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Abstract

We investigate, in a systematic fashion, coherent structures, or defects, which serve as inter-
faces between wave trains with possibly different wavenumbers in reaction-diffusion systems. We
propose a classification of defects into four different defect classes which have all been observed
experimentally. The characteristic distinguishing these classes is the sign of the group velocities
of the wave trains to either side of the defect, measured relative to the speed of the defect.
Using a spatial-dynamics description in which defects correspond to homoclinic and heteroclinic
connections of an ill-posed pseudo-elliptic equation, we then relate robustness properties of de-
fects to their spectral stability properties. Lastly, we illustrate that all four types of defects
occur in the one-dimensional cubic-quintic Ginzburg–Landau equation as a perturbation of the
phase-slip vortex.
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Notation

u(x, t) solution to reaction-diffusion system
uwt(kx− ωt; k) wave train (2π-periodic in argument φ)
φ = kx− ωt travelling-wave coordinate (wave train)
k wavenumber
ω temporal frequency
ωnl(k) nonlinear dispersion relation
cp = ωnl(k)/k phase velocity
cg = dωnl(k)/dk group velocity
λ̌ wave-train eigenvalue computed in frame moving with speed cp
λlin(ν) linear dispersion relation computed in frame moving with speed cp
λ temporal Floquet exponent
ρ = exp(2πλ/ωd) temporal Floquet multiplier
ν complex spatial Floquet exponent
γ spatial Floquet exponent
cd speed of defect
ωd temporal frequency of defect
ξ = x− cdt travelling-wave coordinate (defect)
τ = ωdt rescaled time (2π-periodic)
ud(ξ, τ) defect (2π-periodic in τ)
1 identity operator
N(L), Rg(L) null space and range of a closed linear operator L
i(L) = dim N(L)− codim Rg(L) index of a Fredholm operator L
Y = H1/2(S1,Rn)× L2(S1,Rn) spaces for spatial dynamical systems
Y 1 = H1(S1,Rn)×H1/2(S1,Rn)
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1 Introduction

In this paper, we investigate coherent structures in essentially one-dimensional spatially extended
systems. Specifically, we are interested in interfaces between stable spatially periodic structures
with possibly different spatial wavenumbers as illustrated in Figure 1.1. These interfaces can also
be thought of as defects at which the underlying perfectly periodic structure is broken. In many
cases, both the periodic structures and the defect will depend on time. We focus on defects where
the resulting pattern is time-periodic, possibly after transforming into an appropriate moving frame
of reference. Our goal is to investigate the existence and stability properties of such defects. In
particular, we are interested in classifying defects according to their codimension and to study their
robustness under parameter variations. Throughout this paper, we will use the term wave trains
to denote spatially periodic travelling waves.

We begin by briefly reviewing some numerical simulations and experiments in which defects have
been observed and by introducing, on a heuristic level, the concepts needed for the classification of
defects. Afterwards, we recall some facts we need about wave trains before stating the definition
of defects and our main results.

1.1 Motivation

Experiments and simulations

To set the scene, we describe numerical simulations of defects and review various experiments in
which they have been observed. Consider first the left and center plot in Figure 1.2. Both are space-
time contour plots of solutions to the Brusselator (see Appendix B for the equations). Figure 1.2(i),
which reproduces simulations from [37], shows a standing defect that emits wave trains alternately
to the left and right so that the emitted wave trains travel away from the defect towards the
domain boundary. Defects of this type are often referred to as flip-flops or one-dimensional spirals.
Note that the defect is time-periodic since the space-time plot is periodic in the vertical time-
direction. Figure 1.2(ii) shows a standing defect near the left domain boundary that emits wave
trains simultaneously to the left and right: such defects are often referred to as target patterns. In
the interior of the domain, a travelling defect is formed between the waves emitted by the target
pattern and the spatially homogeneous oscillations that occupy the right half of the domain. The
travelling defect is time-periodic when viewed in a co-moving frame. Indeed, shearing the space-
time plot appropriately in the horizontal direction renders the figure vertically periodic with the

cdc−p c+p

defect
wave train wave train

Figure 1.1: A defect travelling with speed cd through spatially periodic structures that themselves
travel with phase velocities c−p behind and c+p ahead of the defect.
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(i) Flip-flop [movie] (ii) Target and sink [movie] (iii) Line defect [movie]

Figure 1.2: Figure (i) on the left shows a space-time plot (time is plotted upward and space horizon-
tally) of a flip-flop that emits wave trains alternately to the left and right: the emitted wave trains
travel away from the defect towards the domain boundary. Figure (ii) in the middle is a space-time
plot (time is plotted upward and space horizontally): Near the left boundary, we see a standing target
pattern that emits waves simultaneously to the left and right. In the interior of the domain, a travel-
ling defect is formed between the waves emitted by the target pattern and the spatially homogeneous
oscillations that occupy the right half of the domain. Figure (iii) is a snap shot of a two-dimensional
spiral wave. A one-dimensional line defect emerges from the center of the spiral and connects to the
bottom of the domain. Along the line defect, the phase of the oscillations jumps by half a period.

defect being a vertical line.

Flip-flops of a slightly different nature have been observed in numerical simulations in the excitable
regime of the Oregonator [39] where a localized pulse destabilizes and releases pulses in its wake,
a mechanism often referred to as backfiring. The emerging pattern resembles Figure 1.2(i) with
pulses being released alternately to the left and right. The resulting interfaces can also move with
non-zero speed [39].

Chemical oscillations have been generated in various reactions, most of which are related to the
original Belousov–Zhabotinsky mechanism. In [37], defect patterns were observed in the chlorite-
iodite-malonic-acid (CIMA) reaction in the parameter regime where stable stationary, spatially
periodic Turing patterns and time-periodic, spatially homogeneous oscillations coexist. In one
space dimension, [37, Figure 2] shows flip-flops of the type plotted in Figure 1.2(i). We emphasize
that the waves emerging from the chemical flip-flop in [37] are not generated by an inhomogeneity
in the medium. Instead, the defect forms spontaneously. At the defect, the phase of the wave trains
jumps by half a period.

Defects with a different type of phase slip were observed in photo-sensitive monolayers on thin
Belousov–Zhabotinsky reaction solutions [57]. The two-dimensional spiral waves shown in [57,
Figures 2 and 5] exhibit stationary line defects along which the phase of the oscillations jumps
by half the period. The spiral waves are presumably generated by a period-doubling bifurcation
of spatially homogeneous oscillations that then leads to a Hopf bifurcation of the two-dimensional
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spirals [51]. The line defects appear to orient themselves parallel to the propagation direction of
the wave trains. We refer to Figure 1.2(iii) for a snap shot of a two-dimensional spiral wave that
exhibits such a line defect. The pattern shown there was first found in [17] to which we refer for
details on the equation used to generate it.

Hydrothermal waves can also exhibit defects. The recent experiments in [1, 35, 36], in which
nonlinear waves and various kinds of defects were triggered by heated wires immersed in thin layers
of oil, were motivated by the desire to obtain a quantitative comparison with coupled Ginzburg–
Landau equations. Other experiments where defects have been observed are the printer instability
[18], laterally heated fluid layers [3], and thermal convection of binary fluids [30].

Heuristic classification

We are interested in finding characteristic properties of coherent structures of the kind shown in
Figure 1.1. It turns out that the group velocities of the asymptotic wave trains are the deciding
characteristic. The group velocity cg associated with a wave train can be thought of as the speed
with which small perturbations are transported along the wave train (we will make this more precise
in Section 1.3 below; see also Figure 1.3). Alternatively, the group velocity can be computed as
the derivative of the frequency of the wave train with respect to its wavenumber (see Section 1.2
below). We may then distinguish defects according to whether perturbations to the left or right of
the defect travel towards, parallel to, or away from the interface. In fact, we propose the following
classification:

Sinks: c−g > cd > c+g
Contact defects: c−g = cd = c+g
Transmission defects: either c±g > cd or c±g < cd

Sources: c−g < cd < c+g

where cd is the speed of the defect, and c−g and c+g denote the group velocities of the wave trains
to the left and right, respectively, of the interface. We refer to Figure 1.4 for an illustration. We
emphasize that the slope of the level sets in the space-time plots of Figure 1.2 reflects the phase
velocity of the wave trains. In contrast, the characteristic curves sketched in Figure 1.4 indicate
the direction of the group velocity. In general, the signs of these two velocities are not related.
While phase and group velocity of the waves in Figure 1.2(i) and (ii) have the same sign, the group
velocity of the waves in Figure 1.2(iii) is directed towards the boundary, while they travel towards
the spiral center.

