
Transverse bifurcations of homoclinic cyclesP. Chossat� M. Krupay I. Melbournez A. Scheel xJune 13, 1996AbstractHomoclinic cycles exist robustly in dynamical systems with symmetry,and may undergo various bifurcations, not all of which have an analoguein the absence of symmetry. We analyze such a bifurcation, the transversebifurcation, and uncover a variety of phenomena that can be distinguishedrepresentation-theoretically. For example, exponentially at branches ofperiodic solutions (a typical feature of bifurcation from homoclinic cycles)occur for some but not all representations of the symmetry group. Ourstudy of transverse bifurcations is motivated by the problem of intermittentdynamos in rotating convection.1 IntroductionHomoclinic cycles are structurally unstable for general dynamical systems but areknown to exist robustly in dynamical systems with symmetry [19, 7, 14]. They arethen associated with intermittent or bursting phenomena. A well-known exampleof a robust homoclinic cycle is given by Guckenheimer and Holmes [9] who considera three-dimensional system of ordinary di�erential equations (ODEs) equivariant�Institut Non-Lin�eaire de Nice, UMR 129 CNRS, 1361 route des Lucioles, 06560 Valbonne,FranceyInstitut f�ur Angewandte und Numerische Mathematik, TU Wien, Wiedner Hauptstrasse8-10/115/1, A-1040 Wien, AustriazDepartment of Mathematics, University of Houston, Houston, Texas 77204-3476, USAxInstitut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2-6, 14195 Berlin, Germany1



under the action of a certain 24 element group of symmetries. This exampleoccurs in the context of rotating Rayleigh-B�enard convection [1, 2] and also in apopulation dynamics model [18].The standard convection rolls that occur in Rayleigh-B�enard convection areunstable in rotating convection [17]. Busse and Clever [1] proposed a simple three-dimensional model involving three sets of rolls inclined at exactly 60�, based on anasymptotic expansion and truncation of the full Boussinesq equations for rotatingconvection. Busse and Heikes [2] pointed out that the presence of a homocliniccycle in the Busse-Clever model corresponds to an intermittency phenomenonobserved in uid experiments where, locally, systems of rolls form but are thenreplaced as time goes on by new systems of rolls inclined at an angle of about 60�to the old rolls.The motion of an electrically conducting uid (mercury, say) is a�ected by thepresence of a magnetic �eld. If the convection is strong enough, small magnetic�eld perturbations may grow and lead, as the two e�ects balance each other,to the existence of a self-sustained magnetic �eld, a mechanism known as thedynamo e�ect. Childress and Soward [5] proposed rotating convection as a suitableframework in which the dynamo e�ect could be realized. It is therefore a naturalapproach to apply methods of local bifurcation theory to the homoclinic cycle ofrolls in the pure convection problem. Observe that any dynamo solution obtainedin this way is an intermittent dynamo.It transpires that the particular instability of the Busse-Clever-Heikes cyclecorresponding to the instabilities considered by Childress and Soward [5] is a newkind of bifurcation which we call a transverse bifurcation. This motivates the gen-eral study of transverse bifurcations from robust homoclinic cycles. We considerthe simplest possible context, namely in four dimensions, and obtain fairly com-plete results in this context. We expect that the corresponding results for cycles inhigher dimensions are similar, but the proofs will be much more technical. In par-ticular, our techniques should be applicable to the rotating magnetohydrodynamicproblem.In the remainder of this introduction, we describe how our results on trans-verse bifurcations �t together with previous results on bifurcation from homocliniccycles both in the symmetric and nonsymmetric contexts.2



A homoclinic orbit of an ODE is a trajectory which converges for both positiveand negative time to the same equilibrium �. In the class of general vector �elds,the appearance of such an orbit is a codimension one phenomenon. Dynamicsand invariant sets near such homoclinic orbits have been studied extensively sincethe work of Shil'nikov in the 60's. In particular, many of the codimension oneand codimension two phenomena associated with homoclinic orbits have beenanalyzed, see for example [24, 6, 12, 13, 20].The dynamics near a homoclinic orbit is governed to some extent by the eigen-values of the linearized vector �eld at the equilibrium. Particularly signi�cant isthe relative strengths of the weakest contracting and expanding eigenvalues. Animportant codimension two bifurcation, which we call a resonant bifurcation, oc-curs when the real parts of these eigenvalues are equal (in absolute value) andgives rise to an exponentially at branch of periodic solutions [6].Bifurcations of homoclinic orbits often possess analogues in the symmetriccontext, see for example [21, 23] and also in population dynamics [11]. The maindi�erences are that the codimension is reduced and that the underlying homo-clinic cycle, being robust, persists throughout the bifurcation. An importantspecial case is when the cycle is initially asymptotically stable, but loses stabilityas a bifurcation parameter is varied. The equivariant analogue of the resonantbifurcation (now a codimension one bifurcation) is analyzed in [23] (see also [10])and coincides with the loss of stability of the underlying homoclinic cycle. A cyclecan lose stability also by undergoing a transverse bifurcation, as we now explain.Robust homoclinic cycles arise because heteroclinic connections may lie inproper ow-invariant subspaces (forced by symmetry) and may be structurallystable within these subspaces. Eigenvalues with eigenvectors that do not lie inthe relevant ow-invariant subspaces are called transverse eigenvalues. A nec-essary condition that the homoclinic cycle is asymptotically stable is that thetransverse eigenvalues (if any) have negative real part. A transverse bifurcationoccurs when the cycle loses asymptotic stability as the real part of a transverseeigenvalue passes through zero. 1 In the nonsymmetric context, such a transversebifurcation is highly degenerate | at least of codimension three and therefore of1Since the homoclinic cycle of Busse et al [1, 2] is purely convective, it is evident that amagnetic instability of the equilibrium rolls corresponds to a transverse instability of the cycle3



