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Abstract

We characterize the spatial spreading of the coarsening process in the Allen-Cahn

equation in terms of the propagation of a nonlinear modulated front. Unstable periodic

patterns of the Allen-Cahn equation are invaded by a front, propagating in an oscillatory

fashion, and leaving behind the homogeneous, stable equilibrium. During one cycle of the

oscillatory propagation, two layers of the periodic pattern are annihilated. Galerkin ap-

proximations and Conley index for ill-posed spatial dynamics are used to show existence of

modulated fronts for all parameter values. In the limit of small amplitude patterns or large

wave speeds, we establish uniqueness and asymptotic stability of the modulated fronts.

We show that the minimal speed of propagation can be characterized by a dichotomy

depending on the existence of pulled fronts. Main tools here are an Evans function type

construction for the infinite-dimensional ill-posed dynamics and an analysis of the complex

dispersion relation based on Sturm-Liouville theory.
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1 The Allen-Cahn equation and coarsening

The Allen-Cahn equation We consider

ut = uxx + f(u), x ∈ R, (1.1)

with f(u) = u(1−u2), and initial condition u(0, x) = u0(x) ∈ BC0(R), the bounded uniformly

continuous functions on the real line. Recall that (1.1) is formally a gradient system in L2

with respect to the energy

V (u) =

∫

R

(

1

2
u2

x + F (u)

)

dx, (1.2)

where F (s) =
∫ s
0 f(s). In particular,

d

dt
V (u(t, ·)) ≤ 0,

for all solutions of (1.1) with V (u0(·)) <∞.

We may also consider (1.1) with periodic initial conditions u0(x) = u0(x+ 2π
k ) and recover

Vper(u) =

∫ 2π/k

0

(

1

2
u2

x + F (u)

)

dx,

as a nonincreasing energy.

Layers and interaction In both cases, the solutions u(t, x) ≡ 1 and u(t, x) ≡ −1 are

asymptotically stable equilibria. In the case of periodic boundary conditions, almost every

trajectory converges to either one of the two equilibria. On the unbounded real line this is

not true anymore: The families of translates of the stationary layer solutions

u±l (x) = ± tanh(x/
√

2), (1.3)

are asymptotically stable with asymptotic phase

‖u(t, x) − u±l (x+ x0)‖BC0 → 0 for t→ ∞,

for some small x0, if ‖u(0, x) − u±l (x)‖ < ε, small enough.

Even with periodic boundary conditions, layers can determine the actual dynamics on very

large time scales. An initial condition consisting of alternating up and down layers u±
l at

positions xi, 0 ≤ i < 2N , retains its shape as long as the differences xi+1 − xi remain large.

The evolution of the positions is governed approximately by

ẋi = G(xi+1 − xi) −G(xi − xi−1), i mod 2N (1.4)

withG(y) ∼ e−
√

2y exponentially small for large layer spacing [3, 12]. Eventually, the difference

xi − xi+1 will become small for two adjacent layers, and the two layers collide and annihilate,

reducing the effective ODE (1.4) to 2(N − 1) variables. One consequence of this scenario

is that, for k small, the temporal convergence towards the spatially homogeneous equilibria

u ≡ ±1 can be very slow.
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Attractors A somewhat different view on the dynamics is provided by the description of

the attractor of the Allen-Cahn equation with periodic boundary conditions. The attractor

Aper consists of all solutions u(t, x) which are bounded for all times t ∈ R. It is a compact

set and consists of the equilibria and connecting orbits between equilibria. The following

diagram depicts the set of equilibria and the connecting orbits, depending on the parameter k

which fixes spatial periodicity. The analysis of the Allen-Cahn equation under this dynamical

systems view point goes back to Chafee and Infante [4]; see [14] for more information on

attractors and [10] for a recent overview of attractors in scalar reaction-diffusion equations.
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Figure 1.1: Bifurcation diagram for the set of equilibria of the Allen-Cahn equation with pa-

rameter k. Nontrivial equilibria bifurcate from u = 0 at k = 1, 2, . . . from left to right. The

integers at branches denote the Morse indices. Only even representatives of nontrivial branches

are shown. Arrows indicate connecting orbits between equilibria.

For k → 0, all branches of equilibria approach the layer-type configuration of solutions that

we described above. Connecting orbits describe how perturbations of periodic layer configu-

rations evolve into equilibria with fewer layers. For k 6∈ Z, equilibria are hyperbolic up to a

neutral eigenvalue induced by the spatial translation. We denote by i the number of unstable

eigenvalues counted with multiplicity. The following result describes the set of connecting

orbits. We denote by u` the equilibria that bifurcate from the trivial solution at k = ` and let

U` be the circle generated by the spatial translation of those equilibria in BC 0. We also set

U±
0 = u±0 (x) ≡ ±1 and U∞ = u∞(x) ≡ 0.

Theorem 1 (Structure of the attractor) There exists a heteroclinic orbit from U` to U`′

if, and only if ` > `′, or, equivalently, if i(u`) > i(u`′).

Note that, as a consequence, Vper(u`) > Vper(u`′) for ` > `′.

Coarsening in space Our interest here is in the Allen-Cahn equation on the real line. The

bifurcation diagram for equilibria gives a continuous family of periodic solutions uper(x; k),

with uper(x; k) = uper(x + 2π
k ; k), 0 < k < 1. For k → 1, uper(x; k) → 0 =: uper(x; 1). For

k → 0, the periodic solutions converge locally to a concatenation of up and down layers. All

these periodic solutions are linearly and nonlinearly exponentially unstable. The question that

motivates the present paper is how fast this instability spreads when initiated locally in space.

There are two scenarios, where intuition provides a fairly complete picture. First, consider

k = 1, that is, perturbations of the trivial homogeneous state. Positive perturbations with

compact support can be shown to evolve into two fronts, marking the interface between the
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stable state u ≡ 1 and the unstable state u ≡ 0 at ±∞. The spreading speed of these fronts is

known to be c = 2. The fronts on both sides are solutions of the form u(x− ct), which solve

the traveling wave ODE

uξξ + cuξ + f(u) = 0, u(ξ) → 1 for ξ → −∞, u(ξ) → 0 for ξ → ∞.

Another limiting case is k ∼ 0, when the unstable periodic patterns consists of plateaus at

±1 separated by layers. A positive perturbation in the region where u ∼ −1 would cause the

layers that bound this region to the left and to the right to approach and eventually annihilate

each other, thus creating a large region where u ∼ +1. In the next step, the layers that bound

this large region would then approach their neighboring layers and merge with those (they

are attracted by these neighboring layers according to (1.4) and this force is not balanced by

a layer on the other side since this one was annihilated in the previous step), annihilating

two more intervals where u ∼ −1. It is not hard to envision how this process would repeat

periodically.

u t
x

u t
x

Figure 1.2: Spreading of two fronts in the case k = 1 (left), and annihilation of layers in the

case k ∼ 0 (right).

In both cases, the process is described by the superposition of two propagation mechanisms

toward ±∞. The following definition captures these individual propagation mechanisms.

Definition 1.1 (Coarsening Fronts) We call a solution u(x, t) to (1.1) a coarsening front,

if

u(t, x) = ucf(x− ct, kx), ucf(ξ, y) = ucf(ξ, y + 2π),

and

sup
y

|ucf(ξ, y) − uper(y; k)| → 0, for ξ → ∞ sup
y

|(ucf(ξ, y))
2 − 1| → 0, for ξ → −∞.

A slight generalization of the definition would allow for a periodic pattern uper(y; k
′) at −∞.

Although our methods give existence results also for this more general type of fronts, we

restrict to the somewhat simpler and more relevant case where ucf → +1 for the sake of

simplicity.

The following theorems give some answers to the question of existence and uniqueness of

coarsening fronts.

Theorem 2 (Existence) Coarsening fronts exist for all c > 0 and all 0 < k ≤ 1.

Theorem 3 (Uniqueness) There is cu(k) ≥ 0 such that the coarsening fronts are unique for

all c > cu(k), up to spatial and temporal translations. Moreover, cu(k) = 0 for k ∼ 1.
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The results also provide a partial answer to our question on the spreading speed of the insta-

bility: For suitable initial conditions, any speed of propagation of the stable state 1 into the

unstable periodic state is possible.

The next interesting question is to which spreading speed is most likely to be observed. A

stability analysis can give some insight into the size of the set of initial conditions which lead

to propagation with a particular speed.

Again, the answer is somewhat discouraging. Define BC 0
η as the set of continuous functions

u(x) with

‖u‖η = sup
x∈R

(1 + eηx)|u(x)| <∞. (1.5)

The following theorem states that all fast fronts are stable and the speed of the slowest stable

front is smooth in the limit of k ∼ 1, when the asymptotic patterns are small.