The intuition is that sources generate the wave trains to either side since their group velocity points
away from the interface. Sinks are passively created by wave trains who transport from the left and

cp
cg

Figure 1.3: The difference between the phase velocity cp and the group velocity cg of wave trains.
The latter describes the speed with which slowly-varying modulations of the wavenumber propagate.
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space

time

Figure 1.4: A sketch of the characteristic curves that enter or leave each defect depending on the
speed of the group velocities of the wave trains to the left and right of the defect compared with the
speed of the defect. From left to right: sinks, contact defects, transmission defects and sources.

right towards the interface, thus forming it. Contact and transmission defects typically connect
identical wave trains: these defects account for phase differences between the wave trains to their
left and right.

We remark that there are defects that do not fit into the classification shown above (for instance,
those for which c−g = cd > c+g ). Nevertheless, we will argue in Section 6.10 that the only “relevant”
defects are those captured by our classification.

Lastly, we briefly revisit the experiments and simulations mentioned above to demonstrate that
each of the defect classes indeed arises in physical systems. The flip-flop in Figure 1.2(i), the target
pattern in Figure 1.2(ii) and the chemical flip-flops observed by [37] in the CIMA reaction appear to
be sources. The interface between travelling and standing waves shown in the center of Figure 1.2(ii)
is a sink. We believe that the line defects that are illustrated in Figure 1.2(iii) and that occur in
the modified Belousov–Zhabotinsky experiment [57] are contact defects. Transmission defects arise
in the ferroin-catalyzed Belousov–Zhabotinsky reaction [19] and in the heated-wire experiments
[1, 35]. Sources and sinks have also been observed in the printer instability [18] and in the heated-
wire experiments [1, 35].

Defects in general reaction-diffusion systems

The idea to characterize coherent structures1 using the group velocity is, of course, not new.
Interfaces between wave trains with almost identical wavenumbers were, for instance, studied in
great detail in [25]. Defects in the cubic-quintic and in coupled complex Ginzburg–Landau equations
were investigated by van Saarloos and co-workers [21, 22, 40] and by Doelman [9].

Our goal is to investigate defects arising in reaction-diffusion equations. The difficulty is that
defects cannot be obtained as solutions to an ordinary differential equation (ODE). Instead, they
are genuine PDE solutions. In fact, while the formation of periodic structures has been studied
comprehensively in one, two and three space dimensions (see [7] and the references therein), defects
within these periodic structures are not as well understood, at least from a mathematical viewpoint.
There are two reasons for this. Firstly, defects are modulated waves and therefore time-periodic
in a co-moving frame. Thus, dynamical-systems methods with respect to the spatial variable, that
are so successful when dealing with travelling waves, are not immediately applicable. Secondly, it
appears difficult to use period maps to investigate defects as the linearization about a defect has

1Throughout this paper, we shall use the terms defect and coherent structure interchangeably.
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essential spectrum up to the imaginary axis. This fact precludes the immediate use of implicit
function theorems. Note that the essential spectrum of each defect is generated by the spectrum
of the asymptotic wave trains that always touches the imaginary axis. When studying spatially
periodic patterns that respect a lattice symmetry group, this issue can be resolved by restricting
to functions that respect the same lattice group. Defects, however, inherently break the lattice
symmetry.

We focus on essentially one-dimensional media such as the real line x ∈ R, cylindrical domains
R × Ω ⊂ R × Rm or patterns with a radial symmetry x ∈ R+. In these cases, we can reverse the
role of time and space, and treat the unbounded spatial variable x as the evolution variable, while
time is restricted to the compact interval of periodicity. Dynamical-systems techniques can then
be adapted to investigate bifurcations of small-amplitude solutions [26, 29, 54]. It is also possible
to study periodic [33] as well as homoclinic and heteroclinic solutions [38, 48] of not necessarily
small amplitude. Based on these ideas, we characterize in this paper properties of typical defects
of arbitrary amplitude by interpreting them as homoclinic and heteroclinic trajectories that are
constructed in a robust, transverse fashion. To classify defects, we count relative dimensions of the
infinite-dimensional stable and unstable manifolds.

Lastly, we do not wish to give the impression that all interesting patterns observed in nature are
necessarily time-periodic. In fact, there are many fascinating patterns that do not fit at all into
the framework described above and that are therefore not captured by the analysis presented here.
However, as documented above, many patterns observed in physical systems are time-periodic when
viewed in an appropriate frame and therefore fit into our framework.

1.2 Main results

Reaction-diffusion systems

As a prototype for equations that give far-from-equilibrium dynamics, we focus on reaction-diffusion
equations

ut = Duxx + f(u), x ∈ R (1.1)

where u ∈ Rn. We assume that the diffusion matrix is diagonal with strictly positive entries and
that the nonlinearity f ∈ C∞(Rn,Rn) is smooth. We think of f as a generic nonlinearity with no
additional symmetries.

Wave trains

The common feature of the experiments mentioned above is the presence of wave trains which
are travelling waves of the form uwt(kx − ωt; k), where uwt(φ; k) is 2π-periodic in φ. Typically,
the spatial wavenumber k and the temporal frequency ω are related via the nonlinear dispersion
relation ω = ωnl(k), so that the phase velocity is given by cp = ωnl(k)/k. A second quantity related

8



to the nonlinear dispersion relation is the group velocity

cg =
dωnl

dk
(1.2)

of the wave train which will play a central role in our results. The group velocity cg gives the speed
of propagation of small localized wave-package perturbations of the wave train (see Example II in
Section 1.3). Our primary interest is in wave trains that have a non-constant dispersion relation2

so that cg 6≡ 0.

We shall assume that the wave trains are spectrally stable. If we linearize (1.1) about a wave train
in the frame φ = kx− ωnl(k)t, we obtain the linear operator3

Lwt = k2D∂φφ + ωnl(k)∂φ + f ′(uwt(φ; k)). (1.3)

Spectral stability means that the spectrum of Lwt on L2(R,Cn) is contained strictly in the left
half-plane except for a unique curve

λlin(ν) = aν + dν2 + O(ν3), ν ∈ iR (1.4)

that touches the origin with a quadratic tangency d > 0. In this case, we actually know that
a = cp − cg. We refer to Section 3.1 for details.

Defects

Next, we consider coherent structures which are waves that are time-periodic in an appropriate
frame of reference and asymptotic in space to wave trains with possibly different wavenumbers.

Definition 1.1 We say that a solution u(x, t) = ud(x− cdt, ωdt) of (1.1) is an elementary defect
with speed cd and frequency ωd if ωd 6= 0 and if there are asymptotic wavenumbers k− and k+, and
smooth phase-correction functions θ±(ξ) with θ′±(ξ) → 0 as ξ → ±∞ such that

ud(ξ, τ) = ud(ξ, τ + 2π) (1.5)

and
ud(ξ, ωdt)− uwt(k±ξ + (k±cd − ωnl(k±))t− θ±(ξ); k±) −→ 0 (1.6)

uniformly in t as ξ → ±∞ for the functions as well as their derivatives with respect to (ξ, t). Lastly,
we assume that ∂ξud(ξ, τ) and ∂τud(ξ, τ) are linearly independent functions.

Formulated in the steady frame, the periodicity (1.5) and convergence (1.6) conditions are

u(x, t) = u(x+ cdTd, t+ Td), Td =
2π
ωd

2Reversible Turing patterns, for instance, have a degenerate dispersion relation ωnl(k) ≡ 0, so that the group

velocity vanishes for all k. In this case, our proposed classification into four defect types does not make sense.
3Some of our expressions below are only valid for k 6= 0. The results, however, are also true when k = 0, and we

will comment on this in Section 3.3.
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and
u(x, t)− uwt(k±x− ωnl(k±)t− θ±(x− cdt); k±) −→ 0

uniformly in 0 ≤ t ≤ Td as x→ ±∞.

We will see in Corollary 5.1 that the phase functions θ±(ξ) can be chosen to be constants θ±
for sinks, sources and transmission defects, whereas contact defects have phase functions θ±(ξ) ∝
log ξ + O(1/|ξ|) that diverge logarithmically.

Throughout this paper, we denote the phase and group velocities of the asymptotic wave trains by

c±p =
ωnl(k±)
k±

, c±g =
dωnl

dk
(k±),

respectively. Note that equations (1.5)–(1.6) imply that

ωnl(k+)− k+cd = ωd = ωnl(k−)− k−cd. (1.7)

In particular, the assumption that defects are time-periodic implies the Rankine–Hugoniot condition

cd =
ωnl(k+)− ωnl(k−)

k+ − k−
(1.8)

for the defect speed whenever k+ 6= k−. To justify our use of the term Rankine–Hugoniot, we
note that the group velocity, which measures transport, is the derivative of the frequency. In
conservation laws, transport is the derivative of the flux, so that we may interpret the frequency
ωnl as the flux function of a fictitious conservation law. In that sense, (1.8) is the corresponding
Rankine–Hugoniot condition. Using these findings, we see that (1.6) is equivalent to

ud(ξ, τ)− uwt(k±ξ − τ − θ±(ξ); k±) −→ 0, ξ → ±∞. (1.9)

To illustrate (1.8), consider the sink in the center of Figure 1.2(ii). Since the wave trains to the
right of the defect are spatially homogeneous, we have k+ = 0. Inspecting the figure further, we
see that ωnl(k−) > ωnl(k+), and (1.8) implies that cd > 0 which is consistent with the simulation.