less interest. Transverse bifurcations have been considered by [3] in a somewhatdi�erent context.As evidenced by the results in this paper, transverse bifurcation leads to a va-riety of di�erent phenomena. The lowest-dimensional instances of this bifurcationoccur for vector �elds on R4. Then there is a single real transverse eigenvalue. Asthe bifurcation takes place, the dimension of the unstable manifold of the equilib-rium � is increased by one. Applying the center manifold theorem, we know that �undergoes a steady-state bifurcation. The presence of symmetry implies that thisis a pitchfork bifurcation. To �x ideas, we assume that the pitchfork bifurcationis supercritical. Subcritically, there is an asymptotically stable homoclinic cycle.Supercritically, there is an unstable homoclinic cycle and a pair of saddle points.We investigate the further dynamics associated with this bifurcation.Even within this restricted framework the possibilities for dynamics are quiterich. There is a trichotomy [16] underlying the asymptotic stability properties ofheteroclinic cycles in the presence of symmetry. This trichotomy is particularlyfundamental for cycles in R4. The cycles thus fall into three types which we labelType A, Type B and Type C and which are distinguished on purely representation-theoretic grounds, see De�nition 2.3. The cycles in [4] are of Type A. If a cycle inR3, such as the example in [9], is embedded in a three-dimensional ow-invariantsubspace in R4 then the resulting cycle is of Type B. There is a cycle of Type Cin [8, 10].We now describe our main results. Suppose that a homoclinic cycle in R4undergoes a transverse bifurcation and that the associated pitchfork bifurcationat the equilibria is supercritical.If the cycle is of Type A, there is a bifurcation of periodic solutions whose dis-tance to the homoclinic cycle (or amplitude) is exponentially at in the bifurcationparameter �. Indeed the amplitude of the branch of periodic solutions is propor-tional at lowest order to jdj1=� where d is a certain coe�cient of the linearizedow near the homoclinic cycle but away from the equilibria. In particular, thedirection of branching (and stability) is determined by d and thus is independentof the direction of the local pitchfork bifurcation. There is a supercritical bifur-cation of asymptotically stable periodic solutions when jdj < 1 and a subcriticalbifurcation of unstable periodic solutions when jdj > 1.4



If the cycle is of Type B, there is a supercritical pitchfork bifurcation of asymp-totically stable homoclinic cycles with amplitude proportional at lowest order top�.If the cycle is of Type C, there is a supercritical pitchfork bifurcation of asymp-totically stable homoclinic cycles as for Type B but the heteroclinic orbits connectevery other equilibrium.The remainder of this paper is organized as follows. In Section 2, we recallsome terminology and results of [15, 16] and de�ne cycles of Type A, B and C.The bifurcations for the cycles of Type B and C are analyzed in Section 3. Theanalysis for the cycles of Type A is given in Section 4.2 Notation and results from [15, 16]In this section we summarize the terminology and main results in [15, 16] that weshall need. In particular, cycles of Type A, B and C are de�ned.Roughly speaking, a heteroclinic cycle for an ODE is a collection of equilibria�1; : : : ; �m together with trajectories xj(t), j = 1; : : : ;m that connect �j to �j+1(where �m+1 = �1). More generally, if there is a group of symmetries � we relaxthe condition on xm(t) and demand only that xm(t) connects �m to �1 for some 2 �. When m = 1 the cycle is called a homoclinic cycle.The following simple construction leads to the class of robust homoclinic cyclesin R4 that we shall study. This is a special case of the cycles in Rn that areconsidered in [15, 16]. Suppose that � is a �nite group acting linearly on R4 andconsider a �-equivariant vector �eld with the following properties. Let � 6= 0be a hyperbolic saddle point with a one-dimensional unstable manifold W u(�)Suppose that W u(�) � P where P = Fix(�) is a two-dimensional �xed-pointsubspace corresponding to an isotropy subgroup � � �. Suppose further thatthere is an element  2 � such that � is a sink in P and that there is a saddle-sink connection in P connecting � to �. Then the collection of saddle points j�,j � 1, together with their unstable manifolds, forms a homoclinic cycle. Moreover,this cycle is robust: equivariance implies that P is ow-invariant and hence thesaddle-sink connection persists under �-equivariant perturbation.5



