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1 Introduction

A striking phenomenon in the dynamics of nonlinear, spatially extended systems is the prop-
agation of coherent interfaces that monitor the competition between metastable states. A
prototypical example of such systems are reaction-diffusion systems, describing for instance
the effect of diffusion, reaction, and convection on combustion fronts [16], or arising as phe-
nomenological models in areas ranging from phase boundary motion in material science [3, 4]
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2 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

to the creation of high current filaments in semiconductors [15]. Many of these models can be
written in the general form

ut = ∇ · (a∇u) + f(u,∇u) + c(n · ∇)u, (1)

in which u is the vector of chemical concentrations, u = (um)1≤m≤N ∈ RN , and depends
upon time t and space x = (x1, x2) ∈ R2. The diffusion matrices should be elliptic, a =

(am
ij )1≤m≤N

1≤i,j≤2 such that

(∇ · (a∇u))
m

= am
ij∂iju

m,
∑

ij

am
ij yiyj ≥M

∑

i

y2
i ,

for some positive constantM > 0 independent of y = (y1, y2). For our purpose, we will work
with smooth nonlinearities f , without further assumptions on the specific shape. The last term
in (1) is induced by passing to a moving coordinate frame in the direction n = (sinϕ, cosϕ) ∈
S1 with speed c, so that steady solutions to (1) are traveling waves propagating in the direction
n with speed c. This last term could be absorbed into the nonlinearity f but we prefer to
preserve the idea of a fixed (laboratory) reference frame for our considerations, in particularly
when varying the speed c. We will sometimes restrict to the isotropic case, when am

ij = dm >

0 and f = f(u).
The propagation of one-dimensional (planar) waves in such systems has been studied inten-

sively and has been well understood in many different settings. Such planar waves u = u(n·x)
solve an ordinary differential equation, for which a variety of tools are available to study the
existence of bounded orbits, such as singular perturbation theory, Conley index theory, or
bifurcation methods. Typical planar waves are traveling-wave solutions connecting two ho-
mogeneous equilibria.

Our interest here is directed to traveling waves that are not planar, u = u(n · x, n⊥ · x).
These solutions cannot be found as solutions to an ODE since they depend on more than one
spatial variable. However, we will use a well adapted reduction method to find near planar
traveling waves as solutions to an ordinary differential equation. Whereas the primary, planar
traveling wave can be found as a solution to the ODE in the variable n · x, the existence
and shape of the almost planar traveling wave will be determined by a reduced ODE in the
transverse variable n⊥ · x.

The starting point of our approach to non-planar waves is the following hypothesis assert-
ing existence of a planar wave connecting two homogenenous equilibria.

Hypothesis 1.1 (Existence of a planar wave) We assume that there exist a direction n =
n∗, a positive speed c = c∗ ≥ 0, and asymptotic states q± such that (1) possesses a smooth
planar traveling-wave solution u(t, x) = q∗(n∗ · x) connecting q− and q+, i.e.

q∗(ζ)→ q±, as ζ → ±∞.

The profile q∗ solves

(an · n)u′′ + f(u, nu′) + cu′ = 0, (2)

with n = n∗, c = c∗, where ′ denotes differentiation with respect to ζ = n · x, the vector
(an · n) is regarded as a diagonalN ×N -matrix, and nu′ stands for the tensor product.
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Now given a planar wave q∗, we characterize almost planar interfaces in the following way.

Definition 1.2 (Almost planar interfaces) Set ξ := n⊥ · x the direction perpendicular to
the direction of propagation, in which n⊥ = n′(ϕ) = (cosϕ,− sinϕ). We call a solution u
to (1) an almost planar interface δ-close to q∗, for some δ > 0, if u is of the form

u(x) = q∗(ζ + h(ξ)) + u1(ξ, ζ), (3)

with h ∈ C2(R) and

sup
ξ∈R

|h′(ξ)| < δ, sup
ξ∈R

‖u1(ξ, ·)‖H1(R,RN ) < δ, |c− c∗| < δ.

We say that u is a planar interface if h′′ ≡ 0.

Among these almost planar interfaces we distinguish the class of asymptotically planar
interfaces, to which we refer as corner defects.

Definition 1.3 (Corner defects) We call u a corner defect if it is of the form (3), with
h′′ 6≡ 0, and h′(ξ)→ η± as ξ → ±∞. We say that

• u is an interior corner if η+ < η−;

• u is an exterior corner if η− < η+;

• u is a step if η+ = η− 6= 0;

• u is a hole if η+ = η− = 0;

see Figure 1.

(a) (b) (c) (d)

Fig. 1 Schematic plot of the four different types of corner defects: interior corner (a), exterior corner
(b), step (c), and hole (d). The middle arrows indicate the speed of the defect, whereas the left and right
arrows indicate the normal speed of propagation of the asymptotic planar interfaces. The asymptotic
slopes are η± = tanϑ±.

In this paper we review a number of scenarios discussed in [6, 7], which show that these
four types of corner defects can be found in systems of the form (1) under suitable assumptions
on the primary, planar wave q∗. All these defects share the property that the angle of the
interface at each point relative to the primary interface is small. They are constructed with
the help of methods from bifurcation theory which do not rely upon monotonicity arguments
or comparison principles. We mention that comparison principles have been used to show
existence of interior corners for large angles in scalar equations [2, 5, 11].

It is worth mentioning that similar results hold for planar traveling wave trains as well,
more precisely, when the planar traveling wave q∗ in Hypothesis 1.1 is a periodic function,
q∗(ζ) = q∗(ζ + L) for all ζ and some L > 0. We may then mimic the analysis in this
article, replacing the spaces of functions defined on the whole real line by spaces ofL-periodic
functions.
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4 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

2 Planar waves

The construction of almost planar interfaces relies upon a number of properties of the planar
wave that we describe in this section.

Linear dispersion
The first properties concern the linear stability of the planar wave q∗ with respect to first

one-dimensional, longitudinal, and then also two-dimensional, transverse perturbations. We
linearize the system (1) at the solution q∗ and obtain the linearized operator

L∗u = ∇ · (a∇u) + f∗
1u+ f∗

2∇u+ c∗(n∗ · ∇)u,

where

f∗
1 = ∂1f(q∗, n∗q

′
∗), f∗

2 = ∂2f(q∗, n∗q
′
∗).