Main result

We are now ready to describe the main result of this paper. We begin by introducing four distinct
classes of defects. Each type occurs in an open set of reaction-diffusion systems, or, more precisely,
for nonempty open subsets U of nonlinearities f in C3(Rn,Rn) and of diffusion matrices D. We
define the four different defect types as follows:

(i) Sinks are elementary defects with c−g > cd > c+g .

(ii) Contact defects are elementary defects with c−g = cd = c+g .

(iii) Transmission defects are elementary defects with either c±g > cd or c±g < cd.

(iv) Sources are elementary defects with c−g < cd < c+g .
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All contact and transmission defects that we are aware of have k− = k+. In fact, contact defects for
which k− 6= k+ and ω′′(k−) 6= ω′′(k+) will not persist upon varying (k−, k+), and we will therefore
restrict our analysis to contact defects for which k− = k+. Note also that we include neither sinks
that have k− = k+ nor degenerate sinks for which c−g = cd > c+g or c−g > cd = c+g , since we do not
expect that such defects occur for open sets of wavenumbers k− or k+, respectively. We refer to
Section 6.10 for more details.

Our main result will link robustness properties of defects to spectral properties of the linearization
of the period map of (1.1). To describe these properties, we therefore linearize (1.1) in the co-
moving frame ξ = x− cdt with τ = ωdt about an elementary defect ud(ξ, τ) and obtain the linear
equation

ωduτ = Duξξ + cduξ + f ′(ud(ξ, τ))u. (1.10)

We denote the linear period map of this parabolic equation with time-periodic coefficients by

Φd : u(·, 0) 7−→ u(·, 2π).

For any pair of real numbers η = (η−, η+), we define L2
η(R,Rn) to be the space of all locally

square-integrable functions for which

‖u‖2
L2

η
=
∫

R−

∣∣∣u(ξ)eη−ξ
∣∣∣2 dξ +

∫
R+

∣∣∣u(ξ)eη+ξ
∣∣∣2 dξ

is finite.

Definition 1.2 Consider Φd on L2
η(R,Rn) with weights η± that are sufficiently close to zero and

satisfy
sign η± = sign

(
cd − c±g

)
. (1.11)

We say that an elementary defect is transverse if it has minimal spectrum in the following sense:

(i) For sinks, we assume that Φd − 1 has a bounded inverse on L2
η(R,Rn).

(ii) For contact defects, we assume that Φd − 1 has a bounded inverse L2
η(R,Rn) for all weights

η− = η+ 6= 0 that are sufficiently close to zero.
(iii) For transmission defects, we assume that ρ = 1 has algebraic multiplicity one as an eigenvalue

of Φd on L2
η(R,Rn).

(iv) For sources, we assume that ρ = 1 has algebraic multiplicity two as an eigenvalue of Φd on
L2

η(R,Rn).

It turns out that, in each of the above four cases, Φd−1 is Fredholm with index zero on L2
η(R,Rn)

with weights chosen according to Definition 1.2. The above requirements on the spectra of Φd can
also be formulated in terms of multiplicities of appropriate roots of certain Evans functions (see
Section 5). We emphasize, however, that the minimal-spectrum assumption for contact defects
does not refer to the usual Evans function that we constructed in [49] since the essential spectrum
of contact defects always extends into the right half-plane in the exponentially weighted spaces that
we use (see Section 6.1).

We recall the main hypothesis that we require for the wave trains.
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Hypothesis 1.3 Each of the wave trains that we consider is part of a one-parameter family given
locally by solutions uwt(kx−ωnl(k)t; k) of (1.1), where uwt(φ; k) is 2π-periodic in φ. We also assume
that the dispersion relation ω = ωnl(k) is well defined and smooth, again locally near each of the
wave trains, and that ω′′nl(k) 6= 0. Lastly, we assume that each of these wave trains is spectrally
stable in the sense sketched in (1.4) and made precise in Hypotheses 3.1 and 3.2 below.

The following theorem distills the analysis of the present paper into a multiplicity and robustness
result.

Theorem 1 Assume that Hypothesis 1.3 is met. We then have:

(i) Transverse sinks occur in two-parameter families that are parametrized by the asymptotic
wavenumbers k±,

(ii) Transverse contact defects appear as one-parameter families that are parametrized by the
asymptotic wavenumber k− = k+,

(iii) Transverse transmission defects appear as one-parameter families that are parametrized by
the asymptotic wavenumber k+ if c±g < cd [and by k− if c±g > cd],

(iv) Transverse sources appear for a discrete set of wavenumbers (k−, k+),

where we exclude the translation symmetries in time and space from the above multiplicity counting.
Each defect depends smoothly on parameters in the nonlinearity and the diffusion matrix (see below).

Here, we say that a defect depends smoothly on wavenumbers and additional parameters µ if there
exist smooth functions cd and ωd of (k−, k+, µ) and a family of defects ud(x − cdt, ωdt; k−, k+, µ)
such that ud depends smoothly on (k−, k+, µ) as a function into BC1(R×R,Rn) after transforming
the argument ξ = x− cdt according to

ξ 7−→ ξ + θ(ξ; k−, k+, µ) (1.12)

for an appropriate function θ for which θ′(ξ; k−, k+, µ) ∈ BC0(R) is smooth in (k−, k+, µ). The
coordinate change in ξ is necessary in order to obtain continuity of the family since the wave trains
depend continuously on k in BC0 only after a rescaling ξ 7→ ξ/k that normalizes the spatial period.

1.3 Examples

To illustrate the theorem, we review the complex Ginzburg–Landau equation, whose defect solutions
have been studied extensively in the literature, and Burgers equation, which describes the dynamics
of modulated wave trains.

Example I: The complex Ginzburg–Landau equation

The complex cubic Ginzburg–Landau equation (CGL) is given by

At = (1 + iα)Axx +A− (1 + iβ)A|A|2 (1.13)
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where the coefficients α, β ∈ R are real, and where x ∈ R, t ≥ 0, and A(x, t) ∈ C. The CGL has a
family of wave trains given by

A(x, t) = Awt(kx− ωt; k) =
√

1− k2 ei(kx−ωt) (1.14)

where the spatial wavenumber k and the temporal frequency ω are related via

ω = ωnl(k) = β + (α− β)k2.

Note that these waves exist only for |k| < 1. Due to the gauge invariance A 7→ eiφA of the CGL,
defects can actually be constructed, in a frame moving with the defect speed cd, as heteroclinic and
homoclinic orbits of an ODE. Indeed, coherent defects of the CGL are of the form

A(x, t) = Ad(x− cdt, ωdt) = a(x− cdt)eiφ(x−cdt)e−iωdt (1.15)

so that
Ad(ξ, τ) = a(ξ)ei[φ(ξ)−τ ].

Substituting this ansatz into (1.13), it follows [21, Appendix B] that (a, z) satisfies the ODE

aξ = aRe z (1.16)

zξ = −z2 − 1
1 + iα

[
1 + iωd − (1 + iβ)a2 + cdz

]
where z = aξ/a + iφξ. Thus, defects of the CGL correspond to heteroclinic orbits of the ODE
(1.16), while the equilibria connected by these orbits correspond to wave trains of the CGL. The
observation made in [40] is that the dimensions of the unstable and stable manifolds of these
equilibria are related to the group velocities of the corresponding wave trains: In a frame moving
with the speed of the defect, the dimension of stable manifolds associated with wave trains that
transport to the left is larger than that of wave trains that transport to the right. Equivalently, the
dimension of unstable manifolds associated with wave trains that transport to the right is larger
than that of wave trains that transport to the left. These dimensions, however, are directly related,
via counting arguments, to the codimension of connecting orbits between equilibria as these arise
as intersections of stable and unstable manifolds. This argument therefore establishes a beautiful
connection between the intuition given by the group velocity and rigorous counts of the codimension
of defects.

