), j = 1 . . .M − 1

so that for 1 6 j 6M − 1,

|uj∗(ξ, τ)− ujp(klinξ + τ); klin)| → 0 for ξ → −∞,
|u2∗(ξ, τ)− ujp(klinξ + τ); klin)| → 0 for ξ →∞. (1.12)

Note that ujp(kx; k) all have Morse index at least 2. Split invasion fronts can only exist for |m| >
|m∗| > 1/

√
5, when multiple equilibria exist for L = 2π/klin.

Theorem 2 (critical invasion fronts in the transitional regime) For masses m∗ < m < 1/
√

3,

with m∗ as in Theorem 1, we have

• either there exists a critical invasion front,

• or there exists a split invasion front.

Remark 1.6 (i) We conjecture that invasion fronts always exist. In fact, one can see that the case

of a split invasion front would be of codimension at least two.

(ii) Our methods actually yield the existence of invasion fronts for all speeds s and frequencies ω,

provided k = ω/s ∈ (kmax, kmax/2). We consider these fronts to be less interesting, however.

(iii) The fact that up has mass m is a consequence of the existence of an invasion front, not a require-

ment.
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Figure 1.2: Space-time plots of the solution to Cahn-Hilliard equation with mass m = 0.2 (left) and m = 0.45

(right). Note the different time scales. One notices the primary spinodal decomposition front, followed by a

secondary coarsening front. In the right picture, the coarsening front doubles the wavelength, in the left picture,

defects are created in the regular periodic pattern. For details, see Section 7.

Our last main result addresses fronts that invade the equilibrium up(kpx; kp) with wavenumber kp that

is created in the wake of a primary spinodal decomposition front. We will show in Section 6.1 how

one can associate linear spreading speeds and frequencies with such an invasion process. In particular,

we will show that wavelength-doubling can occur in a robust fashion. We are therefore interested in

invasion fronts u∗(x− s∗t, ω∗t) with ω∗ = kps∗/2, so that

|u∗(ξ, τ)− up(kpξ + 2τ); kp)| → 0 for ξ →∞, (1.13)

and, with k− = kp/2,

|u∗(ξ, τ)− u−(k−ξ + 2τ); k−)| → 0 for ξ → −∞, (1.14)

where u−(k−x; k−) is the unique stable equilibrium with L = 2π/k−-periodic boundary conditions. We

refer to such fronts as period-doubling coarsening fronts. The following theorem guarantees existence

of such fronts for arbitrary speeds s > 0 (and hence for the linear spreading speed) and for arbitrary

stable equilibria up.

Theorem 3 (period-doubling coarsening fronts) Let up(kpx; kp) be the (unique) stable equilib-

rium of mass m with 2π/kp-periodic boundary conditions. Then there exists a period-doubling coars-

ening fronts.

We note that this result actually implies a cascade of period-doubling invasion fronts, since the equi-

librium u− in the wake of the front can be considered as a stable equilibrium ũp that is also invaded

by a period-doubling coarsening front; see [16, Figure 13] for a numerical simulation with cascades of

period-doubling coarsening fronts.

The results were inspired by numerical simulations that show sequences of invasion fronts. We show

two such simulations in the form of space-time plots in Figure 1.2. In both the unstable and the

transitional regime, we observe spinodal decomposition fronts followed by coarsening fronts. In the

transitional regime, the coarsening front induces a period-doubling as assumed in Theorem 3. We have

not found evidence for the existence of split invasion fronts as described in the alternative in Theorem

2.

Outline: The remainder of this paper is organized as follows. In Section 2, we characterize invasion

fronts as solutions to a degenerate elliptic equation. We construct an approximation to this equation
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which can be cast as a high-dimensional traveling-wave equation, where invasion fronts correspond

to heteroclinic orbits. We find Lyapunov functions and conserved quantities for both the full and

the approximate traveling-wave problem. The key result derives a priori bounds and compactness

properties for the set of bounded solutions to those traveling-wave problems. Section 3 is concerned

with the characterization of equilibria and periodic orbits in the traveling-wave equation. In particular,

we compute Morse indices and bifurcation diagrams, relying on Propositions 1.1 and 1.2, and suitable

homotopies. Section 4 connects a priori bounds and Morse indices to infer the existence of connecting

orbits for the approximate traveling-wave equations. The argument is based on the connection matrix

theory and the Conley index [14]. We also find invasion fronts for the full system using essentially

compactness arguments. Section 5 concludes the proof of Theorems 1 and 2 by showing critical decay

of our invasion fronts. The argument is based on the more general fact that critical decay is related

to the absence of unstable absolute spectra in the linearization [15, 32]. Section 6 contains results on

coarsening fronts, which invade the unstable state that is created by the spinodal decomposition front.

We conclude with a discussion, Section 7, and comparison with numerical simulation. In particular, we

point out a parameter region where frequency of the invasion process and selected wavenumbers differ

from the linear prediction and discuss possible explanations.

Acknowledgments. This work was partially supported by the National Science Foundation through

grant NSF-DMS-0806614. The author is grateful to Rick Moeckel for discussions on connection matrices

and Conley indices in the transitional regime.

2 Modulated fronts and a priori estimates

2.1 Modulated traveling wave equation, Galerkin approximations, and regularity

We are interested in modulated traveling waves, solutions of the form u(x− st, ωt) to (1.1), which are

2π-periodic in the second argument, u(ξ, τ) = u(ξ, τ + 2π), and bounded in ξ. We will keep ω > 0 and

s > 0 as free parameters and specify later to ω = ωlin and s = slin. Modulated traveling waves solve

ωuτ = −(uξξ + u− u3)ξξ + suξ, (2.1)

with 2π-periodic boundary conditions in τ , and with ξ ∈ R. We think of (2.1) as an evolution equation

in ξ for functions u(τ) that are 2π-periodic in τ . Since (2.1) is in fact ill-posed in this sense, we also

consider well-posed Galerkin approximations. Since for fixed ξ, u(ξ, τ) is periodic in τ , we can expand

in Fourier series and truncate

(Pnu)(τ) =

n∑
`=−n

û`e
i`τ .

For convenience, we also define P∞ = id and consider the approximate equations

ωuτ = −(uξξ + u− Pn(u3))ξξ + suξ, (2.2)

for 0 < n 6∞.

We are interested in bounded, smooth solutions to this equation. We therefore define the uniformly

local spaces Lpunif(R× S
1) as the closure of k-times continuously differentiable functions with bounded
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derivatives, BCk(R× S1), in the norm

‖u‖p,u = sup
ξ0

‖χ(· − ξ0)u(·)‖p,

where ‖ · ‖p is the usual Lp-norm and χ(ξ) = cosh−1(ηξ) for some η > 0. In fact, different values of

η > 0 give rise to equivalent norms, and all of those are equivalent to the norm that is constructed

with the choice of the indicator function, χ(ξ) = 1 for χ ∈ [0, 1] and χ = 0 otherwise.

Similarly, one defines Sobolev spaces W
kξ,kτ ,p
u with kξ derivatives in ξ and kτ derivatives in τ contained

in Lpu. Note that we define these spaces via the closure of BCk, for k sufficiently large.

For solutions u ∈ Lpu, p > 3, we can define weak solutions to (2.2) since Pn(u3) ∈ L1
loc.

We have the following basic regularity result.

Lemma 2.1 Suppose that ‖u‖p,u < M for some p > 3, fixed. Then u is a smooth classical solution

and there exists a continuous function Cp(M,k) so that ‖u‖BCk < Cp(M,k), uniformly in n 6∞.

Proof. The sequence of Galerkin projections is uniformly bounded on Lp, 1 < p <∞, which one sees

by expressing the projections in terms of the Hilbert transform and using Riesz’ theorem. In particular,

we have that ‖Pn(u3)‖q,u < C1M , with q = p/3 > 1. Take χ(ξ) = cosh−1(ηξ) with η sufficiently small

and notice that |∂jξχ(ξ)| 6 C(j)ηj |χ(ξ)|. Writing f = Pn(u3), we need to solve

ωuτ + (uξξ + u)ξξ − suξ = fξξ.

Multiplying with χ and rearranging terms, this implies an equation for ũ = χu and g = χf of the form

Lũ := ωũτ + (ũξξ + ũ)ξξ − sũξ + ηP(∂x, x)ũ = gξξ − 2(
χ′

χ
g)ξ +

χ′′

χ
g.

The symbol P(∂x, x) consists of differential operators of order at most 3 in χ with bounded coefficients.

We define the unperturbed operator

L0ũ := ωũτ + (ũξξ + ũ)ξξ − sũξ.

The equation (L0− id)ũ = h1,ξξ +h2,ξ +h3, with hj ∈ Lq, q > 1, possesses a unique weak solution with

‖ũ‖W 2,0,q 6 C2

∑
‖hj‖Lq .

This can be readily seen by noticing that the left-hand side differential operator in ξ generates a con-

traction semigroup by spectral mapping, and solving the periodicity equation as a fixed-point equation.