With the Fourier decomposition into transverse wavenumbers k, u = v(n∗ · x)e
ik(n⊥

∗
·x), we

find the family of linear operators

L(k)v = (an∗·n∗)v
′′+ik((a+aT )n∗·n

⊥
∗ )v′−k2(an⊥

∗ ·n
⊥
∗ )v+f∗

1 v+f
∗
2 (n∗v

′+ikn⊥
∗ v)+c∗v

′.

At k = 0, we recover the one-dimensional linearized problem

L0v := (an∗ · n∗)v
′′ + f∗

1 v + f∗
2 (n∗v

′) + c∗v
′. (4)

Hypothesis 2.1 (Stability in one dimension) We assume that

(i) the spectrum of L0 is contained in {λ ∈ C : Reλ < 0} ∪ {0};

(ii) L0 is Fredholm with index zero and has a one-dimensional generalized kernel spanned
by q′∗.

Furthermore, we assume that for some positive constant k∗ the spectrum of L(k), k 6= 0,
satisfies

(iii) it is contained in {λ ∈ C : Reλ < 0} ∪ {λ(k)}, for |k| ≤ k∗, in which λ(k) ∈ C is the
continuation of the algebraically simple eigenvalue λ = 0 of L(0), for small k;

(iv) it is contained in {λ ∈ C : Reλ < 0}, for |k| > k∗.

The first two assumptions in the above hypothesis imply stability of the planar wave with
respect to perturbations that depend only on n∗ · x, while the latter ones concern stability
with respect to transverse perturbations. We will later sharpen assumption (iii) and find that
the type of corner defects critically depends on the precise shape of the linear dispersion
relation λ(k), and the (linear) group velocity cg := iλ′(0). We note in passing that the
symmetry λ 7→ λ̄, k 7→ −k, implies that Reλ and Imλ are even and odd in k, respectively.
In particular, the even, respectively odd, order derivatives of λ at k = 0 are real, respectively
purely imaginary, so that the group velocity is real and stability is to leading order determined
by the sign of λ′′(0). In the case of isotropic media the linear dispersion has the additional
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symmetry k 7→ −k, and then λ is a real-valued even function of k. In particular, the group
velocity always vanishes in this case.

Nonlinear and directional dispersion
We now focus on the one-dimensional problem (2), which we consider with parameters

n and c. It turns out that the stability Hypothesis 2.1 implies existence of planar waves for
nearby directions of propagation n ∼ n∗, more precisely, we have the following result.

Lemma 2.2 (Planar waves [7, Lemma 2.4]) Assume that Hypotheses 1.1 and 2.1 hold.
Then there exists a positive constant ε, such that for each angle ϕ with |ϕ − ϕ∗| < ε, the
one-dimensional system (2) possesses a traveling-wave solution q(ϕ) that connects q− and
q+, and which propagates with speed c = c(ϕ) in the direction n = n(ϕ). Moreover, each of
these traveling-waves satisfies Hypothesis 2.1 on stability.

This result is obvious in the case of isotropic media where, due to the rotation invariance,
we have c(ϕ) = c∗ and q(ϕ) = q∗.

We call c = c(ϕ) the nonlinear dispersion relation. A short computation shows that linear
and nonlinear dispersion coincide at first order, c′(ϕ∗) = cg ([7, Section 2]).

The nonlinear dispersion c = c(ϕ) gives the speed of propagation of a planar wave in the
direction n(ϕ). In addition, we consider the speed of propagation in the direction n = n∗ of
the primary wave q∗,

d(ϕ) =
c(ϕ)

cos(ϕ− ϕ∗)
.

We call d = d(ϕ) directional dispersion or flux. Moreover, we say that

• d is convex if d′′ > 0;

• d is concave if d′′ < 0;

• d is flat if d′′ ≡ 0;

for angles ϕ in a neighborhood of ϕ∗. Notice that in the particular case of isotropic media the
flux is always convex, d(ϕ) = c∗/ cos(ϕ− ϕ∗).

Together with the assumptions on the linear dispersion λ(k), convexity properties of the
flux d are essential in the construction of almost planar waves below. In order to see this,
recall that, in particular, interior and exterior corners are by definition asymptotically planar.
Assuming the existence of such a corner defect propagating with speed c in the direction n∗ of
the planar wave, at ξ = ±∞ we find planar interfaces q±(ζ + η±ξ). The normal directions to
these interfaces n± = (sinϕ±, cosϕ±) are obtained from the equality tan(ϕ± − ϕ∗) = η±,
and their normal propagation speed from the nonlinear dispersion relation c± = c(ϕ±). But
since both interfaces propagate with speed c in the direction n∗ of the primary interface, the
angles ϕ± satisfy,

c = d(ϕ±).

In particular, for an interior/exterior corner this equation must have two distinct solutions ϕ±

which in the case of small angles ϕ± ∼ ϕ∗ requires a non-flatness condition on the flux d, for
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6 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

angles ϕ close to ϕ∗. In other words, a flat flux d appears to exclude existence of interior and
exterior corners.

Nonlinear dispersion curve
A convenient way to represent wave propagation in anisotropic media is to plot the nonlin-

ear dispersion relation c = c(ϕ) as a curve in the plane. We can plot the vector c(ϕ)n(ϕ) and
let ϕ vary, which then traces a curve Γ parameterized through

γ(ϕ) = c(ϕ)(sinϕ, cosϕ) = d(ϕ) cos(ϕ− ϕ∗)(sinϕ, cosϕ).

We call this curve the nonlinear dispersion curve. We will see below how properties of disper-
sion relations and fluxes can be read off this curve, so that we can predict existence of corners
from geometric properties of this curve ([7, Section 7]).