Equation (1.16) has been studied thoroughly in the literature (see, for instance, [2, 9, 20, 21, 40] for
references). In particular, the CGL has been shown to admit sources (the so-called Nozaki–Bekki
holes), sinks, and transmission defects (commonly referred to as homoclons [20]). We refer to [9]
for existence results of these defects and to [27] for the stability of sinks. We will show in Section 7
that the cubic-quintic Ginzburg–Landau equation admits contact defects.

Example II: The viscous Burgers equation

Arguably, the simplest possible defects are those with “small amplitude” that serve as interfaces
between two wave trains with almost the same wavenumber. The term “small amplitude” therefore
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refers to the small difference of the asymptotic wavenumbers, not to the actual amplitudes of wave
trains and defect which could be large.

One way of finding such defects is to derive an equation that describes slowly varying wavenumber
modulations, see Figure 1.3, of the wave trains uwt(kx − ωnl(k)t; k). Hence, we fix a wavenumber
k and seek solutions to the reaction-diffusion system (1.1) of the form

u(x, t) = uwt(kx− ωnl(k)t+ Φ(X,T ); k + ε∂XΦ(X,T )) + O(ε2) (1.17)

where 0 < ε� 1, and where the variables (X,T ) depend on (x, t) via

X = ε(x− cgt), T =
1
2
ε2t. (1.18)

Thus, the function q(X,T ) := ∂XΦ(X,T ) describes the slowly varying modulation of the wave-
number. It can be shown [10, 25] that q(X,T ) satisfies the viscous Burgers equation

∂T q = λ′′lin(0) ∂2
Xq − ω′′nl(k) ∂X(q2) (1.19)

over time scales of order O(1) in T and that any solution to (1.19) yields, in fact, a solution
to the reaction-diffusion system (1.1) via (1.17). Using (1.18), this validity result justifies the
interpretation of the group velocity as the speed of propagation of small localized wave-package
perturbations.

To analyse defects, suppose that the dispersion relation is convex near the wavenumber k so that
ω′′(k) > 0 (the only difference for concave dispersion relations is that some of the signs below may
change). Equation (1.19) admits stationary fronts of the form

qd(X) = −
√

ω̌

ω′′nl(k)
tanh

(√
ω̌ω′′nl(k)
λ′′lin(0)

X

)
(1.20)

that converge to the equilibria q± = ∓
√

2ω̌/ω′′nl(k) as X → ±∞ for each ω̌ > 0. These fronts
of (1.19) correspond to defects of (1.1) that connect the wave train with wavenumber k + εq−

to the wave train with wavenumber k + εq+. Since the dispersion relation is locally convex, and
since q− > 0 and q+ < 0, we see that the group velocity of k + εq− is larger than cg, while the
group velocity of k + εq+ is smaller than cg. Thus, the defects described by (1.20) are sinks whose
characteristics on each side point towards the interface. This is, of course, in agreement with the
fact that (1.20) describes the viscous Lax shocks of Burgers equation.

Another consequence of the above discussion is that sources do not exist in the small-amplitude
limit. Indeed, for ω′′(k) > 0, the only waves of the viscous Burgers equation that connect q− to q+
for q− < q+ are rarefaction waves4.

We remark that it has been proved in [10] that the shocks given in (1.20) persist as transverse
defects of the reaction-diffusion equation (1.1); note that this requires a proof as Burgers equation
is valid only over finite time intervals.

4Rarefaction waves appear as stationary fronts of (1.19) if the self-similarity scaling symmetry is exploited that is

respected by (1.19) but, in general, not by (1.1).
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Example III: Absolute and essential instability of pulses and fronts

Bifurcations from travelling waves provide another mechanism by means of which defects can be
created. Imagine, for instance, a pulse travelling with a non-zero speed through a stable spatially
homogeneous background. Now, envision a scenario where the stable background becomes unstable
through a Turing or Hopf instability upon varying appropriate external parameters: At a supercrit-
ical Turing bifurcation, stationary wave trains with small amplitude and non-zero wavenumber will
bifurcate from the homogeneous background state. We proved in [43] that, under certain generic
assumptions, modulated pulses arise that travel through these wave trains with non-zero speed.
Since the wave trains will have zero group velocity, the modulated pulse is an elementary trans-
verse transmission defect. Linear and nonlinear stability of these defects have been addressed in [44]
and [16], respectively. Analogous bifurcations can also occur at fronts when the rest state ahead of
the front destabilizes [47]. Lastly, we proved in [50] that both flip-flops and one-dimensional target
patterns (see Figure 1.2(i) and (ii)) will bifurcate from standing pulses whose background states
undergo a Hopf instability. This appears to be the mechanism that creates the chemical flip-flops
observed in [37].

Plan of the paper

The paper is organized as follows. In Section 2, we review robustness and stability properties
of localized pulses and fronts that connect spatially homogeneous equilibria. The purpose of this
review is to prepare the spatial-dynamics viewpoint that we shall adopt when we investigate defects.
Section 3 is devoted to wave trains and their stability for both the temporal and the spatial
dynamical system. In Section 4, we prepare the ground for the proof of Theorem 1 by investigating
the spectra of the period maps associated with the linearization about defects. We then prove
Theorem 1 in Section 5 by linking robustness properties of defects to geometric transversality
conditions of the spatial dynamical system. We also show that the resulting geometric conditions
are equivalent to the minimal-spectrum assumption. In Section 6, we address stability, interactions,
and bifurcations of defects as well as the influence of boundaries and inhomogeneities on their
dynamics. Lastly, in Section 7, we prove that the cubic-quintic Ginzburg–Landau equation has
contact defects in appropriate parameter regimes.

2 Localized travelling waves

To illustrate the main ideas behind Theorem 1 and its proof, we review travelling waves that
approach stable spatially-homogeneous rest states. We describe both rigidly-propagating travelling
waves u = utw(x − ctwt) and oscillatory modulated waves u = umtw(x − cmtwt, ωmtwt) of reaction-
diffusion systems

ut = Duxx + f(u), x ∈ R (2.1)

with u ∈ Rn.
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2.1 Pulses and fronts

Suppose that utw(x − ct) is a front that satisfies (2.1) and that connects two stable spatially
homogeneous equilibria u± of (2.1) so that utw(ξ) → u± as ξ → ±∞. Thus, we use the independent
variables (ξ, t) = (x− ct, t) so that (2.1) becomes

ut = Duξξ + cuξ + f(u), ξ ∈ R (2.2)

and utw(ξ) is an equilibrium. The linearization of (2.2) about the front utw(ξ) is given by

Ltwu = Duξξ + cuξ + f ′(utw(ξ))u (2.3)

which defines a closed, unbounded operator Ltw on L2(R,Rn) and on BC0(R,Rn). We shall see
below that u′tw(ξ) decays exponentially to zero as |ξ| → ∞. As a consequence, λ = 0 is always
an eigenvalue of Ltw with eigenfunction u′tw(ξ). This eigenvalue occurs due to the translation
symmetry of (2.2) which implies that utw(· + ξ0) is a solution for each fixed spatial shift ξ0 ∈ R.
Since Ltw is Fredholm with index zero [23], we can apply Lyapunov-Schmidt reduction to the
steady-state equation associated with (2.2) near the family of fronts. Exploiting the translation
symmetry ξ 7→ ξ + ξ0, it is not difficult to see that fronts and pulses are robust with respect to
small perturbations of the nonlinearity provided λ = 0 has geometric and algebraic multiplicity one
as an eigenvalue of Ltw (see [47] and the references therein for details).

An alternative approach to this problem is as follows. We seek travelling-wave solutions utw(x−ct)
of (2.1). Substituting this ansatz gives the travelling-wave equation

uξ = v (2.4)

vξ = −D−1[cv + f(u)]

in the 2n-dimensional phase space, which we also write as

u′ = F(u; c),

where u = (u, v) ∈ R2n. The front utw(ξ) which connects two stable spatially homogeneous
equilibria u± corresponds to a heteroclinic orbit utw(ξ) of (2.4) which connects the equilibria u± =
(u±, 0). The eigenvalue problem for the operator Ltw can now be written as the linear ODE

uξ = v (2.5)

vξ = −D−1[cv + f ′(utw(ξ))u− λu].

For λ close to zero, this equation is close to the ODE linearization of (2.4) about the travelling wave
utw. We can therefore expect that the spectral properties of Ltw for λ close to zero are related to
properties of the heteroclinic orbit of the travelling-wave ODE (2.4).