Since � is �nite, the collection of saddle points j� is �nite. Let k � 1 be theleast positive integer such that k� = �. Then the homoclinic cycle X is given byX = k[j=1W u(j�):Remark 2.1 The unstable manifoldW u(�) consists of two branches, one of whichis contained in W s(�). As is easily shown, the remaining branch of the unstablemanifold is contained in W s(0�) for some  0 2 �.The asymptotic stability of such cycles is considered in [15, 16]. Without lossof generality we may assume that � acts faithfully and orthogonally on R4, so �is a �nite subgroup of O(4). Observe that � is a saddle point inside of P and is asink inside of �1P . There is an eigenvalue common to both subspaces (the radialeigenvalue), an additional eigenvalue in �1P (contracting) and in P (expanding),and one further eigenvalue (transverse). We denote the respective eigenvalues by�r > 0, �c > 0, e > 0 and t 6= 0. In particular, the eigenvalues are necessarilyreal.Proposition 2.2 ([15]) Suppose that c > e and t < 0. Then generically thehomoclinic cycle X is asymptotically stable. If t > 0, then X is unstable.The su�cient conditions for asymptotic stability in Proposition 2.2 are notalways necessary for cycles in Rn, n > 3. As shown in [16], there is an importantrepresentation-theoretic trichotomy that underlies the stability theory of homo-clinic (and heteroclinic) cycles in dimensions four and higher. In our context, thistrichotomy can be described very easily. De�ne the three-dimensional subspaceQ = P + �1P . There is the question as to whether or not Q is a �xed-pointsubspace, that is, whether or not Q = Fix(� ) for some reection � 2 �.De�nition 2.3The cycle X is of Type A if Q is not a �xed-point subspace.The cycle X is of Type B if Q is a �xed-point subspace and X � Q.The cycle X is of Type C if Q is a �xed-point subspace and X 6� Q.6



As noted in the introduction, all three types of cycle are realized in examples inthe literature.Remark 2.4 The following representation-theoretic information from [16] is use-ful. For all three types of cycle, there is an involution � 2 � such that P = Fix(�).(When diagonalized, � has two +1's and two�1's.) WhenX is of Type A, � �=Z2,the unique nontrivial element being �. When X is of Type B or Type C, � �=Z22,with nontrivial elements �, � and �� . Finally, if X is of Type C, there is an evennumber of equilibria j� in the cycle, so k is even.Proposition 2.5 If X is of Type A or of Type B, then generically the cycle isasymptotically stable if and only if c > e and t < 0. If X is of Type C, thengenerically the cycle is asymptotically stable if and only if c� t > e and t < 0.Proof The stability of cycles of Types A and B is studied in [15]. The result forcycles of Type C is due to [8, 10].3 Pitchfork bifurcations for cycles of Type Band Type CIn this section, we consider the bifurcations associated to a homoclinic cycle ofType B or C when the transverse eigenvalue passes through zero as a bifurcationparameter � is varied. Speci�cally, the transverse eigenvalue t(�) is a functionof � and t(0) = 0. Generically, t0(0) 6= 0. So that the cycle X undergoes a lossof stability, we assume that t0(0) > 0. Reparametrizing, we may assume thatt(�) � �.3.1 Pitchfork bifurcation of equilibriaFirst we consider the bifurcation associated with the equilibrium �. The analysisof this bifurcation holds also for cycles of Type A. When � = 0 there is a one-dimensional center manifold tangent at � to the kernel of the linearized vector7



�eld. The dynamics on this center manifold is governed by a vector �eld of theform _z = �z + h(z; �);where h(0; �) = hz(0; �) = 0. We may and shall assume that h is at least C3.Recall that � lies in the ow-invariant subspace P = Fix(�) where � 2 � is aninvolution. The isotropy subgroup of �, and in particular the involution �, actson a suitably chosen neighborhood of � and we can arrange that the dynamicson the center manifold commutes with �. Since the eigenspace associated withthe transverse eigenvalue is orthogonal to P , � acts nontrivially in the centraldirection. Speci�cally, the action of � is given by z 7! �z and h(z; �) is an oddfunction of z. We assume that hzzz(0; 0) 6= 0 and for de�niteness that hzzz (0; 0) <0. Then � undergoes a supercritical pitchfork bifurcation to a pair of saddle pointsas � passes through zero. Moreover, these saddle points are interchanged by �.The eigenvalue data associated with the cycle X varies with the bifurcationparameter �. For � near 0, X has eigenvalues �r(�), �c(�), e(�) and t(�) � �where r(0); c(0); e(0) > 0. We assume that c(0) 6= e(0). Then it follows fromProposition 2.5 that the stability of the cycle (all three types) is determined for� small by the sign of c(0) � e(0). To ensure that the cycle undergoes a loss ofstability, we assume that c(0) > e(0).Remark 3.1 We have made the assumptions t0(0) 6= 0, hzzz (0; 0) 6= 0 and c(0) 6=e(0) which are satis�ed generically. Then we have concentrated attention on thecase t0(0) > 0; hzzz (0; 0) < 0; c(0) > e(0): (3.1)This is the case that is the most interesting from the point of view of asymp-totically stable dynamics. However, the analysis of the other cases is completelyanalogous.3.2 Cycles of Type BNext we specialize to cycles X of Type B with saddle point � connected to �where  2 �. Thus X � Q = Fix(� ) where � 2 � is a reection. We can replace8