Perturbation theory then shows that the same type of estimate holds true for L instead of L0, which

then implies W 2,0,q
u -bounds on u. A simple bootstrap argument now shows uniform smooth bounds as

claimed.

To emphasize the evolution equation point-of-view, we rewrite (2.2) as a first order system,

uξ = v

vξ = PnG
′(u) + θ

θξ = w

wξ = sv − ωuτ . (2.3)
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Here we wrote G(u) = −1
2u

2 + 1
4u

4. For n < ∞, the equations for (u`, v`, θ`, w`) = (û`, v̂`, θ̂`, ŵ`)e
i`,

|`| > n decouple. One readily finds the following result.

Lemma 2.2 Let 0 6 n <∞, and (u, v, θ, w) be a bounded weak solution to (2.3). Then (u`, v`, θ`, w`) ≡
0 for all |`| > n.

Proof. We readily find that u` solves

(u`)ξξξξ − s(u`)ξ + ωi`u` = 0,

with solutions eνξ, ν4− sν +ωi` = 0. Re ν = 0 implies ν4 ∈ R, so that Re(ν4− sν +ωi`) = Re(ν4) = 0

only if ν = 0, which in turn implies that ` = 0.

In the sequel we will discuss properties of classical solutions. Our main goal is to show a priori bounds

on such classical solutions. The previous lemma shows that it is enough to establish Lpu-estimates on

u in order to guarantee bounds on classical derivatives. From now on, we refer to classical solutions

simply as “solutions”.

2.2 Lyapunov functions and conserved quantities

The time-dependent Cahn-Hilliard equation with periodic boundary conditions in space possesses a free

energy (1.2) and conserves mass (1.3). Similarly, but not quite obviously so, the modulated traveling-

wave equation (2.3) possesses a Lyapunov function

E(u, v, θ, w) = −
∫ 2π

0

(
1

2
v2 − PnG(u)− kvuτ −

1

s
θw

)
dτ, (2.4)

where we used the recurring notation k = ω/s. It also possesses a conserved quantity,

I(u, v, θ, w) = −
∫ 2π

0
(w − su) dτ, (2.5)

For solutions, we have

E(u, v, θ, w) = −
∫ 2π

0

(
1

2
u2ξ − PnG(u)− kuξuτ −

1

s
θθξ

)
dτ,

I(u, v, θ, w) = −
∫
τ

(θξ − su) dτ,

with θ = uξξ − PnG′(u).

Remark 2.3 We sometimes abuse notation and write E(u) and I(u) when u is a solution. Of course,

for solutions, u = (u, v, θ, w) is determined by u so that those expressions are well-defined.

Lemma 2.4 Suppose u is a solution on [a, b] and let u = (u, v, θ, w) be defined through (2.3). In

addition, assume that Pnu = u. Then

• E(u(ξ)) is smooth and decreasing on [a, b];

11



• I(u(ξ)) is constant on [a, b].

Moreover, E is strictly decreasing unless suξ = ωuτ , that is, unless u corresponds to an equilibrium

up(kx; k).

Proof. Since u is differentiable, we have

d

dξ
I(u(ξ)) = −

∫
wξ − suξ = −−

∫
ωuτ = 0,

which shows that I is constant.

We next calculate the derivative of E(u(ξ)), splitting formally E = E1 − E2,

E1(u) = −
∫

1

2
v2 − PnG− kvuτ , E2(u) =

1

s
−
∫
θw.

We find

d

dξ
E1(u(ξ)) = −

∫
θv − kvξuτ − kvvτ

= −
∫
θv − kvξuτ ,

since vvτ = 1
2(v2)τ is periodic in τ , and

d

dξ
E2(u(ξ)) =

1

s
−
∫
w2 + θwξ

=
1

s
−
∫
w2 +−

∫
(θv − kθuτ )

=
1

s
−
∫
w2 +−

∫
(θv − kvξuτ ),

where in the last equality we used that −
∫
PnG

′(u)uτ = 0. This in turn follows from

−
∫
Pn(G′(u))uτ = −

∫
G′(u)Pnuτ = −

∫
G′(u)uτ = −

∫
(G(u))τ = 0.

Subtracting the derivatives for E1 and E2 gives

d

dξ
E(u(ξ)) = −1

s
−
∫

w2 6 0. (2.6)

This shows that E is non-increasing, and strictly decreasing unless w = θξ ≡ 0. This in turn implies,

using the equation for wξ, suξ ≡ ωuτ .

Corollary 2.5 Let u be a bounded solution of (2.3) with n 6 ∞. Then u(ξ) converges to the set of

equilibria E for ξ → ±∞, where E consists of solutions u(kξ − ωτ), k = ω/s.

Proof. The proof is similar to [11, Corollary 1.1]. We define dynamics Tζu = u(· + ζ, ·) on the

solution u and the ω-limit set as the set of accumulation points of {Tζ , ζ > 0}. Regularity implies that

12



the solution u(ξ, τ) is precompact in, say W 4,1
loc , so that the ω-limit set is non-empty and compact as a

subset of W 4,1
loc . Moreover, all points in ω(u) are in fact bounded solutions on ξ ∈ R. Since

E(u(ξ1 + ξ))− E(u(ξ2 + ξ)) = −1

s

∫ ξ2+ξ

ξ1+ξ

∫
τ
θ2ξ ,

we find by passing to the limit ξ →∞ that for elements u∗ ∈ ω(u)

0 =

∫ ξ2

ξ1

∫
τ
θ2∗,ξ,

for arbitrary ξ1, ξ2, which in turn implies that u∗ is an equilibrium.

The following lemma establishes boundedness of the set of equilibria, for fixed I.

Lemma 2.6 The set of equilibria E ∩ I−1(m∗) is bounded in Ckper, uniformly for bounded values of m∗
and n 6∞. In particular, E(u) is uniformly bounded on the set of bounded solutions in I−1(m∗).

Proof. Equilibria solve

u′′ + u− Pnu3 = µ (2.7)

for some µ ∈ R. We write u = v + α with α = −
∫
u = m∗, a priori bounded. Multiplying (2.7) with v

and averaging over one period, we find

−
∫ (
−(v′)2 + v2 − v(v + α)3

)
= 0.

This readily implies that

−
∫ (

(v′)2 + v4
)
6 C(α),

for some continuous function C(α). A simple bootstrap now shows smooth a priori bounds on equilibria.

2.3 A priori estimates on bounded solutions

We are interested in uniform bounds on bounded solutions. Based on the previous discussion, we restrict

to solutions with fixed first integral I. We assume throughout that the solution u is smooth and bounded

and aim to establish L4
u-bounds on u. Our main tool will be an H−1-type energy estimate, inspired by

the fact that the Cahn-Hilliard equation is a formal gradient flow in the H−1-norm. Unfortunately, H−1

is not readily available when the system is posed on x ∈ R. Using localized estimates, ∂−1x (χu), it turns

out to be difficult to control mass transport, encoded by terms of the form χ′u in energy estimates.

The key idea here is to use periodicity in τ together with the conserved quantity I to construct an

equivalent of ∂−1x u using only ∂−1τ (u− −
∫
u), a well defined bounded operator.

We first notice that −
∫
τ w − s−

∫
τ u = I, so that we can define an anti-derivative Φ to u up to constants

through

−ωΦτ := w − su− I, (−
∫
τ

Φ)x = −
∫
τ
(u+ I/s).

13



Differentiating with respect to ξ, we find

−ωuτ = wξ − suξ = −ωΦτξ,

which shows that

Φξ = u+ I/s. (2.8)

We introduce ũ = u+ I/s, Φ̃ = Φ− −
∫
τ Φ, and define

g(ũ) := −(ũ− I/s) + (ũ− I/s)3, g2(ũ) := g(ũ)− ũ3,

where g2 is a quadratic function. We find the system,

Φ̃ξ = ũ−−
∫
τ
ũ

ũξ = v

vξ = Png(ũ) + θ

θξ = sũ− ωΦ̃τ , (2.9)

which we also view in the more compact form

ωΦ̃τ = −
(

Φ̃ξξξ +−
∫
τ

Φξξξ − Png(Φ̃ξ +−
∫
τ

Φξ)

)
ξ

+ s

(
Φ̃ξ +−

∫
τ

Φξ

)
. (2.10)

Recall that χ(ξ) = cosh−1(ηξ). We will choose η > 0 small, throughout. The following is the key

proposition which establishes a priori estimates on u.

Proposition 2.7 There exists a constant C(I, s, ω) so that for all smooth bounded solutions u and

s, ω 6= 0 we have that ‖u‖4,u 6 C(I(u), s, ω).

Proof. We will derive estimates on Φ̃ξ and on α = −
∫
τ Φξ, which together give estimates on u.

Throughout, C will be a changing constant that may depend on I, s, ω but not on the solution u.

