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Abstract

We study existence and stability of interfaces in reaction-diffusion systems which are asymptoti-

cally planar. The problem of existence of corners is reduced to an ordinary differential equation

that can be viewed as the travelling-wave equation to a viscous conservation law or variants of the

Kuramoto-Sivashinsky equation. The corner typically but not always points in the direction oppo-

site to the direction of propagation. For the existence and stability problem, we rely on a spatial

dynamics formulation with an appropriate equivariant parameterization for relative equilibria.

Résumé

Nous étudions l’existence et la stabilité des interfaces asymptotiquement planes dans des systèmes

de réaction-diffusion. Le problème de l’existence des défauts est réduit à l’étude d’une équation

différentielle ordinaire qui est, selon le cas, approchée par l’équation stationnaire d’une loi de

conservation scalaire ou d’une variante de l’équation de Kuramoto-Sivashinsky. Typiquement,

les défauts pointent dans la direction opposée à la direction de propagation. Pour l’analyse des

problèmes d’existence et de stabilité, nous utilisons une formulation de type dynamique spatiale

combinée avec une paramétrisation adéquate d’équilibres relatifs.
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1 Introduction

Characterizing propagation of interfaces in spatially extended systems is a major challenge in the ap-

plied sciences. Flame fronts in solid and gaseous combustion have stimulated a variety of different

approaches to interface formation and propagation [17, 44, 64]. Experimental observation and theo-

retical predictions range from rigid plane front propagation over periodically oscillating speeds and

cellular patterns on the interface, to seemingly chaotic motion of the interface. In a slightly different

context, front and pulse propagation turns out to be crucial for the dynamics of many self-organizing

chemical reactions, such as the carbon-monoxide oxidation on platinum surfaces [30] or the Belousov-

Zhabotinsky reaction [66]. One-dimensional interfaces have been observed in spiral wave patterns,

where interfacial corners naturally arise at the domain boundaries between different spiral cores [66].

More recently, oscillatory front propagation [34] and interfaces between homogeneous and patterned

states [22] have been studied in the Belousov-Zhabotinsky reaction. Propagation and reflective or

annihilation collision of 2-dimensional pulse trains has also been observed in the CO-oxidation [25].

In the CIMA reaction, famous for exhibiting stationary Turing patterns, propagation and propagation

failure of a one-dimensional interface separating a region occupied by a hexagonal lattice built with

isolated Turing spots, into an unpatterned region governs the later stage of spot replication; see [9]

for an experimental survey and [46] for (mostly one-dimensional) theoretical approaches. Interfaces

between patterned states arise in many other applied areas. We mention semiconductors [58], viscous

shock waves [41], Rayleigh-Bénard convection [48] or certain models for extended lasers [40].

In a singular perturbation approach to interface propagation, spatial variables are scaled such that the

interface becomes a sharp line, for which a geometric evolution equation can be derived from a inner

and outer expansions at the interfacial region; see [15, 61] for a variety of applications of this method.

In many cases, the formal asymptotics can be justified, either in a general dynamical setup [6], or in

specific contexts [29]. The most general results are available when a comparison principle is available

[2].

More recently, a interface propagation has been addressed from a different perspective. The common

feature is that existence and stability are considered in unbounded domains, corresponding to the inner

expansion in the sharp interface limit. For various reasons, however, a scaling cannot be rigorously

justified such that interfaces have to be studied in the original equations. We mention recent work

on propagation of fronts in discrete two-dimensional lattices with possible pinning of interfaces [7],

stability of plane viscous shocks [28, 36], existence and stability of conically shaped fronts in scalar

reaction-diffusion models for combustion [3, 20, 21].

We refer the reader to the beautiful review [63] as a guide to the tremendous amount of work on

(mostly one-dimensional) front propagation in the physics literature.
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In this article, we focus on existence and stability of almost planar interfaces. Almost planar here refers

to the angle of the interface at each point, relative to a fixed planar interface. Most of the interfaces

that we construct will be planar at infinity, with possibly different orientations at +∞ and −∞ in an

arclength parameterization. We refer to all these types of interfaces as corner defects. Different angles

at ±∞ result in conically shaped interfaces, like for example the travelling waves constructed in [20].

In an isotropic sharp interface scaling, conical interfaces correspond to corners. Equal angles at ±∞
may result in infinitesimal step discontinuities, when the position of the interface differs at ±∞. We

construct corner defects as perturbations of a planar interface. Assumptions are solely on the existence

of a primary planar travelling-wave solution and spectral properties of the linearization at the planar

wave. All interfaces that we construct in the present article are stationary or time-periodic patterns in

an appropriately comoving frame. However, we give stability results which show that “open” classes

of initial conditions actually converge to the corner-shaped interfaces we constructed before. The

results are stated for reaction-diffusion systems but the method is sufficiently general to cover most

applications mentioned above. In particular we do not rely on monotonicity arguments or comparison

principles such that we can naturally include the case of interfaces separating patterned states from

spatially homogeneous states.

The method we use is based on the (essentially one-dimensional) dynamical systems approach to the

existence of bounded solutions to elliptic equations in cylinders introduced by Kirchgässner [39]. Later

this approach has been used to construct non trivial transverse modulations of one-dimensional waves,

such as pulse or periodic solutions, a phenomenon the authors referred to as dimension breaking [23,

24]. The main idea is to consider an elliptic equation, posed on the (x, y)-plane in a neighborhood of an

x-independent wave q∗(y) as a dynamical system in the x-variable and rely on dynamical systems tools

such as center-manifold reduction and bifurcation theory to construct bounded solutions to the elliptic

equation in a neighborhood of the original wave. Nontrivial, that is non-equilibrium, x-“dynamics”

then correspond to nontrivial x-profiles.

In the present work, we extend these ideas, incorporating the shift of the y-profile q∗(y) into the re-

duced dynamics. We then respect this affine action of the symmetry group in the construction and

parameterization of the center-manifold such that the reduced equations take a skew-product form.

The concept of an equivariant reduction and skew-product description of bifurcations in the presence

of non-compact, non-smooth group actions has been introduced in [14, 55] in order to describe me-

andering and drift motion of spiral waves under the presence of the Euclidean group of rotations and

translations in the plane. The construction of the center-manifold is “semi-global” in the sense that a

neighborhood of all translates of the primary solution is described by the reduced equations. For ex-

ample, constant drift ξ ′ = α in x-dynamics along the translates q∗(y + ξ), corresponds to the original

front inclined by an angle ϑ = arctan α.

The methods and results are related to recent work in [11, 54] on dynamics of defects in oscillatory
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media. The common feature between the present work and the study of wave trains is the presence

of a neutral eigenvalue induced by the translation of a primary profile, the Goldstone mode. A major

difference lies in the fact that wave trains possess a non-compact isotropy generated by translations of

one period, such that the resulting symmetry action is isomorphic to the circle group, whereas in our

case, the isotropy of the travelling wave is trivial. As a consequence, we have to study bifurcations

from a non-compact group orbit, isomorphic to R, whereas the group orbit in [11, 54] is compact, a

circle.

We develop the idea, prove a reduction theorem, and describe the most basic shock-type corner solu-

tions in Section 2. We prove asymptotic stability of these structures in Section 3. We then consider

more complicated scenarios, where the front undergoes a transverse long-wavelength instability, in

Section 4, and when the primary front is pulsating, in Section 5. We conclude with a discussion,

pointing out possible generalizations and open questions in Section 6.

Acknowledgments M. Haragus wishes to thank the School of Mathematics, University of Minnesota,

for hospitality provided during the preparation of part of this paper. A. Scheel was partially supported

by the NSF through grant DMS-0203301.

2 Existence of corners

We introduce the general setup for travelling waves in reaction-diffusion systems and define the typical

types of corners one might expect to find. We then state and prove the first main result on existence

and nonexistence of corner defects for interfaces separating two homogeneous states. We conclude the

section with several examples and possible extensions.

Throughout the paper, we consider the reaction-diffusion system

ut = D∆x,yu + c∂yu + f(u), (2.1)

where u ∈ R
N is a vector of N chemical species, D = diag (D1, . . . , DN ) > 0 is a positive, diagonal

diffusion matrix, and (x, y) ∈ R
n × R. The reaction kinetics f are assumed to be smooth. The

Laplacian is assumed to be isotropic ∆x,y = ∆x + ∂yy . The speed c > 0 is assumed to be positive,

such that bounded solutions to the stationary equation

D∆x,yu + c∂yu + f(u) = 0, (2.2)

are (right-)travelling-wave solutions u(x, y − ct) of the reaction-diffusion system in the steady frame

ut = D∆x,yu + f(u), (2.3)

with direction of propagation in the positive y-direction. We will assume n = 1 such that (x, y) ∈ R
2,

throughout. We briefly comment on higher space dimensions in Section 6.
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Throughout this section, we will assume existence of a planar travelling wave connecting two homo-

geneous equilibria.

Hypothesis 2.1 (Existence) We assume that there exists c∗ > 0 and asymptotic states q± such that

there exists an x-independent planar travelling-wave solution q∗(y) of (2.2)

Dq′′∗ + c∗q
′
∗ + f(q∗) = 0, (2.4)

connecting q− and q+, i.e.

q∗(y)→ q+ for y → +∞, q∗(y)→ q− for y → −∞. (2.5)

We emphasize that we allow for the possibility of pulses, q+ = q−.

The second assumption in this section is concerned with stability of the above travelling wave solution.

Therefore, consider the linearized operator

L∗ : H2(R, RN ) ⊂ L2(R, RN )→ L2(R, RN ), u 7→ −∂yyu−D−1(c∗∂yu + f ′(q∗(·))u). (2.6)

Notice that under suitable decay assumptions, q ′∗ belongs to the kernel of L∗ due to the translation

invariance in y.

Hypothesis 2.2 (Zero-Stability) We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0

is an isolated eigenvalue with algebraic multiplicity one.

Although this might not seem obvious, Hypothesis 2.2 is intimately related to stability properties of

the travelling wave q∗(·). Consider the linearized operator

M∗ : H2(R2, RN ) ⊂ L2(R2, RN )→ L2(R2, RN ), u 7→ D∆x,yu + c∗∂yu + f ′(q∗(·))u, (2.7)

and its Fourier conjugates

Mk : H2(R, RN ) ⊂ L2(R, RN )→ L2(R, RN ), u 7→ D(∂yy − k2)u + c∗∂yu + f ′(q∗(·))u. (2.8)

Hypothesis 2.3 (Transverse asymptotic stability) Assume that the travelling wave is asymptotically

stable in one space dimension, that is, the essential spectrum of M0 is strictly contained in the left

complex half plane and zero is the only eigenvalue in the closed right half plane, with algebraic mul-

tiplicity one. Furthermore, assume that the spectra ofMk, for k 6= 0 are strictly contained in the left

half plane and that the unique eigenvalue λd(k), k ∼ 0 with λd(0) = λ′
d(0) = 0 satisfies λ′′

d(0) < 0;

see Figure 2.1.
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λ ∈ C kλ ∈ R

Figure 2.1: To the left the spectrum ofM0 and to the right the critical spectra of theMk parameterized

by k.

Remark 2.4 (i) This hypothesis and, in particular, the quadratic tangency of the dispersion rela-

tion λ′′
d(0) < 0 implies asymptotic stability of the travelling wave with respect to perturbations

that are sufficiently localized in the transverse, x-direction [28, 35, 36].

(ii) For equal diffusion constants, D = d1id, the second part of Hypothesis 2.3 is a consequence of

the first part, on the spectrum ofM0. However, this is not always the case when the diffusion

constants are not equal; see also Section 4.

Lemma 2.5 Hypothesis 2.3 implies that Hypothesis 2.2 on stability holds.

Proof. The proof is similar to [57, Lemma 2.11, Remark 2.12]. Since Mk is invertible for all

k 6= 0, we immediately conclude, upon multiplying by the inverse of the diffusion matrix D, that

L∗ + k2 is invertible for all k 6= 0. Similarly, the kernels ofM0 and L∗ coincide. Denote by u(k) the

(normalized) unique family of eigenvectors to the eigenvalue λd(k) ofMk

D(∂yy − k2)u(k) + c∗∂yu(k) + f ′(q∗(·))u(k) = λd(k)u(k).

Differentiating this equality twice, and evaluating in k = 0 with u(0) = q ′
∗, u′(0) = 0, λd(0) = 0, and

λ′
d(0) = 0, we find

D∂yyu
′′(0) + c∗∂yu

′′(0) + f ′(q∗(·))u′′(0) = λ′′
d(0)q

′
∗ + 2Dq′∗, (2.9)

where λ′′
d(0) is the unique Lagrange multiplier such that (2.9) possesses a nontrivial solution. A vector

ũ in the generalized kernel of L∗ solves

∂yyũ + D−1(c∗∂yũ + f ′(q∗(·))ũ) = q′∗. (2.10)

Upon comparing (2.10) and (2.9), where λ′′
d(0) 6= 0, we conclude that (2.10) does not possess a

solution and λ = 0 is algebraically simple as stated in Hypothesis 2.2.
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Remark 2.6 (i) The converse implication generally fails. For example, after a temporal Hopf bi-

furcation of a one-dimensional propagating front, caused by point spectrum crossing the imag-

inary axis, Hypothesis 2.2 would still hold, whereas Hypothesis 2.3 would fail. However, Hy-

pothesis 2.2 does imply the quadratic tangency of the dispersion relation λ ′′
d(0) < 0. This fact

will be used later in Theorem 1.

(ii) It is straightforward to verify that in the case of a fourth order tangency λd(k) ∼ −λ
(4)
d (0)
4! k4,

λ = 0 is algebraically double as an eigenvalue of L∗; see [57, Remark 2.12]. This fact will

become relevant in Section 4.2.

The following classification of corner defects is much inspired by the classification of defects in oscil-

latory media; see [54].

Definition 2.7 (Corner defects) A solution u(x, y) of the travelling-wave problem is called an almost

planar travelling-wave solution δ-close to q∗, if u is of the form

u(x, y) = q∗(y + ξ(x)) + w(x, y), (2.11)

with ξ ∈ C2(R) and

sup
x
|ξ′(x)| < δ, sup

x
|w(x, ·)|H1(R,RN ) < δ, |c− c∗| < δ. (2.12)

We say u is trivial if u is a rotated planar interface u = q∗((cos ϑ)x + (sinϑ)y), for some ϑ ∈ R.

We say u is a corner defect if it is of the form (2.11) and ξ ′(x)→ η± ∈ R, as x→ ±∞. We distinguish

corner defects according to the following list:

• if η+ < 0 < η− we say that the corner defect is an interior corner;

• if η+ = η− = 0 we say that the corner defect is a hole;

• if η+ = η− 6= 0 we say that the corner defect is a step;

• if η+ > 0 > η− we say that the corner defect is an exterior corner;

see Figure 2.2.

Remark 2.8 If we think of individual points on the interface evolving with the normal speed c∗, we

notice that interface is consumed on both sides of interior corners and interface is generated at exte-

rior corners. At a step, interface is consumed on one side and generated on the other side, whereas at

a hole, interfacial points neither enter nor leave the defect. In addition to the geometric characteriza-

tion in Definition 2.7 we therefore suggest the following dynamic characterization, building a closer

analogy to [54]:
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(a) (b) (c) (d)

ϑ

ϑ ϑ

Figure 2.2: Schematic plot of the four different types of corner defects, interior corner (a), hole (b),

step (c), and exterior corner (d). The middle arrows indicate the speed of the defect, whereas the left

and right (smaller) arrows indicate the normal speed of propagation of the interface. The angle ϑ is

given by tanϑ = η−

interior corner ←→ sink

step ←→ transmission defect

hole ←→ contact defect

exterior corner ←→ source

Thinking in terms of interfacial energy, energy is lost at a sink, generated at a source, transmitted at a

transmission defect and preserved at a contact defect.

There is yet another motivation for this terminology. We will later see that all defects possess a natural

characterization as heteroclinic and homoclinic orbits. In this terminology, they coincide with the

localized defects in spatially one-dimensional oscillatory media, which have been previously classified

in the terminology of sink, contact, transmission, and source in [54]. To make the analogy clearer,

transport of points on the interface has to be phrased in terms of group velocities. Since the dispersion

relation λd(k) at the interface is symmetric in k, the group velocity λ′
d(0) in the tangential direction

vanishes and transport is generated solely by geometry. In oscillatory media, transport is induced

by group velocities of wave trains and described at small amplitudes by a viscous Burgers equation.

Defects are then classified in [54] according to the relative slope of characteristics with respect to

the speed of the defect. The correspondence actually goes much further, since spectra of linearized

operators at corner defects and at defects in oscillatory media qualitatively agree.

Remark 2.9 Throughout the paper, we consider propagation in a direction normal to the primary

interface. Most of the defects we find are actually symmetric with respect to x 7→ −x. A slightly

more general characterization of almost planar interfaces would allow for a propagation in the x-

direction, as well. This would contribute a term cx∂xu in the equation, with an additional parameter

cx. Equivalently, we can rotate the plane by an angle ϕ such that the speed of propagation points

again in the y-direction.

We are now ready to state our main result of this section.
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Figure 2.3: One-dimensional pulses and fronts (top) generate two-dimensional corner defects in line-

and in invasion patterns, respectively (bottom).

Theorem 1 Assume existence and zero-stability of a planar travelling wave q∗(·), Hypotheses 2.1 and

2.2. Then there is δ > 0 such that for each c with |c− c∗| < δ, c > c∗, there exists an interior corner

defect. The defect is unique in the class of nontrivial almost planar corner defects up to translation in

x. Moreover, it is invariant under reflection x 7→ x0 − x for an appropriate x0 and is to leading order

given through

q(x, y; c) = q∗(y + ξ(x)) + O(|c− c∗|),

ξ′(x) =

√
2(c− c∗)

c∗
tanh(βx) + O(|c− c∗| e−2|βx|), β =

√
2c∗(c− c∗)

λ′′
d(0)

< 0. (2.13)

For c ≤ c∗, there are no nontrivial almost planar corner defects.