� by � in the analysis of the pitchfork bifurcation at � and so we may denote thebifurcating equilibria by �0 and ��0. The element  preserves Q and hence acts onthe two components of R4 � Q. Replacing  by � if necessary, we may assumethat  preserves each of these components.Theorem 3.2 Suppose that � is a �nite group acting linearly on R4, and that Xis a homoclinic cycle of Type B with equilibria j�, j = 1; : : : ; k. Assume that Xundergoes a transverse bifurcation and that the nondegeneracy conditions (3.1) aresatis�ed. Then there is a supercritical pitchfork bifurcation to two asymptoticallystable homoclinic cycles, X 0 and �X 0, one lying in each component of R4�Q. Thecycle X 0 consists of heteroclinic connections from j�1�0 to j�0 for j = 1; : : : ; k.Proof There is a second three-dimensional ow-invariant subspace Q0 = Fix(�� )containing P together with the transverse directions corresponding to � and �.Thus the pitchfork bifurcations of equilibria at � and � each take place in Q0. Inparticular, the four equilibria �0, ��0, �0 and ��0 lie in Q0. The �rst two equilibriaare saddles (with one-dimensional unstable manifolds) and the remaining equilib-ria are sinks. These stability assignments follow from the fact that the pitchforkbifurcation is supercritical.We claim that there is a saddle-sink connection in Q0 between �0 and �0 (andhence between ��0 and ��0). It then follows that there is a supercritical pitchforkbifurcation of robust homoclinic cycles. Moreover, it follows from [15] that thebifurcating cycles are asymptotically stable: �0 lies in the ow-invariant subspaceQ0\�1Q0 and there are two radial eigenvalues, one close to �r and one close to 0but negative. There is also an expanding eigenvalue in Q0 close to e and a con-tracting eigenvalue in �1Q0 close to �c. Since c > e, the contracting eigenvaluedominates the expanding eigenvalue for � small and the cycle is asymptoticallystable. (There are no transverse eigenvalues for the new bifurcating cycles.)It remains to establish the existence of the heteroclinic connection between�0 and �0. We can choose a neighborhood V � Q0 of the equilibrium � so thatfor � close enough to zero, trajectories that begin in V and remain in V for alltime are attracted to the center manifold of �. (Note that the expanding directionassociated with � does not lie in Q0.) On the center manifold, � is repelling and9



all other trajectories are asymptotic to the new equilibria �0 and ��0. Hence,all trajectories in V are attracted to one of three equilibria �, �0 and ��0.By continuity, the unstable manifolds of the equilibria near � have to intersectV for � > 0 small and so there are connections to the equilibria near �. Since Pdivides Q0 into two ow-invariant regions, one containing �0 and �0 and the othercontaining ��0 and ��0, the required connections are forced.3.3 Cycles of Type CIn this subsection, we consider cycles of Type C. The analysis is very similar tothat for cycles of Type B. Again Q = P + �1P = Fix(� ), but this time X 6� Q.Just as before, we may choose  so that  preserves each of the components ofR4 �Q. We continue to denote the equilibria bifurcating from � by �0 and ��0.Theorem 3.3 Suppose that � is a �nite group acting linearly on R4, and that X isa homoclinic cycle of Type C with equilibria j�, j = 1; : : : ; k (where k is even).Assume that X undergoes a transverse bifurcation and that the nondegeneracyconditions (3.1) are satis�ed. Then there is a supercritical pitchfork bifurcation tofour asymptotically stable homoclinic cycles: X 0 and X 0 lying in one componentof R4 �Q, �X 0 and �X 0 lying in the other component. The cycle X 0 consists ofheteroclinic connections from j�2�0 to j�0 for j = 2; 4; : : : ; k.Proof This is very similar to the proof of Theorem 3.2. The only point to verify,is that there is a heteroclinic connection from �0 to 2�0. Again we consider theow-invariant subspace Q0 = Fix(�� ). Although the transverse direction for � iscontained in Q0, this is not the case for the transverse eigenvalue at �. Thus thebifurcating equilibria �0 and ��0 lie in Q0 but �0; ��0 62 Q0. At the same time, theexpanding direction at � does lie in Q0 and hence the connection from � to 2�is contained in Q0. (Another way of saying this is that Q0 = Q.) In particular,2� 2 Q0. Moreover, the transverse direction at 2� lies in Q0. Arguing similarlyto before, we deduce that inside of Q0 the unstable manifold of �0 passes nearbyto the saddle point � and is asymptotic to the sink 2�0.10



3.4 Completion of analysis for cycles of Type BWe end this section by re�ning our results for cycles of Type B. Indeed, we provethat for a cycle of Type B undergoing a transverse bifurcation and satisfyingconditions (3.1), generically there is no local asymptotic dynamics except for thehomoclinic cycles described in Theorem 3.2 | locally, every trajectory that isbounded in forward or backward time is asymptotic to (the group orbit of) theunstable homoclinic cycle X or the stable homoclinic cycle X 0.To prove this result, it is necessary to construct a Poincar�e map around thehomoclinic cycle. Assuming certain nondegeneracy conditions (that we shall notwrite down) on the eigenvalues at the saddle point �, we can locally linearize theow except on the center manifold [25]. More precisely, for any positive integerk, there is a Ck-change of coordinates so that the equations in a neighborhood of� take the form _u = �r(z; �)u (3.2a)_v = �c(z; �)v (3.2b)_w = e(z; �)w (3.2c)_z = �z + h(z; �) (3.2d)where r, c, e and h are Ck functions of z and �. Here, h is the same function thatappeared at the beginning of this section. When z = 0, r, c and e recapture theiroriginal meaning. In this subsection, we shall require only that k � 1.The cases c(0) > r(0) and c(0) < r(0) are similar and we carry out the proofunder the assumption that c(0) < r(0). Then, generically, the unstable manifoldof � is tangent to the direction of v. Hence we can de�ne the ingoing cross-sectionH(in) = f(u; 1; w; z); juj; jwj; jzj � 1g:We also introduce the outgoing cross-sectionH(out) = f(u; v; 1; z); juj; jvj; jzj � 1g:The heteroclinic connections emanating from � intersect H(in) and H(out) at thepoints (u0; 1; 0; 0) and (0; 0; 1; 0). We consider the �rst hit map g : H(in)! H(in)11