First, consider the PDE linearization about a homogeneous equilibrium utw(ξ) ≡ u±. Using Fourier
transform, it is easy to see that λ belongs to the spectrum if, and only if, (2.5) has a non-trivial
bounded solution. For λ� 1, equation (2.5) is close to uξξ = λD−1u, which is a linear hyperbolic
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Figure 2.1: A front with stable homogeneous background states corresponds to a heteroclinic orbit
that connects saddles whose unstable and stable manifolds have dimension n. The insets show the
eigenvalues of the linearization of (2.4) about the saddles.

equation with n stable and n unstable spatial eigenvalues ν = ±
√
λ/dj where D = diag(dj). If we

therefore assume that the homogeneous equilibria u± are spectrally stable, we can conclude that
the corresponding two equilibria u± = (u±, 0) of the travelling-wave ODE (2.4) are saddles whose
stable and unstable manifolds have equal dimension n. In particular, fronts and pulses with stable
background states correspond to heteroclinic and homoclinic orbits to saddles with unstable and
stable dimension equal to n.

Next, robustness of fronts corresponds to robustness of the heteroclinic connection utw = (utw, u
′
tw)

as a solution to the ordinary differential equation (2.4). In fact, heteroclinic orbits are robust as
solutions in the phase space if, and only if, stable and unstable manifolds intersect transversely
upon varying the parameter c near the wave speed ctw of the front or pulse: if we add the equation
cξ = 0 for the parameter c to (2.4) and denote the center-stable and center-unstable manifolds of
the equilibria u± by W cu

ext(u−) and W cs
ext(u+), then robustness is equivalent to requiring

T(utw,ctw)W
cu
ext(u−) + T(utw,ctw)W

cs
ext(u+) = R2n × R.

This, in turn, is equivalent to a minimal intersection in R2n for fixed c = ctw,

TutwW
u(u−) ∩ TutwW

s(u+) = spanu′tw, (2.6)

together with a Melnikov condition

M =
∫ ∞

−∞
〈ψ(ξ), ∂cF(utw(ξ); ctw)〉dξ 6= 0. (2.7)

Here, ψ denotes the unique (up to scalar multiples) non-trivial bounded solution of the adjoint
variational equation

uξ = f ′(utw(ξ))∗D−1v (2.8)

vξ = −u+ cD−1v.

Note that (2.6) holds precisely when λ = 0 has geometric multiplicity one as an eigenvalue of
Ltw, while (2.7) holds exactly when its algebraic multiplicity is one. The relation between the
ODE and the functional-analytic robustness argument becomes clearer when we approach the
eigenvalue problem from an ODE viewpoint. Eigenfunctions correspond to bounded solutions of
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(2.3), while generalized eigenfunctions are found as bounded solutions of the derivative of the
variational equation with respect to λ, evaluated in the eigenfunction.

To find bounded solutions of (2.3), we denote by Es
+(λ) the λ-dependent linear subspace of initial

conditions at ξ = 0 that lead to bounded solutions of (2.3) as x→∞, and by Eu
−(λ) the λ-dependent

linear subspace that leads to bounded solutions as x→ −∞. Using exponential dichotomies, we see
that both subspaces are n-dimensional and are given as ranges of analytic families of projections
P s

+(λ) and P u
−(λ). We may now choose analytic bases eu

j in Eu
−(λ) and es

j in Es
+(λ), and define the

Evans function
E(λ) := det [es

1, . . . , e
s
n, e

u
1 , . . . , e

u
n] .

In particular, we have E(λ) = 0 if, and only if, λ is an eigenvalue of Ltw. Furthermore, we have
E(0) = 0 and, upon expanding the determinant, it is also not hard to see that E ′(0) 6= 0 if, and
only if, both (2.6) and (2.7) are met.

A related way to solve the eigenvalue problem in a neighborhood of λ = 0 consists of finding roots
of the injection map

ι(λ) : Eu
−(λ)× Es

+(λ) −→ C2n, (u−,u+) 7−→ u− − u+. (2.9)

Near λ = 0, this map can be pulled back to

ι0(λ) : Eu
−(0)× Es

+(0) −→ C2n, (u−,u+) 7−→ P u
−(λ)u− − P s

+(λ)u+. (2.10)

Note that ι0(0) is Fredholm with index zero and null space Eu
−(0) ∩ Es

+(0). If we denote the
dimension of this null space by `, which coincides with the geometric multiplicity of λ = 0, then we
can compute the roots of ι0 near λ = 0 via Lyapunov–Schmidt reduction which results in a linear
system of ` equations in ` variables. The λ-dependent determinant of the reduced equation is a
reduced Evans function E0(λ) whose roots, counted with multiplicity, coincide with those of E(λ) in
a neighborhood of zero. In particular, these two functions differ only by a non-zero analytic factor.
In our case, the geometric multiplicity of λ = 0 is one so that ` = 1. Thus, the reduced Evans
function E0(λ) is a scalar function, and we have E ′0(0) 6= 0 if, and only if, the algebraic multiplicity
of λ = 0 is one.

This latter approach of the construction of a reduced Evans function for eigenvalue problems is the
one that we shall adopt below.

2.2 Modulated waves

Hopf bifurcations from rigidly-propagating travelling waves lead to modulated waves umtw(x−ct, ωt)
for some temporal frequency ω = ωmtw and an average speed of propagation c = cmtw, where the
profile umtw(ξ, τ) is 2π-periodic in its second argument. In particular, umtw(ξ, τ) is a periodic orbit
with period 2π of the reaction-diffusion system (2.1) in a co-moving frame:

ωuτ = Duξξ + cuξ + f(u). (2.11)
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As in the previous section, we assume that umtw(ξ, τ) converges to two asymptotically stable
spatially-homogeneous equilibria u± of (2.1) as ξ → ±∞, uniformly in τ . In other words, we
require umtw(ξ, ·) → u± as ξ → ±∞. We shall see later that this convergence is necessarily expo-
nential.

To analyse robustness and stability of modulated waves, we consider the linearized period map
Φmtw that maps initial data u(·, 0) to the solution u(·, 2π) at time τ = 2π of

ωuτ = Duξξ + cuξ + f ′(umtw(ξ, τ))u. (2.12)

The operator Φmtw − 1 is Fredholm with index zero when posed on L2(R,Rn). Note that ρ = 1
is an eigenvalue of Φmtw with geometric multiplicity equal to at least two since both ∂ξumtw and
∂τumtw contribute one dimension each to the eigenspace. Using Lyapunov–Schmidt reduction and
eliminating the space and time translational symmetries, we see that modulated waves are robust
provided ρ = 1 has algebraic multiplicity two.

Alternatively, we may investigate modulated waves by casting (2.12) as the dynamical system

uξ = v (2.13)

vξ = D−1[ω∂τu− cv − f(u)]

in the ξ-variable. Modulated waves satisfy (2.13), which we can view as an abstract differential
equation

u′ = F(u; c, ω) (2.14)

on the phase space Y = H1/2(S1,Rn)× L2(S1,Rn) of 2π-periodic functions. Note that the initial-
value problem associated with (2.14) is ill-posed as can be readily seen by solving it using Fourier
series for f ≡ 0 and c = 0. Despite this, we proved in [48] that the stable and unstable manifolds of
the equilibria (u+, 0) and (u−, 0) can be constructed for (2.14) near the modulated-wave solution
umtw = (umtw, ∂ξumtw). In this framework, robustness is again equivalent to the transverse crossing
of the extended stable and unstable manifolds

T(umtw,cmtw,ωmtw)W
cu
ext(u−) + T(umtw,cmtw,ωmtw)W

cs
ext(u+) = Y × R2

in the two-dimensional parameter (c, ω). As before, this is equivalent [48] to the statement that

dim [TumtwW
u(u−) ∩ TumtwW

s(u+)] = 2, (2.15)

where the intersection is spanned by ∂ξumtw and ∂τumtw, together with the requirement that

det (Mij)i=1,2, j=c,ω = det
(∫ ∞

−∞
〈ψi(ξ), ∂jF(umtw(ξ); cmtw, ωmtw)〉Y dξ

)
i=1,2, j=c,ω

6= 0 (2.16)

where ψi are the two linearly independent bounded solutions of the adjoint variational equation

uξ =
[
f ′(umtw(ξ, τ))∗ + ωmtw∂τ

]
D−1v (2.17)

vξ = −u+ cmtwD
−1v.
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To elucidate the relation between the analytical and the geometric approaches outlined above,
consider the eigenvalue problem Φmtwu = ρu for the linear period map Φmtw which is equivalent to
the equation

uξ = v (2.18)

vξ = D−1[ωmtw∂τu− cmtwv − f ′(umtw(ξ, τ))u+ λu]

on Y . Here, we have used the Floquet ansatz (u, v) 7→ eλt(u, v) where λ is the Floquet exponent
and ρ = exp(2πλ/ωmtw) the associated Floquet multiplier which corresponds to an eigenvalue of
Φmtw. We can now construct stable and unstable subspaces for (2.18) that depend analytically on
λ for λ close to zero [48]. Both subspaces are infinite-dimensional, whence it is not obvious how to
construct an Evans function using determinants as in the case of travelling waves.