First, a vanishing group velocity cg is equivalent to a first order tangency between Γ and
the circle with diameter the vector c∗n∗, or, more generally, any circle with diameter along
n∗ passing through γ(ϕ∗). Next, consider the circle C∗ with diameter joining the points
γ(ϕ∗) = c∗n∗ and cgn⊥

∗ . Then we have that the flux

• d is convex if Γ lies outside C∗;

• d is concave if Γ lies inside C∗;

• d flat if Γ coincides with C∗;

for ϕ in a neighborhood of ϕ∗; see Figure 2. Next, fix a speed c and the circleC with diameter

Γ C∗ Γ

C∗

Γ

C∗

c∗n∗c∗n∗c∗n∗

cgn
⊥
∗

cgn
⊥
∗ cgn

⊥
∗

Fig. 2 Plot of the nonlinear dispersion curve Γ and of the circle C∗ in cases of convex, concave, and
flat flux d.

given by the segment connecting cn∗ with the origin. Then any intersection point of the circle
C with the curve Γ corresponds to a planar interface moving with speed c in the direction
n∗, since the speed of such an interface in this direction is given by c(ϕ)/ cos(ϕ − ϕ∗).
Consequently, the asymptotic planar interfaces to a corner defect propagating in a direction
n∗ with speed c, are necessarily among the intersection points of the curve Γ with the circleC.
Furthermore, in the simplest case of a stable planar wave q∗, when Reλ(k) < 0, for k 6= 0, it
turns out that

• if the corner defect is an interior corner, then the curve Γ lies inside the circle C for
angles ϕ between the asymptotic angles ϕ+ < ϕ−;

• if the corner defect is an exterior corner, then the curve Γ lies outside the circle C for
angles ϕ between the asymptotic angles ϕ− < ϕ+;

see Figure 3. We emphasize that these geometric properties remain valid for large angles ϕ,
as well.
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c+n+

c+n+c−n−
c−n−

cn∗

Γ

C

Γ

C

Fig. 3 Plot of the nonlinear dispersion curve Γ and of the circle C in the cases of interior (left) and
exterior corners (right). The intersection points c±n± represent the asymptotic planar interfaces of the
defect with ϕ+ < ϕ∗ < ϕ− for interior corners (left), and ϕ− < ϕ∗ < ϕ+ for exterior corners (right).
(The curve Γ is oriented clockwise.)

3 Spatial dynamics and reduction

The search of almost planar interfaces relies upon a spatial dynamics formulation with an
appropriate parameterization for relative equilibria and a center manifold reduction.

We fix the direction n = n∗ and write the stationary equation to (1) with n = n∗ as a
dynamical system in which the time-like variable is ξ = n⊥

∗ · x, the direction perpendicular
to the direction of propagation of the planar wave. In the coordinates (ξ, ζ) = (n⊥

∗ · x, n∗ · x)
we find the first-order system

uξ = A(c)u + F(u), (5)

in which u = (u, v)T , with v = uξ, and

A(c) =

(
0 id

−(an⊥
∗ · n

⊥
∗ )−1 ((an∗ · n∗)∂ζζ + c∂ζ) −(an⊥

∗ · n
⊥
∗ )−1((a+ aT )n∗ · n

⊥
∗ )∂ζ

)
,

F(u) =

(
0

−(an⊥
∗ · n

⊥
∗ )−1f(u, n∗uζ + n⊥

∗ v)

)
.

The Hypothesis 1.1 on existence together with the translation invariance of the system (1)
imply that at c = c∗ the dynamical system (5) has a line of equilibria obtained from the
primary planar wave u = q∗(·) together with the translations q∗(·+ h),

q
h
∗ =

(
q∗(·+ h)

0

)
. (6)

The almost planar waves are obtained as bounded orbits to the infinite-dimensional dynamical
system (5) bifurcating from this line of equilibria for c close to c∗. We therefore consider the
linearization of (5) about q0

∗ at c = c∗,

A∗ =

(
0 id

2L′′(0)−1L0 −2L′′(0)−1(iL′(0))

)
,

in which L0 is the linear operator defined in (4), L′(0) represents the derivative with respect
to k of L(k) at k = 0,

iL′(0)v = −((a+ aT )n∗ · n
⊥
∗ )v′ − f∗

2 (n⊥
∗ v),
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8 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

and L′′(0) the second derivative given by

L′′(0) = −2(an⊥
∗ · n

⊥
∗ ).

We consider A∗ as a closed linear operator in Y = (H1 × L2)(R,RN ) with domain of
definition Y 1 = (H2 ×H1)(R,RN ).

The spectral properties of A∗ are closely related to those of the operators L(k) in Hypoth-
esis 2.1 (e.g., see [6, 7, 14]). Under Hypothesis 2.1, the spectrum of A∗ splits into

spec(A∗) = spec0(A∗) ∪ spec1(A∗), (7)

with spec1(A∗) bounded away from the imaginary axis,

spec1(A∗) ⊂ {ν ∈ C : |Re ν| ≥ ε},

for some positive constant ε, and spec0(A∗) consisting of a finite number of purely imaginary
eigenvalues with finite algebraic multiplicity. These eigenvalues are precisely given by the
zeros of the linear dispersion λ(k),

spec0(A∗) = {±ik, λ(k) = 0},

and the algebraic multiplicity of an eigenvalue ik is equal to the multiplicity of the root k of
λ(k) = 0. Notice that nonzero eigenvalues occur in pairs, since the operator is real, and that
0 is always an eigenvalue, since λ(0) = 0.

The above splitting of the spectrum suggests that the dynamical system (5) possesses a
finite-dimensional center manifold containing the almost planar waves. For the construction
of the center manifold we proceed in the following way. Assume that the number of the
purely imaginary eigenvalues counted with multiplicities of A∗ is m + 1, with m ≥ 0 since
zero always belongs to the spectrum. We choose m + 1 linearly independent generalized
eigenvectors of A∗ corresponding to the purely imaginary eigenvalues, {e0, . . . , em}, with
e0 = (q′∗, 0) the eigenvector in the kernel of A∗. We use these vectors to construct the
(unique) spectral projection P onto the linear subspace spanned by these vectors, and then
proceed similarly for the shifted equilibria q

h
∗ by introducing the shifted linear operator Ah

∗ ,
the shifted eigenvectors {eh

0 , . . . , e
h
m}, and the shifted projection P h.