de�ned for su�ciently small (u; 1; w; z) 2 H(in), w > 0, as the compositiong =  �� of a �rst hit map � : H(in)! H(out) and a connecting di�eomorphism : H(out)! H(in).The di�eomorphism �1 : H(out)�R! H(in) has the form�1 (u; v; 1; z; �) = (� ; 1 ; �1v + �2z ; �3v + �4z);where � and �1; : : : ; �4 are smooth functions of u; v; z; �. Since the z-directionsare transverse to the invariant subspace Q, it is evident that �3 = 0. Similarly,invariance of the subspace Q0 implies that �2 = 0. Hence, the w-component of�1 is dominated by 2j�1(0)jjvj for all u; v; z; � small enough.Rescaling time, we can assume that e(z; �) � 1 (and so c(0) > 1). Equa-tion (3.2c) becomes _w = w and hence the time of ight between H(in) andH(out) for a point (u; 1; w; z) 2 H(in) is given by T = � lnw. We deduce fromequation (3.2b) that for any � > 0, the v-component of � is dominated by jwjc(0)��.Combining these two estimates we have that the iterate of w under the Poincar�emap �1g = �1 �� : H(in)! H(in) is dominated by 2j�1(0)jjwjc(0)��. Choosing� so that c(0) � � > 1 we deduce that provided u and z remain small, the w-coordinate contracts to zero under the Poincar�e map. (In fact, u is forced toremain small; it is only z that we cannot easily control.) Hence, we have shownthat the local asymptotic dynamics is con�ned to the invariant subspace Q0 andits symmetric images as required.The corresponding analysis for cycles of Type C is considerably more compli-cated.4 Flat bifurcations for a Type A homoclinic cy-cleIn this section we state and prove our result on transverse bifurcations of a Type Ahomoclinic cycle. The result requires various genericity assumptions:(i) The assumption that the transverse eigenvalue passes through zero withnonzero speed, that is, t0(0) 6= 0. 12



(ii) Nondegeneracy conditions on the eigenvalues of the linearized vector �eldat the saddle point � as in Subsection 3.4. In particular, we again requirethat c(0) 6= e(0).(iii) Nondegeneracy conditions on global coe�cients such as the constant d thatappears in the statement of the theorem.As in Section 3, we shall concentrate attention on certain cases and assumethe nondegeneracy conditionst0(0) > 0; c(0) > e(0): (4.1)This time, the analysis of the cases c(0) > e(0) and c(0) < e(0) is slightly di�erent.In particular, the coe�cient d is di�erent for the two cases. We will indicate atthe end how to extend the analysis to the case c(0) < e(0). Finally we note thatthe conditions in (iii) are indeed satis�ed generically, see for example [15].Theorem 4.1 Suppose that � is a �nite group acting linearly on R4, and thatX is a homoclinic cycle of Type A undergoing a transverse bifurcation. Assumethat the nondegeneracy conditions (4.1) are satis�ed. Generically, there existsa unique (up to conjugacy) branch of limit cycles bifurcating from the homocliniccycle as � passes through 0. Moreover, there is a positive constant d 6= 1 dependingonly on the global part of the ow, such that the distance of the limit cycle to thehomoclinic cycle is at leading order proportional to d 1� . If d < 1, the bifurcationis supercritical and the periodic solutions are asymptotically stable. If d > 1, thebifurcation is subcritical and the periodic solutions are unstable.Remark 4.2 In bifurcations of this type in the nonsymmetric context, periodicsolutions typically come in two forms: 1-periodic and 2-periodic. Roughly speak-ing, this means that the bifurcating periodic solutions wind around either onceor twice in a neighborhood of the homoclinic trajectory. Moreover, the 2-periodiccase is considerably harder to analyze and leads to nonuniqueness, see [6]. In ourcontext, as a consequence of the symmetry, everything reduces to the 1-periodiccase. 13



4.1 The Poincar�e map and periodic solutionsAgain we assume nondegeneracy conditions on the eigenvalues at the saddle point� so that under a Ck change of coordinates, the equations in a neighborhood of� take the form (3.2). Note that h = O(z3). We shall require that k � 3. Webelieve that Theorem 4.1 holds for k � 1, but are not able to prove it in suchgenerality. In fact k � 2 su�ces for the existence proof and we use k � 3 inproving uniqueness. As before, we assume that c(0) > r(0) and rescale time sothat e(0) � 1 and c(0) > 1. The cross-sections H(in) andH(out) and the Poincar�emap g =  �� are de�ned just as in Subsection 3.4.Proposition 4.3 Suppose � 2 �. Then �H(in) = H(in) if and only if � =  or� = �.Proof Suppose that �H(in) = H(in). Then �1� �xes H(in) or equivalently�xes points in the subspace �1P . Hence, �1� lies in the isotropy subgroup�1� and it follows from Remark 2.4 that � =  or � = � as required.Suppose x(t) is a periodic solution su�ciently close to X. Then the grouporbit �x(t) intersects H(in). Relabeling, we can arrange that x0 = x(0) 2 H(in)and g(x0) 2 H(in). We say that x(t) is 1-periodic if g(x0) 2 �x0. Proposition 4.3implies the following corollary.Corollary 4.4 Suppose x0 2 H(in) and g(x0) 2 H(in). Then x0 lies on a1-periodic solution if and only if x0 is a �xed point of ��1g where � =  or � = �.Remark 4.5 Suppose x0 is a �xed point of ��1g, where � =  or � = �, and letx(t) be the corresponding 1-periodic solution. Then x(t) may wind once or twicearound X before closing up and this property is determined by the action of theelement �. Let ` be the least positive integer such that �`H(in) = H(in). Then�` acts on H(in) either as identity or as minus identity. In the former case x(t)winds once around X and in the latter case twice.In the sequel we will �nd �xed points of �1g and �1�g and show that allperiodic solutions bifurcating from X are 1-periodic.14