First notice that by Corollary 2.5, Lemma 2.6, and (2.6), we have∫
τ,ξ
θ2ξ 6 C,

and, since

|α| 6 1

s
−
∫
τ
|θξ| 6 C(

∫
τ
|θξ|2)1/2,

we have ∫
ξ
α2 6 C. (2.11)

We now multiply (2.10) by χΦ̃, integrate over ξ and τ , and find

0 =

∫ (
χΦ̃
)
ξ

(
Φ̃ξξξ +−

∫
τ

Φξξξ − g(Φ̃ξ +−
∫
τ

Φξ)

)
+ s

∫
χΦ̃(Φ̃ξ +−

∫
τ

Φξ) (2.12)

=: L+R, (2.13)
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with

L := −
∫
χ(Φ̃2

ξξ + Φ̃4
ξ),

and R =
∑7

j=1Rj ,

R1 =−
∫

2χ′Φ̃ξΦ̃ξξ,

R2 =−
∫
χ′′Φ̃Φ̃ξξ,

R3 =−
∫ (

χ′′Φ̃ + 2χ′Φ̃ξ + χΦ̃ξξ

)
αξ = R3a +R3b +R3c,

R4 =s

∫
χΦ̃Φ̃ξ,

R5 =s

∫
χΦ̃α,

R6 =−
∫
χΦ̃ξPng2(Φ̃ξ + α)

R7 =−
∫
χ′Φ̃Png(Φ̃ξ + α).

In the following, we will show estimates of the form Rj 6 C + δL with δ small. Using that χ′ � χ and

Cauchy-Schwartz, one finds

|R1| 6 C

(∫
δ̃−1χΦ̃2

ξ +

∫
δ̃χΦ̃2

ξξ

)
6 δL+ C,

where in the second inequality we also used

Φ̃2
ξ 6 C + δ̂Φ̃4

ξ , (2.14)

for any δ̂ sufficiently small.

For the estimates of R2, we need estimates on Φ̃. Recall that −
∫

Φ̃ = 0, so that we can bound Φ̃ in terms

of Φ̃τ using

Φ̃ =
1

ω
∂−1τ

[
sΦ̃ξ − (θξ −−

∫
τ
θξ)

]
.

Here, ∂−1τ will be understood as a nonlocal in τ , bounded operator on Lp(S1), 1 6 p 6∞.

Using these identities, we find

|R2| 6
∫
χ|Φ̃Φ̃ξξ|

6 C

∫
χ

(
|∂−1τ Φ̃ξ|+ |∂−1τ (θξ −−

∫
θξ)|
)
|Φ̃ξξ|

6 C

∫
χ
(
δ−1Φ̃2

ξ + δ−1θ2ξ + δΦ̃2
ξξ

)
6 δL+ C,

where we used Cauchy-Schwartz and (2.14). The estimate for R4 is very similar.

In order to estimate R6, we notice that |g2(Φ̃ξ + α)| 6 C(1 + Φ̃2
ξ + α2). This gives
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|R6| 6 C

∫
χ
(
|Φ̃3
ξ |+ |Φ̃ξ|+ |Φ̃ξα

2|
)
6 δL+ C + C(

∫
χα8/3)3/4,

where we used Hölder’s inequality.

For R7, we find

|R7| 6 C

∫
δχ|Φ̃(1 + Φ̃3

ξ + α3)|,

using that χ′ � χ.

In order to derive bounds on the terms not involving α, we estimate for 1 6 p <∞

‖χ1/4Φ̃‖p 6 C(p)
(
‖∇ξ,τ (χ1/4Φ̃)‖2 + ‖χ1/4Φ̃‖2

)
6 C

(
1 + ‖χ1/4Φ̃ξ‖2 + ‖χ1/4Φ̃‖2

)
6 C(1 + L1/4), (2.15)

where we used Sobolev embedding in the first inequality and the identity ωΦ̃τ = s(Φ̃ξ+α)−θξ, together

with a priori bounds on
∫
θ2ξ . Now Hölder inequality and (2.15) yield, for the terms in R7 not involving

α, ∫
δχ|Φ̃(1 + Φ̃3

ξ)| 6 δL+ C.

For the terms involving α, a similar computation gives∫
χ|Φ̃α3| 6 δL+ C +

∫
χα4.

Combining all this, we find that

|R7| 6 δL+ C + δ

∫
χα4,

for some δ arbitrarily small.

The estimates for R5 are similar but easier. The last remaining term R3 can be estimated as follows:

|R3| 6 δ

∫
χ
(

Φ̃2
ξξ + Φ̃2

ξ + δ−1α2
ξ

)
.

In summary, we have

|R| 6 δL+ C +

∫
χα4 +

∫
χα2

ξ , (2.16)

for any δ > 0 arbitrarily small and some constant C > 0.

We next turn to estimates for α. Integrating (2.10) in τ we find

0 = −(αξξ −−
∫
τ
g(Φ̃ξ + α))ξ + sα,

which we write in the compact form

Lα = Fx, L = ∂ξξξ − s, F = −
∫
τ
g(Φ̃ξ + α).
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Inspecting the Fourier symbol, we find that L : W 3,p → Lp, 1 6 p 6 ∞ is invertible. We derive

estimates with weights χ solving instead Lβ = F and obtain α from α = βξ. Multiplying by χ we

obtain

L(χβ) + P(∂ξ, ξ)χβ = χF,

with p a differential operator of order 2 and coefficients small when χ′ � χ. Therefore, ‖χβ‖3,p 6
C‖χF‖p, and

‖χα‖2,p = ‖χβξ‖2,p 6 C‖χβ‖3,p 6 C‖χF‖p.

Using the definition of F , this yields an estimate

‖χα‖2,1 6 C

(
1 +

∫
(χ|α3|+ χ|Φ̃3

ξ |)
)
. (2.17)

The right-hand side of this estimate can be shown to be bounded in terms of C + δL as follows. First,

we find ∫
χ|α3| 6

∫
α2(sup |χα|) 6 C sup |χα|,

and

sup |χα| 6 C

∫
(|χαξ|+ |χ′α|)

6 C

(
1 + (

∫
|χαξ|)

)
6 C(1 + ‖χα‖1,1),

after integrating by parts, Cauchy-Schwartz, and using bounds on
∫
α2. Combining these two estimates

and interpolating W 1,1 between W 2,1 and L1 we obtain

‖χα‖2,1 6 C + (δL)3/4. (2.18)

We are now ready to bound the first integral term in (2.16),∫
χα4 6 C sup |χα2|

6 C

∫
(|χααξ|+ |χ′α2|)

6 C(1 + (

∫
(χαξ)

2)1/2)

6 C(1 + ‖χα‖1,2) 6 C(1 + ‖χα‖2,1)

6 δL3/4 + C.

Using this bound, one readily obtains, in a way analogous to (2.17),

‖χ3/4α‖2,4/3 6 C(1 + L3/4). (2.19)

Lastly, ∫
χα2

ξ 6
∫
χ|αξξα|+

∫
|χ′αξα|

6 C
(

1 + ‖χ3/4αξξ‖4/3‖χ1/4α‖4
)

6 C(1 + L15/16).
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With these estimates on α and the estimates on R summarized in (2.16), we find |R| 6 δL+C, which

proves the proposition.

Corollary 2.8 There exists a continuous function C(ω, s, n, I, k), defined on ω, s 6= 0, n 6∞, I ∈ R,

k ∈ N so that for any bounded solution u to the modulated traveling-wave equation with ω, s 6= 0,

n 6∞, and I ∈ R, we have

‖u‖BCk 6 C(ω, s, n, I, k).

Proof. Proposition 2.7 gives estimates for u in L4
u. Lemma 2.1 shows that these a estimates imply

bounds in spaces of smooth functions.

Remark 2.9 We write An(I) for the set of bounded solutions for fixed I, sometimes suppressing the

dependence on ω, s. Since uniform bounds in BCk+1 imply compactness in Ckloc, we also have that

the union
⋃
I∈[I−,I+],n06n6∞An(I) is precompact. Using diagonal sequence arguments, it is also not

difficult to show that such unions are in fact compact, although we will not use this fact, here.

3 Modulated fronts — Morse indices

3.1 Bifurcation diagrams

We are interested in the set of bounded solutions An(m) for mass m = I < ∞. As a first step,

we study the linearization at relative equilibria in An(m). As we saw before, relative equilibria of

(2.3) correspond to equilibria of the Cahn-Hilliard equation (1.1) with L-periodic boundary conditions,

L = 2π/k, with k = ω/s, determined by the parameters in (2.3).

Proposition 3.1 The Morse index in(up) of an equilibrium in (2.3), restricted to Rg(Pn), is related

to the Morse index i(up) of this equilibrium in (1.1), equipped with L-periodic boundary conditions, by

a simple shift,

in = 4n− i+ 1 for up ≡ m
in = 4n− i for up periodic.

In particular, for ω = ωlin and s = slin, we have the following equilibria with Morse indices:

• unstable, |m| < 1/
√

5: u0 ≡ m, in(u0) = 4n− 1; u1(kx), in(u1) = 4n.