Note that the theorem does not require Hypothesis 2.3; see Remark 2.6 (i).

We give a sketch of these interior corner defects in Figure 2.3; see also Figure 2.4. Note that the

speed of propagation of the asymptotically planar interface with angle ϑ = arctan η± is given by the

simple geometric condition c = c∗/ cos ϑ; see also [3] and the references therein. The existence and

nonexistence part in Theorem 1 coincide with the results in [3] for scalar reaction-diffusion systems.

We emphasize, however, that the results there cover large angles ϑ, as well.

We outline first the proof of Theorem 1. We rewrite the travelling-wave equation (2.2) as a dynamical

system in the direction x, perpendicular to the direction of propagation. We then parameterize solutions

similarly to (2.11) exploiting the translation invariance y 7→ y + ξ of (2.2). The main step then is

a dynamic center-manifold reduction to a two-dimensional center-manifold diffeomorphic to a strip

(ξ, η) ∈ R× (−δ, δ) and flow given by

ξ′ = η + O(|c− c∗| |η|+ |η|3), η′ =
2

λ′′
d(0)

(c− c∗ −
c∗
2

η2) + O(|c− c∗|2 + |η|4), (2.14)
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c∗c

ϑ

Figure 2.4: Interface plotted at time t = 0 and time t = 1. The normal speed of propagation c∗ and

the speed of the defect form a rectangular triangle with angle ϑ.

In particular, the right hand sides of these equations do not depend on ξ. Moreover, they commute with

the reversibility symmetry x 7→ −x, ξ 7→ ξ, η 7→ −η. Bounded solutions are the well-known Burgers

shocks.

Note that the reduced equation reflects steady-state profiles of the viscous Burgers’ equation

ηt = −λ′′
d(0)ηxx − c∗(η

2)x. (2.15)

This equation has been derived formally as a modulation equation for planar interfaces, previously,

but we are not aware of any rigorous results in this direction; see however [11] for a justification in

a different context. The Rankine-Hugoniot condition for the jump of the shock reduces to the purely

geometric condition that the speed of the corner is determined by the condition that the orthogonal

projection of the velocity of the corner on the (exterior) normal of the interfaces on both sides equals

c∗; see Figure 2.4.

Proof. [of Theorem 1] We rewrite the travelling-wave equation (2.2) as a first-order system in x

ux = v

vx = −∂yyu−D−1(c∂yu + f(u)), (2.16)

on the Hilbert space Y = (H1 × L2)(R, RN ), or, in short notation,

ux = A(c)u + F(u), (2.17)

where u = (u, v)T ,

A(c) =

(
0 id

−∂yy −D−1c∂y 0

)
, F(u) =

(
0

−D−1f(u)

)
. (2.18)

Note that A(c) is closed on Y with domain of definition Y 1 = (H2 ×H1)(R, RN ). The nonlinearity

F is smooth as a map from Y to Y .
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The equation (2.16) possesses a continuous translation symmetry, induced by the y-shift ξ : u(·) 7→
u(·+ξ). Moreover, the equation possesses a reversibility symmetry (u, v)T 7→ R(u, v)T := (u,−v)T ,

x 7→ −x.

Hypothesis 2.1 on existence of planar interfaces shows that (2.17) possesses a family of equilibria

qξ
∗ =

(
qξ
∗(·)
0

)
=

(
q∗(·+ ξ)

0

)
. (2.19)

The linearization of (2.16) about q0
∗ is given by the operator

A∗ =

(
0 id

L∗ 0

)

with L∗ the linear operator defined in (2.6). Note that A∗ is also closed in Y with domain of definition

Y 1. Due to the second order structure of (2.16), the spectrum of A∗ coincides with the multi-valued

squareroot of the spectrum of L∗. From Hypothesis 2.2 we therefore conclude that

specA∗ ∩ {|Re λ| ≤ ε} = {0},

for some ε > 0, and that

|(ik −A∗)
−1|Y →Y ≤

C(1 + |k|)
|k|2 , for any k ∈ R

∗,

for some C > 0. The eigenvalue in the origin is algebraically double with kernel and generalized

kernel spanned by

kerA∗ = span(e0), e0 =

(
q′∗(·)

0

)
, gkerA∗ = span(e0,e1), e1 =

(
0

q′∗(·)

)
,

with A∗e1 = e0.

In order to find the spectral projection onto the generalized kernel, we construct the L2 × L2-adjoint

Aad
∗ =

(
0 Lad

∗

id 0

)
,

where Lad
∗ is the L2-adjoint of L∗. The kernel and generalized kernel are given by

kerAad
∗ = span(ead

0 ), ead
0 =

(
0

qad
∗ (·)

)
, gkerAad

∗ = span(ead
0 ,ead

1 ), ead
1 =

(
qad
∗ (·)
0

)
,

with Aad
∗ ead

1 = ead
0 and Lad

∗ qad
∗ = 0. We assume that the adjoint eigenvectors are normalized such

that

〈ead
j ,ej〉L2×L2 = 0, 〈ead

j ,e1−j〉L2×L2 = 1, j = 0, 1,
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by taking (qad
∗ , q′∗)L2 = 1. The projection on the generalized kernel is then given as a bounded operator

on Y through

P : Y → Y, Pu = 〈ead
1 ,u〉L2×L2e0 + 〈ead

0 ,u〉L2×L2e1. (2.20)

Similarly, to the shifted equilibria qξ
∗ we introduce the shifted linear operator Aξ

∗, the shifted eigenvec-

tor eξ
0 = ((q′∗)

ξ(·), 0)T , and analogously eξ
1,e

ad,ξ
j , P ξ,Aad,ξ

∗ .

Following the general strategy for reduction around a continuous family of equilibria [55], we decom-

pose

u = qξ
∗ + ηeξ

1 + wξ, with P ξwξ = Pw = 0. (2.21)

Here ξ and η are real functions depending upon x. This provides us with coordinates in a neighborhood

of the family of equilibria qξ
∗. Substituting (2.21) into (2.17), we find

ξxe
ξ
0 + ηxe

ξ
1 + ηξx∂ξe

ξ
1 +(wξ)x = Aξ

∗(ηe
ξ
1 + wξ) + (A(c)−A(c∗))(q

ξ
∗ + wξ) +Gξ(wξ), (2.22)

where

Gξ(wξ) = F(qξ
∗ + wξ)−F(qξ

∗)−DuF(qξ
∗)w

ξ,

such that Gξ is smooth on Y and Gξ(w) = O(|w|2Y ), uniformly in ξ. Notice that Gξ does not depend

upon η since the first component of e1 is zero.

We next take the scalar product of (2.22) with ead,ξ
1 and exploit the fact that the second component of

e
ad,ξ
1 vanishes to obtain

ξx + 〈ead,ξ
1 , (wξ)x〉 = η.

From (ead,ξ
1 ,wξ)x = 0 and the invariance of the L2 × L2-scalar product under the y-shift (·)ξ we

obtain

〈ead,ξ
1 , (wξ)x〉 = −〈ξx∂ξe

ad,ξ
1 ,wξ〉 = −〈ξx∂ξe

ad
1 ,w〉.

We therefore find

ξx = (1− 〈∂ξe
ad
1 ,w〉)−1η = η + O(|η| |w|Y ). (2.23)

Taking the scalar product of (2.22) with ead,ξ
0 yields

ηx + ηξx〈ead
0 , ∂ξe1〉+ 〈ead,ξ

0 , (wξ)x〉 = 〈ead
0 , (A(c)−A(c∗))(q

0
∗ + w)〉+ 〈ead

0 ,G0(w)〉, (2.24)

in which we used the invariance of the L2 × L2-scalar product under the y-shift (·)ξ . We claim that

〈ead
0 , ∂ξe1〉 =

c∗
λ′′

d(0)
. (2.25)

To see this, first note that

〈ead
0 , ∂ξe1〉 = 〈qad

∗ , q′′∗〉 =
1

2

(
〈qad

∗ , q′′∗ 〉 − 〈qad
∗

′
, q′∗〉

)
.
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A short, direct calculation shows that

d

dy

(
qad
∗ · q′′∗ − qad

∗
′ · q′∗

)
= − d

dy

(
D−1c∗q

ad
∗ · q′∗

)
.

Integration with respect to y gives

〈qad
∗ , q′′∗〉 − 〈qad

∗
′
, q′∗〉 = −c∗〈D−1qad

∗ , q′∗〉.

Finally, if we take the scalar product of (2.9) with D−1qad
∗ and exploit that the left hand side vanishes,

we obtain

〈D−1qad
∗ , q′∗〉 = − 2

λ′′
d(0)

, (2.26)

which proves our claim (2.25).

As already observed before, we have 〈ead,ξ
0 , (wξ)x〉 = −ξx〈∂ξe

ad
0 ,w〉, and

〈ead
0 , (A(c) −A(c∗))q

0
∗〉 = −(c− c∗)〈qad

∗ , D−1q′∗〉 =
2

λ′′
d(0)

(c− c∗),

such the equality (2.24) can be rewritten as

ηx =
2

λ′′
d(0)

(c− c∗)−
c∗

λ′′
d(0)

ξxη + ξx〈∂ξe
ad
0 ,w〉+ 〈ead

0 , (A(c) −A(c∗))w + G0(w)〉. (2.27)

Note that this becomes a first order differential equation for η once we substitute the expression for ξx

from (2.23).

Having derived equations for ξx and ηx, we now derive an equation for wx, the hyperbolic part. We

therefore project (2.22) with (id− P ξ) onto the hyperbolic subspace of A∗ and find

wx =−ξx∂ξw − ξx(∂ξP )w +A∗w + (id− P )(−ηξx∂ξe1 + (A(c)−A(c∗))(q
0
∗ + w) + G0(w)).

If we substitute the expressions (2.27) for ηx and (2.23) for ξx, this equality provides us with a first

order differential equation for w.

Summarizing, we have found a first order quasilinear system of differential equations

ηx =
2

λ′′
d(0)

(c− c∗)−
c∗

λ′′
d(0)

η2 + O(|c− c∗| |w|Y + |η| |w|Y + |w|2Y ), (2.28)

wx = A∗w + O(|c− c∗|+ |η|2 + |w|2Y + |η| |w|Y 1), (2.29)

posed on the Hilbert space R× Yh, with Yh = (id − P )Y . A key point in this choice of coordinates

is that this system is independent of ξ, such that we can solve for ξ, separately. Since Pw = 0, the

linearized equation is hyperbolic in the w-component. We may now evoke a center-manifold reduction

theorem for quasilinear systems [45, Theorem 1] to conclude that for c close to c∗, all solutions with

η,w sufficiently small are solutions to a reduced differential equation for η, obtained by substituting
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w = h(η; c − c∗) = O(|c − c∗|+ |η|2) into (2.28). The reduction theorem ensures that all nonlinear

functions and their dependences on parameters are of class C k for an arbitrary but fixed k < ∞.

Moreover, the reduction procedure preserves the action of the reversibility R, such that the function

h commutes with the action of R restricted to center and hyperbolic subspaces. Since Re1 = −e1,

we can conclude that the right hand side of the reduced equation on the center subspace is an even

function of η, with expansion

ηx =
2

λ′′
d(0)

(c− c∗ −
c∗
2

η2) + O(|c− c∗|2 + |η|4). (2.30)

We can determine the location of the equilibria in (2.30) a priori and to any order if we exploit the

rotational invariance of the reaction-diffusion system in the steady frame (2.3). Together with the

primary plane interface, there are rotated planar interface, parameterized by the angle ϑ relative to the

original planar interface. In our reduced system (2.30), these rotated interfaces yield equilibria η =

tanϑ (here η > 0 corresponds to the rotated interface being shifted backwards as x increases). The

rotated planar interfaces travel with normal speed c⊥ = c∗. The (non-normal) speed of propagation

c in the y-direction, imposed in (2.2), induces a projected normal speed of propagation c⊥ = c cos ϑ;

see Figure 2.4. Therefore the equilibria to (2.30) are explicitly given by

η2
± =

c2 − c2
∗

c2
.

Nontrivial, small bounded solutions for the scalar reduced ODE (2.30) exist precisely when there are

at least two equilibria, that is, when c > c∗. All small solutions are then given by either one of the

equilibria, or the heteroclinic orbit connecting η+ < 0, as x → ∞, with η− > 0, as x → −∞. It

is straightforward to verify that, to leading order, the heteroclinic takes the explicit form (2.13). This

concludes the proof of Theorem 1.

We conclude this section with several examples of reaction-diffusion systems for which such corner

defects exist.

The simplest example is found in the classical Nagumo equation

ut = ∆u + u(u− a)(1− u). (2.31)

Existence and stability of propagating fronts, Hypotheses 2.1 and 2.2 are satisfied for a ∈ (0, 1),

a 6= 1/2, since the front is stable in one space-dimension and the diffusion matrix is trivial.

Another example is provided by the Gray-Scott equation

∂tu1 = d1∆u1 − u1u
2
2 + F (1− u1)

∂tu2 = d2∆u2 + u1u
2
2 − (F + k)u1.
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For equal diffusion constants and particular parameter values k, F , an explicit expression for a front

solution was given in [18, 19]. Numerical evidence strongly suggests that the planar fronts are asymp-

totically stable with dispersion relation λ′′
d(0) < 0, although no analytical proof of this fact seems to

be available.

Existence and stability of a one-dimensional pulse is known for the FitzHugh-Nagumo equation

[1, 26, 32, 60, 67]

∂tu1 = ∆u1 + u1(1− u1)(u1 − a)− u2

∂tu2 = δ∆u2 + ε(u1 − γu2),

where δ ≥ 0 and ε are sufficiently small, 0 < a < 1/2, and γ is large.

Lemma 2.10 [60] The (fast) planar pulse for the FitzHugh-Nagumo equation with 0 ≤ δ � ε � 1

is stable in two space-dimensions, that is λ′′
d(0) < 0. In particular, Hypotheses 2.1 and 2.2 hold for

δ > 0, sufficiently small.

Proof. The proof for δ = 0 is a consequence of the discussion in [60], where arbitrary periodic bound-

ary conditions in the x-direction are imposed. A perturbation argument similar to the one presented in

[1] shows that the same stability properties hold for δ > 0, as well.

As an immediate consequence, Theorem 1 shows that interior corner defects actually exist as pure

travelling-wave solutions. They are observed typically at collision points of wave-trains emitted by

spiral waves; see [66] for illustration and background on spiral waves in the Belousov-Zhabotinsky

reaction.

A minor modification actually allows us to apply Theorem 1 to the case δ = 0, as well. Therefore,

note that in the travelling-wave equation

c∂yu1 = ∆u1 + u1(1− u1)(u1 − a)− u2

c∂yu2 = ε(u1 − γu2),

we may solve the second equation for u1 as a (nonlocal) function of u2 and end up with a single

travelling-wave equation. The proof of Theorem 1 then goes through for this single equation.

A number of fronts satisfy Hypothesis 2.2 only in function spaces equipped with an exponential weight.

In oversimplified models for combustion, u is scalar and f(u) ≡ 0 for u ∈ [0, δ], f(1) = 0, and

f(u) > 0 on (δ, 1) [3]. The reaction front connecting u = 1 at −∞ to u = 0 then satisfies Hypothesis

2.2 on stability in a space Xη ⊂ L2
loc of functions with exponential weight

|u|2Xη
:=

∫

R

|u(y)(1 + eηy)|2dy, (2.32)
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for some positive rate η > 0.

A simple example is provided by a variant of the Nagumo equation (2.31) when a < 0. For

c∗ =
√

2(1
2 − a), there exists an explicit front solution, which satisfies Hypothesis 2.2 in Xη for

η ∈ (1/
√

2,−2a/
√

2) if 1 < −2a and η ∈ (−2a/
√

2, 1/
√

2) if 1 > −2a; see [62]. Actually, fronts

exist for all c ≥ 2
√−a. However, all fronts with c < c∗ are unstable in any exponentially weighted

function space, whereas the front with c = c∗ is the unique front which possesses a single eigenvalue

λ = 0 in an exponentially weighted spaces. More information on the selection mechanisms for fronts

can be found in [62]. In the terminology employed there, we construct interior corners for pushed

fronts. We do not know if interior corners exist for pulled fronts; see also [63, §5.2]

Another example is provided by the cubic-quintic Ginzburg-Landau equation for complex valued

function A and parameters µ, γ ∈ R,

At = ∆A + µA + γA|A|2 −A|A|4. (2.33)

Of interest are fronts between patterned states A(y) = |A|ei(kxx+kyy) and the trivial solution in this

equation. Here, we specialize to real solutions satisfying

ut = ∆u + µu + γu3 − u5, (2.34)

and briefly discuss the case k 6= 0 in Section 6. For µ < 0 and γ > 0, there exist fronts of the

same type as in the Nagumo equation connecting the (stable) trivial solution u = 0 to the zero u+

of µu + γu3 − u5 with maximal modulus. If µ > 0, the origin is unstable, but there may still be

interfaces between u+ spreading into u = 0. Phase-plane analysis and Sturm-Liouville theory show

that for γ > 2/
√

3, a front solution of the type described for the Nagumo equation exists and satisfies

Hypothesis 2.2.