As noted in Subsection 3.4, the di�eomorphism �1 : H(out) � R! H(in)has the form �1 (u; v; 1; z; �) = (� ; 1 ; �1v + �2z ; �3v + �4z);where � and �1; : : : ; �4 are smooth functions of u; v; z; �. Let b = �2(0), d = �4(0).When X is of Type A, we require that b 6= 0 and d 6= 0;�1. By [15] theseconditions are satis�ed generically. (This is certainly not the case for cycles ofType B and Type C: we have already seem that if X is of Type B, �2 = �3 = 0,whereas if X is of Type C, �1 = �4 = 0.)We introduce new variables� = w�; Z = z=�:Lemma 4.6 The �rst hit map � : H(in)�R! H(out) has the form�(u; 1; w; �Z; �) = (u� r=��r ; w� (c�1)=��c ; 1 ; �Z=� +O(�Z2));where r; c; �r; �c are smooth functions of �; Z; � for � 6= 0.The proof of this lemma is somewhat technical and is postponed to Subsec-tion 4.3.Remark 4.7 Recall that r(0) > 0 and c(0) > 1. It follows that if � 2 (0; 1) and� � 0, then all components of � are smooth and are O(�). The same is true if� > 1 and � � 0.4.2 Analysis of the bifurcation equationsThe Poincar�e map �1g : H(in)�R! H(in) is given by �1g = �1 �� and wesearch for solutions of the equation�1g(u; 1; w; �Z; �) = (u; 1; w; �Z):Applying the implicit function theorem, we can solve the u-component of thisequation for u as a smooth function of w;Z; � and � 6= 0. Moreover, u = �(0) +15



O(�). Now we substitute u into the remaining components of �1g to obtain thebifurcation equationsw = �1w� (c�1)=��c(�; Z; �) + �2�Z=� +O(�Z2);�Z = �3w� (c�1)=��c(�; Z; �) + �4�Z=� +O(�Z2):Abusing notation slightly, we can regard �1; : : : ; �4 as smooth functions of w;Z; �; � .Moreover, up to a constant these four functions are O(�).Next, we make the substitution �Z = �w, multiply by � , and divide out bythe solution w = 0. We obtain the equations for � and �� = �1� (c�1)=�+1�c + �2�+O( � 1�� );�� = �3� (c�1)=�+1�c + �4�+O( � 1�� ):Write �2 = b+O(�), �4 = d+O(�) where b and d are constants. Generically,b 6= 0, d 6= 0;�1. We consider �rst the case d 2 (0; 1). The function � 1� de�ned for� > 0 extends uniquely to a smooth function of � and � de�ned on a neighborhoodof (0; d) and identically equal to 0 for � � 0. This extended function, which wealso denote by � 1=�, satis�es the property O( � 1�� ) = O(�).We can now rewrite the equations in the form� � b�+O(�) = 0; d� � ��+O(�) = 0:There is a trivial solution (�; �; Z; �) = (d; d=b; 0; 0). Applying the implicit func-tion at the point (d; d=b; 0; 0), we can solve smoothly for � and �. Tracing backthrough the substitutions, we obtain the branch of solutionsz = �Z = �w = �� 1=� � (d=b)d1=�; � � 0:Thus we have a at supercritical bifurcation of limit cycles bifurcating from thehomoclinic cycle.In the case d > 1 we consider � � 0 and obtain a subcritical bifurcation oflimit cycles. When d < 0, the above procedure yields no �xed point for �1g.Note however that d is of opposite sign for �1g and �1�g. Hence the bifurcatingperiodic solution exists if jdj 6= 1 and joins either z0 to z0 or z0 to �z0.16



4.3 Proof of Lemma 4.6Under the substitution Z = z=�, equation (3.2d) becomes_Z = �(Z + ~h(Z; �)); (4.2)where ~h(Z; �) = 1�2h(�Z; �) = O(Z2). Let Z(t; Z0; �) be the solution of (4.2)with initial condition Z0. The time of ight between H(in) and H(out) for apoint (u; 1; w; z) 2 H(in) is given by T = � lnw = � 1� ln � . De�ne Ẑ(�; Z0; �) =Z(� ln(� )=�; Z0; �).Lemma 4.8 The function Ẑ is smooth in � , Z0 and � for � 6= 0. MoreoverẐ(�; Z0; �) = Z0=� +O(Z20 ).Proof By the chain rule, dZd� = � 1�� dZdt :Substituting for Z in terms of Ẑ in equation (4.2), we �nd that Ẑ is a solution ofthe di�erential equation dẐd� = �1� (Ẑ + ~h(Ẑ; �)): (4.3)The right-hand-side of the equation is smooth for � 6= 0 and the �rst statement ofthe lemma follows. In order to obtain an expansion in Z near Z = 0 we considerthe linearization of (4.3), namelydẐ lind� = ���1Ẑ lin:This equation has the solution Ẑ lin(�; Z0; �) = ��1Z0.It follows from this lemma that the z-component of � in Lemma 4.6 is as stated.We now give the proof for the v-component. The proof for the u-component isalmost identical. The v-component of the solution to equation (3.2) with initialcondition (u; 1; w; z0) can be written in the formv(t) = e�tc(0;�)eR t0 c1(z(s;z0;�);�)ds;17