Following the general strategy for reduction around a continuous family of equilibria [13],
we decompose

u = q
h
∗ + η1e

h
1 + · · ·+ ηme

h
m + w

h, with P h
w

h = Pw = 0. (8)

Here h and ηj , j = 1, . . . ,m, are real functions depending upon ξ. This provides us with
coordinates in a neighborhood of the family of equilibria q

h
∗ . Then substituting (8) into (5),

we obtain a first-order system for h, ηj , and w, in which the translation invariance in ζ is used
to eliminate the shift (·)h from each equation. Finally, we are left with an equation for h,

hξ = f0(η1, . . . , ηm,w; c), (9)

which decouples, and a first-order system

ηjξ = fj(η1, . . . , ηm,w; c), j = 1, . . . ,m, (10)

wξ = fw(η1, . . . , ηm,w; c),
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in which the vector field does not depend upon h. At this point, we use a center manifold re-
duction theorem [10] to conclude that for c close to c∗, all solutions with ηj and w sufficiently
small have

w = Ψ(η1, . . . , ηm; c),

with Ψ a reduction function. Then these solutions can be found by solving the reduced system
for ηj obtained by substituting w = Ψ(η1, . . . , ηm; c) into (10),

ηjξ = f̃j(η1, . . . , ηm; c), j = 1, . . . ,m. (11)

The reduction theorem ensures that all nonlinear functions and their dependence upon param-
eters are of class Ck for an arbitrary but fixed k <∞.

Bounded solutions to the reduced system (11) correspond to almost planar waves to the
original system. More precisely, we have the following correspondence

equilibrium ←→ planar wave
heteroclinic orbit ←→ interior/exterior corner

homoclinic orbit to a nontrivial equilibrium ←→ step
homoclinic orbit to zero ←→ hole

In particular, the family of planar waves q(ϕ) in Lemma 2.2 provides us with a family of
equilibria to the reduced system for c = c(ϕ). Bounded orbits to the reduced system, other
than these equilibria, can be found by computing the vector field at lowest order. It turns
out that the coefficients in the Taylor expansion of the vector field depend upon the linear
dispersion λ(k) and the flux d(ϕ), which then determine the type of almost planar interfaces
in (1). In the following sections, we will make precise assumptions on λ(k) and d(ϕ) that
allow us to analyze the reduced system of ODEs.

4 Stable interior and exterior corners

In this section, we consider the simplest situation of a planar wave which is stable in two
space-dimensions. Throughout this section we make the following hypothesis.

Hypothesis 4.1 (Stability in two dimensions) Assume that Hypotheses 1.1 and 2.1 hold,
and in addition that the linear dispersion satisfies

λ′′(0) < 0, Reλ(k) < 0, ∀ |k| ≤ k∗, k 6= 0.

Clearly, this hypothesis implies linear stability of the planar wave in two space-dimensions.
We now follow the strategy of proof described in Section 3. The spectrum of A∗ decom-

poses into

spec(A∗) = {0} ∪ spec1(A∗),

with spec1(A∗) bounded away from the imaginary axis as before, and 0 an isolated eigenvalue
with geometric multiplicity one. The algebraic multiplicity of 0 is equal to the multiplicity of
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10 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

the root k = 0 of λ(k). Since λ′′(0) < 0 the multiplicity is at most two, and equal to two
precisely when the group velocity vanishes, cg = 0.

Almost planar waves in case of non-zero group velocity
Assume that cg 6= 0, so that 0 is a simple eigenvalue of A∗. Then the Ansatz (8) becomes

u = q
h
∗ + w

h, with P h
w

h = Pw = 0,

and we find the system

hξ = O(|c− c∗|+ |w|
2
Y 1),

wξ = A∗w + O(|c− c∗|+ |w|
2
Y 1).

Here the linear operator A∗ is hyperbolic on id − P , so that the equation for w has no small
bounded solutions, except for one equilibrium near w = 0, for c close to c∗. Consequently,
the only solutions for which the derivative hξ stays bounded are those with hξ ≡ const., and
we conclude that there are no almost planar interfaces in this case.

However, the condition on vanishing group velocity cg can be interpreted in a slightly
different fashion. We can pass to a co-moving frame x 7→ x − cgn

⊥
∗ t in the system (1),

which adds a drift term cg(n
⊥
∗ · ∇)u to the nonlinearity f . With this new nonlinearity, a

straightforward computation shows that c̃g = 0. The nonlinear dispersion relation is easily
obtained from the speed of propagation in the normal direction, corrected by−cg sin(ϕ−ϕ∗),
such that

d̃(ϕ) =
c(ϕ)− cg sin(ϕ− ϕ∗)

cos(ϕ − ϕ∗)
= d(ϕ) − cg tan(ϕ− ϕ∗).

In particular, d̃′′(ϕ∗) = d′′(ϕ∗), so that this change of variables does not influence upon the
convexity or flatness of the flux d. Consequently, the group velocity cg always vanishes in a
suitable frame of reference, and we therefore assume from now on that cg = iλ′(0) = 0.

Existence of corner defects
Assume that cg = 0. Then the eigenvalue of A∗ in the origin is algebraically double with

kernel and generalized kernel spanned by

kerA∗ = span(e0), e0 =

(
q′∗
0

)
, gkerA∗ = span(e0, e1), A∗e1 = e0.

We decompose

u = q
h
∗ + ηeh

1 + w
h, with P h

w
h = Pw = 0. (12)

Employing center-manifold reduction as explained in Section 3, we obtain the reduced equa-
tion for η,

ηξ =
2

λ′′(0)

(
(c− c∗)−

d′′(ϕ∗)

2
η2

)
+ O(|c− c∗|(|c− c∗|+ |η|) + |η|3). (13)

This is a scalar first-order ODE, so that any bounded orbit is either an equilibrium or a hete-
roclinic orbit. Consequently, nontrivial almost planar interfaces are either interior or exterior
corners. A straightforward analysis of this equation then leads to the following existence
result.
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Theorem 4.2 (Existence of interior/exterior corners [7, Theorem 1]) We assume existence
of a planar interface q∗ propagating in the direction n∗ with speed c∗, Hypothesis 1.1, that
satisfies the stability assumptions, Hypotheses 2.1, 4.1, and that the group velocity cg = 0.
Then there exists a positive constant δ > 0 such that the following hold.

• If the flux d is convex, then for each speed c > c∗, |c − c∗| < δ, there exists an interior
corner defect propagating in the direction n∗ which is unique up to translation in x. For
c < c∗, |c− c∗| < δ, there are no almost planar traveling waves.