Our results cover the case of gradient dependence in the nonlinearities. In particular, the case of scalar

two-dimensional viscous conservation laws can be analyzed following the proof of Theorem 1. We

give a negative example, showing non-existence of corner defects in scalar conservation laws

ut = ∆u− f(u)x − g(u)y . (2.35)

Without loss of generality, we assume c∗ = 0, and find the x-independent viscous shock-profiles

q∗(y)→ q± as solutions to

q′ − g(q) = q0,

connecting the asymptotic states q± with g(q+) = g(q−). We assume that g′(q±) 6= 0. In an exponen-

tially weighted space

|u|2Xη
−

,η+
:=

∫ 0

−∞
|u(y)eη−y|2dy +

∫ ∞

0
|u(y)eη+y|2dy, (2.36)
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with η− < 0 < η+1, |η±| small enough, this profile satisfies Hypothesis 2.2 on zero-stability as a

simple consequence of Sturm-Liouville theory. It is now tedious but straightforward to check that the

proof of Theorem 1 can be adapted in order to construct a center-manifold. However, the generalized

kernel is two-dimensional if and only if the tangential group velocity vanishes

λ′
d(0) =

∫
f ′(q∗(y))q′∗(y)dy = f(q+)− f(q−) = 0. (2.37)

However, in this case, the two-dimensional center manifold is filled with the rotated waves. To see

this, note that in rotated coordinates, the y-flux is to be replaced by g̃(u) = (cos ϑ)g(u)+(sinϑ)f(u),

which satisfies g̃(q−) = g̃(q+) for any ϑ, provided the tangential group velocity vanishes (2.37).

For nonzero speed in the x-directions, there are no bounded solutions on the two-dimensional center-

manifold. If the tangential group velocity is nonzero, the center-manifold is one-dimensional and

filled with translates of the original front. Again, there are no small bounded solutions for small

speeds in the x-direction. We view these results as an indicator for a major drawback of scalar two-

dimensional conservation law models: scalar conservation laws cannot reproduce shock annihilation

at weak corners.

Remark 2.11 (Periodic wave-trains) Theorem 1 can also be applied to y-periodic, x-independent

wave-trains. For this, we impose periodic boundary conditions in the y-direction and follow the

proof. Examples of wave-trains for which the stability hypothesis can be verified arise in the FitzHugh-

Nagumo equation [13, 53]. The transverse stability assumption in the regime of large period in y can

be concluded from the transverse stability of the pulse using the results in [53]. The spatial patterns

that are described by the heteroclinics on the center manifold are periodic juxtapositions in the direc-

tion of propagation of the picture for a single interior corner, Figure 2.2 (a). We note that these types

of patterns can be observed in spiral wave interaction, where wave trains, emitted from two spiral

cores, collide.

3 Stability of corners

The goal of this section is to show stability of interior corner defects as found in Theorem 1. We

assume that Hypotheses 2.1 and 2.3 hold. Here, the strengthened stability hypothesis 2.3 is needed

as compared to the weaker zero stability Hypothesis 2.2. The results below show that interior corner

defects are asymptotically stable under perturbations which are exponentially localized in the direction

perpendicular to the direction of propagation of the interface. Roughly speaking, localization refers

to the position of the interface in Theorem 2 and to the angle in the change of the orientation of the

interface in Theorem 3. The perturbations are fully localized in Theorem 2, and localized in each

spatial direction except for those parallel to the asymptotic straight lines of the interface in Theorem 3.
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In order to state the results we first introduce the space of exponentially localized functions Xη ⊂
L2

loc(R
2, RN ) and X 2

η ⊂ H2
loc(R

2, RN ), with norms

|u|2Xη
:=

∫

x,y
|u(x, y) cosh(ηx)|2dy dx <∞, (3.1)

|u|2X 2
η

:= |u|2Xη
+ |∆u|2Xη

. (3.2)

Note that perturbations contained inXη change the local shape of the corner but do not alter the position

of the asymptotic straight lines of the interface

Theorem 2 Assume existence and stability of a planar travelling wave, Hypotheses 2.1 and 2.3. Then

there exist positive constants ε0 and η0 such that the (unique) interior corner defects q(x, y; c), de-

scribed in Theorem 1 for c − c∗ ∈ (0, ε0) are asymptotically stable under perturbations u0 ∈ X 2
η , as

defined in (3.1)–(3.2), for all 0 < η < η0(c − c∗)
1/2. More precisely, there exist δ = δ(η, c) > 0 and

C = C(η, c) > 0 such that for any initial condition q(·, ·; c) + u0(x, y) with |u0|X 2
η

< δ, the solution

u to (2.1) satisfies

|u(t, ·, ·) − q(·, ·; c)|X 2
η
≤ Cδe−ηt, (3.3)

for any t > 0.

The stability properties are best understood in the context of the stability properties of the viscous

shock profile q(x) = tanh(x/2) in Burgers equation [56],

ut = uxx + uux. (3.4)

In our context, the velocity u corresponds to the inclination η of the interface (see (2.15)), such that

the actual difference between two solutions u and q is measured by the integral Φ =
∫
x u, which

corresponds to the position ξ of the interface. The variable Φ solves a viscous eikonal equation

Φt = Φxx +
1

2
Φ2

x. (3.5)

If we linearize (3.5) about Φ =
∫
x q, we find

Ψt = Ψxx + tanh(x/2)Ψx. (3.6)

This linear equation generates a contraction semi-group on the function space Xη−,η+ with −1 <

η− < 0 < η+ < 1. Since nonlinearities are differentiable on interpolation spaces defined relative to

the exponentially weighted spaces Xη−,η+ , standard results on nonlinear semigroup theory [27] give

an asymptotic stability result in the spirit of Theorem 2. Note however that the function Φ itself is

not bounded and nonlinearities are well-defined since they do only depend on the derivative Φ. An

alternative proof could therefore operate on Burgers equation (3.4), on the same space of exponentially
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weighted functions. Localization of the perturbation in the Φ-variables corresponds to zero mass

perturbations in Burgers equation
∫

u = 0. If we allow for nonzero mass, the linearization about the

shock in Burgers equation possesses a neutral eigenvalue. Stability with respect to these perturbations

now holds if we shift the profile q(·+x0) by an appropriate constant x0 to compensate for the additional

mass. The next natural question now arises whether a similar result holds for the stability of corners.

We therefore introduce the function space X̃η = Xη ⊕Xstep ⊂ L2
loc(R

2, RN ) with

Xstep = {ustep(x, y) = u−(y)(1 − θ(x)) + u+(y)θ(x); u± ∈ L2(R, RN )}.

Here, θ(·) denotes the Heavyside step function. We equip X̃η with the Euclidean product norm

|u + ustep|2X̃η
:= |u|2Xη

+ |u−|2L2 + |u+|2L2 .

We also consider X̃ 2
η = X 2

η ⊕X 2
step ⊂ H2

loc(R
2, RN ) with

X 2
step = (id−∆)−1Xstep ⊂ H2

loc(R
2, RN ).

Note that any function vstep ∈ X 2
step is obtained through

vstep(x, y) = (id−∆)−1(u−(y)(1 − θ(x)) + u+(y)θ(x)), u± ∈ L2(R, RN ),

and can be computed explicitly in terms of u− and u+ with the help of the Green’s function for

(id−∆)−1. In particular, any vstep ∈ X 2
step belongs to C1(R2, RN ) and has the asymptotic behavior

vstep(x, y) = (id− ∂yy)
−1u−(y) + O(ex(|u−|L2 + |u+|L2)),

as x→ −∞, and

vstep(x, y) = (id− ∂yy)
−1u+(y) + O(e−x(|u−|L2 + |u+|L2)),

as x→∞. We equip X̃ 2
η with the product norm

|v + vstep|2X̃ 2
η

:= |v|2X 2
η

+ |v−|2H2 + |v+|2H2 ,

where

v±(·) = lim
x→±∞

vstep(x, ·) ∈ H2(R, RN ).

For η ∈ (0, 1) the operator ∆− id is sectorial on X̃η with domain of definition X̃ 2
η and its spectrum is

upper semi-continuous with respect to the parameter η.

The interior corner q(·, ·; c) found in Theorem 1 is of the form

q(x, y; c) = q∗(y + ξ(x)) + O(|c− c∗|) =: q̃(x, y + ξ(x); c), (3.7)

19



where ξ(x) is the y-dependent position of the interface. Then q̃ ∈ X̃ 2
η , and the same is true for the

family of translates q(x + x0, y + y0; c), which generates a two-dimensional surface of equilibria to

(2.1) in the function space X̃ 2
η (this is not the case for the function space X 2

η , since the differences

q(x + x0, y; c)− q(x, y; c) and q(x, y + y0; c)− q(x, y; c) are not contained in X 2
η ). In Theorem 3 we

consider perturbations of the form u0(x, y) = ũ0(x, y + ξ(x)) with ũ0(·, ·) ∈ X̃ 2
η , and ξ(x) given by

the fixed reference interface. Then u0 is asymptotically constant along the curves y + ξ(x) ≡ const

parallel to the interface, and localized elsewhere. Such perturbations allow for changing the position

of the corner, but not its angle. Note that if ũ ∈ Xη then u belongs to Xη as well, but this is not true

for functions u with ũ in the extended space X̃η .

Remark 3.1 Initial conditions u0(x, y) = ũ0(x, y + ξ(x)) with ũ0 ∈ X̃ 2
η as before could be also

described using the ξ-dependent space Xη ⊕ X̃step,

X̃step = {ũstep(x, y) = u−(y + η∗x)(1− θ(x)) + u+(y − η∗x)θ(x); u± ∈ L2(R, RN )},

in which η∗ = lim|x|→∞ |ξ′(x)|.

Theorem 3 Assume existence and stability of a planar travelling wave, Hypotheses 2.1 and 2.3.

Then there exist positive constants ε0 and η0 such that the family of (unique) interior corner defects

q(x+x0, y+y0; c), described in Theorem 1 is asymptotically stable with asymptotic phase, under per-

turbations u0 with ũ0 ∈ X̃ 2
η , for all 0 < η < η0(c−c∗)

1/2 when c−c∗ ∈ (0, ε0). More precisely, there

exist δ = δ(η, c) > 0 and C = C(η, c) > 0 such that for any initial condition q(·, ·; c)+ũ0(x, y+ξ(x))

with |ũ0|X̃ 2
η

< δ, there exist x0 and y0 such that the solution u to (2.1) satisfies

|u(t, ·, ·) − q(·+ x0, ·+ y0; c)|X̃ 2
η
≤ Cδe−ηt, (3.8)

for all t > 0.

The remainder of this section is occupied by the proofs for Theorems 2 and 3. The main part of the

analysis is concerned with the study of the spectrum of the linearization about the interior corner,

Lu = D∆u + c∂yu + f ′(q(·, ·; c))u, (3.9)

where the function q(·, ·; c) is given by Theorem 1 on existence of interior corners for wave speeds

c > c∗. In the case of fully localized perturbations, Theorem 2, we consider L on Xη with domain

of definition X 2
η (Proposition 3.2). For Theorem 3 we have to consider a slightly modified operator.

Recall that in this case the perturbations are of the form

u(x, y) = ũ(x, y + ξ(x)) =: ũξ(x, y),
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with ũ ∈ X̃ 2
η . On the linear level, the stability analysis reduces to the eigenvalue problem

(L− λ id)ũξ = h̃ξ

for ũ ∈ X̃ 2
η and h̃ ∈ X̃η. We may then transform the independent variables to obtain

(L̃ − λ id)ũ = h̃,

where

L̃ũ = D((∂x + ξx∂y)
2 + ∂yy)ũ + c∂yũ + f ′(q̃(·, ·; c))ũ,

and q̃(x, y + ξ(x); c) = q(x, y; c) (on Xη the two eigenvalues problems are equivalent). Note that L̃
is a small, relatively bounded perturbation of the linearization M∗ about q∗ given in (2.7); see (3.7).

Again, we decompose the proof into a statement on the linearized equation (Proposition 3.4) and a

short separate argument for the nonlinear part.

Proposition 3.2 Under the assumptions of Theorem 2, there exist positive constants ε0, η0 and δ0 such

that for any c − c∗ ∈ (0, ε0), and any weight η = η̃(c− c∗)
1/2 with η̃ ∈ (0, η0), the spectrum of L in

Xη satisfies

specL ⊂ {λ ∈ C; Reλ < −δ0η̃(c− c∗) < 0}.

Proof. [of Theorem 2] The perturbation u0 evolves in time as the solution to

ut = Lu + G(u), u|t=0
= u0, (3.10)

with L given by (3.9) and

G(u) = f(q + u)− f(q)− f ′(q)u. (3.11)

Note that G : X 2
η → X 2

η is smooth since f is smooth and X 2
η embeds continuously into the bounded

continuous functions of the plane. Moreover, G(u) = O(|u|2) in X 2
η . Given the spectral result in

Proposition 3.2, the convergence estimate (3.8) is a simple consequence of the variation of constant

formula for the solution u to (3.10) and the contraction mapping principle.

Proof. [of Proposition 3.2] It is straightforward to check that L is sectorial, so it is sufficient to consider

spectral values λ in a bounded subset of the complex plane.

We write ε2 = c − c∗ > 0. Note that we can express the solution q(x, y; c) alternatively as a smooth

function of ε, which we denote by q(x, y; ε), slightly abusing notation.

We have to solve

D(∂xxu + ∂yyu) + f ′(q(x, y; c))u + c∂yu− λu = h(x, y), (3.12)
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with bound

|u|Xη ≤ C(λ)|h|Xη , (3.13)

for all λ with Reλ ≥ 0, and sufficiently small weights η 6= 0. We therefore rewrite (3.12) as a first

order system in the “evolution” variable x

ux = v

vx = −∂yyu−D−1(f ′(q(x, y; c))u + c∂yu− λu) + D−1h(x, y). (3.14)

Set

q̃ξ(x, y; ε) = q̃(x, y + ξ(x); ε) := q(x, y; ε), h̃ξ(x, y) := D−1h(x, y). (3.15)

We have

|h̃|Xη ≤ C|h|Xη ,

such that it is sufficient to bound the solution u to (3.14) in terms of h̃. The eigenvalue problem we

have to consider has been transformed to

ux = v

vx = −∂yyu−D−1(f ′(q̃ξ(x, y; ε))u + c∂yu− λu) + h̃ξ(x, y). (3.16)

Note that

q̃ξ(x, y; ε) = qξ
∗(y) + O(ε2), (3.17)

uniformly in x, y; see Theorem 1. Then the linearization can be written as

ux = v

vx = −∂yyu−D−1(f ′(qξ
∗(y))u + c∂yu− λu) + rξ(x, y)u + h̃ξ(x, y), (3.18)

with rξ = O(ε2). We write (3.18) in the abstract form

ux = Aξ
λ,ε(x)u + rξ(x)u + h̃ξ(x), (3.19)

on the Hilbert space Y defined in the proof of Theorem 1.

Let us first consider the case |λ| ≥ δ > 0, Re λ ≥ 0. Upon substituting u = vξ into (3.19), we arrive

at

vx + ξx∂yv = A0
λ,εv + r0(x)v + h̃(x), (3.20)

where we shifted back the equation by the x-dependent y-shift ξ(·). This equation is a small relatively

bounded perturbation of the equation

vx = A0
λ,0v + h̃(x),
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where

A0
λ,0 =

(
0 id

−∂yy −D−1(f ′(q∗(·)) + c∗∂y − λ) 0

)
.

This equation can readily be solved by using the Fourier transform with respect to x, for any h̃ ∈
L2(R, Y ), and any |λ| ≥ δ > 0, Reλ ≥ 0. We obtain the uniform bounds on the solution

|v|H1(R,Y ) + |v|L2(R,Y 1) ≤ C|h̃|L2(R,Y ). (3.21)

Note that it is here that we need the strengthened stability Hypothesis 2.3 instead of the weaker zero

stability Hypothesis 2.2, which was sufficient for the existence theorem. In particular, this hypothesis

guarantees that A0
λ,0 − ik is invertible for all k ∈ R and any λ 6= 0, Reλ ≥ 0, since the problem

(A0
λ,0 − ik)(v1, v2)

T = (h1, h2)
T has a unique solution

v1 = −(Mk − λ)−1D(ikh1 + h2) ∈ H2(R, RN )

v2 = ikv1 − h1 ∈ H1(R, RN )

for (h1, h2) ∈ Y . Standard perturbation theory then shows that the same bounds (3.21) hold for small

relatively bounded perturbations and for the weighted spaces L2
η(R, Y ), H1

η (R, Y ), and L2
η(R, Y 1),

with η 6= 0 small, where L2
η is defined similarly to (2.36) with norm |w|L2

η
:= |w/ cosh(η·)|L2 .

Therefore the estimates hold for the solutions v to (3.20), as well. Going back the change of variables

to the u-coordinates, we note that the norms in Xη are invariant under the x-dependent y-shift such

that we have found a uniform bound on u in Xη in terms of the norm of h in Xη . This proves the

proposition in the parameter regime |λ| ≥ δ, for any fixed δ sufficiently small.

Consider |λ| � 1 in (3.19), next. We decompose

u = σeξ
0 + τeξ

1 + wξ, with P ξwξ = 0. (3.22)

Here, σ and τ are real functions depending upon x, and the eigenvectors eξ
j and the projection P ξ have

been defined in the proof of Theorem 1. Upon substituting this decomposition into (3.18), we find

σxe
ξ
0 + σξx(∂ξe

ξ
0) + τxe

ξ
1 + τξx(∂ξe

ξ
1) + (wξ)x

= τeξ
0 +Aξ

0,0w
ξ + (Aξ

λ,ε(x)−Aξ
0,0 + rξ(x))(σeξ

0 + wξ) + h̃ξ(x), (3.23)

where we have used the fact that the first component of eξ
1 vanishes.

We take the scalar product of (3.23) with ead,ξ
1 and ead,ξ

0 , and project onto the hyperbolic part with

(id − P ξ). We find the equivalent system

σx = τ − c∗
λ′′

d(0)
ξ′σ + O((|ε| |w|Y ) (3.24)

τx = − c∗
λ′′

d(0)
ξ′τ − 2

λ′′
d(0)

λσ + O(|ε|2|σ|+ (|ε| + |λ|)|w|Y ) + hτ (3.25)

wx = A0
0,0w + O((|ε| + |λ|)|σ|+ |ε| |τ | + (|ε|+ |λ|)|w|Y 1) + hw (3.26)
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in which we shifted back the equation for wξ by the x-dependent y-shift ξ(·), and used the invariance

of the norm in Y under this shift. The error terms stand for bounded linear operators acting on σ,

τ , and w with bounds as indicated, and the functions hτ and hw belong to L2
η(R) and L2

η(R, Y ),

respectively, with L2
η-norms bounded by C|h|Xη .