Theorem 4 (Stability) For each 0 < k ≤ 1 there is 0 < cmin(k) <∞ such that all coarsen-

ing fronts are asymptotically stable for all c > cmin(k) in BC0
η for some suitable η > 0. For c .

cmin(k), there exists an unstable coarsening front. Moreover, cmin(k) = 2−4(1−k)+O((1−k)2)

is smooth in k = 1, and the unique coarsening front is unstable if c < cmin(k) in this regime.

We expect the results so far to be true for much more general invasion processes, possibly

refining the notion of stability slightly. The stability result can be sharpened slightly when we

exploit comparison principles. Consider the coarsening front ucf(x− ct, t) with the asymptotic

periodic pattern uper(kx; k) in a frame moving with speed c, and linearize the evolution equa-

tion about these time-periodic solutions with period T = 2π/(ck). The linearized equations

are time-periodic parabolic equations

vt = vξξ + cvξ + f ′(ucf(ξ, t))v, (1.6)

with period map v(T, ξ) = Φc,k
cf v(0, ξ), and

vt = Lc,k
perv := vξξ + cvξ + f ′(uper(k(ξ + ct); k)v, (1.7)

with period map v(T, ξ) = Φc,k
perv(0, ξ). We will see later that the spectral properties of these

linear maps determine the nonlinear stability of the coarsening fronts.

Floquet theory [19] shows that ρ = eλT is in the spectrum of Φper if and only if there exists

an eigenfunction of the form

v(t, ξ) = eλteνξvper(k(ξ + ct)), (1.8)

where vper(y) = vper(y + 2π) and ν ∈ iR. We then say λ belongs to the Floquet spectrum of

Φper with Bloch wavenumber Im ν. A short computation shows that vper solves the eigenvalue

problem in the steady frame

λ̃v = k(∂y + ν)2v + f ′(uper(y))v, λ̃ = λ− cν. (1.9)

Writing this ODE as a first oder equation and evaluating the determinant |φ − id| with the

corresponding period map φ, we find the dispersion relation d(λ̃, ν). In other words, λ belongs
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to the essential Floquet spectrum if and only if d(λ + cν, ν) = 0 for some ν ∈ iR. For each

fixed ν, Sturm-Liouville theory asserts the existence of a sequence of eigenvalues λk(ν). In

particular, λ0(ν) corresponds to a positive eigenfunction, is simple, and Re λ0(ν) > Reλj(ν)

for all ν and all j > 0.

For all λ in a compact part of the complex plane, there are only finitely many roots ν in any

bounded part of the complex strip {0 ≤ Im ν < k}, counting multiplicities. We label the roots

(repeated by multiplicity) . . .Re ν−2(λ) ≤ Re ν−1(λ) ≤ Re ν0(λ) ≤ Re ν1(λ) ≤ Re ν2(λ) ≤ . . .,

with labeling continuous unless Re νj = Re νj+1, when we possibly exchange labels, and with

normalization Re ν−1(λ) < 0 < Re ν0(λ) for λ � 1. We define the absolute Floquet spectrum

Σabs as the set of λ such that Re ν−1 = Re ν0; see [10, 18] for a more detailed description.

Definition 1.2 (Linear spreading speed) We define the linear spreading speed as

clin(k) = inf{c; ReΣc,k
abs < 0},

where Σabs denotes the absolute Floquet spectrum of the period map Φc,k
per.

For the nonlinear equation, we use the “nonlinear eigenfunctions”, that is, periodic solutions

to the nonlinear equation in a comoving frame, to define stability. It can be shown that with

the choice of an exponential weight η according to Re ν−1(λ) < η < Re ν0(λ), the linearized

period map Φcf − eλT at a coarsening front is Fredholm of index zero for Reλ > −2, that is,

for λ to the right of the essential spectrum of the other asymptotic state u ≡ 1. We define

the extended Floquet point spectrum Σext as the set of λ for which the period map possesses a

nontrivial kernel.

Definition 1.3 (Nonlinear spreading speed) We define the nonlinear spreading speed

cnl(k) as the infimum over all speeds c for which ReΣc,k
abs < 0 and Re Σc,k

ext < 0. In case

of nonuniqueness, we require the second condition for all coarsening fronts.

The following result summarizes and slightly sharpens the previous theorems in the terminol-

ogy of linear versus nonlinear spreading speeds.

Theorem 5 At the linear spreading speed, λ = 0 is the edge of the rightmost branch of absolute

spectrum, with a positive eigenfunction: there is ν0 > 0 such that λ0(ν0) + clinν0 = 0, and

λ′0(ν0) = clin. If cnl(k) > clin(k), then λ = 0 belongs to the extended point spectrum with a

positive eigenfunction for c = cnl(k). For k ∼ 1, clin(k) = cnl(k) = 2 + 4(k − 1) + O(k − 1)2.

In particular, the invasion of patterns is slower than the invasion of the homogeneous state.

For k ∼ 0,

clin =
48π sinh(p∗)

k
e−

√
2π/k(1 + O(e−δ/k)), and ν/k → p∗/π,

where p∗ = 1.54340 . . . is the unique positive root of cosh(z) + 1 − z sinh(z), and δ > 0 is a

small constant.
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Summarizing, there are two possible instability mechanisms which characterize the minimal

spreading speed, a linear and a nonlinear one. In the linear case, the instability of the asymp-

totic periodic state changes from convective to absolute when c passes the critical speed. In

the nonlinear case, a zero eigenvalue destabilizes the front. The latter instability can be seen

as an “orbit flip”, where the asymptotics of the coarsening front to the periodic pattern change

from monotonically decreasing to monotonically increasing as the critical speed is passed. At

the critical speed, the front possesses a steeper decay. The critical speed would be determined

by the nonlinear shape of the front, and not the linearization at the leading edge. This type

of fronts has been referred to as pushed front, as opposed to the pulled front which propagates

with the linear spreading speed [23]. We shall adopt this terminology in the following. In

order to illustrate both scenarios, we describe the more intuitive picture of fronts invading

homogeneous states in the next section.

Figure 1.3 summarizes the main result in a two-parameter plot. Fronts exist in the entire

parameter plane. The regime below clin contains only unstable fronts. Fronts in the upper

part, large speed, and in the right part, k ∼ 1 and c ≥ clin are stable. The curve cnl bifurcating

from clin illustrates the only possible instability mechanism which limits our results: Fronts

would be stable above the curve cnl, but unstable below. For values of k where cnl differs from

clin, pushed fronts with a steeper decay in the leading edge determine the mode of propagation.

For k ∼ 1, we showed that clin = cnl, pushed fronts do not exist.

stable

edge unstable

clin

cnl?
unstable?

c

k

Figure 1.3: The figure shows the c − k-parameter plane. Fronts exist for 0 < k ≤ 1. Fronts

are unstable below clin. Fronts are stable in the upper part and in the right-hand part of the

remaining area. The curve cnonlin in the figure illustrates the only possible instability mechanism

in the intermediate regime.

We conclude with the results of numerical computations of clin. We solved the boundary value

problem for d(λ, ν) numerically using Matlab and followed λ′(ν) = c, λ(ν) = 0 from ν = 1,

λ = 1, and c = 1 for k = 1 to k = 0.35. The behavior appears to be linear for k > 0.6 with
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a cross-over to exponential behavior for smaller k. The resulting exponential weight gives

the exponential decay rate at the leading edge of the front with linear spreading speed. In

particular, spreading is slow at double wavelength clin(k = 0.5) = 0.0914, but almost invisible

at 2.5 times the critical wavelength clin = 0.0126 at k = 0.4. Also, the quotient ν/k, describing

the exponential decay exponent per period of the underlying pattern converges to 0.4913 as

predicted. We will see in the proof that the behavior of ν/k is quite universal.

(a) clin(k) (b) νlin(k) (c) νlin(k)/k
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Figure 1.4: Numerically computed linear spreading speeds clin in comparison with theoretical

prediction for k ∼ 1 (dotted) and k ∼ 0 (dashed), (a), and exponential decay rates, ν, at the

edge as a function of the wave number k of the invaded pattern. The right figure (c) shows ν/k

as a function of ν, which converge to p∗/π ∼ 0.4913.

At k = 0.37, we found relative differences between the asymptotic expressions and the actual

computation of clin and ν/k of the order 10−3.

2 Front propagation — a short review

In this section, we illustrate the theorems in the simple case when k = 1 and uper(y) ≡ 1.

