Transverse bifurcations of homoclinic cycles

P. Chossat* M. Krupal I. Melbourne!  A. Scheel }
June 13, 1996

Abstract

Homoclinic cycles exist robustly in dynamical systems with symmetry,
and may undergo various bifurcations, not all of which have an analogue
in the absence of symmetry. We analyze such a bifurcation, the transverse
bifurcation, and uncover a variety of phenomena that can be distinguished
representation-theoretically. For example, exponentially flat branches of
periodic solutions (a typical feature of bifurcation from homoclinic cycles)
occur for some but not all representations of the symmetry group. Our
study of transverse bifurcations is motivated by the problem of intermittent

dynamos in rotating convection.

1 Introduction

Homoclinic cycles are structurally unstable for general dynamical systems but are
known to exist robustly in dynamical systems with symmetry [19, 7, 14]. They are
then associated with intermittent or bursting phenomena. A well-known example
of a robust homoclinic cycle is given by Guckenheimer and Holmes [9] who consider

a three-dimensional system of ordinary differential equations (ODEs) equivariant
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under the action of a certain 24 element group of symmetries. This example
occurs in the context of rotating Rayleigh-Bénard convection [1, 2] and also in a
population dynamics model [18].

The standard convection rolls that occur in Rayleigh-Bénard convection are
unstable in rotating convection [17]. Busse and Clever [1] proposed a simple three-
dimensional model involving three sets of rolls inclined at exactly 60°, based on an
asymptotic expansion and truncation of the full Boussinesq equations for rotating
convection. Busse and Heikes [2] pointed out that the presence of a homoclinic
cycle in the Busse-Clever model corresponds to an intermittency phenomenon
observed in fluid experiments where, locally, systems of rolls form but are then
replaced as time goes on by new systems of rolls inclined at an angle of about 60°
to the old rolls.

The motion of an electrically conducting fluid (mercury, say) is affected by the
presence of a magnetic field. If the convection is strong enough, small magnetic
field perturbations may grow and lead, as the two effects balance each other,
to the existence of a self-sustained magnetic field, a mechanism known as the
dynamo effect. Childress and Soward [5] proposed rotating convection as a suitable
framework in which the dynamo effect could be realized. It is therefore a natural
approach to apply methods of local bifurcation theory to the homoclinic cycle of
rolls in the pure convection problem. Observe that any dynamo solution obtained
in this way is an intermittent dynamo.

It transpires that the particular instability of the Busse-Clever-Heikes cycle
corresponding to the instabilities considered by Childress and Soward [5] is a new
kind of bifurcation which we call a transverse bifurcation. This motivates the gen-
eral study of transverse bifurcations from robust homoclinic cycles. We consider
the simplest possible context, namely in four dimensions, and obtain fairly com-
plete results in this context. We expect that the corresponding results for cycles in
higher dimensions are similar, but the proofs will be much more technical. In par-
ticular, our techniques should be applicable to the rotating magnetohydrodynamic
problem.

In the remainder of this introduction, we describe how our results on trans-
verse bifurcations fit together with previous results on bifurcation from homoclinic

cycles both in the symmetric and nonsymmetric contexts.



A homoclinic orbit of an ODE is a trajectory which converges for both positive
and negative time to the same equilibrium £. In the class of general vector fields,
the appearance of such an orbit is a codimension one phenomenon. Dynamics
and invariant sets near such homoclinic orbits have been studied extensively since
the work of Shil'nikov in the 60’s. In particular, many of the codimension one
and codimension two phenomena associated with homoclinic orbits have been
analyzed, see for example [24, 6, 12, 13, 20].

The dynamics near a homoclinic orbit is governed to some extent by the eigen-
values of the linearized vector field at the equilibrium. Particularly significant is
the relative strengths of the weakest contracting and expanding eigenvalues. An
important codimension two bifurcation, which we call a resonant bifurcation, oc-
curs when the real parts of these eigenvalues are equal (in absolute value) and
gives rise to an exponentially flat branch of periodic solutions [6].

Bifurcations of homoclinic orbits often possess analogues in the symmetric
context, see for example [21, 23] and also in population dynamics [11]. The main
differences are that the codimension is reduced and that the underlying homo-
clinic cycle, being robust, persists throughout the bifurcation. An important
special case is when the cycle is initially asymptotically stable, but loses stability
as a bifurcation parameter is varied. The equivariant analogue of the resonant
bifurcation (now a codimension one bifurcation) is analyzed in [23] (see also [10])
and coincides with the loss of stability of the underlying homoclinic cycle. A cycle
can lose stability also by undergoing a transverse bifurcation, as we now explain.

Robust homoclinic cycles arise because heteroclinic connections may lie in
proper flow-invariant subspaces (forced by symmetry) and may be structurally
stable within these subspaces. Eigenvalues with eigenvectors that do not lie in
the relevant flow-invariant subspaces are called transverse eigenvalues. A nec-
essary condition that the homoclinic cycle is asymptotically stable is that the
transverse eigenvalues (if any) have negative real part. A transverse bifurcation
occurs when the cycle loses asymptotic stability as the real part of a transverse
eigenvalue passes through zero. ! In the nonsymmetric context, such a transverse

bifurcation is highly degenerate — at least of codimension three and therefore of

!Since the homoclinic cycle of Busse et al [1, 2] is purely convective, it is evident that a

magnetic instability of the equilibrium rolls corresponds to a transverse instability of the cycle



less interest. Transverse bifurcations have been considered by [3] in a somewhat
different context.