We set w0 = (σ, τ), µ = (ε, λ), and rewrite this system in the abstract form

w0x = L0w0 + µL00(x)w0 + µL01(x)w + h0(x) (3.27)

wx = A0
0,0w + µL10(x)w0 + µL11(x)w + h1(x), (3.28)

where

L0 =

(
0 1

0 0

)
,

Lij are O(1)-bounded linear operators, and h0 = (0, hτ )T , h1 = hw.

For h0 ≡ 0 and h1 ≡ 0 we have a non-autonomous, linear, homogeneous system. A center manifold

reduction then shows that for small µ bounded solutions (w0(x),w(x)) to (3.27), (3.28) with h0 ≡ 0

and h1 ≡ 0 are of the form

(w0(x),w(x) = φ(x;µ)w0(x)),

with φ(x;µ) : R
2 → (id− P )Y 1 bounded linear operators with norms |φ(x;µ)|L(R2 ,Y 1) ≤ C|µ|, for

any x ∈ R and µ small; the dependence on x and µ is Ck for any finite k. Note that the hyperbolic

part w of the solutions depends linearly upon w0, since the system is linear, and that the operators φ

satisfy

φx(x;µ) = A0
0,0φ(x;µ)− φ(x;µ)L0 + µL10(x) + µL11(x)φ(x;µ)

−µφ(x;µ)L00(x)− µφ(x;µ)L01(x)φ(x;µ), (3.29)

for any x and µ.

We now use the operators φ(x;µ) to construct bounded solutions to the inhomogeneous system (3.27),

(3.28). We set

w(x) = φ(x;µ)w0(x) + H(x). (3.30)

Substituting (3.30) into (3.27)–(3.28) and using (3.29) we find that the function H solves the linear

equation

H ′(x) = A0
0,0H(x) + µL11(x)H(x) − µφ(x;µ)L01(x)H(x) − φ(x;µ)h0(x) + h1(x), (3.31)

and that the central part w0 satisfies the reduced system

w0x = L0w0 + µL00(x)w0 + µL01(x)φ(x;µ)w0 + µL01H(x) + h0(x).
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Since (id − P )A0
0,0 − ik is invertible on ker P for all k ∈ R, a standard perturbation argument shows

that (3.31) has a unique solution H(x) = H[h0,h1](x) ∈ kerP with bounds

|H|H1
η(R,Y ) + |H|L2

η(R,Y 1) ≤ C(|h0|L2
η(R,R2) + |h1|L2

η(R,Y )) ≤ C|h|Xη .

Going back to the system (3.24)–(3.26) we find

w(x) = φ(x; ε, λ)(σ(x), τ(x)) + H(x), (3.32)

with H as above, and

|φ(x; ε, λ)(σ(x), τ(x))|Y 1 ≤ C(|ε|+ |λ|)(|σ(x)| + |τ(x)|).

Substitution of (3.32) into (3.24), (3.25) gives

σx +
c∗

λ′′
d(0)

ξ′σ = τ + O((|ε|2 + |ελ|)(|σ| + |τ |)) + h̃σ(x) (3.33)

τx +
c∗

λ′′
d(0)

ξ′τ = αεε
2σ − 2

λ′′
d(0)

λσ + O((|ελ| + |λ|2)|σ|+ (|ε|+ |λ|)2|τ |) + h̃τ (x). (3.34)

Here, αε ∈ R, and h̃σ ∈ H1
η (R) and h̃τ ∈ L2

η(R) with norm bounded by C|h|Xη .

Note that for λ = 0, and h ≡ 0 the y-derivative of the corner is a solution of (3.12). The corresponding

solution to (3.33)–(3.34) is

σ = 1 + O(ε2), τ = O(ε),

and therefore σ ≡ 1 necessarily solves the truncated equation

σx +
c∗

λ′′
d(0)

ξ′σ = τ (3.35)

τx +
c∗

λ′′
d(0)

ξ′τ = αεε
2σ. (3.36)

This gives
c∗

λ′′
d(0)

ξ′′ +

(
c∗ξ

′

λ′′
d(0)

)2

− αεε
2 ≡ 0,

from which we compute the constant αε by the help of (2.30), and find

αε =
2c∗

(λ′′
d(0))

2
.

In order to prove the proposition, it is now sufficient to show that the homogeneous equation corre-

sponding to (3.33)–(3.34) possesses an exponential dichotomy relative to the exponential weight η for

all λ and ε sufficiently small.
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The natural scaling of (3.35)–(3.36) predicts λ = λ̃ε2 and λ̃ bounded. Let us justify this scaling.

Suppose therefore that ε2 = δ2|λ| with δ small. Substituting the scaling into the homogeneous part of

(3.33)–(3.34), and scaling ζ = |λ|1/2x, τ = |λ|1/2 τ̃ we find

σζ = τ̃ + O(|δ|)

τ̃ζ = − 2

λ′′
d(0)

eiarg (λ)σ + O(|δ| + |λ|)

so that

σζζ +
2

λ′′
d(0)

eiarg (λ)σ = O(|δ| + |λ|).

Since in |λ| = 0 and δ = 0, this equation possesses an exponential dichotomy, a robustness result

gives invertibility of the linearization outside the “natural” scaling. We therefore scale λ = λ̃ε2 with

λ̃ bounded, ζ = εx, τ = ετ̃ , and we compute

σζ +
c∗

λ′′
d(0)

ξ′

ε
σ = τ̃ + O(|ε|)

τ̃ζ +
c∗

λ′′
d(0)

ξ′

ε
τ̃ = αε −

2

λ′′
d(0)

λ̃σ + O(|ε|)

so that

σζζ + 2
c∗

λ′′
d(0)

ξ′

ε
σζ +

2

λ′′
d(0)

λ̃σ = O(ε). (3.37)

In the limit ε = 0, we find the linearization about the Burgers shock in the integrated form

σζζ + 2

√
2c∗

λ′′
d(0)

tanh

(√
2c∗

λ′′
d(0)

ζ

)
σζ +

2

λ′′
d(0)

λ̃σ = 0; (3.38)

see (3.5), (3.6). Since the spectrum of this equation is contained in the region

Re λ̃ ≤ λ′′
d(0)

2
η̃

(
−2

√
2c∗

λ′′
d(0)

− η̃

)
< 0,

for any positive weight η̃ ∈ (0,−2
√

2c∗/λ
′′
d(0)), a standard perturbation argument concludes the proof

of the proposition.

Remark 3.3 The proof of Proposition 3.2 actually gives much more insight into spectral properties

of the linearization. To leading order, we found that the extended point spectrum is trivial and the

dispersion relation to the essential spectrum possesses a quadratic expansion; see [16, 37, 50] for

background on extensions of point spectra and Evans function into the essential spectrum. We expect

that stability results in spaces with algebraic weights, similar to the ones in [33, 35], hold for the weak

interior corners, constructed in the present paper; see also [12].
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Proposition 3.4 Under the assumptions of Theorem 2, there exist positive constants ε0, η0 and δ0 such

that for any c − c∗ ∈ (0, ε0), and any weight η = η̃(c− c∗)
1/2 with η̃ ∈ (0, η0), the spectrum of L̃ in

X̃η satisfies

spec L̃ ∩ {λ ∈ C; Re λ > −δ0η̃(c− c∗)} = {0},

with λ = 0 being an isolated eigenvalue of geometric and algebraic multiplicity two.

Proof. [of Theorem 3] The proof is similar to the proof of Theorem 2. Note that the nonlinearity G as

defined in (3.11) smoothly maps X̃ 2
η into itself. Also note that the family of translates q(x + x0, y +

y0; c) generates a plane of equilibria to (3.10) in the function space X̃ 2
η . The statement of the theorem

is therefore a simple consequence of the stable manifold theorem [27].

Proof. [of Proposition 3.4] The operator L is sectorial on X̃η with domain of definition X̃ 2
η , so it is

sufficient to consider spectral values λ in a bounded subset of the complex plane. We have to solve

D((∂xx + ξx∂yy)
2ũ + ∂yyũ) + c∂yũ + f ′(q̃(·, ·; c))ũ − λũ = h̃(x, y),

with bound

|ũ|X̃η
≤ C(λ)|h̃|X̃η

,

for all λ with Reλ ≥ 0, and sufficiently small weights η 6= 0. Set ε2 = c − c∗ > 0, so that

q̃(·, ·; c) = q∗(·) + O(ε2). Since on Xη this eigenvalue problem is equivalent to the one for L it is

enough to take h̃ ∈ Xstep. As in the proof of Proposition 3.2 we write the eigenvalue problem as a first

order system in the “evolution” variable x

ũx + ξxũy = ṽ

ṽx + ξxṽy = −∂yyũ−D−1(f ′(q∗(·))ũ + c∂yũ− λũ) + r0(x, y)ũ + h̃,

with r0 = O(ε2), or in the abstract form

vx + ξx∂yv = A0
λ,ε(x)v + r0(x)v + h̃(x); (3.39)

see also (3.20). We introduce the function space

Lstep(R, Y ) = {v(x, y) = v−(y)(1− θ(x)) + v+(y)θ(x); v± ∈ Y },

and similarly Lstep(R, Y 1). Then it is enough to find a solution v ∈ L2
η(R, Y 1) ∩ Lstep(R, Y 1) to

(3.39), for h̃ ∈ Lstep(R, Y ).

For |λ| ≥ δ > 0, Re λ ≥ 0 we solve (3.39) as in Proposition 3.4 by using standard perturbation theory

after solving the problem at ε = 0,

vx = A0
λ,0v + h̃(x), (3.40)
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for h̃ ∈ Lstep(R, Y ), and weight η = 0. In order to solve this equation we write

h̃(x, y) = h̃c(y) + h̃s(y)(2θ(x)− 1),

and solve (3.40) for h̃c and h̃s(2θ− 1) separately. For the x-independent part h̃c the solution is given

by

vc = (A0
λ,0)

−1h̃c ∈ Y 1

since A0
λ,0 is invertible. For the second term we use the Fourier transform in x and obtain a solution

vs = (v1, v2) given by

v1(x) = −
√

2/πF−1
[
(Mk − λ)−1D

(
hs1 +

1

ik
hs2

)]

v2(x) = −
√

2/πF−1
[
(Mk − λ)−1D(ikhs1 + hs2)

]
− hs1

where h̃s = (hs1, hs2), and F−1 denotes the inverse Fourier transform. We write

v1(x) = −(M0 − λ)−1(Dhs2)(2θ(x)− 1)

−
√

2/πF−1
[
(Mk − λ)−1Dhs1 +

1

ik
((Mk − λ)−1 − (M0 − λ)−1)Dhs2

]
.

Then the first term in the right hand side of this equality belongs to Lstep(R,H2(R, RN )), and it is

straightforward to check that the second term belongs to L2(R,H2(R, RN )). Similarly we find that

v2 ∈ Lstep(R,H1(R, RN ))⊕L2(R,H1(R, RN )), so that v ∈ Lstep(R, Y 1)⊕L2(R, Y 1). This proofs

the result in the Proposition for |λ| ≥ δ > 0.

For |λ| � 1 the proof follows verbatim the proof of Proposition 3.2. After justifying the scaling, we

find to leading order the eigenvalue problem for the eikonal equation in the space of exponentially de-

creasing functions, augmented by arbitrary step functions. Recall that the reduced linearized operator

is Fredholm with index zero and actually invertible when restricted to the subspace of exponentially

decreasing functions. In the full space, augmented with the step functions θ(x) and (1 − θ(x)), the

reduced operator possesses block-diagonal structure and therefore is Fredholm of index zero when

augmented by a finite-dimensional operator. As a consequence, the spectrum of the linearization can

be determined by finding the values of λ such that the reduced problem possesses a kernel, i.e. we

have to determine the bounded solutions to (3.37). For the truncated equation (3.38), given as the lin-

earization about the shock solution in the eikonal equation, the only bounded solutions in Re λ ≥ −δ,

δ > 0 occur for λ = 0 and are given by

σ1(ζ) = 1, σ2(ζ) = tanh

(√
2c∗

λ′′
d(0)

ζ

)
.

Therefore, zero is an algebraically and geometrically double eigenvalue which persists under the per-

turbation, as the unique eigenvalue in Re λ ≥ −δ, with eigenfunctions given by the translational

derivatives of the corner, ∂yq(x, y; c) and ∂xq(x, y; c), respectively. This concludes the proof of Propo-

sition 3.4.
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Remark 3.5 It seems natural to extend the function space further to include rotations of the corner

defect, with linear growth of the difference in x. This would correspond to perturbations in Burg-

ers’ equation with infinite L2-norm, allowing to change the asymptotic states of the shock. To our

knowledge, stability of Burgers’ shock with respect to these perturbation is not known. In our set-up,

perturbations would select a different angle at x = +∞ or x = −∞, such that propagation would not

occur in the y-direction any more.

4 Defects generated by transverse instabilities

In this section we replace the Hypotheses 2.2 and 2.3 on transverse stability of the planar travelling

waves by an instability assumption, λ′′
d(0) > 0. Then the travelling waves can be stable in one space-

dimension but they are unstable with respect to a band of wave numbers in the transverse direction.

We discuss two scenarios, here. In the first case, a fully developed instability, λ ′′
d(0) > 0, we show

that interior corners in (unstable) flat interfaces do exist to any order in an asymptotic expansion of the

reduced system, but typically do not persist for the full system. For the full system, the interface of

the corner defect looses its flatness at infinity, where small periodic modulations appear on either one

or both sides of the corner. We then address the onset of instability λ′′
d(0) = 0, driving the instability

with a parameter µ, such that ∂µλ′′
d(0) > 0. To leading order, we recover the Kuramoto-Sivashinsky

equation, which had formally been derived in [59]; see also [65] for examples. Known results on

existence of heteroclinic and homoclinic orbits for this equation permit to conclude existence of both

interior and exterior corners, and of steps, for µ > 0 where the planar front is unstable.

4.1 Fully developed instabilities

We keep Hypothesis 2.1 on existence of planar travelling waves and replace Hypothesis 2.2 on zero-

stability by the following assumption.

Hypothesis 4.1 (Instability) We assume that the spectrum of L∗ on the negative real axis consists of

exactly two isolated eigenvalues λ = 0 and λ = −k2
∗ with algebraic multiplicity one.

This hypothesis is a consequence of the following assumption on transverse instability of the planar

travelling waves.

Hypothesis 4.2 (Transverse instability) Assume that the travelling wave is asymptotically stable in

one space dimension, that is, the essential spectrum of M0, as defined in (2.8), is strictly contained

in the left half plane and zero is the only eigenvalue in the closed right half plane, with algebraic

multiplicity one. Furthermore, assume that there is a k∗ > 0 such that the spectra ofMk are strictly
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λ ∈ C k

λ ∈ R

Figure 4.1: To the left the spectrum ofM0 and to the right the critical spectra of theMk parameterized

by k, in case of a fully developed transverse instability.

contained in the left half plane for |k| > k∗, and that for |k| ≤ k∗ there is exactly one spectral value

ofMk in the closed right half plane, λd(k), which is a simple eigenvalue satisfying λd(0) = λ′
d(0) =

λd(±k∗) = 0, λ′′
d(0) > 0, λ′

d(±k∗) 6= 0 and λd(k) > 0 for 0 < |k| < k∗; see Figure 4.1.

Remark 4.3 The quadratic tangency of the dispersion relation λ′′
d(0) > 0 implies instability of the

planar travelling wave with respect to transverse perturbations of wavelength k, |k| ≤ k∗.

Lemma 4.4 Hypothesis 4.2 implies that Hypothesis 4.1 on instability holds.

The proof of this lemma is similar to the one of Lemma 2.5 and will be omitted.

We start from the formulation of the travelling-wave equation (2.2) as a dynamical system which was

given in the proof of Theorem 1, equations (2.16)–(2.18). From Hypothesis 4.1 we obtain that the

spectrum of the linearization A∗ about the planar travelling wave q0
∗ satisfies

specA∗ ∩ {|Re λ| ≤ ε} = {0,±ik∗},

in which the origin is an eigenvalue with algebraic multiplicity two and ±ik∗ are eigenvalues with

algebraic multiplicity one.

The kernel and generalized kernel of A∗, and of its adjoint Aad
∗ , coincide with the ones found in the

proof of Theorem 1. In addition, we consider the kernel of A∗ ∓ ik∗,

ker (A∗ ∓ ik∗) = span(e±), e± =

(
r∗(·)

±ik∗r∗(·)

)
,

where r∗(·) is the real-valued eigenvector associated to the eigenvalue λd(k∗) = 0 ofMk∗
. In partic-

ular, L∗r∗ = −k2
∗r∗ and e− = e+. For the adjoint Aad

∗ ± ik∗ we find

ker (Aad
∗ ± ik∗) = span(ead

± ), ead
± =

(
k∗r

ad
∗ (·)

±irad
∗ (·)

)
,
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where rad
∗ (·) is the unique real-valued function satisfying Lad

∗ rad
∗ = −k2

∗r
ad
∗ and (rad

∗ , r∗)L2 = 1/2k∗ ,

so that we have

〈ead
± ,e±〉L2×L2 = 1, 〈ead

± ,e∓〉L2×L2 = 0.

The spectral projection P : Y → Y associated with the central eigenvalues 0 and ±ik∗ of A∗ is given

by

Pu = 〈ead
1 ,u〉L2×L2e0 + 〈ead

0 ,u〉L2×L2e1 + 〈ead
+ ,u〉L2×L2e+ + 〈ead

− ,u〉L2×L2e−.

Similarly, to the shifted equilibria qξ
∗ we introduce the shifted eigenvectors eξ

± = (rξ
∗,±ik∗r

ξ
∗)

T , and

analogously ead,ξ
± and P ξ.