In order to exemplify the problems in the stability consideration, we consider the slightly

more general nonlinearity f(u) = u(1 − u2) + εu2, with 0 < ε. The equation for modulated

fronts can in this case be reduced by considering only y-independent solutions, which solve

the traveling-wave equation

uξ = v, vξ = −cv − f(u). (2.1)

Elementary phase plane analysis shows existence of fronts connecting u = 1 to u = 0 for all

c > 0, ε = 0. Close to u = 0, the fronts are monotone if c2/4 ≥ f ′(0) ≥ 0 or c ≥ 2. For smaller

values of c, the two eigenvalues of the linearization at u = 0 become complex.

The value of c = 2 is actually the linear spreading speed. The dispersion relation is

d(λ̃, ν) = λ̃− ν2 + f ′(0).

The absolute spectrum, where roots ν1,2 of d(λ+ cν, ν) possess equal real part is given by

Σabs = {λ < f ′(0) − c2/4}.

In particular, λ = 0 lies at the edge of the absolute spectrum precisely for the linear spreading

speed.
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It is not difficult to see that the critical point spectrum in the space BC 0
η coincides with the

point spectrum in an L2-space with exponential weight e−ηξ for η = c/2. In this exponentially

weighted space, the linearized operator

Ltww = wξξ + cwξ + f ′(utw(ξ))w

becomes self-adjoint, conjugate to

Lc/2
tw w = wξξ + [f ′(utw(ξ) − c2

4
]w,

with real spectrum.

For large c, singular perturbation theory shows that there are no unstable eigenvalues. Indeed,

the linearized equation decouples into a trivial linear slow-fast system, excluding bounded

solutions in the exponentially weighted norm.

We may then homotope in c and track zero eigenvalues. The crucial point is that eigenfunc-

tions to the zero eigenvalue correspond to solutions of the linearized traveling-wave ODE. In

particular, λ = 0 belongs to the spectrum if, and only if utw decays to zero with rate eν2ξ,

where |ν2| > |ν1|, and the νj solve ν2 + cν + f ′(0) = 0. As a consequence, fronts are stable if

and only if they are monotonically decaying and positive.

In our case, ε = 0, this monotonicity property is a consequence of [1, 13]. For ε > 1/
√

2, there

exists a unique front with the stronger exponential decay, explicitly given by uξ = 1√
2
u2 +βu,

β2 + cβ = −1,
√

2ε+ c+ 3β = 0, so

c =
1

2
√

2
(−ε+ 3

√

4 + ε2), β =
1

2
√

2
(−ε−

√

4 + ε2).

All fronts with speed c < cnl possess a single unstable real eigenvalue in the extended point

spectrum and therefore in all exponentially weighted spaces that stabilize the essential spec-

trum, in particular in BC0
c/2.

We summarize these gatherings in the following proposition.

Proposition 2.1 [13] Suppose ε ≤ 1/
√

2. Then Re Σpt(Ltw) < 0 for all c ≥ 2. In particular,

clin = cnl.

Suppose ε > 1/
√

2, next. Then cnl > clin, that is ReΣpt(Ltw) < 0 for c > cnl and there is

0 < λ ∈ ΣptLtw for c < cnl.

Although there does not seem to be a rigorous proof in the literature, initial conditions with

compact support actually approach two fronts with c = ±cnl, propagating towards ±∞.

Figure 2.1 summarizes these stability results in the ε− c-parameter plane. Fronts exist in the

entire parameter plane. The left boundary, ε = 0, coincides with the right boundary, k = 1,

of Figure 1.3. The region below the curve clin contains fronts which are unstable due to an

absolute instability at the leading edge. Fronts above clin but below cnl are unstable due to

a real unstable eigenvalue. The eigenfunction to this eigenvalue has a steeper decay than the
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c

ε
clin

cnl

edge unstable

unstablestable

2

1/
√

2

Figure 2.1: The figure shows the ε − c-parameter plane. Fronts exist for all ε, c. Fronts are

unstable below clin. Fronts are stable in the upper left part. Fronts are unstable below the curve

cnl, which bifurcates from clin ≡ 2 at ε = 1/
√

2.

front so that the instability manifests itself in a front splitting, where the steeper, pushed front

with c = cnl is the one that is ultimately observed.

Intuitively, instability of fronts with clin < c < cnl can be understood as follows. For large ε,

the origin u = 0 and the unique negative equilibrium are very close. In a rescaled version, they

merge in a saddle-node bifurcation at ε = ∞. The linear instability of the origin therefore is

very weak and the linear spreading speed quite small. On the other hand, there does exist

a front connecting the positive stable state to the metastable negative state, with a speed of

propagation bounded away from zero uniformly in ε large. Slow fronts connecting the positive

stable state and the unstable zero state can therefore be overtaken by a faster mechanism,

mimicking the competition between the stable and the metastable state.

Our results, ε = 0, 0 < k < 1, parallel this ODE scenario, with the wavenumber k playing

the role of the parameter ε. In particular, Figure 1.3 on existence and stability of modulated

waves resembles the results on traveling waves, Figure 2.1. The main open question is to

whether there is a curve cnl bifurcating from clin in Figure 1.3. The intuitive reason for the

existence of such a curve does not immediately carry over. However, for k ∼ 0, the unstable

periodic pattern does indeed resemble a metastable pattern of interacting layers, so that a

pushed mode of propagation, different from the purely linear spread of the instability might

well govern the spread of coarsening.

3 Modulated fronts

3.1 Modulated front equation and regularity

We look for coarsening front solutions of the Allen-Cahn equation according to Definition 1.1.

Coarsening fronts solve a modulated traveling-wave equation

(∂ξ + k∂y)
2u+ c∂ξu+ f(u) = 0, u(ξ, y) = u(ξ, y + 2π).

In analogy to the traveling-wave equation from Section 2, we consider this system as an—now

ill-posed—dynamical system in the spatial ξ-variable. The idea of considering time-periodic

parabolic problems on an unbounded domain as dynamical systems in the spatial direction

goes back to [15], who built upon methods introduced by Kirchgässner [16] to find small
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solutions via center-manifold reduction. Our approach here is closer to [11] since we need to

consider solutions of not necessarily small amplitude.

We first rewrite the modulated traveling-wave equation as a first-order system in the ξ-variable.

uξ = k∂yu+ v

vξ = k∂yv + ω∂yu− cv − f(u). (3.1)

Coarsening fronts u need to satisfy certain boundary condition at ξ = ±∞,

(u, v)(ξ, ·) − (1, 0) → 0 for ξ → −∞
(u, v)(ξ, ·) − (uper(y), 0) → 0 for ξ → ∞. (3.2)

Solving (3.1) on (ξ, y) ∈ R× S1 is equivalent to solving in corotating coordinates, replacing y

by σ = y + kξ. More, precisely, if we set (u, v)(ξ, y) = (ũ, ṽ)(ξ, y + kξ), we find

ũξ = ṽ

ṽξ = ω∂σũ+ cṽ − f(ũ). (3.3)

We consider (3.3) as an (ill-posed) evolution equation on Yp = H1/2,p(S1) × Lp(S1). The

domain of the linear part of the right hand side as an unbounded operator on y is Y 1
p =

H1,p(S1) × H1/2,p(S1). Here, H1,p(S1) and H1/2,p(S1) are defined as the domains of the

operators |∂x| and |∂x|1/2. We omit the index p whenever p = 2.

The linear equation

ũξ = ṽ

ṽξ = ω∂σũ− cṽ + ũ, (3.4)

or, short, ũξ − Aũ = 0, possesses an exponential dichotomy. In particular, the operator

A = d
dξ −A is invertible with

A−1 : Y = L2(R, Yp) → H1(R, Yp) ∩ L2(R, Y 1
p ).

Similar results hold on scales of Sobolev spaces.

Lemma 3.1 (Local regularity) Suppose ũ ∈ L2(I, Yp) for some subinterval I ⊆ R is a

solution of (3.3), that is ũ ∈ H1(I, Yp) ∩ L2(I, Y 1
p ) and (3.3) is satisfied. Then there is an

I-independent constant C such that

|ũ|H1(I,Yp)∩L2(I,Y 1
p ) ≤ C|ũ|L2(I,Yp).

Proof. We first extend the solution with a smooth cut-off function to a function on ξ ∈ R

which vanishes for large x 6∈ I. The extended function ũ satisfies

ũξ = Aũ+ h(ξ),

with |h(ξ)|L2(I,Yp) ≤ C̃|ũ|L2(I,Yp). We then use the resolvent estimate for A to conclude the

proof of the lemma.
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From the proof, it is clear that a simple bootstrap argument actually gives bounds in arbitrarily

high Sobolev spaces. In particular, the uniform bounds carry over to uniform bounds in L2-

based Sobolev spaces for (3.1).