As evidenced by the results in this paper, transverse bifurcation leads to a va-
riety of different phenomena. The lowest-dimensional instances of this bifurcation
occur for vector fields on R*. Then there is a single real transverse eigenvalue. As
the bifurcation takes place, the dimension of the unstable manifold of the equilib-
rium £ is increased by one. Applying the center manifold theorem, we know that &
undergoes a steady-state bifurcation. The presence of symmetry implies that this
is a pitchfork bifurcation. To fix ideas, we assume that the pitchfork bifurcation
is supercritical. Subcritically, there is an asymptotically stable homoclinic cycle.
Supercritically, there is an unstable homoclinic cycle and a pair of saddle points.
We investigate the further dynamics associated with this bifurcation.

Even within this restricted framework the possibilities for dynamics are quite
rich. There is a trichotomy [16] underlying the asymptotic stability properties of
heteroclinic cycles in the presence of symmetry. This trichotomy is particularly
fundamental for cycles in R*. The cycles thus fall into three types which we label
Type A, Type B and Type C and which are distinguished on purely representation-
theoretic grounds, see Definition 2.3. The cycles in [4] are of Type A. If a cycle in
R?, such as the example in [9], is embedded in a three-dimensional flow-invariant
subspace in R* then the resulting cycle is of Type B. There is a cycle of Type C
in [8, 10].

We now describe our main results. Suppose that a homoclinic cycle in R*
undergoes a transverse bifurcation and that the associated pitchfork bifurcation

at the equilibria is supercritical.

If the cycle is of Type A, there is a bifurcation of periodic solutions whose dis-
tance to the homoclinic cycle (or amplitude) is exponentially flat in the bifurcation
parameter A. Indeed the amplitude of the branch of periodic solutions is propor-

['/* where d is a certain coefficient of the linearized

tional at lowest order to |d
flow near the homoclinic cycle but away from the equilibria. In particular, the
direction of branching (and stability) is determined by d and thus is independent
of the direction of the local pitchfork bifurcation. There is a supercritical bifur-
cation of asymptotically stable periodic solutions when |d| < 1 and a subcritical

bifurcation of unstable periodic solutions when |d| > 1.



If the cycle is of Type B, there is a supercritical pitchfork bifurcation of asymp-

totically stable homoclinic cycles with amplitude proportional at lowest order to

V.

If the cycle is of Type C, there is a supercritical pitchfork bifurcation of asymp-
totically stable homoclinic cycles as for Type B but the heteroclinic orbits connect

every other equilibrium.

The remainder of this paper is organized as follows. In Section 2, we recall
some terminology and results of [15, 16] and define cycles of Type A, B and C.
The bifurcations for the cycles of Type B and C are analyzed in Section 3. The
analysis for the cycles of Type A is given in Section 4.

2 Notation and results from [15, 16]

In this section we summarize the terminology and main results in [15, 16] that we
shall need. In particular, cycles of Type A, B and C are defined.

Roughly speaking, a heteroclinic cycle for an ODE is a collection of equilibria
&1y oy €y together with trajectories a;(t), 7 = 1,... ,m that connect ¢; to &1
(where &,41 = &). More generally, if there is a group of symmetries I' we relax
the condition on x,,(¢t) and demand only that x,,(¢) connects &, to v& for some
v € I'. When m = 1 the cycle is called a homoclinic cycle.

The following simple construction leads to the class of robust homoclinic cycles
in R* that we shall study. This is a special case of the cycles in R" that are
considered in [15, 16]. Suppose that I' is a finite group acting linearly on R* and
consider a I'-equivariant vector field with the following properties. Let ¢ # 0
be a hyperbolic saddle point with a one-dimensional unstable manifold W*(¢)
Suppose that W*(¢) C P where P = Fix(X) is a two-dimensional fixed-point
subspace corresponding to an isotropy subgroup ¥ C I'. Suppose further that
there is an element v € I' such that v¢ is a sink in P and that there is a saddle-
sink connection in P connecting ¢ to v¢. Then the collection of saddle points 47¢,
J > 1, together with their unstable manifolds, forms a homoclinic cycle. Moreover,
this cycle is robust: equivariance implies that P is flow-invariant and hence the

saddle-sink connection persists under I'-equivariant perturbation.



Since I' is finite, the collection of saddle points 47¢ is finite. Let k& > 1 be the
least positive integer such that v¥¢ = £. Then the homoclinic cycle X is given by

k
X =W,

Remark 2.1 The unstable manifold W*(&) consists of two branches, one of which
is contained in W?*(y€). As is easily shown, the remaining branch of the unstable

manifold is contained in W?*(+'€) for some ~" € T'.

The asymptotic stability of such cycles is considered in [15, 16]. Without loss
of generality we may assume that I' acts faithfully and orthogonally on R*, so T’
is a finite subgroup of O(4). Observe that ¢ is a saddle point inside of P and is a
sink inside of y~' P. There is an eigenvalue common to both subspaces (the radial
eigenvalue), an additional eigenvalue in ¥~ P (contracting) and in P (expanding),
and one further eigenvalue (transverse). We denote the respective eigenvalues by
—r >0, —¢ >0, e>0and t # 0. In particular, the eigenvalues are necessarily

real.

Proposition 2.2 ([15]) Suppose that ¢ > ¢ and t < 0. Then generically the
homoclinic cycle X is asymptotically stable. If t > 0, then X is unstable.