• If the flux d is concave, then for each speed c < c∗, |c− c∗| < δ, there exists an exterior
corner defect propagating in the direction n∗ which is unique up to translation in x. For
c > c∗, |c− c∗| < δ, there are no almost planar traveling waves.

• If the flux d is flat, there are no almost planar traveling waves propagating in the direction
n∗, for any speed c with |c− c∗| < δ.

Furthermore, the corner defects above are to leading order given by

q(x) = q∗(ζ + h(ξ)) + O(|c− c∗|),

in which ζ = n∗ · x, ξ = n⊥
∗ · x, and the derivative of h satisfies

h′(ξ) =
λ′′(0)

d′′(ϕ∗)
β tanh(βξ) + O(|c− c∗|e

−2|βξ|), β =

√
2(c− c∗)d′′(ϕ∗)

λ′′(0)
< 0.

Stability
The corner defects found in Theorem 4.2 are asymptotically stable with respect to per-

turbations which are exponentially localized in the direction perpendicular to the direction
of propagation. We refer to [6, Theorems 2 and 3] for precise statements on stability in the
isotropic case which can be easily extended to the anisotropic system (1).

Roughly speaking, the first result asserts asymptotic stability for fully localized perturba-
tions

v(x) = cosh(aξ)−1w(ξ, ζ), w ∈ H2(R2,RN ),

in which a is chosen sufficiently small, a = O(|c−c∗|
1/2); [6, Theorem 2]. The second result

gives asymptotic stability with asymptotic phase for a class of non-localized perturbations
which allow for changing the position of the corner. These perturbations are localized in any
spatial direction except along the corner interface; [6, Theorem 3].

The proofs rely on a careful analysis of the spectrum of the linearization about the corner
defect. The spectrum is strictly contained in the left complex half-plane, for fully localized
perturbations, with an additional geometrically double eigenvalue at the origin, for the non-
localized perturbations. The eigenvectors associated to this eigenvalue are the derivatives with
respect to ξ and ζ of the corner defect, and therefore allow for changing the position of the
corner. Nonlinear stability is then obtained by a standard fixed point argument.

5 Almost planar waves generated by instabilities

In this section we investigate different scenarios of instability in two-dimensions.
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12 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

5.1 Periodically modulated corners

For the sake of simplicity in the exposition, we now restrict to the isotropic case,

ut = D∆u+ f(u) + c∂ζu, (14)

in which D = diag (d1, . . . , dN ) > 0 is a positive, diagonal diffusion matrix. Recall that in
this case the linear dispersion λ is a real-valued even function of k, and that the family q(ϕ)
of planar waves consists of rotations of the primary wave q∗, so that the nonlinear dispersion
c is constant, c(ϕ) = c∗, and the flux d is convex. We now make the following assumption.

Hypothesis 5.1 (Instability) Assume that Hypotheses 1.1 and 2.1 hold, and that

λ′′(0) > 0, λ(±k∗) = 0, λ′(±k∗) 6= 0, and λ(k) > 0, ∀ 0 < |k| < k∗.

Then the operator A∗ has three purely imaginary eigenvalues, spec0(A∗) = {0,±ik∗},
in which 0 is algebraically double and geometrically simple, and ±ik∗ are both simple. In
addition to the two-dimensional generalized kernel ofA∗ in Section 4 we have to consider the
kernels of A∗ ∓ ik∗ spanned by

ker (A∗ ∓ ik∗) = span(e±), e± =

(
r∗(·)

±ik∗r∗(·)

)
,

where r∗(·) is the real-valued eigenvector associated to the eigenvalue λ(k∗) = 0 of L(k∗).
We proceed as before and set

u = q
h
∗ + ηeh

1 +Ae
h
+ +Ae

h
− + w

h, with P h
w

h = Pw = 0, (15)

in which h, η are real functions and A is a complex-valued function depending upon ξ. Since
the purely imaginary eigenvalues ±ik∗ are complex conjugated it is more convenient to use
here complex coordinates (A,A), rather than real coordinates (η1, η2). After reduction, we
find the system of ODEs

ηξ =
2

λ′′d(0)
(c− c∗)−

c∗
λ′′d(0)

η2 (16)

+ O(|c− c∗|(|c− c∗|+ |η|
2 + |A|) + |η|4 + |η| |A|+ |A|2)

Aξ = iα∗(c− c∗) + ik∗A+ O((|c− c∗|+ |η|+ |A|)
2), (17)

where α∗ = (rad∗ , D−1q′∗) ∈ R, (·, ·) being the scalar product in L2(R).
The reduced system (16)–(17) has two equilibria

η± = ∓
√

2(c− c∗)/c∗ + O(|c− c∗|), A± = O(|c− c∗|),

corresponding to the rotated primary planar wave. In addition, the truncated system, obtained
by removing the O(·)-terms, possesses a heteroclinic orbit connecting these two equilibria.
This heteroclinic connection would correspond to an exterior corner in the isotropic reaction-
diffusion system, in contrast to the interior corners in Theorem 4.2. However, higher order
perturbations typically break this connection. For this system, it turns out that both equilibria
are surrounded by a one-parameter family of periodic orbits. Then the heteroclinic orbit from
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the truncated system persists as a heteroclinic to one of the periodic orbits ([6, Section 4.1]),
but typically not as a heteroclinic between the equilibria. In physical space, these heteroclinic
connections correspond to exterior corners with a periodic modulation of the flat interface on
either side of the corner. Similarly, symmetric exterior corners with periodic modulations on
both sides of the corner exist; see Figure 4. In both cases, we expect that the minimal am-
plitude of the periodic structures is exponentially small in the angle of the corner for analytic
kinetics [9].

Fig. 4 Plot of exterior corners with periodic modulations of the flat interface on one side (left) and both
sides (right) of the corner.

Remark 5.2 (The onset of transverse instability) Further types of almost planar waves
can be constructed by considering the onset of transverse instability for systems depending
upon an additional parameter µ. This situation has been analyzed in the isotropic case in
[6, Section 4.2]. It turns out that in this case the reduced system is a perturbed Kuramoto-
Sivashinsky equation possessing heteroclinic and homoclinic orbits which correspond to both
interior and exterior corners, and steps.