A more tractable approximation to (3.3) is the Galerkin approximation

ũξ = ṽ

ṽξ = ω∂σũ− cṽ − Pmf(ũ). (3.5)

Here, Pm is the L2-orthogonal projection onto the Fourier modes ei`y, |`| ≤ m. The projection

Pm induces uniformly bounded projections on Yp and Y 1
p , which we denote by Pm. The

equation decouples into a skew-product on ImPm and Im (1 −Pm),

ũ0
ξ = Aũ0 + PmF (ũ0 + ũm),

ũm
ξ = Aũm. (3.6)

Note that the second equation is explicitly solvable by Fourier decomposition. A trivial calcu-

lation shows that it does not possess any bounded solutions. The first equation is a 2m + 1-

dimensional ODE. Note that the family of operators PmF : Yp → Yp is continuous in the

space of smooth functions with respect to m at m = ∞, when restricted to an arbitrary fixed

bounded subsets of Y , since f(u) induces a compact operator from H 1/2,p to Lp.

3.2 A priori estimates

We consider norms of solutions in the spaces Yp,a and Y1
p,a, with norms

|u|Yp,a := sup
ξ0

{|u(· + ξ0)|L2((−1,1),Yp)},

and

|u|Y1
p,a

:= sup
ξ0

{|u(· + ξ0)|L2((−1,1),Y 1
p ) + |u(· + ξ0)|H1((−1,1),Yp)}.

Again, we omit the index p when p = 2.

Definition 3.2 (Attractor) We define the attractor Ak,c
m of (3.5) as

Ak,c
m = {ũ(0, ·); ũ(ξ, ·), ξ ∈ R is a solution to (3.5) and |ũ|Ya <∞}.

Whenever it is clear from the context, we will omit the superscripts c, k.

Proposition 3.3 The union of the attractors is a compact set in Y . More precisely, there is

m0 > 0 such that
⋃

m0<m≤∞
Am ⊂⊂ Y

and bounded in Y 1.
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Proof. First notice that solutions in the attractors are smooth by local regularity.

Consider the function H4(ξ), defined through

H4(ξ) :=
1

4

∫

S1

u3(σ)u(σ)dσ =
1

4
(u3, u),

with (·, ·) the scalar product in L2. The function H4 is smooth in ξ and bounded on each

solution in the attractor. We compute the derivatives

d

dξ
H(ξ) = (u3, v),

and
d2

dξ2
H(ξ) = ((3u2v, v) + (u3, ωuσ) − (u3, Pmf(u)) − c(u3, v).

The second term (u3, uσ) vanishes such that we find

Hξξ − cHξ = ((3u2)v, v) − (u3, Pmf(u)).

The first term on the right hand side is positive and the second term can be rewritten

(u3, Pmf(u)) = (u3, u) − (Pmu
3, Pmu

3) = 4H(ξ) − |Pmu
3|2L2 .

Since u = Pmu,
∫

u4 =

∫

u3u =

∫

Pmu
3Pmu ≤ |Pmu

3|L4/3 |u|L4 ,

and we have

|Pmu
3|L4/3 ≥ |u|3L4 . (3.7)

Now, by Hölder’s inequality and (3.7)

|Pmu
3|2L2 ≥ c|Pmu

3|2L4/3 ≥ c|u|6L4 = cH(ξ)3/2.

Therefore,

Hξξ − cHξ ≥ −4H + cH3/2,

such that H ≤ 16/c2. This yields an a priori bound on f(u) in L4/3 and after a simple boot

strap the desired a priori bounds. Indeed, we find that ũ solves an equation

ũξ = Aũ+ h(ξ),

with |h|Yp,a ≤ M ′, with M ′ independent of m and the solution u with p = 4/3. This gives

uniform bounds on ũ(ξ) and therefore the attractors in Yp and Y 1
p . By the embedding Y 1

p →
Y∞, we have |h|Y2,a ≤M ′ such that we can conclude the a priori bounds in Y and Y 1.

It remains to show closedness. This can be easily established from convergence of subsequences

of solutions ũ`(ξ) in finite intervals ξ ∈ (−`, `), after exploiting compactness of the closure and

passing to a diagonal sequence. Regularity shows that the limiting function on ξ ∈ R is again

a solution.

13



Proposition 3.4 The map ϕm(ξ) : ũ(0) 7→ ũ(ξ) defines a flow on Am, which is continuous

jointly in m and ũ(0).

Proof. For m < ∞ solutions in the attractor are solutions to a smooth ODE and nothing

needs to be proved. For m = ∞, the flow is well-defined since the Cauchy problem possesses

unique solutions; see [5, 19]. Compactness together with uniqueness ensures continuity at m =

∞: suppose u`(0) → u(0) but u`(ξ) 6→ u(ξ) for some ξ. Then, by compactness u`(ξ) → ũ(ξ),

which after extracting a diagonal sequence we may assume to be a solution in the attractor,

passing through u(0), but different from the solution u(ξ), thus contradicting uniqueness.

Continuity in m at m = ∞ states that the limits of the Galerkin approximation converge to

(unique) solutions, which again is an easy consequence of compactness and uniqueness.

3.3 A Lyapunov function

Consider

V (u, v) =
1

2
(v, v) + k(v, uσ) + (PmF (u), 1), (3.8)

Here, (·, ·) again denotes the L2(0, 2π)-scalar product and F (u) = 1
2u

2 − 1
4u

4.

The function V is smooth on Y 1, in particular on the attractors Am, and therefore is smooth

as a function of ξ when (u, v) are solutions.

Proposition 3.5 The function V is a strict Lyapunov function on Am, that is,

d

dξ
V (u(ξ), v(ξ)) = −c|v + kuσ|2L2 ≤ 0.

Proof. We compute

d

dξ
V = (v, ωuσ − cv − Pmf) + k(ωuσ − cv − Pmf, uσ) + k(v, vσ) + (Pmf, v)

= ω(uσ, v) − ck(uσ, v) − c(v, v) + ωk(uσ, uσ)

= −c|v + kuσ|2 ≤ 0,

where we used ωk = c, and (Pmf, uσ) = 0, and (v, vσ) = 0.

Note that on the set of relative equilibria, v = −kuσ, V coincides with the negative energy for

the parabolic flow,

V (u,−kuσ) = −[
1

2
(uσ, uσ) − (PmF (u), 1)].

We denote by Em the set of relative equilibria, where v ≡ −kuσ, that is, uξ + kuσ = 0 or

u = u(σ − kξ) = u(y), independent of time t in the steady frame.

Corollary 3.6 Solutions in the attractor are (relative) equilibria or heteroclinic orbits for m

sufficiently large. More precisely, let u ∈ Am. Then either u ∈ Em, or dist (u(ξ), u±(·) → 0

for some orbit u±(·) ∈ Em.
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Proof. Since V is constant on the connected ω-limit set, we conclude that Vξ = 0 and the

ω-limit set consists of a single equilibrium (actually a single circle). Here, we use that the set

of equilibria consists of a finite number of circles, a fact that we shall prove in Section 4.1,

below.

For finite m, solutions still converge to the set of equilibria Em, but not necessarily towards a

single equilibrium.

4 Existence of modulated fronts for all c > 0

4.1 Equilibria and bifurcation diagram

In order to establish existence of heteroclinic orbits, we start by analyzing the set of equilibria

E . As already pointed out, equilibria are precisely the stationary periodic solutions u(y). In

particular, the bifurcation diagram is given by Figure 1.1. Since all bifurcations are nondegen-

erate, supercritical, any compact part of the bifurcation diagram is robust under the Galerkin

approximation Pm. For finite m, we may actually compute the unstable dimension of the

equilibria inside ImPm.

Definition 4.1 (Morse indices) We define the Morse index iM of a relative equilibrium as

the number of Floquet exponents ν to the linearization, counted with multiplicity, which have

0 ≤ Im ν < k and Re ν > 0. We define the relative Morse index i = iM −m.

Lemma 4.2 The relative Morse indices are independent of m for m sufficiently large and

coincide with the negative Morse indices for the parabolic flow ut = k2uyy + f(u).

Proof. Floquet exponents ν solve the characteristic boundary-value problem

M(ν)w =
[

(ν + k∂y)
2 + cν + Pmf

′(u∗(y))
]

w = 0, w ∈ H2
per(0, 2π). (4.1)

For u∗(y) ≡ a, constant, the roots can be computed explicitly from

(ν + ik`)2 + cν + a = 0,

where ` denotes the subspace spanned by ei`y, left invariant by the linearization. We denote

the two solutions in this subspace by ν±` . In the case of a = −2, the equilibria u ≡ ±1, all

ν±` have opposite real part, such that i = 0. In the case a = 1, all roots ν±` with |`| ≥ 1 have

opposite real parts, and ν±0 < 0, such that i = 1.