Following the reduction strategy in Section 2, we write

u = qξ
∗ + ηeξ

1 + Aeξ
+ + Aeξ

− + wξ, with P ξwξ = Pw = 0. (4.1)

Here ξ, η are real functions and A is complex-valued function depending upon x. Substituting (4.1)

into (2.17), and then taking successively the scalar product with ead,ξ
1 , ead,ξ

0 , ead,ξ
± , and projecting with

id− P ξ we find the equation for ξ,

ξx = η + O(|η|(|A| + |w|Y )), (4.2)

and the quasilinear system

ηx =
2

λ′′
d(0)

(c− c∗)−
c∗

λ′′
d(0)

η2 (4.3)

+O(|c− c∗|(|A| + |w|Y ) + |η|(|A| + |w|Y ) + (|A| + |w|Y )2),

Ax = ik∗A + O(|c− c∗|+ (|η|+ |A|)2 + |w|2Y + |η| |w|Y 1) (4.4)

wx = A∗w + O(|c− c∗|+ (|η|+ |A|)2 + |w|2Y + |η| |w|Y 1), (4.5)

in which ξx has been replaced by the expression in (4.2). The system (4.3)–(4.5) is posed on the Hilbert

space R×C×Yh, in which Yh = (id−P )Y . Using again a center-manifold reduction for quasilinear

systems [45, Theorem 1] we conclude that, for c close to c∗, all solutions with η,A,w sufficiently

small are solutions to a reduced system for η and A, obtained by substituting w = h(η,A; c − c∗) =

O(|c−c∗|+(|η|+|A|)2) into (4.3)–(4.4). If we further exploit that the reversibility acts on this reduced

system as η 7→ −η and A 7→ A, we conclude that it has the form

ηx =
2

λ′′
d(0)

(c− c∗)−
c∗

λ′′
d(0)

η2 (4.6)

+O(|c− c∗|(|c− c∗|+ |η|2 + |A|) + |η|4 + |η| |A| + |A|2)

Ax = iα∗(c− c∗) + ik∗A + O((|c− c∗|+ |η|+ |A|)2), (4.7)
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where α∗ = (rad
∗ , D−1q′∗) ∈ R.

The reduced system (4.6)–(4.7) has two equilibria

η± = ∓
√

2(c− c∗)/c∗ + O(|c− c∗|), A± = O(|c− c∗|),

corresponding to rotations of the planar front, just as in Section 2. Next, normal form theory (cf. e.g.

[31, 42]) shows that the reduced system can be transformed into

η̃x = P1(η̃
2, |Ã|2; c− c∗) + O((|η̃|+ |Ã|)2k+1), (4.8)

Ãx = ik∗Ã + iÃP2(η̃, |Ã|2; c− c∗) + O((|η̃|+ |Ã|)k+2), (4.9)

by a polynomial change of variables

η = η̃ + Q1(η̃, Ã; c− c∗), A = Ã + Q2(η̃, Ã; c− c∗),

which preserves reversibility. Here Qj(0, 0; 0) = DηQj(0, 0; 0) = DAQj(0, 0; 0) = 0, and similar

equalities hold for Pj which are polynomials in their first two arguments of degree k. In particular,

Ã = 0 is an invariant line to any order in the normal form. Along this line there is a heteroclinic

orbit connecting the two equilibria (η̃±, 0), obtained as the codimension-two intersection between the

one-dimensional stable and unstable manifold of the equilibria. This heteroclinic connection would

correspond to an interior corner in the reaction-diffusion system. Non-normal form perturbations typ-

ically break this connection; see [42]. However, both equilibria are surrounded by a family of periodic

orbits, which persist due to reversibility by Lyapunov’s center theorem. In particular, the stable mani-

fold of the family of periodic orbits contains a full neighborhood of (η̃+, 0), such that the heteroclinic

orbit in the normal form persists as a heteroclinic to one of the periodic orbits. Phenomenologically,

these heteroclinic orbits correspond to interior corners with a periodic modulation of the flat interface

on either side of the corner. Similarly, symmetric interior corners with periodic modulations on both

sides of the corner exist. In both cases, we expect that the minimal amplitude of the periodic structures

is exponentially small in the angle of the corner for analytic kinetics [42].

4.2 The onset of instability

Throughout this section, we consider the parameter-dependent system

ut = D∆x,yu + c∂yu + f(u;µ),

in which µ is a real parameter, and the corresponding stationary equation

D∆x,yu + c∂yu + f(u;µ) = 0. (4.10)

We assume the existence of a planar travelling wave connecting two homogeneous equilibria for µ =

0, Hypothesis 2.1. We replace Hypothesis 2.2 by the following assumption.
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λ ∈ R λ ∈ R λ ∈ R(a) (b) (c)

Figure 4.2: The critical spectra ofMk(µ) parameterized by k, before (a), at (b), and beyond threshold

(c).

Hypothesis 4.5 (Zero-Stability) We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0

is an isolated eigenvalue with geometric multiplicity one and algebraic multiplicity two.

Using Lyapunov-Schmidt reduction on the one-dimensional kernel of the linearization, it is straight-

forward to conclude that there exists a smooth family of fronts q∗(y;µ) with speeds c∗(µ) connecting

the asymptotic states q±(µ) for µ ∼ 0. Here, smoothness refers to the dependence on y in C k
loc. Notice

that the µ-dependence of the asymptotic states q±(µ) can be eliminated by an affine transformation.

This will introduce an additional µ-dependence in the coefficients of the reaction-diffusion system,

e.g. the diffusion matrix will depend upon µ. However, this does not alter our arguments below, and

we therefore assume, for simplicity, that the asymptotic states are independent of µ.

Consider next the parameter-dependent linearized operators defined by

L∗(µ)u = −∂yyu−D−1(c∗(µ)∂yu + f ′(q∗(·;µ);µ)u), (4.11)

and

Mk(µ)u = D(∂yy − k2)u + c∗(µ)∂yu + f ′(q∗(·;µ);µ)u.

(For functions of several variables, we use ′ to denote the derivative with respect to the first vari-

able.) We replace the hypothesis on stability by the following hypothesis requiring zero-stability (resp.

transverse asymptotic stability) for µ < 0, and instability (resp. transverse instability) for µ > 0.

Hypothesis 4.6 (Onset of transverse instability) Assume that the travelling waves are transversely

asymptotically stable if µ < 0 and transversely unstable if µ > 0. More precisely, assume that the

essential spectrum ofM0 is strictly contained in the left half plane and zero is the only eigenvalue in

the closed right half plane, with algebraic multiplicity one, and that the spectra ofMk(0), for k 6= 0

are strictly contained in the left half plane. We assume that the unique eigenvalue λd(k;µ) ofMk(µ),

k ∼ 0, with λd(0;µ) = λ′
d(0;µ) = 0 satisfies λ′′

d(0; 0) = 0, ∂µλ′′
d(0; 0) > 0, and λ

(4)
d (0; 0) < 0; see

Figure 4.2.

Hypothesis 4.6 implies that the operatorsMk(µ), defined in (2.8), satisfy Hypothesis 2.3 if µ < 0 and

Hypothesis 4.2 if µ > 0.
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Theorem 4 Under the above Hypotheses, there exist µ∗ > 0 and δ > 0 such that for all µ ∈ (0, µ∗),

there exists a symmetric exterior corner defect with speed ce(µ) = c∗ + O(µ3) and angle ϑ(µ) =

O(µ3/2).

This theorem will be a consequence of the analysis below. In addition, we will see that the exterior

corner is accompanied by a plethora of other defects, indeed a countable family of exterior corners,

interior corners, and steps. Most of them can be viewed as the spatial (in x) juxtaposition of two

“elementary” defects, an exterior and an interior corner.

As in the proof of Theorem 1, we rewrite the travelling-wave equation (4.10) as a first-order system in

x on the Hilbert space Y = (H1 × L2)(R, RN ),

ux = A(c)u + F(u;µ), (4.12)

where u = (u, v)T ,

A(c) =

(
0 id

−∂yy −D−1c∂y 0

)
, F(u;µ) =

(
0

−D−1f(u;µ)

)
. (4.13)

Hypothesis 4.5 on minimal spectrum in the origin shows that (4.12) possesses a smooth family of

equilibria

qξ
∗(µ) =

(
qξ
∗(·;µ)

0

)
=

(
q∗(·+ ξ;µ)

0

)
. (4.14)

The linearization of (4.12) about q0
∗(µ) is given by the operator

A∗(µ) =

(
0 id

L∗(µ) 0

)

with L∗(µ) the linear operator defined in (4.11). From Hypothesis 4.5 we conclude that

specA∗(0) ∩ {|Re λ| ≤ ε} = {0},

for some ε > 0, and that zero is an eigenvalue with algebraic multiplicity four and geometric multi-

plicity one.

The kernel and generalized kernel of A∗(0) are spanned by

kerA∗(0) = span(e0), e0 =

(
q′∗(·; 0)

0

)
, gkerA∗(0) = span(e0,e1,e2,e3),

where

e1 =

(
0

q′∗(·; 0)

)
, e2 =

(
r∗(·)

0

)
, e3 =

(
0

r∗(·)

)
,
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are such that A∗(0)ej+1 = ej . Here r∗ is the principal vector to the zero eigenvalue of L∗(0),

L∗(0)r∗ = q′∗(·; 0). The kernel and generalized kernel of the adjoint Aad
∗ (0) are given by

kerAad
∗ (0) = span(ead

0 ), ead
0 =

(
0

qad
∗ (·)

)
, gkerAad

∗ (0) = span(ead
0 ,ead

1 ,ead
2 ,ead

3 )

where

ead
1 =

(
qad
∗ (·)
0

)
,ead

2 =

(
0

rad
∗ (·)

)
,ead

3 =

(
rad
∗ (·)
0

)
,

are such that Aad
∗ (0)ead

j+1 = ead
j and (ead

j ,e3−i)L2×L2 = δij . In particular, we have Lad
∗ (0)qad

∗ = 0

and Lad
∗ (0)rad

∗ = qad
∗ . The projection P : Y → Y on the generalized kernel is then given through

Pu = 〈ead
3 ,u〉L2×L2e0 + 〈ead

2 ,u〉L2×L2e1 + 〈ead
1 ,u〉L2×L2e2 + 〈ead

0 ,u〉L2×L2e3.

Similarly, to the shifted equilibria qξ
∗(0) we introduce the shifted linear operator Aξ

∗(0), the shifted

eigenvector eξ
0 = ((q′∗)

ξ(·; 0), 0)T , and analogously eξ
j ,e

ad,ξ
j , P ξ,Aad,ξ

∗ (0).

We seek solutions of (4.12) of the form

u = qξ
∗(µ) + η1e

ξ
1 + η2e

ξ
2 + η3e

ξ
3 + wξ, with P ξwξ = Pw = 0. (4.15)

Following the proof of Theorem 1 – substituting (4.15) into (4.12), then taking successively the scalar

product with ead,ξ
j , projecting with id − P ξ , and finally applying the center manifold reduction – we

find the following reduced system for η1, η2, and η3,

η1x = η2 − 〈rad
∗ , D−1q′∗(0)〉c̃ + O(|c̃|(|µ| + |η2|) + |µ| |η2|+ |η1|(|η1|+ |η3|) + |η2|2) (4.16)

η2x = η3 − γ01µη1 + O(|η1| |η2|+ |µ| |η1|(|c̃|+ |µ|) + |η1|2(|η1|+ |η3|)) (4.17)

η3x = −〈qad
∗ , D−1q′∗(0)〉c̃ − 〈qad

∗ , q′′∗ (0)〉η2
1 − γ02µη2 (4.18)

+O(|c̃|(|µ| + |η2|) + |η1| |η3|+ |η2|(|µ|2 + |η2|) + |η1|2(|c̃|+ |µ|+ |η2|+ |η1|2))

in which c̃ = c− c∗(µ), q∗(0) = q∗(·, 0), and

γ01 = 〈qad
∗ , ∂µq′∗(0)〉,

γ02 = 〈qad
∗ , c′∗(0)D

−1r′∗ + D−1(Duuf(q∗(0); 0)∂µq∗(0) + Dµuf(q∗(0); 0)r∗)〉.

The equation for ξ decouples,

ξx = η1 + O(|η1|(|µ|+ |η2|+ |η1|2 + |η1| |η3|)). (4.19)

We introduce the following (Kuramoto-Sivashinsky-) scaling

x = |µ|1/2ζ, η1 = |µ|3/2η̄1, η2 = |µ|2η̄2, η3 = |µ|5/2η̄3, c̃ = |µ|3c̄.
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Then the reduced system (4.16)–(4.18) becomes

η̄1,ζ = η̄2 + O(|µ|) (4.20)

η̄2,ζ = η̄3 − γ01sign(µ)η̄1 + O(|µ|) (4.21)

η̄3,ζ = −〈qad
∗ , D−1q′∗(0)〉c̄ − 〈qad

∗ , q′′∗ (0)〉η̄2
1 − γ02sign(µ)η̄2 + O(|µ|). (4.22)

At µ = 0 we find

η̄1,ζζζ = −〈qad
∗ , D−1q′∗(0)〉c̄ − (γ01 + γ02)sign(µ)η̄1,ζ − 〈qad

∗ , q′′∗ (0)〉η̄2
1 . (4.23)

Taking the derivative with respect to ζ gives the steady-state Kuramoto-Sivashinsky equation.

The coefficients appearing in (4.23) are computed from the eigenvalue problem forMk(µ),

D(∂yy − k2)u(k;µ) + c∗(µ)∂yu(k;µ) + f ′(q∗(·;µ);µ)u(k;µ) = λd(k;µ)u(k;µ), (4.24)

where u(k;µ) represents the normalized eigenvector to the eigenvalue λd(k;µ). First, by taking the

second derivative of (4.24) with respect to k at k = 0 and µ = 0 we find

D∂yyu
′′(0; 0) + c∗(0)∂yu

′′(0; 0) + f ′(q∗(·; 0); 0)u′′(0; 0) = 2Dq′∗(·; 0),

since λ′′
d(0; 0) = 0. Then L∗(0)u′′(0; 0) = −2q′∗(·; 0), so that

r∗ = −1

2
u′′(0; 0).

Then, by using successively the derivatives ∂4
k and ∂2

k∂µ of (4.24) at k = 0 and µ = 0 we obtain

〈qad
∗ , D−1q′∗(·; 0)〉 =

24

λ
(4)
d (0; 0)

< 0, γ01 + γ02 = −12∂µλ′′
d(0; 0)

λ
(4)
d (0; 0)

> 0.

Finally, we have

〈qad
∗ , q′′∗〉 = −c∗(0)

2
〈qad

∗ , D−1q′∗(·; 0)〉 = − 12c∗(0)

λ
(4)
d (0; 0)

> 0,

and (4.23) becomes

η̄1,ζζζ = − 12

λ
(4)
d (0; 0)

(
2c̄− ∂µλ′′

d(0; 0)sign(µ)η̄1,ζ − c∗(0)η̄
2
1

)
. (4.25)

Solutions of the Kuramoto-Sivashinsky equation (4.25) have been described in [38]. The equation is

written as dynamical system

u1,ζ = u2 (4.26)

u2,ζ = u3 (4.27)

u3,ζ = − 12

λ
(4)
d (0; 0)

(
2c̄− ∂µλ′′

d(0; 0)sign(µ)u2 − c∗(0)u
2
1

)
, (4.28)
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in which u1 = η̄1. This system has two fixed points

P± = (±
√

2c̄/c∗(0), 0, 0),

if c̄ > 0 (recall that c∗(0) > 0), and no fixed points if c̄ < 0. Again these fixed points correspond to a

rotated planar travelling wave solution of (4.10). At c̄ = 0, there is one fixed point at the origin. The

eigenvalues of the linearization about the origin are

ν0 = 0, ν1,2 = ±
√

12∂µλ′′
d(0; 0)sign(µ)/λ

(4)
d (0; 0),

so that the nontrivial eigenvalues ν1,2 are both real if µ < 0, and purely imaginary if µ > 0.

We assume now that c̄ > 0. Then the eigenvalues ν±
j of the linearization about P± satisfy

(ν±
j )3 − 12∂µλ′′

d(0; 0)

λ
(4)
d (0; 0)

sign(µ) ν±
j ∓

24
√

2c̄
√

c∗(0)λ
(4)
d (0; 0)

= 0.

It is straightforward to check that at P− (rest. P+) there is one positive (resp. negative) eigenvalue,

and a pair of eigenvalues with negative (resp. positive) real part. These eigenvalues are real for µ < 0

and bounded values of c̄, c̄ ∈ (0, c̄∗), for some c̄∗ > 0, and complex conjugated otherwise. Therefore,

at P− (resp. P+) we have a 1D-unstable (resp. 1D-stable) manifold, and a 2D-stable (resp. 2D-

unstable) manifold. Heteroclinic and homoclinic connections of (4.26) are found as intersections of

these manifolds.

A summary of results on existence of heteroclinics and homoclinics in the case µ > 0 can be found

in Kent & Elgin [38]. The 2D manifolds of the fixed points intersect transversely along a nontrivial

trajectory, at least for large values of c̄. The trajectory represents a symmetric heteroclinic connection

between P+, as ζ → −∞, and P−, as ζ →∞, which will persist for the reduced system (4.20)–(4.22).

It corresponds to an interior corner to (4.10).