The sufficient conditions for asymptotic stability in Proposition 2.2 are not
always necessary for cycles in R", n > 3. As shown in [16], there is an important
representation-theoretic trichotomy that underlies the stability theory of homo-
clinic (and heteroclinic) cycles in dimensions four and higher. In our context, this
trichotomy can be described very easily. Define the three-dimensional subspace
(Q = P+~ 'P. There is the question as to whether or not @ is a fixed-point

subspace, that is, whether or not () = Fix(7) for some reflection 7 € T'.
Definition 2.3

The cycle X is of Type A if () is not a fixed-point subspace.
The cycle X is of Type B if () is a fixed-point subspace and X C ().

The cycle X is of Type C'if @) is a fixed-point subspace and X ¢ Q).
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As noted in the introduction, all three types of cycle are realized in examples in

the literature.

Remark 2.4 The following representation-theoretic information from [16] is use-
ful. For all three types of cycle, there is an involution p € ¥ such that P = Fix(p).
(When diagonalized, p has two +1’s and two —1’s.) When X is of Type A, ¥ = Z,,
the unique nontrivial element being p. When X is of Type B or Type C, ¥ = Z2,
with nontrivial elements p, 7 and p7. Finally, it X is of Type C, there is an even

number of equilibria 4/¢ in the cycle, so k is even.

Proposition 2.5 If X is of Type A or of Type B, then generically the cycle is
asymptotically stable if and only if ¢ > e and t < 0. If X s of Type C, then
generically the cycle is asymptotically stable if and only if c—1 > ¢ and t < 0.

Proof The stability of cycles of Types A and B is studied in [15]. The result for
cycles of Type C is due to [8, 10]. |

3 Pitchfork bifurcations for cycles of Type B
and Type C

In this section, we consider the bifurcations associated to a homoclinic cycle of
Type B or C when the transverse eigenvalue passes through zero as a bifurcation
parameter \ is varied. Specifically, the transverse eigenvalue #(\) is a function
of A and #(0) = 0. Generically, #(0) # 0. So that the cycle X undergoes a loss
of stability, we assume that #'(0) > 0. Reparametrizing, we may assume that

tA) = A

3.1 Pitchfork bifurcation of equilibria

First we consider the bifurcation associated with the equilibrium £. The analysis
of this bifurcation holds also for cycles of Type A. When A = 0 there is a one-

dimensional center manifold tangent at ¢ to the kernel of the linearized vector



field. The dynamics on this center manifold is governed by a vector field of the
form

Z=Az+h(z,)),

where h(0,A) = h.(0,A) = 0. We may and shall assume that A is at least C°.

Recall that £ lies in the flow-invariant subspace P = Fix(p) where p € I' is an
involution. The isotropy subgroup of £, and in particular the involution p, acts
on a suitably chosen neighborhood of ¢ and we can arrange that the dynamics
on the center manifold commutes with p. Since the eigenspace associated with
the transverse eigenvalue is orthogonal to P, p acts nontrivially in the central
direction. Specifically, the action of p is given by z — —z and h(z, A) is an odd
function of z. We assume that h,.,(0,0) # 0 and for definiteness that h...(0,0) <
0. Then ¢ undergoes a supercritical pitchfork bifurcation to a pair of saddle points
as A passes through zero. Moreover, these saddle points are interchanged by p.

The eigenvalue data associated with the cycle X varies with the bifurcation
parameter A. For A near 0, X has eigenvalues —r(A), —¢(A), e(A) and t(A) = A
where r(0),¢(0),e(0) > 0. We assume that ¢(0) # e(0). Then it follows from
Proposition 2.5 that the stability of the cycle (all three types) is determined for
A small by the sign of ¢(0) — e(0). To ensure that the cycle undergoes a loss of
stability, we assume that ¢(0) > ¢(0).

Remark 3.1 We have made the assumptions #'(0) # 0, h...(0,0) # 0 and ¢(0) #
e(0) which are satisfied generically. Then we have concentrated attention on the

t'(0) >0, h...(0,0) <0, ¢(0)>¢(0). (3.1)

This is the case that is the most interesting from the point of view of asymp-
totically stable dynamics. However, the analysis of the other cases is completely

analogous.

3.2 Cycles of Type B

Next we specialize to cycles X of Type B with saddle point ¢ connected to ¢
where v € I'. Thus X C @ = Fix(7) where 7 € I' is a reflection. We can replace



p by 7 in the analysis of the pitchfork bifurcation at £ and so we may denote the
bifurcating equilibria by £ and 7&’. The element 4 preserves ) and hence acts on
the two components of R* — Q. Replacing v by 47 if necessary, we may assume

that v preserves each of these components.

Theorem 3.2 Suppose that T is a finite group acting linearly on R, and that X
is @ homoclinic cycle of Type B with equilibria v7¢, 5 = 1,... k. Assume that X
undergoes a transverse bifurcation and that the nondegeneracy conditions (3.1) are
satisfied. Then there is a supercritical pitchfork bifurcation to two asymptotically
stable homoclinic cycles, X' and 7 X', one lying in each component of R*—Q. The

cycle X' consists of heteroclinic connections from v/ =1¢ to ~7¢" for 53 =1,... k.