This proves the lemma for k = 1. The conclusion of the lemma for k ≥ 1 follows from the

bifurcation diagram if we can prove that the multiplicity of the zero eigenvalue coincides with

the multiplicity in the parabolic problem since imaginary eigenvalues are excluded by the

variational structure.

First note, that computing the kernel of M(0) is equivalent to computing the kernel of the

parabolic problem. Therefore, geometric multiplicities coincide for ν = 0. In order to compute
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algebraic multiplicities, let w0 belong to the kernel. A generalized eigenvector has to solve

M(0)w1 = M′(0)w0, or

k2w′′
1 + Pmf

′w1 = 2kw′
0 − cw0.

However the right-hand side does not belong to the image of the left-hand side, since the

scalar product with the element of the kernel w0 gives c|w0|2L2 6= 0. Therefore, algebraic and

geometric multiplicities coincide, and we have proved the proposition.

4.2 Modulated waves for the Galerkin approximation

For finitem, the modulated wave equation can be viewed as a gradient-like ODE. The following

theorem gives complete information about the connecting orbit structure in the attractor.

Theorem 6 Fix kmin > 0. Then there exists m0 = m0(kmin) < ∞ such that for all m > m0

and for all equilibria u± there exists a heteroclinic orbit of (3.5) connecting u+ to u− provided

i(u−) > i(u+).

Proof. We use the Conley index to establish the existence of heteroclinic orbits between any

two given equilibria; see [6, 9, 11]. Since all Morse indices coincide with the Morse indices of

the parabolic problem up to a constant shift (and flow reversal), the attractor in the modulated

wave-equation is, on the level of Conley homology, anm-dimensional unstable suspension of the

attractor in the parabolic Allen-Cahn problem with periodic boundary condition. Existence

of heteroclinic orbits there is a consequence of S1-equivariance and reflection u 7→ −u, both of

which are present in the modulated traveling wave equation as well; see [9] for more details on

the connection graph in the Allen-Cahn equation. The fact that we consider periodic instead

of Neumann boundary conditions, here, does not alter the connection graph, since isolating

blocks and exit sets can be constructed as direct products over the action of the circle group

and the Conley index, as the homotopy type of the quotient, is the same as in the case of

Neumann boundary conditions with half the period. This shows existence of heteroclinic orbits

as claimed.

4.3 Modulated waves for the full problem

In this section, we conclude the proof of Theorem 2. We fix a periodic pattern u−(y) with

period 2π/k, and we fix a wave-speed c > 0. We set ω = ck and consider the modulated

traveling-wave equation with these parameters. Since the periodic pattern has minimal period

with the given parameters, the Morse index is precisely 1. In particular, for each m, there

exists a heteroclinic orbit um(ξ) connecting the periodic pattern with u+ = 1. Also, note

that for all m sufficiently large, there are no other equilibria u∗ with values of the Lyapunov

function between u+ and u−.

By compactness of the attractors we can assume that um(ξ) converges in L2
a((−M,M), Y ) for

any M > 0. By local regularity, this implies that the limiting function u(ξ) is a trajectory
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in A. By continuity of the Lyapunov function, the values of V span the interval between the

values of V on u− and u+. Therefore, the limiting function does not belong to the set of

equilibria. The only other possibility is a heteroclinic orbit, which then has to connect u+

and u− as claimed, since there are no other equilibria with values of the Lyapunov function

between u+ and u−.

Remark 4.3 We emphasize that our connecting orbit picture in the Galerkin approximation

is much more complete. We suspect that one can prove the existence of all the connections from

the Galerkin approximation in the full problem by suitably defining a (renormalized) Floer-type

homology for the full problem.

5 Fast waves

We consider the modulated traveling-wave equation in a corotating frame (3.1)

uξ = k∂yu+ v

vξ = k∂yv + ω∂yu+ cv − f(u), (5.1)

with c = ω/k = 1/ε large, and k = O(1). Note that, for convenience, we reversed the sign of

c, here. In an abstract notation, this reads

uξ = Au+ f̃(u), A =

(

k∂y id

ω∂y + 1 k∂y + c

)

, f̃ =

(

0

f − 1

)

. (5.2)

We consider this equation as an evolution equation onD(A) = Y 2 = H3/2(S1)×H1/2(S1) ⊂ Y .

Corollary 5.1 The attractor of (5.2), defined as the initial values u of bounded solutions

u(ξ), is closed in Y 2 and compact in Y .

On a formal level, we may easily pass to a slow limit in (5.1): the second equation, with ω = ck

and c = 1/ε, gives a compatibility condition v = −k∂yu+ ε(f(u) − k∂yv), and therefore,

v = −k∂yu+ ε(f(u) + k2∂yyu) + O(ε2).

Substituting this result into the first equation gives

uξ = ε(k2∂σσu+ f(u)), (5.3)

up to order ε2. We rescale ζ = εξ and let Φ0
ζ denote the flow to the formal limiting equation.

The formal analysis above suggests rescaling space ξ also in (5.1),

uζ =
1

ε
(k∂yu+ v)

vζ =
1

ε
(k∂yv − f(u) +

1

ε2
(k∂yu+ v)), (5.4)
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or, in the abstract setting,

uζ =
1

ε
(Au+ f̃(u)). (5.5)

The following theorem makes the formal computation above rigorous in the sense of geometric

singular perturbation theory; [8, 22, 2].

Theorem 7 There exists a smooth function Ψ : H3/2 × (0, ε0) → H1/2 such that the graph

M = {v = Ψ(u; ε), |u| ≤ R} is an inertial manifold for the dynamics of (5.2). More precisely,

• M is maximal: every bounded solution of (5.2) with ξ ∈ R
+ is contained in M; in

particular, M contains the attractor;

• there is a local flow Φζ on M whose trajectories solve (5.2);

• M and the flow Φ are smooth in ε > 0.

• |Φε
1(·) − Φ0

1(·)|1C → 0 for ε→ 0, uniformly in |u| ≤ R.

Proof. The proof closely follows [22], and we restrict here to pointing out the necessary

modifications. We start with a change of coordinates that diagonalizes the linear part A. We

therefore note that A leaves the Fourier subspaces spanned by ei`σ invariant, and define the

change of coordinates in each of these subspaces separately. Therefore set

Λ`
± = ik`+

1

2ε
(1 ±

√
1 + 4ik`ε),

L` = −k2`2,

B` =
√

1 + 4ik`ε. (5.6)

The above equations define closed operators Λ± and B on L2. We now introduce the new

variables w± via

w± = εB−1(v − Λ∓u), w+ + w− = u, Λ+w+ + Λ−w− = v. (5.7)

The change of coordinates is a bounded operator from (u, v) ∈ H 1/2 × L2 into H1/2 ×H1/2.

In the new coordinates, the equation becomes

d

dζ
w± =

1

ε
Λ±w± ±B−1f(w+ + w−). (5.8)

Solutions which are bounded in forward time ζ > 0 satisfy the following mild formulation

w−(ζ) = eΛ−ζ/εw0
− +

∫ ζ

0
eΛ−(ζ−ζ′)/εB−1f(w+(ζ ′) + w−(ζ ′))dζ ′

w+(ζ) =

∫ ζ

∞
eΛ+(ζ−ζ′)/εB−1f(w+(ζ ′) + w−(ζ ′))dζ ′.

With the elementary representation in the Fourier spaces, we can obtain estimates

|eΛ−ζ/ε| ≤ C−, ζ > 0

|eΛ+ζ/ε| ≤ C+eζ/ε2

, ζ < 0, (5.9)
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where norms are taken as operator norms on H1/2 or L2, equivalently. We may cut off the

nonlinearity outside of the attractor to achieve a global Lipschitz bound for f . Exploiting

the spectral gap between Λ− and Λ+, reflected in the estimates (5.9), a standard fixed point

argument now shows the existence and smoothness of an invariant manifold with smooth flow.

The manifold is given as a graph w+ = ψ(w−) with ψ = O(ε2); see [22] for details in a very

similar situation.

We address convergence of the flow on the manifold as ε→ 0, next.

Since w+ = O(ε2), it is sufficient to compare the solutions to the two fixed point equations

w−(ζ) = eΛ−ζ/εw0
− +

∫ ζ

0
eΛ−(ζ−ζ′)/εB−1f((id + ψ)(w−(ζ ′)))dζ ′,

and

u(ζ) = eLζu0 +

∫ ζ

0
eL(ζ−ζ′)f(u(ζ ′))dζ ′,

where L = k2∂σσ . The crucial estimates needed in the sequel are for the convergence of the

semigroups. In the individual Fourier components, it is straightforward to obtain

|eΛ`
+

ζ/ε − eL`ζ | ≤ Ce−
√

`,

|eΛ`
+

ζ/ε − eL`ζ | ≤ Ce−
√

`|cΛ`
+ − L`|ζ|

≤ Ce−
√

` min{`2, ε`3}.