• transitional, 1/
√

5 < |m| < 1/
√

3: u0 ≡ m, in(u0) = 4n − 1; u1(kx), in(u1) = 4n; u±j (jkx),

j = 2, . . . j∗, in(u+j ) = 4n− 2j − 2, in(u−j ) = 4n− 2j − 1.

Here, u1 and u±j have minimal period 2π and 1 (resp. j) maxima as functions of x ∈ [0, 2π]. In the

transitional case, j∗ can be less than two, in which case only two equilibria exist; see also Figure 3.1.

The following section contains a proof of this proposition.
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Figure 3.1: Bifurcation diagrams for the modulated traveling-wave equation (2.3) in the unstable regime (left,

|m| < 1/
√

5) and in the transitional regime (right, 1/
√

5 < |m| < 1/
√

3), restricted to I = m on Rg(Pn).

Bifurcating solutions are relative equilibria. The numbers associated with each branch denote the respective

relative Morse index in − 4n. We are interested in the equilibria for k = klin marked by the dashed line and the

heteroclinic orbits marked by the small dashed arrows.

3.2 Proof of Proposition 3.1 — L-homotopies

Since I ≡ m on the set of equilibria, bifurcation diagrams for equilibria in terms of L = 2π/k coincide

for the temporal dynamics (1.1) with L-periodic boundary conditions and the traveling-wave dynamics

(2.3), n = ∞, ω/s = k. A simple robustness argument shows that bifurcation diagrams coincide

qualitatively for n sufficiently large in (2.3). In order to compute Morse indices of equilibria, we

therefore compute the Morse index of u0 ≡ m, first. We then track the Morse index while continuing

along the bifurcation diagram.

Lemma 3.2 The Morse index of the trivial state is i(u0) = 1 + 4n for k > kmax.

Proof. We can compute the spectrum of the linearization explicitly as roots of the dispersion relation

ds(ν, iω`) = 0, |`| 6 n. For |`| large, roots are approximately solutions to −ν4 = i`. For each such `, we

therefore have precisely two roots ν with Re ν > 0. We now continue in ` and track possible crossings of

roots ν on the imaginary axis. This happens, when ds(iκ, iω`) = 0, or, −κ4−(1−3m2)κ2+i(sκ−ω`) = 0.

This gives κ = `k from the imaginary part, and κ = 0 or κ = kmax from the real part. With k > kmax,

we conclude that Re ν = 0 implies ` = 0. At ` = 0, we find a root ν = 0 and three additional roots

from ν3 + ν = s, with one positive root and two complex conjugate roots with negative real part. In

summary, we have one root with positive real part for ` = 0 and 2 roots with positive real part for

every ` 6= 0.

We next study the center eigenspace of the linearization along the branch of equilibria. In order to

understand the linearization at solutions of the form up(kξ− τ), it is convenient to pass to a corotating

frame, y = kξ + τ . In this rotating frame, the solutions up are equilibria, depending on y but not

on ξ, and the Floquet exponents now become eigenvalues of the (steady-state) linearization rather

than Floquet exponents. A short computation shows that eigenvalues ν and eigenvectors u solve the

(generalized) eigenvalue problem

L(ν)u := −(ν + k∂y)
2
(
(ν + k∂y)

2u+ u− Pn(3up(y)2u)
)

+ sνu = 0. (3.1)

with periodic boundary conditions in y. Since the operator above has compact resolvent, we can

find eigenvalues and multiplicities by considering the kernel of L(ν) and possible (generalized) Jordan
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chains, L(ν)u1 + L′(ν)u0 = 0, L(ν)u2 + 2L′(ν)u1 + L′′(ν)u0 = 0, etc. The following lemma compares

multiplicities on the center eigenspace ν ∈ iR of (3.1) with multiplicities in the center eigenspace of the

temporal linearization L(0)u = λu.

Lemma 3.3 The eigenvalue problem (3.1) is semi-simple on its center eigenspace ν ∈ iR. Moreover,

ν = 0 is the only eigenvalue on the center eigenspace. In particular, multiplicities on the center

eigenspace equal multiplicities of the temporal linearization L(0)u = λu.

Proof. First notice that we only need to consider Im ν ∈ [0, k), since the isomorphism u 7→ u · eiky

conjugates L(ν) with L(ν + ik). We are interested in Re ν = 0 and first consider ν 6= 0. For such ν,

consider the bounded operator M(ν) = (ν + k∂y)
−2, and the scalar product

〈u, v〉 := Re(M(ν)u, v)L2 (3.2)

on 2π-periodic functions. One readily finds that L(ν) − sν is self-adjoint with respect to this scalar

product for ν ∈ i(0, k). As a consequence, L(ν) − sν possesses real spectrum and L(ν)u = 0 does not

possess nontrivial solutions. This shows that ν = 0 is the only possible center eigenvalue to (3.1). The

geometric multiplicity of ν = 0 clearly equals the geometric multiplicity of the zero eigenvalue λ = 0

in L(0)u = λu, so that it suffices to show that ν = 0 is semi-simple, that is, there are no generalized

eigenvectors. For this, we need to consider the equation L(0)u = ∂νL(0)u0, or, explicitly,

−k2∂yy
(
k2∂yyu+ u− Pn(3up(y)2u)

)
= 4k3∂yyyu0 + 2k∂y(u0 − Pn(3up(y)2u0)− su0, (3.3)

with u0 an element of the kernel. Suppose first that the kernel is one-dimensional, that is, we are not

at one of the bifurcation points of the periodic patterns. We find a kernel u0 = ∂yup and adjoint kernel

∂−1yy u0. Since

(∂νL(0)u0, ∂
−1
yy u0) = −s(u0, ∂−1yy u0) > 0,

we conclude that there do not exist generalized eigenvectors. In the case when the kernel is two-

dimensional, at fold points of periodic patterns, an additional element of the kernel is given by u1 =

∂µup, the solution to k2∂yyu+u−Pn(3up(y)2u = 1. Again, the associated kernel of the adjoint is ∂−1yy u1.

Existence of generalized eigenvectors requires that the matrix M with entries Mij = (∂νL(0)ui, ∂
−1
yy uj)

is singular. One readily finds that Mii = −s(ui, ∂−1yy ui) < 0 and M01 = −M10 = −2k3(∂yu0, u1), which

shows that M is invertible, thus excluding generalized eigenvectors.

The case where up is constant is easier and omitted here.

Proof. [of Proposition 3.1] In order to prove Proposition 3.1, it remains to show that zero eigenvalues

cross the imaginary axis when up is continued along a branch of solutions. We discuss turning points

of branches, first, and then turn to bifurcations from the constant state.

At a turning point, there is precisely one neutral eigenvalue that crosses the imaginary axis in the

temporal stability problem L(0)u = λu. We can assume a parameterization of the bifurcation branch

by a parameter µ so that the critical eigenvalue λ(µ) crosses with nonzero speed, λ(0) = 0, λ′(0) 6= 0

at bifurcation points. The generalized eigenvalue problem (3.1) can be written near ν = 0 as L(0)u =

−sνu + νBu + O(ν2), where Bu = 4k3∂yyyu0 + 2k∂y(u − Pn(3up(y)2u). Expanding in the parameter

µ, comparing with L(0)u = µu, and projecting on the kernel using adjoints as in Lemma 3.3, we see

that sign ν ′(0) = −signλ′(0).
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We finally turn to bifurcations from spatially constant solutions. We can focus on the case of non-

degenerate super- or subcritical bifurcations (m 6= 1/
√

5) since Morse indices in the degenerate can be

obtained as limits. In those cases, we can parameterize branches by ε =
√
L− L∗, where L∗ is the

bifurcation point. Temporal eigenvalues are λ(ε) = λ2ε
2 + O(ε3). Again, expanding the eigenvalue

problem (3.1) as above, we find that ν = ν2ε
2 + O(ε3), with ν2λ2 < 0.

Now following the Morse index from the trivial branch along periodic patterns proves Proposition 3.1.

Remark 3.4 Rather than working with a homotopy along branches of equilibria, one can also homotope

the linearization by adding an eigenvalue parameter λ, thus considering L(ν)u = λu. One readily finds

that for λ� 1, the Morse index is 2n+ 2. One then decreases λ along the real axis down to λ = 0 and

tracks crossings of eigenvalues ν. This approach was used in [16, §4]. The situation there is in fact

slightly more difficult, since complete information on bifurcation diagrams and explicit information on

linear spreading speeds is not available. In our case, Proposition 3.1 follows from [16, Lemma 4.7],

combined with information on the linearization of periodic patterns on the real line, adapting Lemmas

4.16–4.19 from [16].

4 Connecting orbits and Conley index theory

In this section, we establish existence of heteroclinic orbits for the ill-posed evolution equation (2.3).

We first construct heteroclinic orbits for finite, arbitrarily large n, when (2.3) reduces to an ODE in

Sections 4.1-4.2. We then pass to the limit n = ∞ and find heteroclinic orbits using compactness in

Section 4.3.