Proof There is a second three-dimensional flow-invariant subspace @' = Fix(p7)
containing P together with the transverse directions corresponding to ¢ and ~£.
Thus the pitchfork bifurcations of equilibria at ¢ and ¢ each take place in @)'. In
particular, the four equilibria ¢, 7¢’, v¢" and 7v¢" liein @)'. The first two equilibria
are saddles (with one-dimensional unstable manifolds) and the remaining equilib-
ria are sinks. These stability assignments follow from the fact that the pitchfork
bifurcation is supercritical.

We claim that there is a saddle-sink connection in Q" between ¢ and v¢' (and
hence between 7¢" and 7v¢’). It then follows that there is a supercritical pitchfork
bifurcation of robust homoclinic cycles. Moreover, it follows from [15] that the
bifurcating cycles are asymptotically stable: ¢’ lies in the flow-invariant subspace
Q' N~~1Q’ and there are two radial eigenvalues, one close to —r and one close to 0
but negative. There is also an expanding eigenvalue in )" close to ¢ and a con-
tracting eigenvalue in 4~'Q’ close to —c. Since ¢ > e, the contracting eigenvalue
dominates the expanding eigenvalue for A small and the cycle is asymptotically
stable. (There are no transverse eigenvalues for the new bifurcating cycles.)

It remains to establish the existence of the heteroclinic connection between
& and v¢'. We can choose a neighborhood V' C @)’ of the equilibrium ¢ so that
for A close enough to zero, trajectories that begin in V' and remain in V for all
time are attracted to the center manifold of £. (Note that the expanding direction

associated with ¢ does not lie in @’.) On the center manifold, v¢ is repelling and



all other trajectories are asymptotic to the new equilibria v¢' and 7v¢’. Hence,
all trajectories in V' are attracted to one of three equilibria v¢, v¢ and 7+¢'.

By continuity, the unstable manifolds of the equilibria near ¢ have to intersect
V for A > 0 small and so there are connections to the equilibria near v¢. Since P
divides )’ into two flow-invariant regions, one containing ¢’ and y¢" and the other

containing 7¢" and 7v¢’, the required connections are forced. |

3.3 Cycles of Type C

In this subsection, we consider cycles of Type C. The analysis is very similar to
that for cycles of Type B. Again Q = P +4~'P = Fix(7), but this time X ¢ Q.
Just as before, we may choose v so that + preserves each of the components of
R* — (). We continue to denote the equilibria bifurcating from ¢ by ¢ and 7¢'.

Theorem 3.3 Suppose that I is a finite group acting linearly on R*, and that X is
a homoclinic cycle of Type C with equilibria '€, j = 1,... ,k (where k is even).
Assume that X undergoes a transverse bifurcation and that the nondegeneracy
conditions (3.1) are satisfied. Then there is a supercritical pitchfork bifurcation to
four asymptotically stable homoclinic cycles: X' and vX' lying in one component
of R* = Q, X' and y7 X' lying in the other component. The cycle X' consists of

heteroclinic connections from v/ 72¢ to 7€ for 3 =2,4,... k.

Proof This is very similar to the proof of Theorem 3.2. The only point to verify,
is that there is a heteroclinic connection from ¢’ to 42£’. Again we consider the
flow-invariant subspace ' = Fix(p7). Although the transverse direction for £ is
contained in ), this is not the case for the transverse eigenvalue at y¢. Thus the
bifurcating equilibria ¢ and 7¢’ lie in Q" but &', y7¢" € Q)'. At the same time, the
expanding direction at v¢ does lie in Q" and hence the connection from ¢ to ~%¢
is contained in @)'. (Another way of saying this is that vQ’' = @.) In particular,
v2€ € Q'. Moreover, the transverse direction at v2¢ lies in (Q'. Arguing similarly
to before, we deduce that inside of ()’ the unstable manifold of ¢ passes nearby

to the saddle point ¢ and is asymptotic to the sink ~2£’. |
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3.4 Completion of analysis for cycles of Type B

We end this section by refining our results for cycles of Type B. Indeed, we prove
that for a cycle of Type B undergoing a transverse bifurcation and satistying
conditions (3.1), generically there is no local asymptotic dynamics except for the
homoclinic cycles described in Theorem 3.2 — locally, every trajectory that is
bounded in forward or backward time is asymptotic to (the group orbit of) the
unstable homoclinic cycle X or the stable homoclinic cycle X".

To prove this result, it is necessary to construct a Poincaré map around the
homoclinic cycle. Assuming certain nondegeneracy conditions (that we shall not
write down) on the eigenvalues at the saddle point £, we can locally linearize the
flow except on the center manifold [25]. More precisely, for any positive integer
k, there is a C'*-change of coordinates so that the equations in a neighborhood of
¢ take the form

v o= —r(z,NMu (3.2a)
v = —c(z, v (3.2b)
w o= e(z,\w (3.2¢)
2 = dz4h(z,A) (3.2d)

where 7, ¢, e and h are C* functions of z and A. Here, h is the same function that
appeared at the beginning of this section. When z = 0, r, ¢ and e recapture their
original meaning. In this subsection, we shall require only that £ > 1.

The cases ¢(0) > r(0) and ¢(0) < r(0) are similar and we carry out the proof
under the assumption that ¢(0) < r(0). Then, generically, the unstable manifold

of £ is tangent to the direction of v. Hence we can define the ingoing cross-section
H(in) = {(u, 1w, 2); [u], [w], [2] < 1}.
We also introduce the outgoing cross-section
H(out) = {(u,0, 1, 2); Jul, o], 2] < 1.