Interpolation then gives

|eΛ`
+

ζ/ε − eL`ζ | ≤ Ce(−
√

`+δ1)ζεδ2ζ−δ3 ,

with δ1, δ3 arbitrarily small and δ2 > 0. The second main estimate is the convergence of B−1

to the identity, which we measure in combination with the smoothing of the semigroup:

|eL`ζ(id −B−1
` )| ≤ Ce−`2ξε`.

Putting these estimates together, it is straightforward to conclude convergence of the fixed

points at any fixed positive time ζ > 0; see again [22] for more details in a similar setting.

From the convergence of the flows and a priori bounds on the attractors, we can conclude

that the structurally stable heteroclinic orbits in the Chafe-Infante attractor persist for finite

ε > 0. This shows uniqueness of the coarsening fronts for large speed c as claimed in the first

part of Theorem 3.

6 Small amplitude patterns ahead k ∼ 1

We study in somewhat closer detail the case of small amplitude patterns, in particular since

it allows for the most comprehensive stability analysis.
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Consider the equation

uξ = v

vξ = ω∂τu− cv − f(u). (6.1)

Recall the action of the circle group S1

Tθu(·) = u(· − θ), u(τ) = (u(τ), v(τ)),

which maps solutions of (6.1) into solutions.

The fixed point space to this group action consists of time τ -independent functions and the

ξ-dynamics are given by the traveling-wave ODE

uξ = v

vξ = −cv − f(u), (6.2)

with unique heteroclinic orbits u(ξ) → (0, 0) for ξ → ∞ and u(ξ) → (1, 0) for ξ → −∞, for all

c > 0. For c ≥ 2, the fronts are monotone u′(ξ) < 0, and

lim
ξ→∞

u(ξ)e−νξ > 0, for c > 2, ν =
1

2
(−c+

√

c2 − 4),

lim
ξ→∞

u(ξ)eξ = ∞, for c = 2.

In the next step, we study the vicinity of u = v = 0 and u = 1, v = 0 in the full phase space.

The linearization at u = 1 is

uξ = v, vξ = ω∂τu− cv + 2u,

with eigenvalues solving ν2 = ωi`− cν + 2, ` ∈ Z. In particular, all eigenvalues have nonzero

real part for all c ≥ 0, and we conclude that the relative Morse index is zero; see [19, 10] for

the definition of the relative Fredholm index.

The analysis in the following has been outlined already in [20], and we repeat the main

arguments here for the sake of completeness. The heteroclinic bifurcation picture in the full

phase space is depicted in Figure 6.1. The eigenvalues of the linearization at the equilibrium

u = 0 solve ν2 = ωi`− cν − 1. In particular, ν = iγ is an eigenvalue if and only if γ2 = 1 and

cγ = ω`. We choose ω ∼ c and see that a simple pair of eigenvalues crosses the imaginary axis

at ω = c, in the ` = 1 subspace. As ω crosses the (fixed) value ω = c, a periodic orbit bifurcates

towards ω < c (which corresponds to k < 1, the region of existence), which is unstable inside

the local center-manifold (since a direct computation shows that the equilibrium is stable

inside the center-manifold for k < 1). The relative Morse index of the origin is −1 for k > 1

and +1 for k < 1.

In a neighborhood of the heteroclinic orbit in FixS1, we can construct the unstable W u

manifold of u = 1 and the strong stable manifold of the origin u = 0, W ss(0). We claim

that at the bifurcation, W u(1) intersects W ss(0) transversely. From the consideration of

relative Morse indices, this claim is true if the derivative of the front solution is the only
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v
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v

Figure 6.1: Heteroclinic connection, stable, and unstable manifolds, before (left, k > 1) and af-

ter (right, k < 1) bifurcation. The ODE traveling-wave subspace is flow-invariant, horizontal.

In the direction perpendicular to this subspace, the right equilibrium undergoes a Hopf bifur-

cation, here sketched as a pitchfork. The pink connection in the full space Y is the modulated

wave for k < 1,bifurcating from the pure traveling wave, the black connection.

bounded solution to the linearized equation. However, any solution to the linearized equation

in a subspace ` 6= 0 yields a purely imaginary eigenvalue to the linearization of the primary

front solution in an L2-space with exponential weight e−cξ/2, which is impossible since the

linearization at the primary front is self-adjoint in this weighted space.

Next, since the center-manifold is continuously fibered, the strong stable manifold of the

bifurcating periodic orbit is close to the strong stable manifold of the origin in a smooth

topology, and therefore intersects W u(1) transversely as well. The intersection between these

two manifolds yields the desired coarsening front. Uniqueness follows from transversality and

a priori bounds on the coarsening fronts.

7 Stability of coarsening fronts

In this section, we study stability of coarsening fronts. Since the asymptotic periodic pattern

is always unstable, coarsening fronts are linearly (and nonlinearly) unstable in any uniform,

translation-invariant norm. A standard way to overcome this problem and to single out a

stable invasion process is to use exponential weights.

This section is organized as follows. We first recall the general framework for the study of

spectral properties in Section 7.1. We then give some background on absolute and extended

point spectra in Section 7.2. In Section 7.3, we characterize essential and absolute spectra at

the periodic patterns in comoving frames and exponential weights. The results are used in

Section 7.4 to prove the results on linear spreading speeds in Theorem 5. We then analyze

extended point spectra for fast waves and for small amplitude pattern invasion in Sections

7.5 and 7.6. We conclude in Section 7.7 with the proof of the results on nonlinear spreading

speeds from Theorem 5.

7.1 The eigenvalue problem

We are interested in the spectrum Σ of the period map Φ̃T of the linearization at a coarsening

front

ut = uξξ + cuξ + f ′(u∗(ξ, ωt))u, (7.1)
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where T = 2π/ω, and ω = ck. We say ρ belongs to the essential spectrum Σess if ΦT is not

Fredholm with index 0. We say ρ belongs to the point spectrum if ΦT is Fredholm with index

0 but not invertible, Σpt := Σ \ Σess. In [19], we showed that Fredholm properties can be

characterized in terms of an appropriate spatial dynamics formulation. Consider therefore the

Floquet Ansatz in the linearized modulated wave equation

uξ = v

vξ = ωuτ − cv − f ′(u∗)u+ λu, (7.2)

with u∗ given by the coarsening front u∗ = ucf(ξ, ωt). We showed that ΦT − eλT is Fredholm

if and only if (7.2) possesses exponential dichotomies on both R+ and on R−, and ΦT − eλT is

invertible if and only if (7.2) possesses an exponential dichotomy on R. Moreover, the Fredholm

index is given by the difference of the relative Morse indices of the dichotomies: i = i− − i+,

where the relative Morse indices can be computed as the Fredholm index of the projection

of the unstable subspace of the dichotomy on the unstable subspace of a reference equation

where λ � 1 with the reference projection. Since the existence of exponential dichotomies

is determined by the asymptotic equations alone, that is, with u∗ replaced by uper or 1,

respectively in (7.2), we recover a version of Weyl’s theorem which asserts that the essential

spectrum is determined by the asymptotic behavior of the potential. More specifically, the

Fredholm index of ΦT − eλT jumps on the Fredholm borders, where the asymptotic problems

possess spatially bounded solutions; see also the review [10] for more background on Fredholm

properties versus dichotomies.

7.2 Exponential weights, absolute spectra, and extended point spectra

Since u ≡ 1 is stable, all Fredholm borders associated with this state are in the left half

plane and will not be relevant to us. Fredholm borders associated with the periodic solution

uper(k(ξ − ct)) correspond to purely imaginary Floquet exponents, that is, to solutions of

(7.2), with u∗ = uper(kx), of the form eνξu0(ξ− ct), where u0 is 2π/k-periodic in ξ and ν ∈ iR.

Substituting this Ansatz into (7.2) and passing back to a steady frame shows that u0 solves

(λ+ cν)u0 = (
d

dx
+ ν)2u0 + f ′(uper(kx))u0,

with periodic boundary conditions. Denote by Ψλ the period map to the first-order system

u′ = v, v′ = (λ̃− f ′(uper(kx)))u,

and let

d0(λ̃, ν) = det (Ψλ̃ − e2πν/k). (7.3)

Then λ belongs to a Fredholm border if

0 = dco(λ, ν) := d0(λ− cν, ν).