where z(t; z0; �) is the solution of (3.2d) with initial condition z0. Recalling thatT = � lnw, we compute thatv(T ) = wc(z;0)eR T0 c1(z(t;z0;�);�)dt: (4.4)The exponential appearing in equation (4.4) can be expressed in terms of thevariables (�; Z):Z T0 c1(�Z(t; z0; �); �)dt = Z Ẑ(�;Z0;�)Z0 c1(�Z; �)( _Z)�1dZ= Z Ẑ(�;Z0;�)Z0 c1(�Z; �) 1�(Z + ~h(Z; �))dZ:Since ~h(Z; �) = O(Z2) and c1(�Z; �) = O(�Z), the integrand is a smooth functionof � and Z for Z small. It follows from Lemma 4.8 that the integral and hencethe exponentiated integral is smooth for Z0 small and � 6= 0. Thus we can writethe v-component of � in the form wc(0;�)�c(�; Z; �) where �c is smooth. Finally,we write wc(0;�) = wwc(0;�)�1 and make the substitution w = � 1=�.4.4 UniquenessIn this section we prove the following theorem.Theorem 4.9 The branch of periodic solutions found in Section 4.2 is unique.Consider the map G = �1g or �1�g, chosen so that d > 0. The domainof G is H+(in) = f(u; 1; w; z) 2 H(in) : w > 0g. We look for a sequencef(ui; 1; wi; zi)gi=0;::: ;k such that (uk; 1; wk; zk) = �(u0; 1; w0; z0) anduj+1 = �(uj; wj; zj) (4.5a)wj+1 = �(�1wcj + �2z(Tj; zj)) (4.5b)zj+1 = �(�3wcj + �4z(Tj; zj)); (4.5c)where j = 0; : : : ; k � 1, Tj = � lnwj and z(t; zj) is the solution of_z = �z + h(z) (4.6)18



with initial condition zj. The sign in equations (4.5b,c) is + if G(uj; 1; wj; zj) 2H+(in) and � if G(uj; 1; wj; zj) 62 H+(in). The above sequence gives rise to ak-periodic solution, and every periodic solution has a symmetry conjugate whichcan be obtained from such a sequence. The 1-periodic solution found in Section4.2 provides a solution to (4.5) for every integer k � 1. Hence, to prove uniquenessit su�ces to show that (4.5) has a unique solution for every k � 1.Initially we assume that b > 0 and z0 > 0. In the this case the signs in (4.5)is always +.Lemma 4.10 Consider w > 0, z > 0 such that w � Czk for some constantsk; C > 0. Let z(t) be the solution of (4.6) with initial condition z and let T =� lnw. Then z(T ) = w�� �z +O �z 32�� : (4.7)Proof Write z(t) = e�t �z + Z t0 e��sh(z(s))ds� :In particular z(T ) = w��  z + Z T0 e��sh(z(s))ds! :We show that ���R T0 h(z(s))ds��� = O(z 32 ). To this end we estimate z(t), 0 � t � T .Fix � > 0 small and consider the linear equation_z = �z: (4.8)Let ~z(t) be a solution of (4.8) and z(t) a solution of (4.6), both with initialcondition ~z(0) = z(0) = z. Suppose � < �2 . If � is small enough then �+h(z)=z � �for all 0 � z � �. It follows that if ~z(t) � � then z(s) � ~z(t) for all 0 � s � t.Since ~z(t) = e�tz it follows that, for small enough �,~z(T ) = w��z � C��z1��k � 4z1��k:We require that �k < 12. It follows that if z � 14�2 then ~z(T ) � �. Hence, for0 � t � T , z(t) � ~z(T ) � 4z1��k:19



We now estimate the expression ���R T0 h(z(s))ds���:�����Z T0 h(z(s))ds����� � j � lnC � k ln zj maxs2[0;T ] jh(z(s)j� j � lnC � k ln zjO(z3(1��k)) � z 32 :The lemma follows.In the remainder of this section we deal with the simpli�ed bifurcation equationwj+1 = ��1wcj + �2z(Tj; zj)zj+1 = �3wcj + �4z(Tj; zj); (4.9)i = 0; : : : ; k � 1, wk � w0, zk � z0. The results for (4.9) easily extend to thegeneral case.Lemma 4.11 Suppose that f(ui; 1; wi; zi)gi=0;::: ;k are solutions of (4.9). Supposethere exists a C > 1 such that 1C � ziwi � C (4.10)for some i and all � su�ciently small. Then zi=wi ! d=b as � ! 0 for alli = 0; : : : ; k � 1.Proof Without loss of generality we can assume that i = 0. The inequality (4.10)implies that wc=e0 � w��0 (Cz0)c=e+� = w��0 o(z0):This estimate, combined with Lemma 4.10, implies thatw1 = �2w��0 (z0 + o(z0)); z1 = �4w��0 (z0 + o(z0)):Hence z1=w1 ! d=b as �! 0. Using the same argument for i = 1; : : : ; k � 1, weprove the assertion of the lemma.Lemma 4.12 If f(ui; 1; wi; zi)gi=0;::: ;k are solutions of (4.9) then there exists i 2f0; : : : ; k � 1g and C > 1 such that 1=C � zi=wi � C for all � small enough.20