5.2 Existence of steps

In this section we consider a different instability scenario by studying stability boundaries
between stable and unstable directions of propagation ϕ. Roughly speaking, we assume that
the planar waves q(ϕ) develop an instability for small transverse wavenumbers k while ϕ
crosses a critical angle ϕ∗. Clearly, this scenario is particular to anisotropic media since
stability properties in isotropic media do not depend on the direction of propagation.

Hypothesis 5.3 (Lateral instability) Assume that Hypotheses 1.1 and 2.1 hold, and de-
note by λ(k;ϕ) the continuation of the simple eigenvalue λ = 0 of L0 for small k and ϕ. We
make the following assumption:

λ(0;ϕ) = 0, λ′(0;ϕ∗) = λ′′(0;ϕ∗) = 0, λ′′′(0;ϕ∗) 6= 0, ∂ϕλ
′′(0;ϕ∗) > 0,

where ′ denotes differentiation with respect to k.

We follow the same strategy of proof as before, with the difference that we allow here
for nearby directions n ∼ n∗, by taking the angle ϕ as a second parameter in the dynamical
system which is now of the form

uξ = A(c, ϕ)u + F(u). (18)

The reduced system will then describe almost planar interfaces for speeds c close to c∗ and
angles ϕ close to ϕ∗.
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14 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

The purely imaginary spectrum of the linearized operator A∗ consists of the eigenvalue 0
which is geometrically simple, but now algebraically triple. We then decompose

u = q
h
∗ + η1e

h
1 + η2e

h
2 + w

h, with P h
w

h = Pw = 0, (19)

in which h, η1, η2 are real functions depending upon ξ. The computation of the reduced
system is in this case more involved, but we can still find the lowest order part of this system
explicitly and finally reduce it to the second order ODE

η1ξξ = −
6

iλ′′′(0;ϕ∗)

(
(c− c∗)−

c∗
2

(ϕ− ϕ∗)
2 + c∗(ϕ− ϕ∗)η1

−
d′′(ϕ∗)

2
η2
1 −

∂ϕλ
′′(0;ϕ∗)

2
η1η1ξ

)

+O(|c− c∗|(|c− c∗|+ |ϕ− ϕ∗|+ |η1|+ |η1ξ |)

+ |η1ξ |
2 + (|ϕ− ϕ∗|+ |η1|)

3 + |η1ξ|(|ϕ − ϕ∗|
2 + |η1|

2)).

We restrict our interest to homoclinic orbits of this second order equation which correspond
to step solutions of the reaction-diffusion system. We first notice that the truncated equation

η1ξξ = −
6

iλ′′′(0;ϕ∗)

(
(c− c∗)−

c∗
2

(ϕ− ϕ∗)
2 + c∗(ϕ− ϕ∗)η1 −

d′′(ϕ∗)

2
η2
1

)

does possess homoclinic orbits for ϕ = ϕ∗, and any c > c∗ (resp. c < c∗) if the flux is
convex (resp. concave). Our purpose is to show that these orbits persist for the full equation
as a family (η∗1(ε); c(ε), ϕ(ε)), with small ε. As opposed to many systems where the KdV
equation provides the leading order approximation, the present system does not possess re-
versibility, Hamiltonian structure, or a Galilei invariance, such that parameters are necessary
to show persistence of the homoclinic orbit. The key ingredient to the proof is a sequence
of transformations and scalings, which isolate a linear damping term η1ξ as the first order
correction. Since this damping term unfolds the homoclinic transversely, we can conclude
persistence using the implicit function theorem; see [7, Section 6] for details. As a result,
we find the following theorem, which asserts existence of steps along a smooth curve in the
parameter space (c, ϕ).

Theorem 5.4 (Existence of steps [7, Theorem 2]) Assume that Hypothesis 5.3 holds and
that the flux d is either convex or concave, d′′(ϕ∗) 6= 0. Then there exists a smooth curve

ε 7→ (c(ε), ϕ(ε)) = (c∗ + O(ε4), ϕ∗ + O(ε2))

defined for small ε > 0, such that the system (1) possesses a family of steady solutions (uε)ε>0

with ε small which are steps propagating with speed c(ε) in the direction n(ϕ(ε)).

Remark 5.5 (Stability of steps) From the proof, it follows that the steps are asymptotic to
stable planar interfaces. In particular, the essential spectrum of the linearization is marginally
stable and can be pushed into the negative left half plane by means of exponential weights.
This is in complete analogy with the Korteweg-de Vries equation, which can be formally
derived as a modulation equation in the present situation. We conjecture that the steps are
actually spectrally stable, that is, the point spectrum of the linearized operator is contained
in the closed left half plane. Again, this is suggested by the KdV approximation. Although
higher-order terms do not preserve the symmetries of the KdV equation, we suspect that the
spectral picture of the KdV equation persists.
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6 Holes in oscillatory wave propagation

So far, the analysis of almost planar waves showed the existence of three types of corner
defects: interior and exterior corners, and steps. Holes appear to be excluded in these simplest
scenarios. We now present a scenario, where holes do exist in isotropic media. However, the
underlying planar wave will be assumed to propagate in an oscillatory fashion; [6, Section 5].

Consider again the isotropic system

ut = D∆u+ f(u) + c∂ζu, (20)

in the plane (ξ, ζ) ∈ R2. We will be interested in modulated traveling waves,

u(ξ, ζ, t) = q(ξ, ζ, ωt),

in which q is 2π-periodic in its third argument. We retain the concept of almost planar waves
close to a known planar (modulated) wave u(ξ, ζ, t) = q∗(ζ, ωt), which connects two homo-
geneous equilibria q± as ζ → ±∞, and is 2π-periodic in its second argument. Modulated
planar waves solve

D∂ζζu+ c∂ζu+ f(u)− ω∂tu = 0, (21)

for some speed c = c∗ and frequency ω = ω∗, where ωt is replaced by t. Almost planar
(modulated) interfaces are constructed as bounded solutions to

D∆u+ c∂ζu+ f(u)− ω∂tu = 0, (22)

which are 2π-periodic in t. In the following, we shall focus on existence of holes; see also [8,
Section 7] for a discussion of other type of corner defects in this context.

6.1 Existence of holes

The starting point is again a hypothesis on existence of a planar wave connecting two homo-
geneous equilibria, now a modulated planar wave, then followed by assumptions on linear
stability.