4.1 Connecting orbits in the unstable regime |m| < m∗

From Lemma 1.5, we conclude that 1 > klin/kmax > 1/2, so that relative equilibria can be found in the

bifurcation diagram from Proposition 1.1 between the first and second bifurcation point; see Figure 3.1.

In particular, there are precisely two relative equilibria: the trivial equilibrium u ≡ m and a periodic

state with precisely one maximum. This property persists for large enough n, the order of the Galerkin

approximation Pn. Proposition 3.1 states that the Morse index of the trivial equilibrium is i = 4n− 1

and the Morse index of the periodic solution is i = 4n+ 1.

We argue by contradiction: suppose that there does not exist a heteroclinic orbit connecting the relative

equilibrium and the trivial equilibrium. By Corollary 2.5, the set of bounded solutions consists of the

two (relative) equilibria, only.

We next consider a homotopy in the parameter k = ω/s to k > kmax, so that there exists only one

equilibrium with Morse index i = 4n+ 1.

The set of bounded solutions is bounded and invariant during this homotopy. We can therefore conclude

that it’s Conley index is unchanged; see [7, 27, 24, 11, 36] for background on Conley index theory and

its applications in related situations. We use the homology Conley index CH(I) over the field Z2. We

find that for k > kmax, the Conley index has nontrivial entries at level 4n+ 1, only, CH`(An) = Z2 for

` = 4n+ 1 and CH`(An) = 0, otherwise.
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For k = klin, we find the Conley index as the direct sum of the Conley index of the two disjoint relative

equilibria. From the trivial equilibrium, we obtain homology CH`(An) = Z2 for ` = 4n − 1. From

the relative equilibrium we obtain homology CH`(An) = Z2 for ` = 4n and an additional entry on

` = 4n+ 1 due to the S1-action.

Since homologies are different at k = klin and k > kmax, we conclude that there are non-trivial bounded

solutions for k = klin, which proves the existence of heteroclinic orbits for any finite n.

4.2 Connecting orbits in the transitional regime m∗ < |m| < 1/
√
3

The analysis in this case is complicated by the fact that there are more equilibria. Similarly to the

unstable regime, we find that the Conley index of A has homology Z2 on level ` = 4n + 1. The same

reasoning now gives us the existence of heteroclinic orbits, but there does not appear to be a direct way

of concluding the existence of a heteroclinic connection between the trivial state and the single-modal

relative equilibrium. In order to establish existence of such a heteroclinic, we use connection matrices

and graphs as developed in [12, 14].

We first summarize the connection graph theory in the form that we will be using it here. Let Mj

denote the collection of relative equilibria and let CHj
` denote their Conley homology indices at level `.

Furthermore, choose bases cj`,p for the vector spaces CHj
` . A connection graph [12] is a directed graph

with vertices cj`,p and edges that we denote by eq, so that the edges satisfy the following properties:

(i) there is at most one edge originating or emanating from a single vertex;

(ii) edges can connect a vertex cj`,p to a vertex cj
′

`′,p′ only if ` = `′ + 1;

(iii) the set of free vertices (that is, vertices without edges) forms a basis of CH(A);

(iv) if there exists an edge connecting cj`,p to cj
′

`′,p′ , then there exists a sequence of heteroclinic orbits

connecting Mj to Mj′ via intermediates Mjq .

With this definition, the key result is the existence of connection graphs [12, Theorem 3.3], which follows

from the existence of connection matrices [14], that contain somewhat more detailed information on

the connections.

In our case, a direct application of the connection graph theory does not give existence of heteroclinic

orbits connecting the trivial homogeneous state with the one-modal equilibrium. The existence of

such orbits does follow however once one exploits equivariance. Consider therefore ψξ, the time-

reversed flow to the abstract modulated traveling-wave equation (2.3) on V = Rg(Pn) ∼ R8n+4. The

S1-symmetry u(ξ, ·) 7→ u(ξ, · + σ) commutes with the local flow so that ψξ induces a flow φξ on

V̄ := V/S1 ∼ (C4n/S1) × R4. Here, we identified the subspace corresponding to nonzero Fourier

wavenumbers R8n with C4n, so that the action of time shift is multiplication by ei`σ on any copy of C
for an appropriate `. The action of S1 on the subspace R4 with zero Fourier wavenumber is trivial. We

eventually restrict to Vm = V ∩ {I = m} ∼ R8n+3, the affine subspace of constant I, and its quotient

V̄m = V̄ ∩ {I = m}.

In the quotient space, relative equilibria correspond to equilibria. The quotient space is a smooth

manifold in a neighborhood of nontrivial relative equilibria due to the locally free action of S1 on a

neighborhood.
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Lemma 4.1 Consider a non-trivial hyperbolic relative equilibria with Morse index j in Vm. The ho-

mology Conley index of the equilibrium that is obtained in V̄m from this relative equilibrium is

CH` = Z2, for ` = j, and CH` = {0}, for ` 6= j.

Proof. The action of S1 in a neighborhood of the relative equilibrium is free, so that the quotient

space locally reduces to R8n+2. The equilibrium in the orbit space is hyperbolic with unstable dimension

j, which proves the lemma.

The case of the trivial equilibrium is somewhat more subtle.

Lemma 4.2 Suppose the Morse index of the trivial hyperbolic equilibrium u ≡ m is 2(j + 1) in Vm
for some j > 2. Then the homology Conley index of the equilibrium that is obtained in V̄m from this

relative equilibrium is

CH` = Z2, for ` = 5, 7, 9, . . . , 2j + 1, and CH` = {0}, otherwise.

Proof. Since the S1-isotropy jumps in a neighborhood of the trivial rest state u ≡ m, the neighbor-

hood is not a smooth manifold. We therefore go back to the definition of the Conley index in order to

compute the relevant homologies. Recall that the Conley index is the homotopy type of an isolating

block where the exit set is collapsed to a distinguished point. Collapsing stable directions, we find a

2(j + 1)-dimensional neighborhood B2(j+1) of u ≡ m with exit set S2j+1 in Vm. The group action is

nontrivial in all but two directions. Using Künneth’s formula for the relative homology of topological

product spaces, one finds

CH∗(m) = H∗(B
2(j+1)/S1, S2j+1/S1)) = H∗(B

2j/S1∧B2, S2j−1/S1∧S1)) = H∗−2(B
2j/S1, S2j−1/S1).

(4.1)

Now, S2j−1/S1 ' CP j−1 and C := B2j/S1 ' ([0, 1] × CP j−1)/({0} × CP j−1) is a cone over CP j−1.
Since C is contractible,

Hk(C) = Z2 for k = 0, and Hk(C) = 0 otherwise.

Also,

Hk(CP j−1) = Z2 for k 6 2(j − 1), k even, and Hk(C) = 0 otherwise.

From the long exact sequence

. . . −→ Hk(C) −→ Hk(C,CP j−1) −→ Hk−1(CP j−1) −→ Hk−1(C) −→ . . . ,

we find

Hk(C,CP j−1) = Z2 for k = 3, 5, . . . , 2j − 3, and Hk(C,CP j−1) = 0 otherwise. (4.2)

For instance, take k > 0 even, which gives Hk(C) = Hk−1(CP j−1) = 0, so that Hk(C,CP j−1) = 0.

For k = 0, note that C/CP j−1 is contractible. For k > 3, odd, use that Hk(C) = Hk−1(C) = 0, but

Hk−1(CP j−1) = Z2, so that Hk(C,CP j−1) = Z2. For k = 1, the same sequence with H0(C) = Z2 gives

Hk(C,CP j−1) = 0. Now combining (4.2) with (4.1) proves the lemma.
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Figure 4.1: Bifurcation diagram for the flow of (2.3) with reversed time ξ. The indices are relative Morse indices

i− 4n and equal the Morse indices in Figure 1.1 up to a fixed shift.

We are now ready to combine homology information from Lemmas 4.1 and 4.2 with information on

Morse indices and bifurcation diagrams, Proposition 3.1, to compute connection graphs as defined

above. Note however that we reversed the flow direction, so that Morse indices in Proposition 3.1 are

changed! For reference, we show the bifurcation diagram with Morse indices for the reversed flow in

Figure 4.1. Since vector spaces at all homology levels are one-dimensional in our case we can tabulate

all information in Table 1. From this table, we find that the connection graph is actually unique: since

free edges are precisely the homology entries of A, we find edges connecting m to u1 and u−j to u+j ,

j > 2. The forced edge from m to u1 implies that there exists a sequence of heteroclinic orbits, starting

at m and ending at u1. We have therefore proved the following result.

homology level . . . 5 6 7 . . . 4n-1 4n 4n+1 4n+2 4n+3 4n+4 4n+5 . . .

A Z2 Z2 Z2 Z2

m Z2 Z2 Z2 Z2 Z2

u1 Z2

u+2 Z2

u−2 Z2

...
. . .

Table 1: Conley homologies of equilibria in V̄m.