The heteroclinic connections emanating from ¢ intersect H(in) and H(out) at the
points (ug, 1,0,0) and (0,0,1,0). We consider the first hit map g : H(in) — vH(in)

11



defined for sufficiently small (u,1,w,z) € H(in), w > 0, as the composition
g = to¢ of a first hit map ¢ : H(in) — H(out) and a connecting diffeomorphism
Y H(out) — vH(in).

The diffeomorphism v~ : H(out) x R — H(in) has the form

7_1¢(u7v7 1727)‘) = (777 17 Qv + Qg% , 3V + Oé4Z),

where 7 and «q,...,a4 are smooth functions of u, v, z, A. Since the z-directions
are transverse to the invariant subspace @), it is evident that a3 = 0. Similarly,
invariance of the subspace @)’ implies that ap, = 0. Hence, the w-component of
v~ is dominated by 2|ay(0)||v] for all u,v, z, A small enough.

Rescaling time, we can assume that e(z,A) = 1 (and so ¢(0) > 1). Equa-
tion (3.2c) becomes @ = w and hence the time of flight between H(:n) and
H{(out) for a point (u,1,w,z) € H(in) is given by T' = —Inw. We deduce from
equation (3.2b) that for any € > 0, the v-component of ¢ is dominated by |w]|®)~¢,

Combining these two estimates we have that the iterate of w under the Poincaré
map v~ 'g = v "pod : H(in) — H(in) is dominated by 2|y (0)]]w]|“®~¢. Choosing
€ so that ¢(0) — e > 1 we deduce that provided u and z remain small, the w-
coordinate contracts to zero under the Poincaré map. (In fact, u is forced to
remain small; it is only z that we cannot easily control.) Hence, we have shown
that the local asymptotic dynamics is confined to the invariant subspace ()’ and
its symmetric images as required.

The corresponding analysis for cycles of Type C is considerably more compli-

cated.

4 Flat bifurcations for a Type A homoclinic cy-

cle

In this section we state and prove our result on transverse bifurcations of a Type A

homoclinic cycle. The result requires various genericity assumptions:

(i) The assumption that the transverse eigenvalue passes through zero with
nonzero speed, that is, ¢(0) # 0.
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(ii) Nondegeneracy conditions on the eigenvalues of the linearized vector field

at the saddle point £ as in Subsection 3.4. In particular, we again require

that ¢(0) # €(0).

(iii) Nondegeneracy conditions on global coefficients such as the constant d that

appears in the statement of the theorem.

As in Section 3, we shall concentrate attention on certain cases and assume

the nondegeneracy conditions
t'(0) >0, ¢(0) > ¢(0). (4.1)

This time, the analysis of the cases ¢(0) > ¢(0) and ¢(0) < e(0) is slightly different.
In particular, the coefficient d is different for the two cases. We will indicate at
the end how to extend the analysis to the case ¢(0) < ¢(0). Finally we note that

the conditions in (iii) are indeed satisfied generically, see for example [15].

Theorem 4.1 Suppose that T is a finite group acting linearly on R*, and that
X is a homoclinic cycle of Type A undergoing a transverse bifurcation. Assume
that the nondegeneracy conditions (4.1) are satisfied. Generically, there exists
a unique (up to conjugacy) branch of limit cycles bifurcating from the homoclinic
cycle as A passes through 0. Moreover, there is a positive constant d # 1 depending
only on the global part of the flow, such that the distance of the limit cycle to the
homoclinic cycle is at leading order proportional to dx. If d < 1, the bifurcation
is supercritical and the periodic solutions are asymptotically stable. If d > 1, the

bifurcation is subcritical and the periodic solutions are unstable.

Remark 4.2 In bifurcations of this type in the nonsymmetric context, periodic
solutions typically come in two forms: 1-periodic and 2-periodic. Roughly speak-
ing, this means that the bifurcating periodic solutions wind around either once
or twice in a neighborhood of the homoclinic trajectory. Moreover, the 2-periodic
case is considerably harder to analyze and leads to nonuniqueness, see [6]. In our
context, as a consequence of the symmetry, everything reduces to the 1-periodic

case.
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4.1 The Poincaré map and periodic solutions

Again we assume nondegeneracy conditions on the eigenvalues at the saddle point
¢ so that under a C* change of coordinates, the equations in a neighborhood of
¢ take the form (3.2). Note that A = O(z*). We shall require that k¥ > 3. We
believe that Theorem 4.1 holds for & > 1, but are not able to prove it in such
generality. In fact & > 2 suffices for the existence proof and we use k& > 3 in
proving uniqueness. As before, we assume that ¢(0) > r(0) and rescale time so
that e(0) = 1 and ¢(0) > 1. The cross-sections H(in) and H(out) and the Poincaré
map g = o¢ are defined just as in Subsection 3.4.

Proposition 4.3 Suppose 6 € I'. Then 6H(in) = vH(in) if and only if 6 =~ or
o= py.

Proof Suppose that §H(in) = yH(in). Then 471§ fixes H(in) or equivalently
fixes points in the subspace y~!P. Hence, v~ lies in the isotropy subgroup
v~ 1Y~ and it follows from Remark 2.4 that § = v or § = pvy as required. [

Suppose x(t) is a periodic solution sufficiently close to X. Then the group
orbit 'z (¢) intersects H(in). Relabeling, we can arrange that 2o = x(0) € H(in)
and g(xzo) € vH(in). We say that () is 1-periodic if (o) € 'zg. Proposition 4.3

implies the following corollary.