Hypothesis 6.1 (Existence) We assume that there exist positive constants c∗, ω∗, and ho-
mogeneous states q± such that there exists an ξ-independent planar modulated-wave solution
q∗(ζ, t) of (22) which is 2π-periodic in t, with ∂tq∗ 6≡ 0, and which connects q− and q+, that
is,

q∗(ζ, t)→ q+ for ζ → +∞, q∗(ζ, t)→ q− for ζ → −∞,

uniformly in t.

Next, consider the linearized operator

M∗u = D∆u+ c∗∂ζu+ f ′(q∗)u− ω∗∂tu, (23)

and its Fourier conjugates

M(k)u = D(∂ζζ − k
2)u+ c∗∂ζu+ f ′(q∗)u− ω∗∂tu, (24)

on the Hilbert spaces L2(R2 × S1,RN ) and L2(R× S1,RN ), respectively. We consider the
simplest situation of a stable modulated front.
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16 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

Hypothesis 6.2 (Transverse stability) We assume that

(i) the spectrum ofM0 :=M(0) is contained in {λ ∈ C : Reλ < 0} ∪ {0};

(ii) M0 is Fredholm with index zero and has a two-dimensional kernel and generalized ker-
nel spanned by the partial derivatives ∂ζq∗ and ∂tq∗ of the modulated wave q∗;

(iii) the spectra ofM(k), for k 6= 0 are strictly contained in {λ ∈ C : Reλ < 0};

(iv) the 2× 2 matrix Λd(k) with Λd(0) = Λ′
d(0) = 0, representing the smooth continuation

for k ∼ 0 of the action ofM0 on its kernel, satisfies Re spec Λ′′
d(0) < 0.

The strategy of the existence proof is essentially the same as before, but the reduction
procedure and the analysis of the reduced system are much more involved; see [6, Section 5].

We set u = (u, v)T and rewrite the equation (22) as a dynamical system

uξ = A(c, ω)u + F(u), (25)

on the Hilbert space Y = (H1, 1

2 × L2)(R× S1,RN ). The linear and nonlinear parts of (25)
are given by

A(c, ω) =

(
0 id

−∂ζζ −D
−1c∂ζ +D−1ω∂t 0

)
, F(u) =

(
0

−D−1f(u)

)
.

Hypothesis 6.1 shows that (25) has a two-parameter family of equilibria

q
h,τ
∗ =

(
qh,τ
∗ (·, ·)

0

)
=

(
q∗(·+ h, ·+ τ)

0

)
, (26)

due to translation invariance in both ζ and t. From Hypothesis 6.2 we conclude that the
spectrum of the linearizationA∗ of (25) about q0,0

∗ , satisfies

specA∗ ∩ {|Reλ| ≤ ε} = {0},

in which the origin is an eigenvalue with geometric multiplicity two and algebraic multiplicity
four. The kernel and generalized kernel of A∗ are spanned by

kerA∗ = span(e0ζ , e0t), e0ζ =

(
∂ζq∗

0

)
, e0t =

(
∂tq∗
0

)
,

and

gkerA∗ = span(e0ζ , e0t, e1ζ , e1t), A∗e1ζ = e0ζ A∗e1t = e0t.

We construct the spectral projection P onto the generalized of A∗, and then make the Ansatz

u = q
h,τ
∗ + ηeh,τ

1ζ + ρeh,τ
1t + w

h,0, with P h,τ
w

h,0 = P 0,τ
w

0,0 = 0, (27)

where h, τ , η, and ρ are functions depending upon ξ. Again the equations for h and τ de-
couple, and a now more delicate reduction procedure gives us a reduced system for η and
ρ.
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Holes correspond to homoclinic orbits to the origin in the reduced system. It turns out
that the origin is an equilibrium of the reduced system only if c = c∗ and ω = ω∗ when the
reduced system reads

d

dξ

(
η
ρ

)
= c∗

(
d11 d21

d12 d22

) ( 1

2
η2 − α1ρ

2

ηρ− α2ρ
2

)
+ O((|η|+ |ρ|)3), (28)

in which
(
d11 d12

d21 d22

)
= −2(Λ′′

d(0))−1,

and

α1 =
〈qad∗ζ , ∂ttq∗〉d22 − 〈q

ad
∗t , ∂ttq∗〉d21

c∗(d11d22 − d12d21)
, α2 =

〈qad∗t , ∂ttq∗〉d11 − 〈q
ad
∗ζ , ∂ttq∗〉d12

c∗(d11d22 − d12d21)
,

where 〈·, ·〉 represents the scalar product in L2(R × S1,RN ). To leading order we have
a quadratic system of ODEs in which the origin is typically an isolated equilibrium. For
certain values of the coefficients such systems possess homoclinic solutions which approach
the origin along ray solutions of the form

η(ξ) = −
η∗
ξ
, ρ(ξ) = −

ρ∗
ξ

;

see Figure 5. In particular, they decay algebraically, (η, ρ)(ξ) = O(1/|ξ|) as |ξ| → ∞. For the

Fig. 5 Typical homoclinic orbits of the quadratic system in the case of one ray solution (left) and three
ray solutions (right).

reduced system (28) the construction of such homoclinic orbits relies upon geometric blow-up
techniques. We refer to [6, Section 5] for the proof of the following result.

Theorem 6.3 (Existence of holes [6, Proposition 5.4]) Assume that the coefficients α1 and
α2 of the reduced system (28) satisfy α2

2 < 2α1. There is ε0 > 0 such that (28) possesses two
families of homoclinic orbits,

(η±ε (ξ), ρ±ε (ξ)) = (±εηo(±εξ),±ερo(±εξ)) + O(ε2), (29)

for ε ∈ (0, ε0), in which (ηo, ρo) decay like O(1/|ξ|) as |ξ| → ∞. For α2
2 > 2α1 there are no

nontrivial, small, bounded solutions to (28).
Consequently, there is an open class of reaction-diffusion systems which possess a one-

parameter family of holes close to a stable planar modulated wave with the same speed c∗
and frequency ω∗.
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18 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

We point out that the algebraic decay of η and ρ generates a logarithmic divergence of the
position h and the temporal phase τ of the interface for the holes in this theorem.