Proposition 4.3 For each n < ∞ sufficiently large, there exists a chain of heteroclinic orbits m →
. . . → u1, connecting the trivial state to the selected periodic pattern. In other words, there exists a

split invasion front for each n <∞, sufficiently large.

4.3 The limit n→∞

In order to prove Theorems 1 and 2, we need to investigate the limit when the order of the Galerkin

approximation tends to infinity, n→∞.

Lemma 4.4 Suppose that the abstract modulated traveling-wave equation (2.3) possesses a heteroclinic

orbit u∗ connecting (relative) equilibria up and u′p for a sequence n` →∞.

Then there exists a finite number J > 0, a family of equilibria ujp,and heteroclinic orbits uj∗, 0 6 j 6 J ,
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so that for 0 6 j 6 J

uj∗ →

{
ujp, ξ → −∞,
uj+1
p , ξ →∞.

where we identified u0p = up and uJ+1
p = u′p.

Proof. Joint precompactness of the attractors, Remark 2.9 in spaces of high regularity ensures that

we can choose convergent subsequences of finite trajectory pieces and obtain solutions on finite intervals

in the limit. Repeating this procedure on ξ ∈ [−`, `] and extracting a diagonal sequence, we obtain

a solution on ξ ∈ R for n = ∞. By the variational structure, Corollary 2.5, this limiting trajectory

u0∗ is a heteroclinic orbit. Since there is only a finite number of relative equilibria, we can shift the

trajectory appropriately so that the limiting trajectory satisfies u0∗ → u0p for ξ → −∞. Denote by u1p
its limit for ξ →∞. The same argument, applied to an appropriate different shift of the approximating

heteroclinic orbits gives a heteroclinic orbit u1∗ which satisfies u1∗ → u1p for ξ → −∞. We now repeat

this procedure and find a sequence of heteroclinic orbits and intermediate equilibria as described in the

lemma. Since the number of equilibria is finite, this procedure terminates after finitely many steps.

Of course, the sequence of heteroclinic orbits gives precisely the split invasion fronts described in the

main theorem.

Remark 4.5 The possibility of a split invasion front can be excluded in cases where there does not exist

a relative periodic orbit with energy V between the energies V± of the asymptotic relative equilibria up
and u′p. The possibility of a sequence of heteroclinics rather than a single direct connection already

appears when invoking the connection matrix, which does not guarantee a direct connection, so that

a direct application of connection matrix theory to the full ill-posed system (2.3), n = ∞, would not

immediately give direct heteroclinic connections. For Morse-Smale systems, where heteroclinics are

transverse, one can establish transitivity, that is, the existence of heteroclinics from u0∗ directly to uJ+1
∗

[29]. We expect this result to carry over to the ill-posed, infinite-dimensional traveling-wave equation

(2.3); see for instance [30] for a related shadowing result. In our case, however, the Morse indices of

possible intermediate states prevent heteroclinic chains to be transverse. While this would be a non-

generic phenomenon, it appears difficult to exclude in the specific equation that we consider here.

5 Absolute spreading speeds and critical decay rates

We have established the existence of invasion fronts. In order to prove Theorems 1 and 2, we need to

establish critical decay, (1.10). Critical decay follows immediately from the following lemma via stable

manifold theory.

Lemma 5.1 Suppose that dslin(iωlin`, ν) = 0 for some ` ∈ Z, Re ν < 0. Then Re ν 6 Re νlin and

equality holds only for ν = νlin or ν = ν̄lin, ` = ±1, both double roots.

Proof. We start by considering the four roots of ds(iω, ν) for various values of ω. For ω →∞, we have

two roots with Re ν → −∞ and two roots with Re ν → +∞. Next, note that Re ν = 0 if and only if

ν = 0 or ν = ±ikmax, ω = ±skmax. Calculating the crossing derivative, we find that for ω ∈ (0, skmax),
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there are precisely three roots with Re ν < 0 and one root with Re ν > 0. We next investigate when

Re ν = Re νlin, ω ∈ R. The dispersion relation gives λ as a quartic polynomial in Im ν, while fixing

Re ν = Re νlin. This polynomial has precisely two maxima at Im ν = ± Im νlin. Combined with the

above information this shows that for | Im ν| 6= Im νlin, there are precisely two roots with Re ν < Re νlin
and two roots with Re ν > Re νlin. Going back to tracking the real part of roots ν as a function of ω,

we find precisely one root in (Re νlin, 0) for ω ∈ (ωlin, skmax). Since skmax < 2ωlin by Lemma 1.5, we

conclude that there are no roots in (−Re νlin, 0) for all ω = `ωlin, s = slin, This proves the lemma.

Remark 5.2 The proof fails when we choose subharmonic ω = ωlin/p, p = 2, 3, . . .. Subharmonic

fronts are actually observed in direct simulations for masses m close to 1/
√

3; see Section 7. We will

see in Section 6 that our methods may give existence of such subharmonic invasion fronts. Subharmonic

fronts with subcritical decay would however correspond to existence of a heteroclinic orbit in the strong

stable manifold of the trivial equilibrium. Showing existence of such connections does not appear to be

within reach of the topological methods employed here.

Remark 5.3 We saw in the finite-dimensional approximation that the heteroclinic orbits corresponding

to critical invasion fronts are intersections between center-unstable and stable manifolds of relative

equilibria. Moreover, the dimension count predicts a two-dimensional intersection of these manifolds,

that is, the sum of the dimensions of center-unstable and stable manifold exceeds the ambient space

dimension by 2. Since parameters ω and s are fixed, and since intersections are necessarily two-

dimensional, due to time-τ and space-ξ shifts, such heteroclinics are minimally robust: they can occur

as transverse intersections, and multiplicities are minimal. In [16, Corollary 4.15], we show that such

minimal robustness is a typical phenomenon in general reaction-diffusion systems. Assumptions there

include the absence of unstable absolute spectrum [32, 31], which is implied in the proof of Lemma 5.1.

6 Coarsening fronts

Spinodal decomposition fronts leave a periodic pattern in the wake. Since all periodic patterns are

unstable in the Cahn-Hilliard equation, when considered on an unbounded domain (in fact, periodic

boundary conditions with twice the underlying period of the pattern already allow for an instability as

the bifurcation diagrams in Propositions 1.2 and 1.2 show), we expect secondary instability mechanisms

in the wake of the primary front. Simulations show that this secondary instability takes the form of a

front invasion which creates a periodic or quasi-periodic pattern in its wake. In analogy to the primary

front invasion, one can predict invasion speeds and selected wavenumbers in the wake of this coarsening

front from a linear analysis and then study existence of nonlinear coarsening fronts. We will carry out

these two steps in the following two sections.

6.1 Linear spreading speeds near periodic patterns

Given a periodic pattern up(kx; k), u(ξ; k) = u(ξ + 2π; k) of the Cahn-Hilliard equation, we study the

linearization

ut = −(uxx + u− 3u2pu)xx.
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Fourier-Bloch-Laplace transform decomposes solutions according to the ansatz u(t, x) = eλt+νxw(kx),

where w(ξ) is 2π-periodic. Substituting this ansatz into the linearized equation gives a periodic

boundary-value problem for w,

λw = −(∂x + ν)2
(
(∂x + ν)2w + w − 3u2pw

)
. (6.1)

One can write this boundary-value problem as a fourth-order linear ODE for w = (w,wx, wxx, wxxx),

and we denote by Φλ,ν the fundamental solution, Φλ,νw(x = 0) = w(x = 2π/k). Periodic solutions w

exist precisely when

d(λ, ν) := det (Φλ,ν − id ) = 0. (6.2)

One can analogously construct a dispersion relation in a comoving frame, ds(λ, ν) = d(λ − sν, ν).

Pointwise stability criteria are then based on double roots of this dispersion relation that satisfy the

pinching condition, that is, roots

ds(λ∗, ν∗) = 0, ∂νds(λ∗, ν∗) = 0, (6.3)

so that Re ν±(λ)→ ±∞ for λ↗ +∞, where ν±(λ∗) = ν∗; see for instance [3]

We denote by slin the largest speed so that there exists a double root with pinching condition with

λ∗ = iω∗ ∈ iR. We write ωlin = ω∗ and klin = ωlin/slin.