One way is to employ Galerkin approximations and to replace f ′(umtw) by Pmf
′(umtw) where Pm

is the orthogonal projection in L2 onto the first m temporal Fourier modes. Following [48], it is
not difficult to see that roots of the approximate Evans functions that are defined for the 2mn-
dimensional Fourier approximation converge with multiplicity as m→∞. In particular, for m� 1,
winding-number calculations for the complex-analytic approximate Evans function give the correct
number of eigenvalues for the full problem (2.18) on open bounded regions of the complex plane
that do not intersect the absolute spectrum [46].

If we are only interested in computing roots locally, we can proceed as in the previous section and
use the injection maps ι(λ) and ι0(λ) that we defined in (2.9) and (2.10). The results in [48] imply in
particular that the injection maps are again Fredholm with index zero. Using Lyapunov–Schmidt
reduction, we see that eigenvalues can be computed locally as roots of a reduced determinant
E0(λ) which we may refer to as the reduced Evans function. For modulated waves, we then have
E0(0) = E ′0(0) = 0 and E ′′0 (0) 6= 0 provided both (2.15) and (2.16) are satisfied.

3 Wave trains, group velocities, and spatial dynamics

We are interested in defects that are spatially asymptotic to wave trains instead of to homogeneous
steady states. In contrast to the exponentially stable homogeneous equilibria, wave trains always
have a neutral mode, associated with their phase, and a resulting group velocity.

When interpreted in terms of spatial dynamical systems, defects correspond to heteroclinic orbits
of the modulated-wave equation (2.13) that connect two periodic orbits instead of two hyperbolic
equilibria. The asymptotic periodic orbits have again a neutral direction. We will prove in this
section that, after eliminating the neutral eigenvalue, the unstable dimension, and therefore the
Fredholm index of the injection maps ι and ι0 that we defined in the previous section, depends only
on whether the group velocity of the wave train is larger or smaller than the speed of the defect.
This result therefore allows us to relate group velocities of wave trains and Morse indices of the
spatial dynamical system.

We refer to [10, 44, 52] for more details and references concerning the material in this section.
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3.1 Existence and stability of wave trains

We assume that, for some non-zero temporal frequency ω0 and a certain spatial wavenumber k0,
there exists a non-constant wave-train solution u(x, t) = uwt(k0x − ω0t) of (1.1) where uwt(φ) is
2π-periodic in its argument. Throughout this section, we focus on the case k0 6= 0 and discuss the
somewhat simpler case k0 = 0 in Section 3.3 below.

Substituting the ansatz for u(x, t) into (1.1), we see that uwt(φ) must be a 2π-periodic solution of
the ODE

k2
0D∂φφu+ ω0∂φu+ f(u) = 0. (3.1)

Linearizing this equation about uwt, we obtain the linear operator Lwt

Lwt := k2
0D∂φφ + ω0∂φ + f ′(uwt(φ)), (3.2)

which defines a closed operator on L2(0, 2π) with domain H2
per(0, 2π).

Hypothesis 3.1 The origin λ = 0 is algebraically simple as an eigenvalue of Lwt on L2(0, 2π)
with eigenfunction ∂φuwt.

Spectral stability of the wave train uwt on R is determined as follows. A complex number λ̌ is in
the spectrum of Lwt considered as a closed operator on L2(R,Cn) with domain H2(R,Cn) if, and
only if, there is a ν ∈ iR and a 2π-periodic function w(φ) such that Lwtu = λ̌u for x ∈ R where

u(φ) = eνφ/k0w(φ). (3.3)

Note that the resulting equation for w is

λ̌w = D [k0∂φ + ν]2w + cp [k0∂φ + ν]w + f ′(uwt(φ))w (3.4)

where cp = ω0/k0 is the phase speed of the wave trains. Hypothesis 3.1 implies that there is an
analytic function λlin(ν) with λlin(0) = 0 such that λ̌ close to zero is in the spectrum if, and only
if, λ̌ = λlin(ν) for some ν ∈ iR close to zero.

Hypothesis 3.2 The linear dispersion relation is dissipative so that d‖ := λ′′lin(0) > 0. Further-
more, the spectrum of Lwt on L2(R,Cn) lies in the open left half-plane except for the spectrum near
λ̌ = 0 which is captured by the linear dispersion relation λ̌ = λlin(ν) with ν ∈ iR close to zero.

The coefficient d‖ measures the effective diffusion rate of perturbations in the direction of propa-
gation of the wave train (see (1.19)). Planar wave trains in x ∈ R2 have an additional diffusion
coefficient d⊥ that measures diffusive decay of perturbations transverse to the direction of propa-
gation.

Hypothesis 3.1 implies that there exists a family uwt(kx− ωt; k) of wave trains, defined for k close
to k0, which are stable and whose frequency is given by a smooth nonlinear dispersion relation
ω = ωnl(k) with ωnl(k0) = ω0.
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Hypothesis 3.3 We assume that the nonlinear dispersion relation is genuinely nonlinear which
means that ω′′nl(k0) 6= 0.

We denote the phase and group velocities by

cp =
ωnl(k)
k

, cg =
dωnl(k)

dk
. (3.5)

Using these definitions, it turns out [10, 52] that the Taylor series of the linear dispersion relation
λlin(ν) at ν = 0 is given by

λlin(ν) = [cp − cg] ν + d‖ν
2 + O(ν3). (3.6)

3.2 Spectra of wave trains in different frames

We discuss the dependence of the linear dispersion relation on the frame in which it is computed.
This issue will play a crucial role below. Consider the reaction-diffusion equation (1.1) in a frame
moving with an arbitrary, but fixed, speed cd. In the variable ξ = x− cdt, we get

φ = k0x− ω0t = k0ξ − (ω0 − k0cd)t.

Thus, we set ωd = ω0 − k0cd and define τ = ωdt. In the (ξ, τ) coordinates, (1.1) becomes

ωduτ = Duξξ + cduξ + f(u), (3.7)

and the wave trains are time-periodic solutions u(ξ, τ) = uwt(k0ξ − τ) with period 2π in τ .

Following Section 2.2, we linearize the period map of (3.7) about the wave train, so that

Φwt : u(ξ, 0) 7−→ u(ξ, 2π)

is the solution map of the linear equation

ωduτ = Duξξ + cduξ + f ′(uwt(k0ξ − τ))u.

Note that the operator Φwt is not Fredholm on L2(R,Cn). Its spectrum can be computed as follows
[44]. A non-zero number ρ ∈ C is in the spectrum of Φwt if, and only if, the linearized eigenvalue
problem

λu = Duξξ + cduξ − ωduτ + f ′(uwt(k0ξ − τ))u (3.8)

has a bounded non-zero solution u(ξ, τ) that is 2π-periodic in τ , where the Floquet multiplier ρ
and the Floquet exponent λ are related via ρ = exp(2πλ/ωd). These solutions can be calculated
using the Floquet ansatz

u(ξ, τ) = eνξ w(k0ξ − τ) (3.9)

where w(φ) is 2π-periodic and ν ∈ iR. Upon substituting this ansatz into (3.8), we see after some
calculations that w needs to satisfy the equation

[λ+ (cp − cd)ν]w = D [k0∂φ + ν]2w + cp [k0∂φ + ν]w + f ′(uwt(φ))w (3.10)
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where cp = ω0/k0 is the phase speed of the wave trains.

Comparing (3.10) with (3.4), we see that λ̌ is in the spectrum of the wave trains, computed in the
frame moving with the phase speed cp, if, and only if,

λ = λ̌+ (cd − cp)ν (3.11)

is a Floquet exponent of Φwt, computed in a frame moving with speed cd, where ν ∈ iR is the
associated spatial Floquet exponent. We denote by Σwt the set of all Floquet exponents λ of Φwt.

In particular, it follows from (3.6) that λ close to zero is in the Floquet spectrum of Φwt on
L2(R,Cn), computed in the frame moving with speed cd, if, and only if,

λ = λlin(ν) + (cd − cp)ν = [cd − cg] ν + d‖ν
2 + O(ν3) (3.12)

for some ν ∈ iR close to zero. Note that cg − cd represents the relative group velocity, i.e., the
group velocity of the wave trains measured in the frame that moves with speed cd.

3.3 Spatially homogeneous oscillations

In this section, we account for the differences that occur when the wavenumber of the wave trains
vanish. In other words, we consider spatially homogeneous oscillations u(x, t) = uwt(−ω0t) where
ω0 6= 0 and u′wt(φ) is not the zero function.