The 1D manifolds of the fixed points may intersect for special values of c̄ and form a 1D–1D hetero-

clinic connection between P+, as ζ → ∞, and P−, as ζ → −∞. There is a countable collection of

such orbits. The simplest takes the explicit form

u1(ζ) = α(−9 tanh(βζ) + 11 tanh3(βζ)), (4.29)

for some suitably chosen constants α and β, and speed c̄; see [38] and Appendix 1. Such heteroclinic

connections correspond to exterior corners of the reaction-diffusion system. Some of the more com-

plicated exterior corners can be viewed as a zig-zag type, widely spaced conjunction of copies of this

simplest exterior corner and interior corners. In Appendix 1, we provide a Melnikov-type computation,

that shows robustness of this exterior corner with respect to perturbations, induced by the higher order

terms in the Taylor expansion on the center-manifold. In particular, this will prove Theorem 4.
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In addition to these heteroclinic connections, the system (4.26) possesses homoclinic connections to

both fixed points P− and P+, found as intersections of the 1D and 2D manifolds. These homoclinic

connections correspond to steps in the reaction-diffusion system. They can be viewed as the widely-

spaced superposition of an interior and an exterior corner of equal height. In fact, for speeds close

to the speed of an interior corner, homoclinic orbits can be found in a heteroclinic loop bifurcation

between the equilibria P− and P+ [5]. For a robust unfolding, two parameters, given by the speed c in

the y-direction and the speed cx along the interface are needed; see Remark 2.9, where the drift term

cx∂xu is discussed.

Few analytical results seem to be known on stability. However, in our case, since the flat surface

is unstable, the spectrum of the linearization at any of the corner defects contains unstable essential

spectrum in the right half plane. A more precise analysis of the Kuramoto-Sivashinsky equation shows

that the exterior corners are in fact absolutely unstable: the Green’s function of the linearization at the

asymptotic states possesses a branch point in the unstable right half plane such that there do not exist

exponential weights that would push the essential spectrum in the left stable complex half-plane; see

[4, 50] for background on convective and absolute instabilities.

5 Corners in oscillatory wave-propagation

In this section we look for corner defects in pulsating front propagation. Throughout this section,

the planar wave is assumed to be a modulated wave solution u(x, y, t) = q∗(y, ωt) of the reaction-

diffusion system (2.1) connecting two homogeneous equilibria q± as y → ±∞, and with q∗ being

2π-periodic in its second argument. The profile q∗(·, ·) satisfies

D∂yyu + c∂yu + f(u)− ω∂tu = 0, (5.1)

for some speed c = c∗ and frequency ω = ω∗, where ωt is replaced by t. Corner defects are found as

bounded solutions to

D∆x,yu + c∂yu + f(u)− ω∂tu = 0, (5.2)

which are 2π-periodic in t.

The main hypotheses and the reduction procedure are described in Section 5.1. At lowest order, the

reduced system is a quadratic differential system in the plane. For c = c∗ and ω = ω∗, the origin is

typically an isolated equilibrium, and, under certain algebraic conditions on the different coefficients,

orbits which are homoclinic to the origin exist; see Section 5.2. These orbits decay algebraically as

|x| → ∞ and correspond to holes in the reaction-diffusion system. For slightly different speeds,

c > c∗, interior corners exist, just as in the case of travelling fronts discussed in Section 2.

38



5.1 Hypotheses and reduction

We will assume existence of a planar modulated wave connecting two homogeneous equilibria.

Hypothesis 5.1 (Existence) We assume that there exist positive constants c∗, ω∗, and homogeneous

states q± such that there exists an x-independent planar modulated-wave solution q∗(y, t) of (5.2)

which is 2π-periodic in t, with ∂tq∗ 6≡ 0, and which connects q− and q+, that is,

q∗(y, t)→ q+ for y → +∞, q∗(y, t)→ q− for y → −∞,

uniformly in t.

The second assumption is again concerned with stability of the above modulated wave. Therefore,

consider the closed unbounded linearized operator defined by

L∗u = −∂yyu−D−1(c∗∂yu + f ′(q∗)u− ω∗∂tu), (5.3)

on the Hilbert space L2(R × S1, RN ) of functions which are 2π-periodic in t. Notice that ∂yq∗ and

∂tq∗ always belong to the kernel of L∗ due to translation invariances in y and t.

Hypothesis 5.2 (Zero-Stability) We assume that L∗ − λ id is invertible for all λ < 0 and that λ = 0

is an isolated eigenvalue with algebraic and geometric multiplicity two.

As in the case of travelling waves this hypothesis is related to stability properties of the modulated

wave. Consider the linearized operator

M∗u = D∆x,yu + c∗∂yu + f ′(q∗)u− ω∗∂tu, (5.4)

and its Fourier conjugates

Mku = D(∂yy − k2)u + c∗∂yu + f ′(q∗)u− ω∗∂tu, (5.5)

on the Hilbert spaces L2(R2×S1, RN ) and L2(R×S1, RN ), respectively. An argument similar to [51,

Theorem 2.7] shows that the union of the spectra ofMk gives the Floquet spectrum of the linearized

period map at the modulated wave, that is, λ is the spectrum ofMk for some k if and only if e2πλ/ω∗

is in the spectrum of the time-2π/ω∗ map of the linearized equation

∂tu = D(∂yyu + ∂xxu) + c∗∂yu + f ′(q∗)u.

Hypothesis 5.2 is a consequence of the following, slightly stronger hypothesis on transverse stability

of the modulated front.
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Hypothesis 5.3 (Transverse asymptotic stability) Assume that the spectrum ofM0 is contained in

the closed left half plane and zero is an isolated eigenvalue with algebraic and geometric multiplicity

two, and that the spectra ofMk, for k 6= 0 are strictly contained in the left half plane. Furthermore,

assume that the 2 × 2 matrix Λd(k) with Λd(0) = Λ′
d(0) = 0, representing the smooth continuation

for k ∼ 0 of the action ofM0 on its kernel, satisfies Re specΛ′′
d(0) < 0.

In order to see that Hypothesis 5.3 implies Hypothesis 5.2, we first note that a kernel of L∗ − λid for

λ < 0 would induce a kernel ofMk for λ = −k2. By a similar argument, the geometric multiplicity

of λ = 0 as an eigenvalue of L∗ is two. To conclude, we observe that generalized eigenvectors can be

found by solving ∂j
k|k=0Mku = 0. In particular, algebraic multiplicity higher than two is equivalent

to a kernel of Λ′′
d(0); see also [57, Remark 2.12, Lemma 2.30].

Theorem 5 There exists an open class of reaction-diffusion systems which satisfy Hypotheses 5.2 and

5.3, that possess a one-parameter family of holes, close to a stable planar modulated front having the

same speed and frequency.

The theorem will be a consequence of the following discussion of the general reduction procedure and

of the analysis of the reduced equations in Section 5.2.

We now describe the reduction procedure and derive a reduced system which describes all bounded

solutions to (5.2) close to the planar modulated wave q∗.

We set u = (u, v)T and rewrite the equation (5.2) as a dynamical system

ux = A(c, ω)u + F(u), (5.6)

on the Hilbert space Y = (H1, 1
2 × L2)(R × S1, RN ), where H1, 1

2 denotes the fractional derivative

anisotropic Sobolev space defined via interpolation from the integer anisotropic spaces

Hk,l(R×S1, RN ) = {u ∈ L2(R×S1, RN ) ; ∂(i)
y ∂

(j)
t u ∈ L2(R×S1, RN ), 0 ≤ i ≤ k, 0 ≤ j ≤ l},

with k, l ∈ N. The linear and nonlinear part of (5.6) are given by

A(c, ω) =

(
0 id

−∂yy −D−1c∂y + D−1ω∂t 0

)
, F(u) =

(
0

−D−1f(u)

)
.

This equation possess two continuous translation symmetries, induced by the y- and the t-shifts, ξ :

u(·, ·) 7→ u(· + ξ, ·) and τ : u(·, ·) 7→ u(·, · + τ), respectively. It also has a reversibility symmetry

(u, v)T 7→ R(u, v)T := (u,−v)T , x 7→ −x.

Hypothesis 5.1 shows that (5.6) has a two-parameter family of equilibria

qξ,τ
∗ =

(
qξ,τ
∗ (·, ·)

0

)
=

(
q∗(·+ ξ, ·+ τ)

0

)
. (5.7)
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The linearization of (5.6) about q0,0
∗ is given by the operator

A∗ =

(
0 id

L∗ 0

)
,

with L∗ the linear operator defined in (5.3). The domain of definition of A∗ is easily seen to be

Y 1 := (H2,1 ×H1, 1
2 )(R× S1, RN ). Hypothesis 5.2 implies that the spectrum of A∗ satisfies

specA∗ ∩ {|Re λ| ≤ ε} = {0},

in which the origin is an eigenvalue with geometric multiplicity two and algebraic multiplicity four.

The kernel of A∗ is spanned by the partial derivatives of q
0,0
∗ with respect to y and t,

kerA∗ = span(e0y ,e0t), e0y =

(
∂yq∗

0

)
, e0t =

(
∂tq∗

0

)
,

and the four-dimensional generalized kernel is spanned by

gkerA∗ = span(e0y,e0t,e1y ,e1t), e1y =

(
0

∂yq∗

)
, e1t =

(
0

∂tq∗

)
.

We construct a dual basis

ead
0y =

(
0

qad
∗y

)
, ead

0t =

(
0

qad
∗t

)
, ead

1y =

(
qad
∗y

0

)
, ead

1t =

(
qad
∗t

0

)
,

in which qad
∗y and qad

∗t span the kernel of the adjoint operator Lad
∗ , such that

〈ead
j,y,e1−j,y〉L2×L2 = 1, 〈ead

j,t,e1−j,t〉L2×L2 = 1, j = 0, 1,

and all other scalar products vanish. The spectral projection P : Y → Y associated with the central

eigenvalues 0 is given by

Pu = 〈ead
1y ,u〉L2×L2e0y + 〈ead

1t ,u〉L2×L2e0t + 〈ead
0y ,u〉L2×L2e1y + 〈ead

0t ,u〉L2×L2e1t.

Similarly, to the shifted equilibria qξ,τ
∗ we introduce the shifted eigenvectors eξ,τ

j,y , eξ,τ
j,t , ead,ξ,τ

j,y , ead,ξ,τ
j,t ,

and the shifted projection P ξ,τ .

We set

u = qξ,τ
∗ + ηeξ,τ

1y + ρeξ,τ
1t + wξ,0, with P ξ,τwξ,0 = P 0,τw0,0 = 0, (5.8)

where ξ, τ , η, and ρ are functions depending upon x. For technical reason, we only shift the hyperbolic

component w in the y- but not in the t-direction. A shift in t would introduce a term τx∂tw in the

projected equation for w. This nonlinear term would not be relatively bounded with respect to the
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linear part of the system and center-manifold theorems for this type of equations do not seem to be

available.

Substituting (5.8) into (5.3) we find the system

ξxe
ξ,τ
0y + τxe

ξ,τ
0t + ηxe

ξ,τ
1y + ρxe

ξ,τ
1t + ηξx∂ye

ξ,τ
1y + ητx∂te

ξ,τ
1y (5.9)

+ρξx∂ye
ξ,τ
1t + ρτx∂te

ξ,τ
1t + ∂x(wξ,0) = A∗(ηe

ξ,τ
1y + ρeξ,τ

1t + wξ,0)

+A1(c− c∗)(q
ξ,τ
∗ + wξ,0) +A2(ω − ω∗)(q

ξ,τ
∗ + wξ,0) + Gξ,τ (wξ,0),

in which A1 and A2 are obtained from

A(c, ω) = A(c∗, ω∗) +A1(c− c∗) +A2(ω − ω∗),

and

Gξ,τ (wξ,0) = F(qξ,τ
∗ + wξ,0)−F(qξ,τ

∗ )−DF(qξ,τ
∗ )wξ,0.

Taking successively the scalar product of (5.9) with e
ad,ξ,τ
1y , e

ad,ξ,τ
1t , e

ad,ξ,τ
0y , e

ad,ξ,τ
0t , and projecting

with id− P ξ,τ we obtain the decomposed system

ξx(1− 〈∂ye
ad,0,τ
1y ,w0,0〉)− τx〈∂te

ad,0,τ
1y ,w0,0〉 = η + 〈ead,0,τ

1y , G0,τ (w0,0)〉, (5.10)

τx(1− 〈∂te
ad,0,τ
1t ,w0,0〉)− ξx〈∂xe

ad,0,τ
1t ,w0,0〉 = ρ + 〈ead,0,τ

1t , G0,τ (w0,0)〉, (5.11)

ηx = −ηξx〈ead
0y , ∂ye1y〉 − ητx〈ead

0y , ∂te1y〉 − ρξx〈ead
0y , ∂ye1t〉 − ρτx〈ead

0y , ∂te1t〉 (5.12)

+ξx〈∂ye
ad,0,τ
0y ,w0,0〉+ τx〈∂te

ad,0,τ
0y ,w0,0〉+ (c− c∗)〈ead,0,τ

0y ,A1(q
0,τ
∗ + w0,0)〉

+(ω − ω∗)〈ead,0,τ
0y ,A2(q

0,τ
∗ + w0,0)〉+ 〈ead,0,τ

0y , G0,τ (w0,0)〉,

ρx = −ηξx〈ead
0t , ∂ye1y〉 − ητx〈ead

0t , ∂te1y〉 − ρξx〈ead
0t , ∂ye1t〉 − ρτx〈ead

0t , ∂te1t〉 (5.13)

+ξx〈∂ye
ad,0,τ
0t ,w0,0〉+ τx〈∂te

ad,0,τ
0t ,w0,0〉+ (c− c∗)〈ead,0,τ

0t ,A1(q
0,τ
∗ + w0,0)〉

+(ω − ω∗)〈ead,0,τ
0t ,A2(q

0,τ
∗ + w0,0)〉+ 〈ead,0,τ

0t , G0,τ (w0,0)〉,

w0,0
x = A0,τ

∗ w0,0 − ξx∂yw
0,0 − ξx(∂yP

0,τ )w0,0 (5.14)

+(id− P 0,τ )
(
−ηξx(∂ye

0,τ
1y )− ητx(∂te

0,τ
1y )− ρξx(∂ye

0,τ
1t )− ρτx(∂te

0,τ
1t )
)

+(id− P 0,τ )
(
(c− c∗)A1(q

0,τ
∗ + w0,0) + (ω − ω∗)A2(q

0,τ
∗ + w0,0) + G0,τ (w0,0)

)
,

in which we have used the invariance of the scalar products under the y-shift. Notice that we can invert

the equations (5.10)–(5.11) when w0,0 is small and obtain ξx and τx in terms of η, ρ and w0,0. Also,

the right hand sides of the equations (5.10)–(5.14) do not depend upon ξ and they are bounded in τ ,

with small bounds when η, ρ and w0,0 are small.

In order to apply a center manifold reduction, we first have to modify the nonlinear terms. Let χ1

be an odd, smooth cut-off function defined on [0,∞) such that χ′
1 ≥ 0, χ1(r) = r for r ≤ δ, and

42



χ1(r) ≡ 2δ for r ≥ 3δ. We replace the right sides of the equations for ξx and τx by χ1(·), with

argument given by the original vector field. The resulting vector field coincides with the original

vector field in a neighborhood of the modulated wave, is globally bounded with small bound, and has

a small Lipschitz constant, for small δ, η, ρ, and w. In the equations for η, ρ, and w, we multiply

all nonlinear expressions in η, ρ, and w with a smooth cut-off function χ0(|η| + |ρ| + ‖w‖), where

χ0(s) = 1 for 0 ≤ s ≤ δ and χ0(s) = 0 for s ≥ 2δ with bounds 0 ≥ χ′
0 ≥ −2/δ. Note that the

cut-off in η, ρ,w preserves the action of the translations in space ξ and time τ

ξ 7→ ξ + ξ0, τ 7→ τ + τ0. (5.15)

As a result, we find a system of equations of the form

ξx = gξ(τ, η, ρ,w) (5.16)

τx = gτ (τ, η, ρ,w) (5.17)

ηx = gη(τ, η, ρ,w) (5.18)

ρx = gρ(τ, η, ρ,w) (5.19)

wx = A0,τ
∗ w + gw(τ, η, ρ,w), (5.20)

where the nonlinearities gj , j = ξ, τ, η, ρ,w are small, bounded, with small Lipschitz constant. Since

w(0) belongs to the smooth fiber bundle (id−P 0,τ )Y and this space depends upon τ , we cannot apply

a center manifold reduction directly to the system (5.10)–(5.14). Therefore, we artificially augment

the equation and allow for values w(0) ∈ Y . Note that the linearized w-equation possesses a four-

dimensional center-eigenspace in the artificial directions (stemming from the generalized kernel of

A∗), such that we expect to find an eight-dimensional center-manifold.

The proof for the existence of an invariant manifold is now very similar to the construction of a slow

manifold in singular perturbation problems and we omit the lengthy details; see [49] for a very detailed

proof. Main ingredient is the existence of uniform exponential dichotomies for the linearized equation

wx = A0,τ
∗ w

for functions τ(x) with sup |τx| < δ, small; see [54, Theorem 7].

A fixed point argument provides us with an eight-dimensional center manifold for the artificially aug-

mented system (5.16)–(5.20) with w ∈ Y . Since the cut-off preserved the symmetry action (5.15),

the resulting center-manifold is invariant under this action. Since the action of the group on the tan-

gent vectors is smooth, it is smooth on the smooth center-manifold. Note that the tangent space of

the center-manifold contains at each individual point qξ,τ
∗ the complementary artificial subspace of the

w-equation, given by the generalized kernel of A0,τ
∗ . In particular, the smooth center-manifold and

the smooth (invariant) fiber-bundle given by P 0,τw = 0 intersect transversely as smooth manifolds,
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such that their intersection is again a smooth manifold, invariant by the group action (5.15). We claim

that the intersection is actually invariant under the flow on the reduced, “true” manifold. To see this,

note that (5.10)–(5.14) defines a smooth vector field on the center-manifold which is, by definition

of a center manifold tangent to the center manifold, and, by construction, tangent to the fiber bundle

P 0,τw = 0. It is therefore tangent to the “true” center manifold and the flow on the artificially aug-

mented center manifold must leave the true center manifold invariant. The “true” center manifold is

tangent to the subspace parameterized by ξ, τ , η, and ρ. The invariance under translations in space

ξ and time τ implies that the reduced vector field on the center-manifold is independent of ξ and τ .