The function ds does not appear to be accessible analytically so that solutions need to be computed

numerically. One can for instance solve the boundary-value problem (6.1) with λ = λ̃ − sν and its

derivative with respect to ν numerically,

(λ̃− sν)w = −(∂x + ν)2
(
(∂x + ν)2w + w − 3u2pw

)
(λ̃− sν)w1 − sw = −(∂x + ν)2

(
(∂x + ν)2w1 + w1 − 3u2pw1

)
− 4(∂x + ν)3w − 2(∂x + ν)(1− 3u2p)w,

thus finding (λ̃∗, ν∗). While there does not appear to exist readily available software for such a general-

ized eigenvalue problem, one can readily continue solutions by homotoping the function up to the trivial

solution up ≡ m. Results of such a continuation using auto07p are shown in Figure 6.1. Note that

spreading speeds of coarsening fronts first increase with increasing |m| before eventually decreasing,

while speeds of the primary, spinodal decomposition front are monotone in |m|. Interesting cross-overs

occur for larger |m|, when the computation of linear spreading speeds predicts that coarsening fronts

would overtake spinodal decomposition fronts around m ∼ 0.494. The other graph in Figure 6.1 shows

the selected wavenumber ω/s, compared with the wavenumber of the underlying pattern. We note that

we are comparing with the theoretical prediction klin for the wavenumber of the underlying pattern: in

the region where coarsening fronts catch up with the primary front, this comparison is not necessarily

meaningful. For m & 0.355, wavenumbers in the wake of coarsening fronts are doubled. To see that this

strong resonance is robust on the linear level, we can think of double roots (λ∗, ν∗), solutions to (6.3),

as generalized eigenvalues of the linearization at a spatially periodic pattern. Since we are computing

these eigenvalues in a comoving frame, the pattern is in fact time-periodic, so that one can expect

period-doubling as a robust instability mechanism upon decreasing s. This temporal period-doubling,

ωcoarsening = kp∗scoarsening/2 translates into kp/kcoarsening = 2, which is the resonance observed in Figure

6.1. More formally, the dispersion relation has a Floquet symmetry, ds(λ+ iks, ν + ik) = ds(λ, ν) and

a complex conjugation symmetry ds(λ, ν) = ds(λ̄, ν̄), so that solutions pinned to the fixed point space

Imλ = ks/2, Im ν = k/2 occur in a robust fashion; see also [35]. For masses m . 0.355, the Floquet
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Figure 6.1: On the left, we show linear spreading speeds near periodic patterns that are selected by the primary

invasion front according to Lemma 1.5, as a function of mass m. The comparison curve is the linear spreading

speed near the trivial state of mass m according to Lemma 1.5. On the right, we show the selected wavenumber

klin near the periodic pattern relative to the period of the underlying pattern.
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Figure 6.2: Bifurcation diagrams for the modulated traveling-wave equation (2.3) in the unstable regime (left,

|m| < 1/
√

5) and in the transitional regime (right, 1/
√

5 < |m| < 1/
√

3), restricted to I = m on Rg(Pn).

Bifurcating solutions are relative equilibria. The numbers associated with each branch denote the respective

relative Morse index in − 4n. We are interested in the equilibria for k = klin/2 marked by the dashed line and

the heteroclinic orbits marked by the small dashed arrows.

exponent ω comes in complex conjugate pairs, ω1 + ω2 = ks, so that the selected wavenumbers satisfy

k1 +k2 = k. In Figure 6.1, we plotted δkj := k/kj , which satisfy δk−11 +δk−12 = 1. Phenomenologically,

these computations predict patterns in the wake of the front that are quasiperiodic or long-wavelength

modulations of a period-doubled pattern.

6.2 Existence of coarsening fronts

In this section, we prove Theorem 3 and point to some extensions and limitations.

We first notice that the only part of the proof that needs modification is the existence of heteroclinic

orbits in the Galerkin approximation. There, in Section 4, we relied on connection graphs to establish

existence of connecting orbits.

Looking for period-doubled coarsening fronts, invading the primary pattern of wavelength kp, we con-

sider the modulated traveling-wave equation (2.3) with s = slin and ωcoarsening = kpscoarsening/2. Rel-

ative equilibria for these parameter values correspond to stationary periodic patterns of the Cahn-

Hilliard equation with spatial period L = 2π/kcoarsening = 2π/(kp/2). For kp = klin, this implies

kcoarsening ∈ (kmax/2, kmax/3). The relevant bifurcation diagram is shown in Figure 6.2.

One can now find connections using the connection graph theory described in Section 4.2. Table 2 lists

Conley homologies for the Galerkin approximated flow on Vm = Rg(Pn) ∩ {I = m}. Note that we

28



do not quotient out the symmetry but do reverse time ξ in this case! From these homologies and the

homology level . . . 4n+2 4n+3 4n+4 4n+5 4n+6 4n+7 4n+8 . . .

A Z2

m Z2

u1 Z2 Z2

u2 Z2 Z2

u+3 Z2 Z2

u+3 Z2 Z2

...
. . .

Table 2: Conley homologies of equilibria in Vm.

existence of a connection graph, we infer the existence of an edge connecting u2 to u1. From Remark

1.3 and [17, Theorem 4.1], the energy V of u1 and u2 is lower than the energy on all other Morse sets

so that the existence of a connecting edge in the connection graph actually implies the existence of

a heteroclinic orbit. Similarly, we obtain a sequence of heteroclinic orbits connecting u2 to u1 in the

limit n =∞, which due to the energy restriction has to be a simple heteroclinic orbit.

Remark 6.1 One can actually show that these invasion fronts have minimal decay νlin based on the

reasoning in Remark 5.3.

The numerical computations of the dispersion relation in the previous section, see Figure 6.1, indicate

that for small mass |m| . 0.355, selected coarsening wavenumbers require k 6= k/2. Even for rational

kcoarsening/klin = p/q, we would need to choose ωcoarsening = kp ∗ scoarsening/q, q > 2. As a consequence,

there will be at least q − 1 periodic patterns with lower Morse indices and connection graphs would

not imply direct heteroclinic connections. Moreover, in this case, the connections actually form high-

dimensional manifolds and only the restriction to strong-stable manifolds with decay rate νlin will give

selected invasion fronts.

In yet another direction, one can attempt to construct spinodal decomposition fronts that leave behind

patterns with wavenumber klin/q. Such fronts can be thought of as bound states between spinodal

decomposition and coarsening fronts, both propagating at the same speed; see Section 7 for a discussion

of numerical simulations of this phenomenon. In the context of connection graphs, such connections

can be found after quotienting out the S1-symmetry. For instance, connection graphs in the unstable

case, ω = ωlin/q, give existence of connections between the trivial state u ≡ m and the stable state u1;

see Table 3. As we noticed before, such connections do not necessarily correspond to invasion fronts

since linear decay will be weaker than νlin.

7 Comparison with simulations and discussion

Our main theorems show existence of spinodal decomposition fronts, Theorems 1 and 2. From the

linear analysis, one finds predicted linear spreading speeds slin, linear marginal frequencies ωlin, and

linear exponential decay rates. Our nonlinear analysis shows that nonlinear front solutions with these
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homology

level

. . . 4n+1 4n+2 4n+3 4n+4 4n+5 4n+6 4n+7 . . . 4n+2q+1 4n+2q+2

A . . . Z2

m . . . Z2 Z2 Z2 Z2 . . . Z2

u1 . . . Z2

u2 . . . Z2

u3 . . . Z2

... . . .
. . .

uq . . . Z2

Table 3: Conley homologies of equilibria in V̄m in the unstable case. Connections are enforced from uj to m for

all j.

characteristics exist in the unstable regime. In the transitional regime, we show existence of fronts or

split fronts.

We also showed how our methods give existence of other types of front solutions that can be observed

in numerical simulations. Most notably, the patterns in the wake of spinodal decomposition fronts are

unstable and typically invaded by coarsening fronts. We motivated and computed linear predictions for

speeds scoarsening, linear frequencies ωcoarsening, and wavenumber modulations kcoarsening in the wake of

these fronts; see Section 6.1. In the (robust) case of spatial period-doubling in the wake of coarsening

fronts, we also showed existence of nonlinear fronts with these linear parameters.

On the technical side, one would like to be able to apply the connection matrix technology directly

to the infinite-dimensional modulated traveling-wave equation (2.3). This would give richer results in

particular in the unstable regime. For instance, results like Theorem 5.4 in [26] would guarantee the

existence of a plethora of coarsening fronts in cases when selected wavenumbers are not simply doubled.

On the other hand, the machinery employed here appears unable to detect the presence of orbits

connecting to strong stable manifolds. In fact, the results in [16, Corollary 4.15] show that selected

fronts are generically isolated up to the intrinsic symmetries in the system. When coarsening fronts

select patterns with wavenumber ratios p/q, q > 2, connecting orbits come with higher multiplicities

and typical connections will not exhibit critical decay. It would be interesting to develop topological

arguments that show existence of such strong stable connections. For masses m∗ sim0, the results in

[25] guarantee semi-conjugacy (albeit for temporal dynamics with an additional reflection symmetry),

which strongly suggests that such strong-stable connecting orbits are enforced by similar topological

reasons.

On the mathematical side, the most immediate open questions are the stability of these fronts and, more

importantly, selection criteria. For instance, one can show that fronts with large speeds s exist and are

stable; compare [36, §5 and §7.5]. Starting from initial data where u0(x)−m is compactly supported,

we expect to see fronts with a distinguished speed, largely independent of the initial disturbance. In

the wake of this front, we expect to see at least a transient pattern with a distinguished wavelength.