Corollary 4.4 Suppose v € H(in) and g(xo) € vH(in). Then zo lies on a
L-periodic solution if and only if xo is a fived point of §~1g where § =~ or § = pvy.

Remark 4.5 Suppose ¢ is a fixed point of §~1g, where § = v or § = p~, and let
x(t) be the corresponding 1-periodic solution. Then () may wind once or twice
around X before closing up and this property is determined by the action of the
element 8. Let £ be the least positive integer such that ¢*H(in) = H(in). Then
6 acts on H(in) either as identity or as minus identity. In the former case z(#)

winds once around X and in the latter case twice.

In the sequel we will find fixed points of ¥71¢g and v !pg and show that all

periodic solutions bifurcating from X are 1-periodic.
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As noted in Subsection 3.4, the diffeomorphism v~ : H(out) x R — H(in)

has the form
7_1¢(u7v7 1727 )‘) = (777 1 y U + Qg% , 3V + Oé4Z),

where n and a4, . .. , oy are smooth functions of u, v, z, A. Let b = a3(0), d = a4(0).

When X is of Type A, we require that b # 0 and d # 0,4+1. By [15] these
conditions are satisfied generically. (This is certainly not the case for cycles of
Type B and Type C: we have already seem that it X is of Type B, ay = a3 = 0,
whereas if X is of Type C, oy = a4y = 0.)

We introduce new variables
r=w', Z=z/\
Lemma 4.6 The first hit map ¢ : H(in) x R — H(out) has the form
dlu, 1w, AZ,N) = (ur" o, wrV G 1, AZ)T + O(NZ?)),
where v, ¢, ¢, ¢. are smooth functions of 7,7, \ for T # 0.

The proot of this lemma is somewhat technical and is postponed to Subsec-
tion 4.3.

Remark 4.7 Recall that r(0) > 0 and ¢(0) > 1. It follows that if 7 € (0,1) and
A > 0, then all components of ¢ are smooth and are O(A). The same is true if
7>1and A <0.

4.2 Analysis of the bifurcation equations

The Poincaré map vy~ ¢ : H(in) x R — H(in) is given by v7'g = v "o and we

search for solutions of the equation
7 g(u, 1w, AZ, ) = (u, 1,0, \Z).

Applying the implicit function theorem, we can solve the u-component of this

equation for u as a smooth function of w, Z, A and 7 # 0. Moreover, u = 5(0) +
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O()\). Now we substitute u into the remaining components of v~ !¢ to obtain the

bifurcation equations

w=cywr V(T Z,N) + ax\Z )T + O(NZ?),
A = ang(C_l)/Aqﬁc(T, Z,\) + au\Z[T + O(\Z?).

Abusing notation slightly, we can regard ay, ... , ay as smooth functions of w, Z, A, 7.
Moreover, up to a constant these four functions are O(\).
Next, we make the substitution AZ = pw, multiply by 7, and divide out by

the solution w = 0. We obtain the equations for 7 and p

>

=g TVAG 4 anp 4 O(5),

>

pr = st VMG 4y + O(5).

Write az = b+ O(A), ay = d+ O(X) where b and d are constants. Generically,
b#0,d# 0,+1. We consider first the case d € (0,1). The function 7> defined for
A > 0 extends uniquely to a smooth function of A and 7 defined on a neighborhood
of (0,d) and identically equal to 0 for A < 0. This extended function, which we
also denote by 7'/, satisfies the property O(é) = O(\).

We can now rewrite the equations in the form
T—bp+ON) =0, dp—71p+0O\)=0.

There is a trivial solution (7, p, Z,A) = (d,d/b,0,0). Applying the implicit func-
tion at the point (d,d/b,0,0), we can solve smoothly for 7 and p. Tracing back

through the substitutions, we obtain the branch of solutions
2=\ = pw = pr/ = (d/b)d, N >0.

Thus we have a flat supercritical bifurcation of limit cycles bifurcating from the
homoclinic cycle.

In the case d > 1 we consider A < 0 and obtain a subcritical bifurcation of
limit cycles. When d < 0, the above procedure yields no fixed point for v g.
Note however that d is of opposite sign for y7'¢g and v~!pg. Hence the bifurcating

periodic solution exists if |d| # 1 and joins either zy to vz or 2z to pyzo.
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4.3 Proof of Lemma 4.6

Under the substitution Z = z/\, equation (3.2d) becomes
Z=MNZ+h(Z,N)), (4.2)

where ]Nz(Z, A) = wh(AZ, ) = O(Z?). Let Z(t, Zo,A) be the solution of (4.2)
with initial condition Zy. The time of flight between H(in) and H(out) for a
point (u,1,w,z) € H(in) is given by T = —Inw = —+In7. Define 2(7’, Zo, A) =
Z(—=1In(7)/A, Zo, A).

Lemma 4.8 The function 7 is smooth in T, Zo and X for 7 # 0. Moreover
(1, Zo, \) = Zo| 7 + O(Z2).