The spectrum of the period map Φwt associated with the spatially homogeneous oscillations can be
computed easily. Indeed, Fourier transform in space reduces the time-periodic linearized parabolic
equation

ωduτ = Duξξ + cduξ + f ′(uwt(−τ))u (3.13)

to the collection
ωdûτ = ν2Dû+ cdνû+ f ′(uwt(−τ))û (3.14)

of ODEs for purely imaginary Fourier exponents ν = iγ with γ ∈ R. Note that ωd = ω0 since
k0 = 0. We denote by ρ = exp(2πλ/ωd) the complex temporal Floquet multipliers of the parabolic
equation (3.13).

First, we need to replace Hypothesis 3.1 by the assumption that ρ = 0 is an algebraically simple
multiplier for ν = 0 and cd = 0. This allows us to continue the Floquet multiplier ρ as smooth
function ρ = ρ(ν) for any ν close to zero. The resulting dispersion relation for the temporal Floquet
exponents is denoted by λ(ν) where λ(0) = 0. When cd = 0, ν enters only at quadratic order so
that

λ = d‖ν
2 + O(ν4).

Applying Fenichel’s singular perturbation theory [15] to (3.1), it is straightforward to see that the
spatially homogeneous oscillations are accompanied by a family of wave trains for wavenumbers
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k close to zero5, where wavenumber and frequency are related via a smooth nonlinear dispersion
relation ωnl(k).

Next, we replace Hypothesis 3.2 by the assumption that d‖ > 0 and that the curve λ(ν), with ν

close to the origin, captures all temporal Floquet exponents of the collection of ODEs (3.14) in the
closed right half-plane Reλ ≥ 0. Lastly, we assume that Hypothesis 3.3 is met also when k0 = 0.
Inspecting the boundary-value problem

λû = Dν2û+ cdνû+ f ′(uwt(−τ))û, û(0) = û(2π) (3.15)

for the temporal Floquet exponents λ, we see immediately that the dispersion relation for cd 6= 0
is related to the dispersion relation for cd = 0 via

λ = λlin(ν) + cdν = cdν + d‖ν
2 + O(ν3),

which is the equivalent to (3.12) after formally setting cg = 0.

3.4 Spatial dynamics and relative Morse indices

We explore the implications of the results reviewed in the previous sections for the spatial dynamical
system associated with (3.7). Thus, we write (3.7) as

uξ = v (3.16)

vξ = D−1[ωd∂τu− cdv − f(u)]

where u = (u, v) ∈ Y = H1/2(S1,Rn)×L2(S1,Rn). One of the key features of (3.16) that we shall
exploit over and over again is its equivariance with respect to the S1-symmetry

Γθ : Y −→ Y, (u, v)(τ) 7−→ (u, v)(τ − θ), θ ∈ S1 (3.17)

that is induced by the temporal time shift. Note that the wave trains uwt(kξ − τ ; k) of (1.1)
correspond to periodic orbits

uwt(ξ) = (uwt(kξ − ·; k), k∂φuwt(kξ − ·; k))

of (3.16) with period 2π/k which are, in fact, relative equilibria with respect to the temporal
time-shift symmetry. The eigenvalue problem (3.8) becomes

uξ = v (3.18)

vξ = D−1[ωd∂τu− cdv − f ′(uwt(kξ − τ ; k))u+ λu].

For each fixed value of λ, we say that ν is a spatial Floquet exponent of (3.18) if there is a 2π-
periodic function w(φ) with values in Y so that u(ξ) = eνξw(kξ) is a solution of (3.18). In fact,

5In passing, we remark that we are not aware of a short direct proof of this fact that does not use Fenichel’s

theorem. Ginzburg–Landau approximations of the dynamics near homogeneous oscillations [55] capture waves with

long wavelength but are, unfortunately, only valid over finite time intervals.
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w(kξ) will be of the form [w(kξ)](τ) = w̌(kξ − τ) where the first component of w̌ satisfies (3.10).
Note that the spatial Floquet exponents ν are not unique, so that we should restrict their imaginary
parts to 0 ≤ Im ν < k.

Spatial Floquet theory [33, 48] implies the following facts. For each fixed λ, there are projections
P j

wt(ξ;λ) ∈ L(Y ), labelled by j = c, s,u, with the following properties. The projections are 2π/k-
periodic and strongly continuous in ξ, and their sum is the identity. The ranges of the stable and
unstable projections P s

wt(ξ0;λ) and P u
wt(ξ0;λ) are infinite-dimensional and consist of all initial data

at ξ = ξ0 of solutions to (3.18) that decay exponentially for ξ → ∞ and ξ → −∞, respectively.
The range of the center projection P c

wt(ξ0;λ) is finite-dimensional, and, for each initial value in
Rg(P c

wt(ξ0;λ)), the corresponding solution to (3.18) exists for ξ ∈ R and grows at most algebraically
in ξ as ξ → ±∞. The ranges of the projections P j

wt(ξ;λ) can be obtained by taking the closure
of the eigenfunctions w(kξ) ∈ Y , together with the associated generalized eigenfunctions if these
exist, of all spatial Floquet exponents ν with Re ν = 0 for j = c, Re ν > 0 for j = u, and Re ν < 0
for j = s.

The center projection P c
wt(ξ;λ) is non-zero if, and only if, λ is a temporal Floquet exponent of Φwt.

In particular, P c
wt(ξ;λ) = 0 for all λ with Reλ > 0 since |ρ| > 1 belongs to the resolvent set of Φwt.

In this case, the remaining projections P s
wt(ξ;λ) and P u

wt(ξ;λ) are analytic in λ. We are interested
in counting the dimension of Rg(P u

wt(ξ;λ)) by comparing it to Rg(P u
wt(0;λ∗)), where λ∗ is fixed so

that Reλ∗ � 1 is positive.

Definition 3.4 The relative Morse index iwt(λ) is defined to be the Fredholm index of

P u
wt(ξ;λ) : Rg(P u

wt(0;λ∗)) −→ Rg(P u
wt(ξ;λ)). (3.19)

We proved in [48] that the relative Morse index is well defined for all λ that are not temporal
Floquet exponents of Φwt. Furthermore, it does not depend on ξ and on the choice of λ∗ (as long
as Reλ∗ > 0).

Hence, the relative Morse index iwt(λ) is constant on each connected component of C \Σwt, which
corresponds to the resolvent set of Φwt. Note that we have iwt(λ) = 0 for all λ in the connected
component of C \Σwt that contains the open right half-plane in C. To compute Morse indices, we
will use the following straightforward bordering lemma whose proof we shall omit.

Lemma 3.5 Suppose that X and Y are Banach spaces and that A : X → Y is a Fredholm operator
with index i(A). The operator

S =

(
A B
C D

)
: X × Rp −→ Y × Rq

is then Fredholm with index i(S) = i(A) + p− q provided B, C, and D are bounded and linear.

The following lemma predicts how the relative Morse index iwt(λ) changes if we vary λ near λ = 0.
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cg < cd cg = cd cg > cd

2

Figure 3.1: The spatial Floquet spectrum of wave trains at λ = 0.

Lemma 3.6 Assume that the hypotheses stated in Section 3.1 are met. The spatial dynamical
system (3.18) has a geometrically simple spatial Floquet exponent ν = 0 for λ = 0. The Floquet
exponent ν = 0 is simple if cd 6= cg, while it has algebraic multiplicity two if cd = cg. If cd 6= cg,
then (3.18) has a simple spatial Floquet exponent ν = ν(λ) for all λ close to zero and

dν
dλ

∣∣∣
λ=0

=
1

cd − cg
. (3.20)

For λ < 0 close to zero, the relative Morse index iwt(λ) is therefore +1 if cg > cd, and −1 if
cg < cd.

Proof. The statement follows immediately from (3.12), the Cauchy–Riemann equations, and the
bordering lemma 3.5.

4 Spectral properties of defects

We now turn to elementary defects ud(ξ, τ) that satisfy

ωduτ = Duξξ + cduξ + f(u). (4.1)

We are interested in the spectrum of the linear period map

Φd : u(ξ, 0) 7−→ u(ξ, 2π)

associated with the linearization

ωduτ = Duξξ + cduξ + f ′(ud(ξ, τ))u

of (4.1) about the defect ud(ξ, τ). We denote by λ the Floquet exponents of Φd and by ρ =
exp(2πλ/ωd) its Floquet multipliers, i.e. elements in its spectrum.

We adopt a dynamical-systems point-of-view and write (4.1) as the modulated-wave equation

uξ = v (4.2)

vξ = D−1[ωd∂τu− cdv − f(u)].