Moreover, the reversibility of the equation is preserved and acts via η 7→ −η and ρ 7→ −ρ.

We compute the coefficients of the lowest order terms in this reduced system and find

ηx = −〈qad
∗y , ∂yyq∗〉η2 − 2〈qad

∗y , ∂ytq∗〉ηρ− 〈qad
∗y , ∂ttq∗〉ρ2 (5.21)

− 〈qad
∗y , D−1∂yq∗〉(c − c∗) + 〈qad

∗y , D−1∂tq∗〉(ω − ω∗)

ρx = −〈qad
∗t , ∂yyq∗〉η2 − 2〈qad

∗t , ∂ytq∗〉ηρ− 〈qad
∗t , ∂ttq∗〉ρ2 (5.22)

− 〈qad
∗t , D−1∂yq∗〉(c− c∗) + 〈qad

∗t , D−1∂tq∗〉(ω − ω∗).

As in the case of travelling waves, Section 2, we have

〈qad
∗i , ∂yq∗j〉 = −

c∗
2
〈qad

∗i , D−1q∗j〉, i, j ∈ {y, t},

and the scalar products in right hand side are calculated from the two-dimensional, linear dispersion

relation involving Λd(k),

(
d11 d12

d21 d22

)
=

(
〈qad

∗y , D−1q∗y〉 〈qad
∗t , D−1q∗y〉

〈qad
∗y , D−1q∗t〉 〈qad

∗t , D−1q∗t〉

)
= −2(Λ′′

d(0))−1.

We rewrite the system as

d

dx

(
η

ρ

)
=

(
d11 d21

d12 d22

) 


c∗
2

η2 − c∗α1ρ
2 − (c− c∗)

c∗ηρ− c∗α2ρ
2 + (ω − ω∗)


 ,

in which

α1 =
〈qad

∗y , ∂ttq∗〉d22 − 〈qad
∗t , ∂ttq∗〉d21

c∗(d11d22 − d12d21)
, α2 =

〈qad
∗t , ∂ttq∗〉d11 − 〈qad

∗y , ∂ttq∗〉d12

c∗(d11d22 − d12d21)
.

At c = c∗ and ω = ω∗ we find to leading order a quadratic system in which the origin is typically

an isolated equilibrium. Quadratic systems in the plane have been classified by Markus [43]. For

certain values of the coefficients such systems possess homoclinic solutions which decay algebraically

as |x| → ∞. These homoclinics correspond to holes for the reaction-diffusion system. In Section 5.2

we show that holes exist exactly when α2
2 < 2α1. In particular, this will prove Theorem 5.
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At ω = ω∗ the reduced system possess two nontrivial equilibria for c > c∗, which correspond to

rotations of the modulated front, as in the case discussed in Section 2,

η± = ∓
(

c2 − c2
∗

c2

)1/2

, ρ± = 0.

In addition to this pair of equilibria we find another pair of equilibria (η̃±, ρ̃±) given at lowest order

by

η̃± = α2ρ̃±, ρ̃± = ±
(

2(c − c∗)

c∗(α2
2 − 2α1)

)1/2

.

Therefore, if α2
2 < 2α1 the reduced system has two equilibria for any c 6= c∗, and, if α2

2 > 2α1 it has

four equilibria for c > c∗ and no equilibria for c < c∗. Notice that at c = c∗ holes exist in the first

case, and do not exist in the latter case. In both cases, the equilibrium (η−, 0) is a source and (η+, 0) a

sink. Therefore, we find a one parameter family of heteroclinic orbits connecting (η−, 0) as x→ −∞
with (η+, 0) as x → ∞. These heteroclinics correspond to interior corners in the reaction-diffusion

system, just as in the case of travelling fronts in Section 2.

The additional equilibria (η̃±, ρ̃±) correspond to rotated modulated fronts with a periodic modulation

in x-direction. In fact, for any “average angle” η and any transverse modulational wavenumber ρ, we

can find a speed c and a frequency ω such that there exists a modulated front with the prescribed values

of η and ρ. Fixing η = 0 factors the rotational invariance due to isotropy of diffusion, which gives

a family of rotated waves together with a given modulated wave. As to leading order, the nonlinear

dispersion relation of these waves is given by (c, ω)(ρ) = (c∗, ω∗) + c∗(−α1, α2)ρ
2. We expect these

waves to be linearly unstable in case α2
2 < 2α1, where the characteristics of an associated transport

equation are complex; see Appendix 2. For our problem, these two additional equilibria allow for

constructing further corner defects. However, we do not investigate this possibility in the present

paper.

5.2 Existence of holes

We show that holes exist under certain algebraic conditions on the coefficients of the reduced system

(5.21)–(5.22).

We set c = c∗, ω = ω∗, and the reduced system becomes

d

dx

(
η

ρ

)
= c∗

(
d11 d21

d12 d22

) 


1

2
η2 − α1ρ

2

ηρ− α2ρ
2


+ O((|η|+ |ρ|)3). (5.23)

The stability Hypothesis 5.3 implies that the matrix (dij) is positive definite in the sense that the

spectrum consists of eigenvalues with strictly positive real part. For α2
2 = 2α1 the leading-order,

quadratic part possesses a line of equilibria and no other bounded solutions. In order to detect small
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bounded solutions, cubic terms have to be taken into account. We therefore assume from now on that

α2
2 6= 2α1.

We are interested in homoclinic orbits to the origin. At lowest order, we have a homogeneous, quadratic

differential equation in the plane. Markus [43] classified all planar quadratic differential equations. He

associated a commutative, two-dimensional, real linear algebra with the vector field such that vector

fields are affine equivalent if, and only if, the associated algebras are isomorphic. Since we have to take

higher-order terms into account, as well, we pursue a slightly different strategy. We introduce polar

coordinates which automatically factor the leading-order scaling symmetry. As a result, we recover

Markus’ phase portraits for the quadratic system and show at the same time that the homoclinic orbits

persist in the full reduced system (5.23).

Proposition 5.4 Assume that the matrix (dij) is positive definite and that the coefficients α1 and α2 of

the reduced system (5.23) satisfy α2
2 < 2α1. There is ε0 > 0 such that (5.23) possess two families of

homoclinic orbits,

(η±ε (x), ρ±ε (x)) = (±εηo(±εx),±ερo(±εx)) + O(ε2), (5.24)

for ε ∈ (0, ε0), in which (ηo, ρo) decay like O(1/|x|) as |x| → ∞. For α2
2 > 2α1 there are no

nontrivial, small, bounded solutions to (5.23).

The homoclinic orbits found in this proposition correspond to holes in the reaction-diffusion system

(2.1). The algebraic decay of η and ρ generates a logarithmic divergence of the position ξ and the

temporal phase ρ of the front. Both speed and frequency are given by the primary planar modulated

front.

We will show in Appendix 2 that the dynamics of modulated fronts with temporal phase and y-position

slowly varying in the transverse direction x and time t, can be formally described by a system of

viscous conservation laws for η and ρ. The dynamical behavior of such a system on large spatial

scales depends crucially on the eigenvalues of the flux function: real, distinct eigenvalues correspond

to the strictly hyperbolic case, where global existence in time can be expected. Complex eigenvalues

yield an ill-posed Cauchy-problem in the zero-viscosity limit, with an immediate Hadamard instability

causing blow-up. Interestingly, the algebraic condition on the coefficients of the reduced system in

Proposition 5.4 which ensures the existence of homoclinic orbits turns out to be the condition for

complex characteristics in the zero-viscosity regime. More precisely, we show in the appendix that the

remaining system of conservation laws has real characteristics if α2
2 > 2α1 and complex characteristics

for the opposite inequality. A similar phenomenon has been observed in [8], where wave propagation

in the focusing NLS-equation is studied. In the semiclassical limit, phase and amplitude evolution is

governed by transport equations with complex characteristic.
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• •

Figure 5.1: Typical homoclinic orbits of the quadratic system in the case of one ray solution (left) and

three ray solutions (right).

Proof. [of Proposition 5.4] Without loss of generality we set c∗ = 1 and assume that d12 ≥ 0

(otherwise, we can rescale x to have c∗ = 1, and change ρ → −ρ to find the same system with

coefficients −d12, −d21, −α2).

Recall that α2
2 6= 2α1, so that the origin is an isolated fixed point. Then the quadratic system possess

at least one ray solution,

η(x) = −η∗
x

, ρ(x) = −ρ∗
x

,

with constants η∗ and ρ∗ satisfying

(
η∗

ρ∗

)
=

(
d11 d21

d12 d22

) 


1

2
η2
∗ − α1ρ

2
∗

η∗ρ∗ − α2ρ
2
∗


 .

Homoclinic orbits of the quadratic system approach the origin along ray solutions; see Figure 5.1. In

particular, they decay algebraically, (η, ρ)(x) = O(1/|x|) as |x| → ∞.

First notice that a necessary condition for the existence of homoclinic orbits is that both quadratic

functions in the right hand side of (5.23),

d11(
1

2
η2 − α1ρ

2) + d21(ηρ− α2ρ
2)

and

d12(
1

2
η2 − α1ρ

2) + d22(ηρ− α2ρ
2),

do not have constant sign. Indeed, if, for example, the first function has constant sign, then the deriva-

tive of η has constant sign such that the η-component of solutions is monotone excluding homoclinic

orbits in this case. Similarly, the sign of the second function encodes monotonicity of the ρ-component.

A straightforward calculation shows that the necessary and sufficient conditions for these two functions

to change sign are

(d2j + α2d1j)
2 + d2

1j(2α1 − α2
2) > 0, j = 1, 2. (5.25)

Notice that both inequalities hold if α2
2 < 2α1.
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negative 1-chart

negative 2-chart

positive 1-chart

positive 2-chart

Figure 5.2: Picture of the blow-up phase portrait with the positive and negative 1- and 2-charts. The

coordinate axes are η, ηj horizontal and ρ, ρj vertical. The inner circle represents the equilibrium

{0} × S1. The specific dynamics exemplify the existence of a hole solution in the case where f1,

defined in (5.26) possesses only one real root.

We therefore assume from now on that the coefficients of the reduced system satisfy (5.25). Moreover,

we assume that d12 > 0, the case d12 = 0 can be treated in a similar way. We introduce blow-up

coordinates and replace (η, ρ) ∈ R
2 by polar coordinates on R+ × S1, thus blowing up the origin to a

circle {0}×S1. We parameterize the circle by two directional blow-up charts (ηj , ρj), j = 1, 2, which

we refer to as the 1-chart and the 2-chart. They correspond to stereographic projections of the angular

coordinate, and are explicitly given by scaling invariants and equivariants

(η1, ρ1) =

(
η

ρ
, ρ

)
, (η2, ρ2) =

(
η,

ρ

η

)
;

see Figure 5.2, for an illustration of the various charts in an example. It is a simple exercise to see that

these charts smoothly parameterize R+ × S1.

For η1 6= 0 and ρ2 6= 0, the coordinate change η1 = 1/ρ2, ρ1 = η2ρ2, defines a diffeomorphic change

of coordinates between the two charts. Note that strictly speaking, the above set of coordinates defines

four charts in R+ × S1, depending on whether ρ1 ≥ 0 or ρ1 ≤ 0 in the 1-chart and whether η2 ≥ 0 or

η2 ≤ 0 in the 2-chart. Since the two variants of the 1- and 2-charts give algebraically equivalent vector

fields, we do not formally distinguish between them. In these new blow-up coordinates the system

becomes

η′1 = ρ1

(
(d11 − d12η1) (

1

2
η2
1 − α1) + (d21 − d22η1)(η1 − α2)

)
+ O(|ρ1|2)
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ρ′1 = ρ2
1

(
d12(

1

2
η2
1 − α1) + d22(η1 − α2)

)
+ O(|ρ1|3),

and

η′2 = η2
2

(
d11(

1

2
− α1ρ

2
2) + d21(1− α2ρ2)ρ2

)
+ O(|η2|3)

ρ′2 = η2

(
(d12 − d11ρ2) (

1

2
− α1ρ

2
2) + (d22 − d21ρ2)(1− α2ρ2)ρ2

)
+ O(|η2|2),

respectively, in which ′ = d/dx. Both systems have an Euler multiplier given by ρ1 and η2, respec-

tively. We therefore reparameterize spatial time x by introducing the new independent variables zj

implicitly through dz1 = ρ1dx in the first chart, and by dz2 = η2dx in the second chart. At lowest

order we obtain the systems

η̇1 = f1(η1), ρ̇1 = ρ1g1(η1), (5.26)

and

η̇2 = η2g2(ρ2), ρ̇2 = f2(ρ2), (5.27)

where

f1(η1) = (d11 − d12η1) (
1

2
η2
1 − α1) + (d21 − d22η1)(η1 − α2)

g1(η1) = d12(
1

2
η2
1 − α1) + d22(η1 − α2),

and

g2(ρ2) = d11(
1

2
− α1ρ

2
2) + d21(1− α2ρ2)ρ2

f2(ρ2) = (d12 − d11ρ2) (
1

2
− α1ρ

2
2) + (d22 − d21ρ2)(1− α2ρ2)ρ2.

Here, the dots stand for d/dz1 in the first system and for d/dz2 in the second system. Note that when

time x increases the scaled time z1 (resp. z2) increases if ρ1 > 0 (resp. η2 > 0) and decreases if

ρ1 < 0 (resp. η2 < 0). The lines ρ1 = 0 and η2 = 0, respectively, correspond to the singular circle

{0} × S1 and are therefore invariant under the flows of (5.26) and (5.27), respectively. If (η∗1, 0) is

a fixed point of (5.26), then the line η1 = η∗1 is invariant for the flow to this leading-order part of the

reduced equation. A similar statement holds for the 2-chart (5.27).

In our directional blow-up coordinates, the ray solutions (−η∗/x,−ρ∗/x) of the quadratic system

(5.23) are perpendicular to the η1- and the ρ2-axis, respectively. Ray solutions therefore correspond to

invariant lines η1 = η∗/ρ∗ or ρ2 = ρ∗/η∗, or, equivalently, the equilibria (η∗/ρ∗, 0) in the 1-chart and

the equilibria (0, ρ∗/η∗) in the 2-chart. Homoclinic orbits of (5.23) are in one-to-one correspondence

with heteroclinic connections between the singular equilibria of (5.26) and (5.27) on the singular circle
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f1(η1)

η1

η01 η02

f1(η1)

η1

η01

η02

f1(η1)

η1

η01

η02

Figure 5.3: The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of three real roots of f1

and α2
2 < 2α1.

Figure 5.4: Phase portraits in the (η1, ρ1)-plane in case α2
2 < 2α1 and three real roots of f1. The

dashed lines indicate the zeroes η01 and η02 of g1. The bold orbits are heteroclinic orbits in the blow-

up coordinates and therefore yield homoclinic, hole solutions.

{0} × S1. The number of equilibria of (5.26) and (5.27) is given by the number of zeros of f1 and f2,

and they are in one-to-one correspondence with the ray solutions of the quadratic system.

The dynamics of the systems (5.26) and (5.27) are qualitatively determined by the equilibria on the

circle, that is, by the roots of f1 and f2, and the signs of g1 and g2 at these roots, which in turn can be

inferred from the position of the roots of gj relative to the roots of fj . Since we assumed d12 > 0 and

concluded (5.25), g1 possesses two real roots η01 < η02, where

f1(η0j) =
d11d22 − d12d21

d12
(α2 − η0j).

Since g1(α2) = d12(α
2
2 − 2α1)/2, we have η01 < α2 < η02 if α2

2 < 2α1, and α2 < η01 < η02 or

η01 < η02 < α2 if α2
2 > 2α1. We conclude that f1(η01) > 0 and f1(η02) < 0 if α2

2 < 2α1, and that

f1(η01) and f1(η02) have the same sign if α2
2 > 2α1.

We now distinguish several cases depending upon the number of real roots of f1, that is, the number

of equilibria of (5.26). Note that, since d12 > 0, the number of equilibria on the singular circle is

precisely twice the number of roots of f1 (counting each root for the negative and positive 1-chart).

The shape of the polynomial f1 and the relative position of its roots and of η01 and η02 are plotted in

the case of three real roots in Figure 5.3, if α2
2 < 2α1, and Figure 5.5, if α2

2 > 2α1, and in the case

of one real root in Figure 5.7. The corresponding phase portraits of (5.26) are shown in Figures 5.4,

5.6 and 5.8, respectively. These phase portraits indicate that heteroclinic connections exist only in the

case α2
2 < 2α1.

In order to conclude the robust existence or nonexistence of hole solutions, first note that all solutions
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f1(η1)

f1(η1)

η1

η1

f1(η1)

f1(η1)

η1

η1

f1(η1)

f1(η1)

η1

η1

Figure 5.5: The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of three real roots of f1

and α2
2 > 2α1. Like in Figure 5.3, the dashed lines indicate the location of the zeroes of g1.

Figure 5.6: Phase portraits in the (η1, ρ1)-plane in case α2
2 > 2α1 and three real roots of f1. The

dashed lines indicate the zeroes η01 and η02 of g1. There do not exist nontrivial bounded solutions.

asymptotic to the singular circle in forward or backward spatial time converge to precisely one equilib-

rium on the circle. Next note that the singular equilibria are connected by singular heteroclinic orbits

in the singular circle {0}×S1. If one of the equilibria is of saddle-type, the singular heteroclinic orbit

is the locally unique trajectory approaching this equilibrium, and there are no solutions outside the

singular circle approaching this given equilibrium nearby. In particular, small bounded solutions can

only exist as heteroclinic orbits between singular equilibria which are sources or sinks, respectively.