Proof By the chain rule,
dz 1dZ

dr A dt’
Substituting for Z in terms of Z in equation (4.2), we find that 7 is a solution of

the differential equation
dZ 1, .
— = ——(Z 4+ h(Z,X)). 4.3
Y L7z (4.3
The right-hand-side of the equation is smooth for 7 # 0 and the first statement of

the lemma follows. In order to obtain an expansion in Z near Z = 0 we consider

the linearization of (4.3), namely

J7lin ol
- Zhn‘
dr T

This equation has the solution 21in(7, Zo, N) = 771 2. |

It follows from this lemma that the z-component of ¢ in Lemma 4.6 is as stated.
We now give the proof for the v-component. The proof for the u-component is
almost identical. The v-component of the solution to equation (3.2) with initial

condition (u, 1,w,zy) can be written in the form

U(t) = e—tc(O,/\)efot c1 (2(572’07A),A)d57
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where z(t, zg, A) is the solution of (3.2d) with initial condition zo. Recalling that

T = —Inw, we compute that
U(T) — wC(Z,O)eLT c1 (z(t7ZO7A),A)dt‘ (44)

The exponential appearing in equation (4.4) can be expressed in terms of the
variables (7, 7):

T Z(r,Z0,\) )
/ e (AZ(1, 20, \), )t = / (A2, N)(7)Ld7
0

Zo
Z(7,Z0,\) 1
= cl()\Z, )\) ~ dz
% MZ + h(Z,\))

Since ]Nz(Z, A) = O(Z?) and ¢;(AZ,\) = O(\Z), the integrand is a smooth function
of A and Z for Z small. It follows from Lemma 4.8 that the integral and hence
the exponentiated integral is smooth for Zy small and 7 # 0. Thus we can write
the v-component of ¢ in the form wC(O’A)qﬁc(T, Z,\) where ¢. is smooth. Finally,

c(0,2) c(0,A)—1 1/A

we write w = ww and make the substitution w = 7/, [ ]

4.4 Uniqueness

In this section we prove the following theorem.
Theorem 4.9 The branch of periodic solutions found in Section 4.2 is unique.

Consider the map G = y7'g or v 'pg, chosen so that d > 0. The domain
of Gis Hy(in) = {(u,l,w,z) € H(in) : w > 0}. We look for a sequence

{(u;, 1,w;, z;) }izo,... & such that (ug, 1, wg, z5) = £(uo, 1, wo, z0) and

uip = g, w;, z;) (4.5a)
Wi = :I:(ozlw;—l—ozzz(Tj,zj)) (4.5b)
e = ot +ans (T 2)), (1.50)

where j =0,...,k—1,T; = —Ilnw; and z(t, z;) is the solution of

Z= Az + h(2) (4.6)

18



with initial condition z;. The sign in equations (4.5b,c) is + if G(u;, 1, wj,z;) €
Hy(in) and — if G(u;,1,w;,z;) € Hy(in). The above sequence gives rise to a
k-periodic solution, and every periodic solution has a symmetry conjugate which
can be obtained from such a sequence. The 1-periodic solution found in Section
4.2 provides a solution to (4.5) for every integer k > 1. Hence, to prove uniqueness
it suffices to show that (4.5) has a unique solution for every k > 1.

Initially we assume that b > 0 and zo > 0. In the this case the signs in (4.5)

is always +.

Lemma 4.10 Consider w > 0, z > 0 such that w > Cz* for some constants
k, C > 0. Let z(t) be the solution of (4.6) with initial condition z and let T =
—1Inw. Then

z(T) = w™ (Z + 0O (Z%)) ) (4.7)

Proof Write .
z(t) = e (Z —I—/ e_Ash(Z(S))dS) )
0
In particular

A7) = w (Z + /OT e—ASh(Z(S))dS) .

We show that ‘fOT h(z(s))ds‘ = O(Z%) To this end we estimate z(¢), 0 <¢ < T.

Fix € > 0 small and consider the linear equation
Z=ez. (4.8)

Let Z(t) be a solution of (4.8) and z(?) a solution of (4.6), both with initial
condition z(0) = 2(0) = z. Suppose A < . If ¢ is small enough then A+h(z)/z < ¢
for all 0 <z <e. It follows that if 2(¢) < € then z(s) < 2(¢) for all 0 < s < ¢

Since z(t) = ez it follows that, for small enough e,
2(T)=w"‘z< Cmetmek < gtk

We require that ek < 1. It follows that if z < {€* then Z(T') < e. Hence, for
0<t<T,
2(t) < Z(T) < 4217,
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We now estimate the expression ‘fOT h(z(s))ds‘:

/0 h(e(s))ds

<|-InC —FkiInz| max]|h(z(5)|

s€lo,T

<|—InC — klnz|O(z20=M) < 25,

The lemma follows. [ ]

In the remainder of this section we deal with the simplified bifurcation equation

wip = foqw; + agz(1}, 25)

zi1 = aawf + auz(1), 7)), (4.9)

i =0,..., k=1, wy = wo, zx = zo. The results for (4.9) easily extend to the

general case.

Lemma 4.11 Suppose that {(u;, 1, w;, z;) }izo,... x are solutions of (4.9). Suppose
there exists a C' > 1 such that

1 2
<< 4.10
L<iic (1.10)

w;
for some i and all X sufficiently small. Then z;/w; — d/b as A — 0 for all
i=0,... k—1.

Proof Without loss of generality we can assume that ¢« = 0. The inequality (4.10)
implies that

wg/e < waA(C’ZO)C/e"'A = wako(zo).

This estimate, combined with Lemma 4.10, implies that
wy = Oézwa/\(Zo +0(z0)), == oz4w5A(ZO + 0(z0)).