We will exploit this relation of the spectral properties in steady and comoving frames further

in Section 7.3, below.
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Since all periodic patterns are unstable, d(λ, iγ) vanishes for some γ ∈ R and Re λ > 0, which

implies unstable essential spectrum in the comoving frame from (7.3), λco(iγ) = λ(iγ) + ciγ.

Still, fronts may be stable with respect to spatially localized perturbations. There are two

concepts that serve to characterize this notion of “local” stability. First, one can try to

choose exponential weights in an appropriate fashion so that the spectrum is “most” stabilized.

Second, one might consider only finite but large domains (which would of course have to move

with the front to make it a permanent structure). In [18], we showed that both concepts of

stability are quite similar: spectra in bounded domains converge to a limiting spectrum. The

absolute spectrum Σabs describes the continuous part of this limiting spectrum, and can at

the same time be characterized by an “optimal” choice of exponential weights. The extended

point spectrum Σext is the discrete part of the limiting spectrum which is independent of the

boundary conditions; again, see [18, 10] for more information.

In the following, we summarize the characterization of absolute and extended point spectra

that we need for our purpose. In exponentially weighted spaces

|u|2L2
η

=

∫ ∞

0
|u(ξ)|2 +

∫ 0

−∞
|e−ηξu(ξ)|2,

Fredholm borders shift to d(λ, ν) = 0 with Re ν = η. In spatial dynamics, this corresponds

to an exponential dichotomy “relative” to the weight η, that is, a splitting into subspaces

with decay stronger than e(η−δ)ξ for increasing ξ and decay stronger than e(η+δ)ξ in backward

direction, for some positive δ. The main characterization in [18] (see also [19] and [10] for the

case of a modulated wave equation) describes the absolute spectrum as the set of λ such that

(7.2) does not possess an exponential dichotomy with relative Morse index zero relative to

any weight η. In particular, outside of the absolute spectrum, the spatial Floquet exponents

can be divided into two sets ν+
j and ν−j with Re ν−j < η < Re ν+

j , where ν±j , j ∈ N and η

depend on λ. For λ ∈ Σabs, Re ν−0 = Re ν+
0 , and a splitting of the exponents by real parts is

not possible (preserving the relative numbers in the two sets).

Extended point spectra can now be easily characterized. For λ 6∈ Σabs, there exists, by

definition, an exponential dichotomy on R− and on R+ relative to η. We say that λ ∈ Σext if

there does not exist an exponential dichotomy relative to the weight η on R. It is not difficult

to see that the characterization of the extended point spectrum does not depend on the weight

η.

We therefore concentrate on the description of the absolute spectrum of the periodic patterns

as a first, necessary stability criterion in the next section.

7.3 Linear spreading speeds — the absolute spectrum

7.3.1 The steady frame

Consider the linearization

wt = wxx + f ′(uper(kx; k))w = Lperw, (7.4)

at a periodic pattern uper(kx; k), 0 < k < 1.
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We define the Bloch wave conjugate operator

Lper
γ w := (∂x + iγ)2w + f ′(uper(kx; k))w, (7.5)

as a closed and densely defined operator on L2 with 2π/k-periodic boundary conditions. The

spectrum of Lper can now be described by means of these conjugate operators [7, §XIII.16].

Proposition 7.1 The spectrum of Lper on L2(R) is given by the union of the spectra of Lper
γ

on L2
per with γ ∈ [0, k).

A simple way to express the spectrum of Lper is the ODE

ux = v, vx = −f ′(uper(kx; k))u + λu,

with period map Φλ. Define

d0(λ, ν) = det (Φλ − e2πν/k),

such that d0(λ, ν) = 0 if and only if ν is a Floquet exponent of Φλ.

Corollary 7.2

λ ∈ specL ⇐⇒ d0(λ, iγ) = 0 for some γ ∈ [0, k).

7.3.2 Comoving frames

We now consider the linearization in a frame moving with speed c,

wt = wξξ + cwξ + f ′(uper(ξ + ct; k))w.

The spectrum of the period map Ψ to this periodically forced linear parabolic spectrum is

characterized in the following proposition.

Proposition 7.3 ([21]) The Floquet multiplier ρ = e2πλ/ω belongs to the spectrum of Ψ if,

and only if d(λ− ciγ, iγ) = 0 for some γ ∈ [0, k).

7.3.3 Exponential weights

We may also consider the linearization in exponentially weighted spaces. The spectrum of

Lper in spaces with exponential weight e−ηx is given by the set of λ for which d(λ, η+ iγ) = 0.

For fixed η and γ = 0, the spectrum consists of a sequence of eigenvalues λj(η), and again

Reλ0(η) > λ`(η) for all ` > 0 and all η, with positive eigenfunction.

Lemma 7.4 We have λ′′0(η) ≥ 0 for all η. Moreover, λ′0(ν) = 2ν(1 +o(1)) as ν → ∞, ν ∈ R.
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Proof. The curve λ0(η + iγ) gives the spectrum of the operator (∂x + η)2 + f ′(uper(kx; k))

on L2(R). λ′′ < 0 would imply that Reλ0(η + iγ) > λ0(η). In particular, this would yield

a non-positive leading eigenfunction for small rational γ on a multiple of the period 2π/k,

contradicting the uniqueness of the leading positive eigenfunction. It remains to establish the

asymptotics. From the boundary-value problem for λ0, we find that

λ′(ν) = 2ν + (u′0(x; ν), u
∗
0(x; ν)),

where we refer to u0(·, ν) as the (positive) eigenfunction associated with λ0 ∈ R, u∗0 the

eigenfunction for the L2-adjoint, and denote by (·, ·) the scalar product in L2(0, 2π/k). Now

u∗0(x; ν) = u0(−x, ν), and it is therefore sufficient to give uniform H 1-bounds on the first

eigenfunction as ν → ∞. Multiplying the eigenvalue problem by u and integrating gives the

straightforward estimate

|u′0|2 ≤ (ν2 − λ+ sup |f ′(x)|)|u0|2.
On the other hand, rescaling y = νx, we obtain

[(∂y + 1)2 +
1

ν2
f ′(y/ν) − λ

ν2
]u0 = 0,

with 2πν/k-periodic boundary conditions. On the entire real line, the leading edge of the

spectrum of this operator is given by the edge of the absolute spectrum located at λ/ν 2 =

1 + O(1/ν2), by treating f ′ as an L∞-bounded perturbation. Truncating to a finite domain

of length L gives a leading edge eigenfunction at the edge with a correction O(1/L2), hence

λ0/ν
2 = 1 + O(1/ν2) [18]. Substituting this expression in the estimate for |u′|2 gives the

desired uniform H1-bound.

7.4 The absolute spectrum in a comoving frame

In the comoving frame, the essential spectrum is easily computed from Proposition 7.3. The

location of the absolute spectrum, however, is a somewhat more subtle question. Since the

dispersion relation in the comoving frame is given by d(λ−cν, ν), we have an “explicit” branch

of eigenfunctions λco
0 (ν) = λ0(ν)+ cν. Note that (λco

0 )′(ν) = 0 precisely when λ′0(ν) = −c. By

Lemma 7.4, there exists a curve ν = ν0(c) ∈ R, with ν ′(c) ≤ 0 and ν(c) ∼ −c/2 as c → ∞,

such that λ′0(ν(c)) = −c and (λco
0 )′(ν) = 0.

Proposition 7.5 The rightmost edge of the absolute spectrum in a frame moving with speed

c is given by λco
0 (ν0(c)) = λ0(ν0(c)) − cν0(c). In particular, Reλc

0(ν) > Re λ for all λ 6= λc
0(ν)

in the absolute spectrum. Moreover,

dλco
0 (ν0(c))

dc
≤ 0 for all c > 0, λco

0 (ν0(c)) ∼ −c2/4 + O(1) for c→ ∞.

Proof. We first note that the absolute spectrum lies to the left of the edge since we can

achieve this bound with the fixed exponential weight ν. We have to show that λco
0 actually

belongs to the absolute spectrum. First note that this is true at c = 0. If the index of the

two eigenvalues ν0 and ν1 that collide to form the double root were to change while increasing
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c, we would have a d(λ + c(ν + iγ), ν + iγ) = 0 for some γ 6= 0. This however would again

yield leading non-monotone eigenfunctions in a periodic domain with a suitable multiple of

the period and therefore contradict monotonicity of the parabolic evolution.

The formula for the derivative is an immediate consequence of the chain rule and the fact that

(λco
0 )′ > 0, ν0 < 0, and ν ′0 ≤ 0 for c > 0. The asymptotics follow from the asymptotics for

λ0(ν).

Remark 7.6 The function λ∗ = H(c) for the leading edge is the Legendre transform of the

function λ0(ν) of the leading eigenvalue. Indeed, we obtain H(c) if we solve the double-root

condition −c = λ′0(ν) for ν = ν(c) and substitute the result into H(ν) = λ(ν) + cν.