Proof Suppose no such C exists. Then we must have z(Ti; zi) = O(wc=ei ) fori = 0; : : : ; k � 1. This would imply that wi+1 = O(wc=ei ), i = 0; : : : ; k � 1, and�nally that w0 = wk = O(w(c=e)k0 ). Dividing out w0 we get 1 = O(w(c=e)k�10 ), whichis impossible for w0 � 0.Proof of Theorem 4.9 We assume that � > 0. The case � < 0 is similar. TheLemmas 4.10, 4.11 and 4.12 imply that we can always use the expansion (4.7). Weintroduce a new variable w = �z and look for (z; �) near (0; b=d). Other solutionsare impossible by Lemma 4.11. Let � = minf12; c=e� 1g. We obtain�i+1zi+1 = �2���i z��i (zi +O(z1+�1 )) = 
iz1��izi+1 = �4���i z��i (zi +O(z1+�1 )) = �iz1��i ; (4.11)where �i;
i are continuous functions of (�; �i; zi) such that �i ! d as �! 0 andz ! 0. Composing the equation k times we getz0 = �z(1��)k0 = �z1�k�+O(�2)0 ;where � is a continuous function of (�; z0; �0) such that �! dk as (�; z0)! (0; 0).Dividing out z0 and taking logarithms we get lim�!0z�0 = d, i = 0; : : : ; k � 1. Thisis clearly impossible when d > 1. We introduce a new coordinate � = z� and lookfor solutions near (�0; �0) = (b=d; d). Equations (4.11) transform to�i+1� 1�i+1 = ~
i� 1��1i ; � 1�i+1 = ~�i� 1��1i ;where the functions ~
i, ~�i depend smoothly on �i and �i. Moreover ~
i = b=d +O(�), ~�i = d +O(�). Composing k times we get�0� 1�0 = ~
� (1��)k�0 ; � 1�0 = ~�� (1��)k�0 ;where ~
 = bdk�1 +O(�), ~� = dk + O(�) and ~
, ~� are smooth functions of �0,�0. We substitute the second equation into the �rst equation and divide out � 1�0in the second equation to obtain�0 = ~
= ~�; 1 = ~���k+O(�)0 :Applying the implicit function theorem we get a unique solution for (�0; �0).21



We now consider the cases b > 0, z0 < 0 and b < 0. If b > 0 and z0 < 0 thenGw(u0; 1; w0; z0) < 0 and Gz(u0; 1; w0; z0) < 0, so that we need to use the � signin (4.5). This way w1; z1 > 0 and wj ; zj > 0, for j = 2; : : : ; k � 1. The secondequation in (4.11) has the formz1 = ��0z0; zj+1 = �jzj; j � 1:Composing we get zk = z0 = ��z0, where � ! dk as (�; z0) ! (0; 0). This isclearly impossible for z0 6= 0.If b < 0, w0 > 0 and z0 < 0 then wj > 0, zj < 0 for j = 1 � 1, so the sign takenin (4.5) is always + and the arguments presented above apply. Suppose b < 0,w0 > 0 and z0 > 0. Then the sign in (4.5) is � for i = 0 and + for i = 1; : : : ; k�1.Proceeding as above we get z0 = ��z0, where �! dk as (�; z0) ! (0; 0), whichis a contradiction.4.5 StabilityAs in Section 4.2, let G be �1g or �1�g, so that d > 0. Assume d < 1. Themap G has the form: û = �(wru;wc; z(T ))ŵ = �1wc + �2z(T ) (4.12)ẑ = �3wc + �4z(T ):Our periodic solution corresponds to a �xed point of (4.12). Let P denote this�xed point. Recall that the coordinates of P satisfy the following estimates:z � (d=b)d 1� ; w � d 1� ;T = � lnw; z(T ) = 1bw + o(w):Let ~b = �2(�; 0), ~d = �4(�; 0). The matrix of the linearization of (4.12) at P , upto a at function of �, has the form0BB@ 0 0 �00 B 1CCA ; B = 0BB@ ~bdz(T )dw ~bdz(T )dz~d dz(T )dw ~ddz(T )dz 1CCA :22



(Here dz(T )=dw stands for dz(T )=dwj(zP ;wP ), and so on.) We compute thatdz(T )dw = dz(T )dT � dTdw = � 1w (�z(T ) + h(z(T ))) = ��z(T )=w + at(�):Note that dz(t)=dz = dZ(t)=dZ, where �Z = z. Hence we can use Lemma 4.4 toconclude that dz(T )dz = 1� + at(�):Following the argument of the existence proof we see that� = ~d + at(�); z(T )=w = 1=~b + at(�):It follows that up to at terms in � the matrix B has the formB = 0@ �� ~b= ~d�� ~d=~b 1 1A :Clearly the eigenvalues of B are 0 and 1� �. It follows that the homoclinic cycleis stable, if � > 0. An analogous argument shows that the limit cycle is unstablefor d > 1.4.6 The case c(0) < e(0)When c(0) < e(0) we change variables letting ! = wc. The return map becomesû = �(!r=cu; !; z(T ))!̂1=c = �1! + �2z(T )ẑ = �3! + �4z(T ):The remaining analysis is analogous to the case c(0) > e(0). The coe�cientdetermining the direction of branching (d in the c(0) > e(0) case) is di�erent andis given by D = �1(0)�4(0)� �2(0)�3(0)�1(0) :In particular we must assume that �1(0) 6= 0 and D 6= �1. Rather than repeat-ing the already presented analysis we present a heuristic argument showing theexistence of a periodic solution. Consider the simpli�ed bifurcation equation!1=c = �1! + �2z(T ); z = �3! + �4z(T ):23
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