Hence z1/w; — d/b as A — 0. Using the same argument for i = 1,... &k — 1, we

prove the assertion of the lemma. |

Lemma 4.12 If {(u;, 1, w;, z;) }izo,... k are solutions of (4.9) then there exists ¢ €
{0,...,k =1} and C > 1 such that 1/C < z;/w; < C for all X small enough.
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Proof Suppose no such C exists. Then we must have z(7},z;) = O(wf/e) for
t =0,...,k—1. This would imply that w;;; = (’)(wf/e), 1 =20,...,k—1, and
finally that wo = w; = (’)(w(()c/e)k). Dividing out wy we get 1 = O(w(()c/e)k_l), which

is impossible for wg & 0. |

Proof of Theorem 4.9 We assume that A > 0. The case A < 0 is similar. The
Lemmas 4.10, 4.11 and 4.12 imply that we can always use the expansion (4.7). We
introduce a new variable w = pz and look for (z, p) near (0,b/d). Other solutions

are impossible by Lemma 4.11. Let x = min{},c/e — 1}. We obtain

pirizisn = azp; 27 Nz + O(2{17)) = Q2!

zigr = oup; 27Nz 4+ O(417) = Azl 7, (4.11)

where A;, Q; are continuous functions of (X, p;, z;) such that A; — d as A — 0 and

z — (. Composing the equation k£ times we get

20 = Azél_A)k = Azé_m—l_o(v),

where A is a continuous function of (), zg, po) such that A — d* as (\, zp) — (0,0).
Dividing out zy and taking logarithms we get ;in%zé =d,1=0,...,k—1. This

is clearly impossible when d > 1. We introduce a new coordinate 7 = 2* and look

for solutions near (po, 70) = (b/d, d). Equations (4.11) transform to

1

1_q ~ 1
by A A
; 1= A

1 ~
X 0.
Pi+1Ti+1—Qsz y T

e

Y

where the functions QZ», AZ depend smoothly on p; and 7;,. Moreover QZ =b/d+

O\, A; =d+ O(A). Composing k times we get

1 L a=nk 1 L (a=xF
A A A A
poTe = 17, , To = AT )

where Q = bd* ' + O(\), A = d* + O()) and Q, A are smooth functions of 7,
po. We substitute the second equation into the first equation and divide out 75

in the second equation to obtain
po= QJA, 1= AnttO0,
Applying the implicit function theorem we get a unique solution for (7o, po).
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We now consider the cases b > 0, zo < 0 and b < 0. If 6 > 0 and 2z < 0 then
G (ug, 1, w00, 20) < 0 and G*(ug, 1, 1w, 20) < 0, so that we need to use the — sign
in (4.5). This way wq, 21 > 0 and wj, z; > 0, for j = 2,... ,k — 1. The second
equation in (4.11) has the form

z1 = —Apzo; Zip1 =Nz, 3 > L

Composing we get z; = 29 = —Azp, where A — d* as (), z9) — (0,0). This is
clearly impossible for zy # 0.

Ifb<0,we > 0and z < 0thenw; >0,z <0fory =12>1,so the sign taken
in (4.5) is always + and the arguments presented above apply. Suppose b < 0,
wo > 0 and zg > 0. Then the sign in (4.5) is — for¢ =0 and + fori =1,... ;k—1.
Proceeding as above we get 2o = —Azg, where A — d* as (A, z9) — (0,0), which

is a contradiction. [ ]

4.5 Stability

As in Section 4.2, let G be y71¢g or v7'pg, so that d > 0. Assume d < 1. The
map G has the form:

(4.12)

Our periodic solution corresponds to a fixed point of (4.12). Let P denote this
fixed point. Recall that the coordinates of P satisfy the following estimates:
2 (dfb)dY,  w e dX

1
T =—Inw, z(T) = Zw + o(w).

Let b= az(A;0), d = a4(A;0). The matrix of the linearization of (4.12) at P, up

to a flat function of A, has the form

0 % z)dzc'lT dsz
, B=
B .
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(Here dz(1")/dw stands for dz(T')/dw|(.p ), and so on.) We compute that

d=(T) d=(T) dI'" 1
do — dT  dw  w
Note that dz(t)/dz = dZ(t)/dZ, where \Z = z. Hence we can use Lemma 4.4 to

conclude that

A\2(T) + h(2(T))) = —A=(T)/w + flat(\).

dz(T) 1
= — + flat(\).
dz T+ at(A)

Following the argument of the existence proof we see that

r=d+ flat(\), 2(T)/w=1/b+ flat(}\).

It follows that up to flat terms in A the matrix B has the form

B:( - ?)/CZ)'
—A\d/b 1

Clearly the eigenvalues of B are 0 and 1 — A. It follows that the homoclinic cycle
is stable, if A > 0. An analogous argument shows that the limit cycle is unstable
for d > 1.

4.6 The case ¢(0) < e(0)

When ¢(0) < e(0) we change variables letting w = w°. The return map becomes

U= n(wT/cu,w,z(T))
OV = aqw + axz(T

)
Z = asw + agz(T).

The remaining analysis is analogous to the case ¢(0) > ¢(0). The coefficient
determining the direction of branching (d in the ¢(0) > e(0) case) is different and
is given by
a1(0)as(0) — as(0)as(0)

a1 (0)
In particular we must assume that a1(0) # 0 and D # +1. Rather than repeat-

ing the already presented analysis we present a heuristic argument showing the

D=

existence of a periodic solution. Consider the simplified bifurcation equation

W = aqw + axz(T), z=oasw+ asz(T).
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We can solve the first equation for w obtaining w =~ _ac?(o(; z(T). Substituting this
expression into the second equation we obtain z ~ Dz(T'). Using Lemma 4.6, we

obtain z* &~ D.
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