It is an easy exercise to compute the expansion for clin near k = 1. The small pattern is

given to leading order by
√

8(1 − k)/3 cos(x), which, after Lyapunov Schmidt reduction on

the kernel leads to the dispersion relation

ν2 + (1 − 4(1 − k)) = λ+ cν + O((1 − k)2).

The condition λ = 0 and dλ
dν = 0 give c = 2ν and ν2 = 1 + 4(k − 1), from which we find

c = 2
√

1 + 4(k − 1) and the expansion in Theorem 5.

In the limit of k ∼ 0, we use [17, §6.1] for the expansion of the dispersion relation near the

unstable eigenvalue. From (100) there, we find

λ(ν) = −16(cosh(νL) + 1)e−L/
√

2(1 + O(e−δL))(−3

2
)

(note that the results in [17] are stated for purely imaginary νL but extend to a complex strip

by analyticity). The condition on the spreading speed attained at a double root gives

c = −λ′(ν) = 24L sinh(νL)e−L/
√

2 + O(e−L/(
√

2+δ))

with L = π/k so that the Legendre transform is given by

λ− cν = 48(cosh(νL) + 1 − (νL) sinh(νL))e−
√

2L + O(e−L/(
√

2+δ)).

The roots are to leading order given by νL = p∗ + O(e−δL), with p∗ the unique solution of

cosh(p)+1 = sinh(p). Substituting this expansion into the expression for c gives the expansion

for the spreading speed.

7.5 Stability of fast waves

We claim that for large wave speeds, there exists an exponential dichotomy relative to the

weight η = c/2, for all Re λ > −M , M > 0 fixed, arbitrarily large. We therefore closely

follow the arguments in Section 5, applied to the eigenvalue problem (7.2). After passing

to a corotating coordinate system and performing the scaling, we are left with a bounded

perturbation of the linear part, given by

uξ = Au, A =

(

k∂y id

ω∂y − λ+ 1 k∂y + c

)

. (7.6)
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A somewhat tedious but straight-forward analysis shows that all estimates from Section 5

are uniform in Re λ > −M . This shows the existence of a smooth (linear) center-stable

manifold for the nonautonomous, perturbed system, which is precisely the stable subspace

of the dichotomy relative to the weight c/2. Since the construction is valid on ξ ∈ R, we

have a dichotomy on ξ ∈ R and we can therefore excluded both absolute and extended point

spectrum. This proves stability for large wave speeds.

7.6 Stability for k ∼ 1

We view the fronts for k ∼ 1 as a small perturbation of the fronts with k = 1. In particular,

the variation in the coefficients of the linear equation (7.2) is small when measured in the L∞-

norm with respect to ξ. As a consequence, exponential dichotomies (relative to any chosen

weight) are continuous in k. We are interested in values of c > clin(k), just above the linear

spreading speed, and we have to show that there exists exponential dichotomies with Morse

index zero relative to some exponential weight η. Note that for c > 2 and k small, this is an

immediate consequence of the stability of the traveling waves connecting zero and one and the

robustness of dichotomies cited above. The difficulty is that, as c approaches 1, the size of

the allowed perturbation k− 1 shrinks to zero in standard perturbation theory: an eigenvalue

could pop out of the edge of the absolute spectrum and create an instability. The key idea

of obtaining stability for all c & clin(k) and k & 1 is to extend the subspaces smoothly into

k = 1, c = 2: although we loose the exponential separation property in the limit, we will be

able to show robustness under perturbations to k > 1.

We start by continuing the subspaces smoothly for the asymptotic equation. At k = 1 and

c = 2, the dispersion relation d(λ, ν) = ν2 + cν + 1 − λ possesses a double root in λ = 0,

ν = 1, corresponding to a Jordan block. If we substitute λ = α2, we can continue the roots ν

smoothly as functions ν(α) through α = 0. By construction via the period map of an ODE,

d is a smooth function of k & 1, and we can follow the double root λ = 0, ν = ν∗ smoothly

in k, varying c = c(k), the linear spreading speed. Since the eigenvalues depend smoothly on

the parameters α, k, the eigenfunctions and associated subspaces and projections are smooth

as well. At k = 1, the continuation of both, unstable and stable subspaces of the dichotomy

relative to the weight η = c/2 = 1 are given by the eigenspace to ν = 1.

The remaining step is to show that these subspaces can be continued smoothly for the equation

with the nonlinear front substituted into the linearized equation, instead of simply the periodic

pattern. First note that without loss of generality we may assume that the double eigenvalue

is given by ν = 0 instead of ν = 1 by passing to an exponential weight. We then write the

unstable subspace as the graph of a linear map h from Eu into Es, the stable and unstable

subspaces of the asymptotic problem. We next write the eigenvalue problem in an abstract

form, decomposing the solution vector (u, v) = wu + ws, where wu/s ∈ Eu/s. The equation

then reads

wu
ξ = Au(ξ)wu +Bu

u(ξ)wu +Bu
s (ξ)ws

ws
ξ = As(ξ)ws +Bu

u(ξ)ws +Bu
s (ξ)wu,
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where |B(ξ)| ≤ Ceκξ for some κ > 0 as ξ → −∞, and we suppressed the dependence on

parameters. The graph of h provides an unstable subspace for the evolution if it is invariant,

that is, if

hξ = (Ash− hAu) + (Bs
u +Bs

sh− hBu
u − hBu

s h) =: Lh+ K(h).

Here, both L and K depend on time and parameters. The operator L generates the forward

evolution H(ξ, ζ),

H(ξ, ζ)h(ζ) = Φs(ξ, ζ)h(ζ)Φu(ζ, ξ), ξ ≥ ζ,

where Φu/s denote the evolution operators associated with the dichotomy of the unperturbed

equation. As a consequence,

|H(ξ, ζ)| ≤ Ce−δ(ξ−ζ), ξ ≥ ζ,

with δ arbitrarily small for parameter values k ∼ 1 and c ∼ 2. Also

|K| ≤ Ceκξ(1 + |h|2).

We seek exponentially decaying, continuous solutions h(ξ), ξ ≤ −ξ∗, with

|h|ι = sup
ξ

e−ιξ|h(ξ)| <∞,

as fixed point of the integral equation

h(ξ) =

∫ ξ

−∞
H(ξ, ζ)K(h(ζ))dζ.

A straightforward computation shows that the right-hand side defines a contraction if κ >

ι, κ > δ, and ξ∗ � 1, since the Lipschitz constant scales as e−(κ−ι)ξ∗ . The fixed point

depends smoothly on the parameters and provides us with the unstable subspace for the full

nonautonomous equation.

For k = 1, c = 2 the unstable subspace converges exponentially to the eigenspace so that

solutions in the unstable subspace decay exponentially u(ξ) ∼ eξ. Since the front in the ODE

and therefore also its derivative contain terms of the form ξeξ [1], the derivative of the front

does not lie in the unstable subspace. In particular, the intersection of stable and unstable

subspaces is transverse and persists as such. This excludes extended point spectrum for c ∼ 2

and k ∼ 1.

7.7 Pulled versus pushed fronts

In order to proof Theorem 5, it remains to show that whenever Σext∩iR 6= ∅, Re Σext ≤ 0, then

0 ∈ Σext ∩ iR with a positive eigenfunction. After multiplying with the exponential weight, we

have to consider the period map to a parabolic equation with time-periodic coefficients, which

we denote by Ψ. We consider Ψ in the space of uniformly continuous functions BC 0 with the

supremum norm. We denote by Ec the finite-dimensional generalized eigenspace associated

with the spectrum of Ψ on iR and P c the associated spectral projection. Furthermore, let C
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be the (closed) positive cone in BC0, that is, C = {u|u ≥ 0}. Choose any u ∈ C. From the

spectral decomposition, we know that (1−Pc)Ψ
ku→ 0. If we choose u(x) = |e0(x)|, with 0 6=

e0(x) ∈ Ec, then Ψk(u)(x) > Ψk(e0)(x), and, in particular, Ψk(u) does not converge to zero.

As a consequence, there exists a subsequence k` → ∞ such that Ψkl(u)/|Ψkl(u)| → u∗ ∈ Ec,

|u∗| = 1. In particular, S := Ec ∩C 6= {0}. Let S1 = S ∩ {|u| ≤ 1} and S1 be the convex hull

of S1. Then S1 is compact and convex, and invariant under the map Ψ1(u) := Ψ(u)/|Ψ(u)|.
By Schauder’s fixed point theorem, there exists a fixed point of Ψ1(u) in S1, which provides

us with the desired positive eigenfunction.
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