Since the set of heteroclinic orbits between a source and a sink in the plane forms an open subset

of the plane, we can infer the existence of a family of small heteroclinic orbits close to the singular

heteroclinic, which shows existence of holes precisely in the case when two neighboring equilibria on

the circle of source or sink type, respectively. Note, however, that we have to be careful when passing

from the positive 1-chart to the negative 1-chart since time is reversed by the negative Euler multiplier

ρ1 in the negative 1-chart, and similarly for the 2-chart.
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f1(η1)

η1

f1(η1)

η1

f1(η1)

η1

Figure 5.7: The nullclines of f1 with the zeroes η01 and η02 of g1 in the case of one real root of f1. In

the left picture, we have α2
2 < 2α1, in the middle and in the right picture, we have α2

2 > 2α1. Like in

Figure 5.3, the dashed lines indicate the location of the zeroes of g1.

Figure 5.8: Phase portraits in the (η1, ρ1)-plane in case of one real root of f1. Again, α2
2 < 2α1 in the

left picture and α2
2 > 2α1 in the middle and right picture. The dashed lines indicate the zeroes η01

and η02 of g1. The bold orbits in the left picture are heteroclinic orbits in the blow-up coordinates and

therefore yield homoclinic, hole solutions. There are no nontrivial bounded solutions in the middle

and in the right picture.

As an example, consider the case of one equilibrium one equilibrium (η∗1, 0) in the positive one-

chart, illustrated in Figure 5.2. In the positive 1-chart, the equilibrium is a source precisely when

α2
2 < 2α1, and a saddle, otherwise. The second equilibrium on the singular circle is located on the

opposite side, with reversed stability properties due to the negative Euler multiplier. The singular

heteroclinic, given by the arc of the singular circle joining the two equilibria, is accompanied by

a family of heteroclinics which form the (necessarily transverse) intersection of stable and unstable

manifolds of the two singular equilibria.

To conclude the proof of the proposition, we remark that the representation of holes (5.24) is due to

the invariance of the quadratic part of (5.23) under the scaling

x =
x̃

a
, η = aη̃, ρ = aρ̃,

for a ∈ R, and due to reversibility acting through

x 7→ −x, η 7→ −η, ρ 7→ −ρ.

Remark 5.5 We emphasize that hole solutions are not symmetric in x (that is, invariant under the

reversibility operation (η, ρ) 7→ −(η, ρ)). In particular, there typically exists a robust family of hole
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solutions, parameterized by their amplitude, which are not symmetric in x, but their velocity is still

perpendicular to the x-axis. Note that the direction of propagation is chosen in a natural way to be

the y-axis which is normal to the asymptotic tangent space of the interface. Indeed, since η → 0 for

|x| → ∞, the tangent space to the interface at±∞ is the x-axis. In particular, the 1-parameter family

of holes that we found cannot be viewed as a 1-parameter family of rotated interfaces.

Remark 5.6 (Non-existence of holes for weakly pulsating fronts) If we assume that the modulated

front q∗(y, t) is a small perturbation of a planar travelling front (weakly pulsating front), holes gener-

ally do not exist. More precisely, we assume that the reaction-diffusion system (2.1) possess a planar

travelling front q∗0(y), as in Section 2. Suppose that close to this travelling front there is a family of

modulated fronts q∗(y, ω∗(µ)t;µ) with speeds c∗(µ) = c∗+O(µ) and frequencies ω∗(µ) = ω∗+O(µ)

in t, such that

q∗(y, ω∗(µ)t;µ) = q∗0(y) + µq1(y, ω∗(µ)t;µ), (5.28)

for small µ. Weakly pulsating fronts of this type are found, for example, near a planar travelling front

q∗0 which undergoes a Hopf bifurcation; see [44] for an example. For such a modulated front, the

coefficients of the reduced system satisfy

〈qad
∗y , ∂yyq∗〉 = O(1), 〈qad

∗y , ∂ytq∗〉 = O(µ), 〈qad
∗y , ∂ttq∗〉 = O(µ),

and

〈qad
∗t , ∂yyq∗〉 = O(1/µ), 〈qad

∗t , ∂ytq∗〉 = O(1), 〈qad
∗t , ∂ttq∗〉 = O(1).

Therefore, the inequality α2
2 < 2α1 is not verified for small µ, and we can conclude that holes do not

exist for weakly pulsating fronts.

6 Discussion

We have presented a framework for the study of weak localized corners in almost planar interface

propagation. The results are formulated for general reaction-diffusion systems. Assumptions are only

on existence of primary planar fronts, and on spectral stability or instability properties of these fronts.

In the most simple case of the rigid propagation of a stable planar interface, we have found asymp-

totically stable interior corners, where two planar fronts collide at an angle ϕ < π; Sections 2 and 3.

Long wavelength instabilities generate more complicated structures such as exterior corners and steps;

Section 4. In oscillatory wave propagation, we showed that weakly localized holes can be embedded

in a planar interface, such that the angles of the interface relative to the direction of propagation tend

to zero on both sides of the hole; Section 5. Most of our results can be formally obtained by first

deriving a transport equation and then looking for travelling-wave solutions of this transport equation.

Our approach avoids the subtle questions involved with the validity of the approximation. On the
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other hand, the existence of certain corner defects, such as holes, seems to be intrinsically related to

well-posedness properties of transport equations in the inviscid limit; Section 5.2. We conclude this

paper mentioning a number of straightforward extensions to our approach, and pointing out some open

problems.

We first comment on planar interfaces between not necessarily spatially homogeneous patterns. In

[52], modulated fronts are constructed that invade a spectrally stable spatially periodic pattern, leaving

a stable homogeneous state behind. More precisely, there exists a spatio-temporally periodic solution

q+(ω+t− k+y), with q+(φ) = q+(φ + 2π), a spatially homogeneous state q−, and a modulated front

q∗(y, ω+t) = q∗(y, ω+t + 2π) connecting these two states, that is,

q∗(y, τ)→ q+(k+y − ω+τ) for y → +∞, q∗(y, τ)→ q− for y → −∞,

uniformly in τ . If the group velocity cg of the periodic pattern is negative, directed towards the inter-

face, then the linearized operatorM0 appearing in (5.5), typically possesses a one-dimensional kernel,

only, in spaces with exponential weights with rates η > 0, small, as defined in (2.32); see [54] for the

notion of group velocities and spectra of interfaces between spatially periodic patterns. Going through

the reduction steps, we therefore expect the existence of a two-dimensional center-manifold containing

stable interior corners.

A similar situation arises for fronts invading symmetric, x-periodic patterns q+(k+x) = q+(k+x +

2π) = q+(−k+x),

q∗(y, x)→ q+(k+x) for y → +∞, q∗(y, x)→ q− for y → −∞,

where q∗(y, x) = q∗(y, x + 2π/k+). Again, the spectrum of the linearization contains only a simple

eigenvalue λ = 0, when considered in spaces of exponentially localized functions as described above.

We can therefore reduce to a two-dimensional center-manifold. Since the patterns depend explicitly

on the spatial time-variable x in a periodic fashion, the resulting flow on the center-manifold will be

periodically forced. Still, the unfolding of the saddle-node bifurcation for the period map should yield

the very same interior corners that we have found in the case of rigid front propagation.

For intermediate situations, where the propagation of the front takes an angle ϑ 6∈ {0, π/2} relative to

the orientation of the stripe pattern ahead of the front, the reduced equations would not be reversible

anymore. In particular, the periodic patterns typically possess a nonzero group velocity in the direction

tangential to the interface such that the generalized kernel in our spatial dynamics formulation would

only be one-dimensional, with the planar front as the unique bounded solution in the one-dimensional

center-manifold. Suppose for example that the angle between the contour lines of a roll pattern and the

interface is ϑ, such that the roll pattern is given by q+((cos ϑ)x − (sinϑ)y), q+(φ) = q+(−φ). The

shear transformation ξ = (cos ϑ)x− (sinϑ)y allows us to look for rigidly propagating front solutions

q∗(y, ξ) = q∗(y, ξ + 2π/k+) invading the y-independent roll solution q+(ξ). However, although the
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roll pattern q+ is symmetric, the travelling front will typically not be symmetric since the defining

equation for the interface

D[cos2 ϑ∂ξξ + (∂y − sinϑ∂ξ)
2]u + c∗(∂y − sinϑ∂ξ)u + f(u) = 0,

posed on functions with period 2π/k+ in ξ, is not symmetric in ξ. We can actually compute a trans-

verse dispersion relation λ(ν), substituting the Ansatz eνξv(y, ξ), v(y, ξ) = v(y, ξ + 2π/k+), into the

linearization about the front

D[cos2 ϑ(∂ξ + ν)2 + (∂y − sinϑ(∂ξ + ν))2]v + c∗(∂y − sinϑ(∂ξ + ν))v + f ′(q∗)v = λv,

Near λ = ν = 0, we typically find a tangential group velocity along the interface c
‖
g = dλ

dν 6= 0 in

ν = 0. If we denote by ∂yq∗ and qad
∗ the normalized eigenvectors in the kernel of the linearization and

its adjoint, as constructed in Section 2, we find

dλ

dν
(0) = 〈(2D(∂ξ − β∂y)− c∗β)∂yq∗, q

ad
∗ 〉,

where we set β = sinϑ and scalar products are in L2(R×[0, 2π]). The second term gives a contribution

c∗ sinϑ which is the purely geometrically transport induced from the normal speed of propagation

under the shear transformation. The first term reflects the tangential dispersion relation; see also

(2.25).

In order to find weak interior corners, we can now change to a ξ-comoving frame, introducing ζ =

ξ − c
‖
gt as a new variable. In the new variables, the front is a time-periodic, modulated wave, but,

as a straightforward but tedious calculation shows, the dispersion relation in the tangential direction

vanishes to first order such that we find the typical Jordan block and interior corners.

In passing, we note that this tangential group velocity is the main information needed in order to

determine the speed of interior corners in anisotropic systems: the tip of the corner propagates with

the speed given by the geometric Rankine-Hugoniot condition c = c∗/ cos ϑ in the normal direction of

the primary flat interface, but drifts with approximately the tangential group velocity in the direction

tangential to the flat interface; see Figure 2.4.

Invasion of hexagons by a trivial homogeneous state, as described in [10], generates interior corners

which are symmetric to an axis of symmetry of the hexagons in a similar fashion. Again, we expect

corners in interfaces which are not axes of symmetry to drift in the tangential direction.

A more interesting and challenging problem arises when the group velocity of the periodic pattern

is directed away from the interface. The linearization is Fredholm near the origin in exponentially

weighted spaces with η < 0, such that exponential growth of perturbations is allowed at y → +∞. The

kernel of the linearization is two-dimensional, with space- and time- (or x-) derivative of the interface

contributing to the kernel. We would therefore expect a four-dimensional center manifold with possibly
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rich dynamics as presented in Section 5. However, a rigorous reduction to a center-manifold along the

lines of Section 5 fails, since nonlinearities are badly behaved in spaces of exponentially growing

functions. Of course, periodic dependence of the asymptotic pattern on x introduces an additional

complication since the dynamics of the quadratic equations that we investigated in Section 5.2 might

depend sensitively on a periodic forcing.

The problem of corner formation in interfaces leaving a spatially periodic pattern behind is closely

related to problems in crystal growth. The speed of propagation depends on the angle relative to the

periodic pattern left behind. Unfortunately, a rigorous description of corners in this context seems to

be out of reach for the methods we employed here.

Yet another possible direction of generalization would be the existence of defects in higher space di-

mension. For example, we expect to find radially symmetric interior corners in stable, planar interface

propagation, adapting the methods from [57] to the present context.

Of substantial interest, in view of the mentioned applications, would be a description of corners with

not necessarily small angle. The linear stability analysis of Section 3 can be generalized to large

angle interior corners, when existence and spectral properties are granted. Following small amplitude

interior corners, it would also be of interest to investigate possible bifurcations while following the

corner to larger angles.

Appendix 1

We show that the explicit solution u1 to the steady-state Kuramoto-Sivashinsky equation is robust with

respect to perturbations of the 3-dimensional differential equation (4.25). After a suitable scaling for

ζ , η̄1, and c̄, the equation (4.25) reads

u′′′ = c− u′ − 1

2
u2, (7.1)

where c > 0. The heteroclinic connection u1 in (4.29) is found for

c = 2α2, α = 15
√

11/193, β =
1

2

√
11/19.

The linearization of (7.1) about u1 is

L1v = v′′′ + v′ + u1v.

We claim that L1 considered as a closed operator on BC0(R) is Fredholm of index -1. The Fredholm

index is readily calculated from the Morse indices of the asymptotic equilibria in the associated first-

order differential equation [47, 51]. Note that the unstable manifold of the equilibrium at −∞ and the

stable manifold of the equilibrium at +∞ are both one-dimensional such that the Morse indices are 1
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and 2 at −∞ and +∞, respectively; the Fredholm index is given by the difference of these two Morse

indices, i = −1, as claimed above.

Next, note that the kernel of L1 is at most one-dimensional since elements provide solutions in the

intersection of the tangent spaces of one-dimensional stable and unstable manifolds. The kernel is

therefore spanned by u′
1, which is an even function. We next consider the (formal) adjoint

Lad
1 v = −v′′′ − v′ + u1v.

The kernel of the adjoint is two-dimensional and can be decomposed into odd and even eigenfunctions.

If we define the reversibility operator R through R(v, v ′, v′′) = (−v, v′,−v′′), we see that odd eigen-

functions v have (v, v′, v′′)(0) ∈ Fix R and even eigenfunctions have (v, v ′, v′′)(0) ∈ Fix (−R). We

may restrict the eigenvalue problems for even and odd eigenfunctions to R+, say, imposing the above

conditions as boundary conditions in x = 0. The same counting arguments as above show that the

restriction of L1 to the space of even functions is Fredholm of index 0, and its restriction to the space

of odd functions is Fredholm of index −1. Since the kernel of L1 is one-dimensional and spanned by

an even function, we conclude that the two-dimensional kernel of the adjoint is spanned by an even

and an odd function.

We are now ready to show persistence of the exterior corners. First note that the reduced system

(4.20)–(4.22) leads to an equation of the form

u′′′ − c + u′ +
1

2
u2 + εg(u) = 0, (7.2)

with an even function g, due to reversibility, and some small parameter ε. We can solve (7.2) near

ε = 0, u = u1 by means of Lyapunov-Schmidt reduction on the set of odd functions, and find u and c

as functions of ε as follows.

We consider the nonlinear equation as a map from the set of odd functions in BC 3(R) ⊂ BC0(R)

into the set of even functions in BC0(R). The arguments above show that the linearization about u1

is a Fredholm operator with trivial kernel and one-dimensional cokernel spanned by the even function

in the kernel of Lad
1 . However, the derivative of the left-hand side of (7.2) with respect to c is given by

the constant u ≡ 1, which is not perpendicular to cokernel with respect to our fixed L2-scalar product.

We may therefore solve the one-dimensional Lyapunov-Schmidt reduced equation with respect to c,

and then find odd solutions u = u(ε) of (7.2) with c = c(ε) for ε small.

Appendix 2

We derive a model system describing transverse perturbations of the modulated planar front in the

long-wave regime and determine the conditions under which the corresponding system of conserva-

tion laws (in which viscosity is neglected) has real characteristics. Recall that the modulated planar
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front q∗(y, ω∗t) is a solution to the reaction-diffusion system (2.1) which is 2π-periodic in the second

argument. We look perturbations of q∗ of the form

u(x, y, t) = q∗(y + ξ(εx, ε2t), ω∗t + τ(εx, ε2t)) + ε2v(εx, y, ω∗t, ε
2t). (8.3)

Substituting (8.3) into (2.1), we find at order 0 in ε the equation (5.1) for the profile of the modulated

front q∗, and at order ε2 the equation

ξt∂yq∗ + τt∂tq∗ = ξxxD∂yq∗ + τxxD∂tq∗ + ξ2
xD∂yyq∗ + 2ξxτxD∂ytq∗ + τ2

xD∂ttq∗ −DL∗v, (8.4)

in which L∗ is the linear operator defined by (5.3). In order to solve this equation for v in terms of ξ

and τ the following solvability conditions must hold

〈qad
∗y , D−1∂yq∗〉ξt + 〈qad

∗y , D−1∂tq∗〉τt = ξxx + 〈qad
∗y , ∂yyq∗〉ξ2

x + 〈qad
∗y , ∂ttq∗〉τ2

x (8.5)

+2〈qad
∗y , ∂ytq∗〉ξxτx

〈qad
∗t , D−1∂yq∗〉ξt + 〈qad

∗t , D−1∂tq∗〉τt = τxx + 〈qad
∗t , ∂yyq∗〉ξ2

x + 〈qad
∗t , ∂ttq∗〉τ2

x (8.6)

+2〈qad
∗t , ∂ytq∗〉ξxτx.

Notice that the steady model system obtained in this way coincides with the reduced system (5.21)–

(5.22) at c = c∗ and ω = ω∗ for η = ξx and ρ = τx.

Neglecting the viscosity in (8.5)–(8.6) we find

ξt = −c∗(
1

2
ξ2
x − α1τ

2
x) (8.7)

τt = −c∗(ξxτx − α2τ
2
x) (8.8)

in which αj are defined as in Section 5.2,

α1 =
〈qad

∗y , ∂ttq∗〉d22 − 〈qad
∗t , ∂ttq∗〉d21

c∗(d11d22 − d12d21)
, α2 =

〈qad
∗t , ∂ttq∗〉d11 − 〈qad

∗y , ∂ttq∗〉d12

c∗(d11d22 − d12d21)
,

with (
d11 d12

d21 d22

)
=

(
〈qad

∗y , D−1q∗y〉 〈qad
∗t , D−1q∗y〉

〈qad
∗y , D−1q∗t〉 〈qad

∗t , D−1q∗t〉

)
.

From (8.7)–(8.8) we obtain a system of conservation laws for η = ξx and ρ = τx,

ηt = −c∗(ηηx − 2α1ρρx)

ρt = −c∗(ρηx + ηρx − 2α2ρρx).

A direct calculation shows that this system has real characteristics when α2
2 − 2α1 > 0, and complex

characteristics when α2
2 − 2α1 < 0.
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