6.2 Stability properties and quadratic systems of conservation laws

The question of stability of holes is widely open. However, we can get some insight into this
question by looking at approximating model equations. In [6, Appendix B], we derived a
system of viscous conservation laws which formally describes the two-dimensional dynamics
of planar modulated waves in the reaction-diffusion system (20) for perturbations with slowly
varying temporal phase in a long-wave regime. Written in the variables η and ρ, this model
system is a time-dependent version of the reduced equation (28),

(
ηt

ρt

)
= −

1

2
Λ′′

d(0)

(
ηξξ

ρξξ

)
−

( (
1
2η

2 − α1ρ
2
)
ξ(

ηρ− α2ρ
2
)
ξ

)
. (30)

Interestingly, the algebraic condition on the coefficients of the reduced system in Theorem
6.3, which ensures the existence of homoclinic orbits, turns out to be the condition under
which the system in the zero-viscosity limit has complex characteristics: the conservation law
is ill-posed, elliptic rather than well-posed, hyperbolic.

Though much simpler than the question of stability of holes, even the stability of homo-
clinic solutions in (30) is not completely understood. So far, the only answer to this question
concerns the special case of equal diffusion coefficients, (dij) ∼ id, and shows that despite
the highly unstable inviscid limit, localized solutions to (30) are asymptotically stable [8]. In
this case, the system (30) turns out to be equivalent to the complex continuation of Burgers
equation

Zt = Zξξ − ZZξ, Z(ξ, t) ∈ C,

with homoclinic orbits explicitly given by

Z∗(ξ) = −
2

ξ + ia+ b
, a ∈ R

∗, b ∈ R.

While Bessel functions theory allows to solve the eigenvalue problem and obtain spectral sta-
bility for L2-perturbations, a complex continuation of the classical Hopf-Cole transformation
gives nonlinear stability for perturbations with zero mass. In particular, this result shows that
holes may well provide islands of stability in ill-posed elliptic conservation laws.

7 Inhomogeneities

In this section, we briefly illustrate this approach in the case of front propagation in the pres-
ence of inhomogeneities. Envision, for instance, the propagation of a planar flame front in
a direction perpendicular to a strip in the plane, where the speed of propagation of the front
differs. We may think of the slower spread of a forest fire along cool and moist river shores
or the faster spread of a combustion front along a catalyzer plate. The model problem that we
investigate is

ut = D∆u+ f(u) + εg(u;x1), (31)
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where |g(u;x1)| = o(x−1
1 ), uniformly for bounded u.

The center manifold reduction in Section 3 can be adapted to this inhomogeneous setting.
Assuming that the transverse group velocity vanishes it yields (after a suitable scaling of h, η
and ξ) the reduced equation

h′ = η, η′ = c̃− η2 + εg̃(ξ) + h.o.t., (32)

in which c̃ and g̃ can be computed from c − c∗ and g. This equation is easy to discuss
analytically in the extended phase space (h, η, ξ) ∈ R2×R, where we can compactify ξ since
g, g̃ → 0, for |ξ| → ∞. The result however can simply be deduced from the conjugated linear
equation: equation (32) is a Riccati equation with associated linear equation for ψ = eh,

ψ′′ = εg̃(ξ)ψ + c̃ψ. (33)

Then, for (ε
∫
g̃) < 0, there exists a unique positive eigenfunction to this eigenvalue problem,

which yields an exterior corner. The eigenvalue
√
−ε
∫
g̃ + O(ε) determines the wavespeed

and the angle of the exterior corner. For (ε
∫
g̃) > 0, no such eigenfunction exists. In this case,

the embedded eigenvalue at the edge of the spectrum is a resonance pole, which generates
holes for c̃ = 0, with asymptotically flat interface diverging as |ξ| → ∞.

Another interesting situation occurs when the inhomogeneity travels, or when the inter-
face possesses a nonzero transverse group velocity. In this case, the center manifold is one-
dimensional, the reduced equation simply reads

h′ = εg̃(ξ) + h.o.t..

Then, (ε
∫
g̃) this time determines the jump in the position, h(+∞)− h(−∞), and the inter-

face typically forms a step across the interface.
We summarize these findings in the following theorem.

Theorem 7.1 (Exterior corners and steps in inhomogeneous media) Assume that the
integral of the reduced inhomogeneity g̃ is positive and that the transverse group velocity
vanishes. We then have unique exterior corners for ε < 0 and unique hole solutions with
asymptotically horizontal interface for ε > 0. In case of nonzero group velocity, the interface
forms an upward and downward step across the inhomogeneity, respectively.

We conclude with a numerical illustration of these results. We simulate

ut = 4u+
1

δ
u(1− u)(u−

v + a

b
), vt = 0.014v + u− v + εg, (34)

with a = 0.6, b = −0.05, δ = 0.08, |xj | ≤ 90, ε = 0.1, and

g(x) =
1

1 + x2
1

or g(x) =
1

1 + (x1 − x2 − 95)2
.

This system is a variant of the FitzHugh-Nagumo equation [1] and can be considered a cari-
cature model for excitable and oscillatory media such as the Belousov-Zhabotinsky equation.
Light-sensitive variants of the BZ-reaction allow experimentalists to change recovery speed
and excitability properties of the medium locally in space. The resulting wave breaking has
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20 M. Haragus and A. Scheel: Non-planar traveling waves in reaction-diffusion systems

been explained in terms of geometric optics in [12]. Our results allow for a systematic and
rigorous approach to discontinuities in wave fronts such as corners and steps, generated by
such spatial inhomogeneity of the medium.

The system (34) possesses a family of stable planar wave trains. Figure 6 illustrates the
four types of corners in this setup. The inhomogeneity is located on a centered, vertical line,
in the two left examples, and along the diagonal in the right-hand picture. Along the bottom
boundary, we created waves with an additional local inhomogeneity. Neumann boundary
conditions are imposed along all sides of the square.

Fig. 6 Numerical simulations of wavetrains in media with a line inhomogeneity. In the left-hand pic-
ture, the line inhomogeneity acts as a source, thus generating an exterior corner. Also visible in the
picture are interior corners at the interface of the exterior corner and the horizontal wave trains. In the
middle picture the line inhomogeneity weakly absorbs waves, thus creating holes with the typical slow
logarithmic divergence of the shape of the wave. In the right-hand picture, the line inhomogeneity travels
with a constant speed to the right in a frame moving upwards with the interface, thus creating a step.
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