Both speed and wavelength can be compared to the linear predictions slin and klin of the spinodal

decomposition front. We simulated the Cahn-Hilliard equation using a semi-implicit in time first-order

discretization with ∆t = 0.1 on a domain of size L = π ∗ 1000 using a pseudospectral method for space
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Figure 7.1: The graphs show speed of spinodal decomposition fronts measured in direct simulations (left) and

wavenumbers in the wake of the invasion front (right). The solid curve on the left shows the prediction from

Lemma 1.5. On the right, the ratio between measured and predicted wavenumber is plotted.

discretization with 65, 536 Fourier modes. Initial conditions were a small perturbation of the trivial

state u0(x) ≡ m. For all simulations, boundaries had only negligible influence, but round-off errors

were significant. We artificially stabilized the unstable trivial state ahead of the leading edge of the

front, forcing u = −1 ahead (black region in space-time plots) and u = m only in a wedge (gray region

in space-time plots) ahead of the front. While this allows one to observe spinodal decomposition fronts

quite accurately, we could not find a similar stabilization procedure for the periodic patterns created

in the wake of the primary front. Round-off errors therefore make the observation of coarsening fronts

and associated wavenumbers and speeds difficult.

Figure 7.1 shows a comparison of the predicted speed with data from direct numerical simulations.

The comparison shows that the linear prediction is very accurate, even for large mass m ∼ 1/
√

3.

The right-hand plot in Figure 7.1 shows a comparison of predicted and measured wavenumber in the

wake. For masses m . 0.46, the observed wavenumber in the wake of the front agrees well with the

linear prediction. For larger masses, we find smaller wavenumbers — an instantaneous coarsening. The

change in wavenumber can be thought of as a Hopf bifurcation of the critical invasion front. In fact,

the plotted data suggests typical frequency locking phenomena. We briefly discussed in Section 6.2 the

existence of such subharmonic invasion fronts.

Similarly, one can compare predicted speeds and selected wavenumbers in the wake of coarsening

fronts. Based on the dispersion relation at the periodic state in the wake of a spinodal decomposition

front, we computed and plotted linearly selected speeds and wavenumbers in Figure 6.1. We compare

those predictions in Figure 7.2 with results from direct numerical simulations. Speeds agree within

accuracy in the relevant parameter regime, that is, as long as primary and secondary front speeds can

be distinguished. As expected, direct simulations underestimate speeds. Speeds were measured over a

distance of approximately 500 units.

Comparing wavenumbers (plot on the right of Figure 7.2), one notices first that coarsening fronts select

the larger ω (and k) value out of the two conjugate Floquet exponents. In other words, coarsening is

weaker for small masses: rather than having pairs of neighboring spikes merge, some individual spikes

survive. The blowup in the space-time plot of Figure 7.3 illustrates this phenomenon.

One also notices that the selected frequency locks to period-doubling quite a bit past the predicted

value. This locking would be predicted near strong resonances and corroborates the analogy between

coarsening fronts and Hopf bifurcation from periodic orbits. Agreement is somewhat sketchy since

round-off errors limit the number of wavelengths in the wake of coarsening fronts to about 10 for
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Figure 7.2: On the left, a comparison between speeds of coarsening fronts as predicted (solid line) and measured

in direct simulations. The upper line on the right denotes speeds of primary fronts. On the right, predictions

for ratios between wavenumbers before and after coarsening fronts (solid line) compared with results from direct

simulations. Note that period-doubling prevails in regions where linear Floquet exponents already predict more

complicated patterns in the wake, a typical Frequency locking phenomenon.

masses close to zero.

The theory here cannot predict the change in wavenumber in the wake of the spinodal front. On

the other hand, linear predictions for the speed of coarsening fronts suggest that for masses m & 0.49,

coarsening fronts catch up with spinodal decomposition fronts, so that the pattern in the wake coarsens

instantaneously, that is, with the same speed that it is created with; see Figure 6.1 for a comparison of

linear coarsening speeds and spinodal decomposition speeds and Figure 7.3 for a detailed comparison

near m = 0.49. However, a comparison between direct numerical simulations and the linear predictions

for the crossover shows a small but significant discrepancy; see Figure 7.4 for an illustration of the

crossover between m = 0.46 and m = 0.47. More detailed simulations suggest a crossover between

m = 0.468 and m = 0.469. Such phenomena, where a secondary front in the wake of a primary front

is effectually accelerated have been observed in other scenarios [8, 22]. The phenomenon is analyzed

completely in a simple model problem of coupled KPP equations in [21]. The results there indicate

robust locking between the two fronts in a regime where the invasion speed of the secondary front

is smaller than the speed of the primary front due to the presence of an unstable resonance pole in

the linearization of the primary front. Such a mechanism may well be responsible for the observed

discrepancy between locking in direct simulations and locking due to faster linear secondary invasion

speeds.
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Figure 7.3: On the left, a detailed graph of the cross-over between spinodal and coarsening speeds near m = 0.49.

on the right, a blowup of the two-frequency coarsening dynamics for small mass.
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Figure 7.4: Space-time plots of the solution to Cahn-Hilliard equation with mass m = 0.46 (left) and m = 0.47

(right). For m = 0.46 one sees two fronts with distinct speeds. The fronts appear to be locked at the same speed

and a fixed small distance for m = 0.47.

Beyond the first coarsening front, we expect further invasion fronts that subsequently increase the

wavelength of the pattern. We suspect that for large masses, this sequence of coarsening fronts is

eventually dominated by period-doubling fronts. It would be interesting to derive lower (linear) bounds

on the speeds of these fronts for small wavenumbers and predict wavenumber ratios. This would in

particular give lower bounds on coarsening rates under specific initial disturbances.

Both direct simulations and computations of selected wavenumbers based on the dispersion relation

using auto07p to solve (6.1) suggest that we expect period-doubling for large wavenumbers. This

suggests the possibility of a period-doubling cascade, where a sequence of invasion fronts leaves behind

a sequence of period-doubled pattern. It would be interesting to derive scaling laws for this sequence.

On the other hand, much of the present analysis is very sensitive to noise in the system. We emphasize

that all states observed are unstable! Noise or round-off errors can and do significantly alter the

spatio-temporal dynamics. We point to [40] and references therein for a general discussion of the

role of invasion fronts in noisy systems. The length of the intermediate plateau in the wake of a

primary invasion front has been discussed in [8, 20] in the context of hexagon-roll competition in fluid

experiments and in [37, 38] in the context of Hopf bifurcation in population dynamics and the complex

Ginzburg-Landau equation.

In a related direction, we showed in [22, Figure 3.1] that in a general class of random initial conditions

one can see a cross-over from temporal to spatial wavenumber selection. The critical parameter is

the probability of localized nucleation events. It would be interesting to establish theoretical criteria

for initial conditions that distinguish between dynamics corresponding to the more commonly known

temporal and the more specific spatial mechanisms for spinodal decomposition and coarsening studied

here.

8 Appendix

We prove Propositions 1.1 and 1.2 on existence and stability of equilibria. The propositions are conse-

quences of the results in [17, 18] for the case of Neumann boundary conditions. In fact, inspecting the

steady-state equation, −(uxx + u− u3)xx = 0, one readily infers that uxx + u− u3 = µ for some µ ∈ R.

Inspecting the phase portrait, one concludes that all periodic solutions are even and therefore occur
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in the Neumann problem as well. In other words, the bifurcation diagrams for Neumann boundary

conditions is the same as for periodic boundary conditions on an interval twice the size. In order to

prove Propositions 1.1 and 1.2, we first notice that the Morse indices near the bifurcation points are

an immediate consequence of the Morse index of the trivial solution together with an exchange-of-

stability consideration. It remains to exclude changes in Morse index along the branch. For this, we

need to show that the linearization at a periodic, even solution does not possess neutral eigenvalues

when restricted to the subspace of odd functions, with the exception of the translational 0-eigenvalue.

Since the linearization is self-adjoint with respect to the H−1-scalar product, we can further restrict to

the kernel of the linearization. Candidates for solutions in the kernel are solutions to a fourth-order,

time-periodic differential equation, −(uxx + u− 3u2∗(x)u)xx = 0, or, −(uxx + u− 3u2∗(x)u) = µ+ µ1x.

A basis for the four-dimensional space of solutions can be found setting µ = µ1 = 0, µ = 1, µ1 = 0, or

µ = 0, µ1 = 1. For µ = µ1 = 0, we find ∂xu∗ and ∂au∗, where ∂a denotes the derivative with respect

to the amplitude a = maxxu∗(x). Since the period is a monotone function of the period for the simple

cubic, ∂au∗ is not periodic. On the other hand, setting µ = 1 and µ1 = 0, we find the solution ∂µu∗,

which is even (and periodic precisely at the turning points of branches in the transitional regime). The

last case, µ1 = 1 only gives linearly growing solutions.

We conclude that there are no periodic odd eigenfunctions other than the derivative ∂xu∗, so that the

Morse index in the space of periodic functions is as described in Propositions 1.1 and 1.2.
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