We write u = (u, v) and consider (4.2) on the space Y = H1/2(S1,Rn) × L2(S1,Rn). We shall
also use the space Y 1 = H1(S1,Rn)×H1/2(S1,Rn). We say that u(ξ) is a solution of (4.2) on an
interval J ⊂ R if u is contained in L2(J, Y 1) ∩ H1(J, Y ) and it satisfies (4.2) in Y for all ξ ∈ J .
Definition 1.1 implies that

ud(ξ) = (ud(ξ, ·), ∂ξud(ξ, ·))
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satisfies (4.2) and that ud(ξ, ·)− uwt(k±ξ + θ±(ξ)− ·; k±) converges to zero in Y 1 as ξ → ±∞.

Throughout this section, we denote by Σ±
wt the set of all temporal Floquet exponents λ of the

asymptotic wave trains with wavenumber k±, computed in the frame moving with speed cd.

4.1 Exponential dichotomies

We begin by analysing the linear system

uξ = v (4.3)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u+ λu]

where the parameter λ represents potential temporal Floquet exponents of Φd.

Given one of the sets J = R+, J = R− or J = R, we say that (4.3) has an exponential dichotomy on
J if there exist strongly continuous families {Φs(ξ, ζ)}ξ≥ζ, ξ,ζ∈J and {Φu(ξ, ζ)}ξ≤ζ, ξ,ζ∈J of operators
in L(Y ) as well as positive constants C and κ such that

• Φj(ξ, σ)Φj(σ, ζ) = Φj(ξ, ζ) for j = s,u and Φs(ξ, ξ) + Φu(ξ, ξ) = 1,

• ‖Φs(ξ, ζ)‖+ ‖Φu(ζ, ξ)‖ ≤ Ce−κ|ξ−ζ|,

• Φs(ξ, ζ)u0 and Φu(ξ, ζ)u0 satisfy (4.3) for ξ > ζ and for ξ < ζ, respectively, for each u0 ∈ Y
provided ξ, ζ ∈ J .

Thus, if a dichotomy6 exists, then the operators P j(ξ) := Φj(ξ, ξ) with j = s,u are complementary
projections in Y . We denote their ranges at ξ = 0 by Es(λ) and Eu(λ) where Es(λ)⊕Eu(λ) = Y .

Corollary A.2 in Appendix A.1 states that (4.3) has an exponential dichotomy on J = R± if, and
only if, the asymptotic equation

uξ = v (4.4)

vξ = D−1[ωd∂τu− cdv − f ′(uwt(k±ξ − ·; k±))u+ λu]

has an exponential dichotomy on R. Furthermore, the projections P j
wt,±(ξ) of the asymptotic

equation (4.4) and those of the linearization (4.3) about the defect differ only by a compact operator.

Thus, it remains to find out when the asymptotic equation has an exponential dichotomy on R.
The criterion in [33] for the existence of dichotomies to (4.4) is simply that it does not have purely
imaginary Floquet exponents ν ∈ iR, i.e. solutions of the form u(ξ) = exp(νξ)w(kξ) for some
2π-periodic function w. Using the results reviewed in Section 3, we can therefore conclude that
(4.4) has an exponential dichotomy on R precisely when λ /∈ Σ±

wt.

Lastly, we discuss what happens if the asymptotic equation does not have an exponential dichotomy.
Since the Floquet multipliers of the asymptotic equation form a discrete set and accumulate at the

6The dichotomies and projections will depend on λ. We will suppress this dependence in our notation.
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origin [33], there are at most a finite number of them on the unit circle for any given λ. The idea
is then to seek solutions to (4.3) of the form

u(ξ) = eηξǔ(ξ) (4.5)

for a small non-zero weight η, so that ǔ(ξ) satisfies the equation

ǔξ = −ηǔ+ v̌ (4.6)

v̌ξ = −ηv̌ +D−1[ωd∂τ ǔ− cdv̌ − f ′(ud(ξ, τ))ǔ+ λǔ].

Suppose now that at least one spatial Floquet exponent ν = iγ of (4.3) lies on the imaginary
axis. A small exponential weight η 6= 0 will move this Floquet multiplier off the imaginary axis.
Exploiting the conjugacy (4.5) between solutions to (4.6) and (4.3), we can construct center-stable
dichotomies Φcs(ξ, ζ) and complementary strong-unstable dichotomies Φuu(ξ, ζ) for (4.3) by using
the stable and unstable dichotomies of (4.6) for sufficiently small, but non-zero, weights η > 0.
Analogously, upon using η < 0 close to zero, we find center-unstable and strong-stable dichotomies,
Φcu(ξ, ζ) and Φss(ξ, ζ), respectively, for (4.3). We can use these dichotomies to define a center
projection

Rg(Φc(ξ, ξ)) := Rg(Φcs(ξ, ξ)) ∩ Rg(Φcu(ξ, ξ)), N(Φc(ξ, ξ)) := N(Φcs(ξ, ξ)) + N(Φcu(ξ, ξ))

and a corresponding center evolution Φc(ξ, ζ) for all ξ, η ∈ J . Since the unstable subspaces for
J = R+ are arbitrary at ξ = 0 [38], we may also arrange that

Φcu(ξ, ζ) = Φc(ξ, ζ) + Φuu(ξ, ζ), Φcs(ξ, ζ) = Φc(ξ, ζ) + Φss(ξ, ζ).

We use subscripts ± to distinguish the exponential dichotomies on R+ and on R−.

4.2 Fredholm indices

Suppose that λ is not a temporal Floquet exponent of either one of the asymptotic wave trains, i.e.
λ /∈ Σ−

wt∪Σ+
wt. The discussion in the preceding section shows that (4.3) has exponential dichotomies

on both R+ and R−. We denote by Es
+(λ) the stable subspace at ξ = 0 of the dichotomy on R+ and

by Eu
−(λ) the unstable subspace at ξ = 0 of the dichotomy on R−. Thus, we conclude that there

exists a bounded solution to the linear equation (4.3) if, and only if, Eu
−(λ) and Es

+(λ) intersect
non-trivially.

For each λ /∈ Σ−
wt ∪ Σ+

wt, we therefore define the injection map

ι(λ) : Eu
−(λ)× Es

+(λ) −→ Y, (u−,u+) 7−→ u− − u+.

Since the evolutions Φj
± with j = s,u can be chosen to depend analytically on λ [48], the injection

map ι is analytic in λ. Whenever ι(λ∗) is Fredholm of index zero with a non-trivial null space, we
can use Lyapunov–Schmidt-reduction to reduce the equation ι(λ) = 0 in a neighborhood of λ∗ to
an equation ιred(λ) = 0 where

ιred(λ) : N(ι(λ∗)) −→ Rg(ι(λ∗))⊥
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for λ close to λ∗. Non-trivial intersections are then given by zeros of the reduced Evans function

E(λ) = det(ιred(λ)).

Recall that Floquet exponents λ and Floquet multipliers ρ of the linear period map Φd are related
via ρ = exp(2πλ/ωd). We also denote by i(A) the index of a Fredholm operator A.

Lemma 4.1 The linear operator Φd − ρ on L2(R,Cn) is Fredholm if, and only if, λ /∈ Σ−
wt ∪ Σ+

wt.
Furthermore, if λ /∈ Σ−

wt ∪ Σ+
wt, then the Fredholm index of Φd − ρ on L2(R,Cn) is given by

i(Φd − ρ) = i(ι(λ)) = i−wt(λ)− i+wt(λ)

where i±wt(λ) are the relative Morse indices of the asymptotic wave trains defined in Section 3.4.
Lastly, if the Fredholm index is zero, then roots λ of the reduced Evans function E(λ) correspond to
isolated eigenvalues ρ of Φd, and the order of a root λ is equal to the algebraic multiplicity of the
corresponding Floquet multiplier ρ of Φd.

Proof. The relation between properties of the linearized period map Φd and the bundles Es
+(λ)

and Eu
−(λ) was shown in [48, Remark 2.5 and Theorem 2.6]. The fact that the order of roots

of the reduced Evans function coincides with the algebraic multiplicity of the associated Floquet
multiplier is a straightforward adaptation of the corresponding facts for eigenvalue problems of
travelling waves.

Since we assumed that the wave trains are spectrally stable, we know that Reλ > 0 lies in the
resolvent set of Φd (in the Floquet-exponent space). This fact allows us to compute the Fredholm
indices of the map

ιd(λ) : Ecu
− (λ)× Ecs

+ (λ) −→ Y, (u−,u+) 7−→ u− − u+

for each of the four defect classes for λ close to zero, where we set Ecu
− (λ) := Rg(Φcu

− (0, 0)) and
Ecs

+ (λ) := Rg(Φcs
+(0, 0)). Note that, by using small exponential weights as outlined in the preceding

section, we can choose the dichotomies Φcu
− and Φcs

+ so that they depend analytically on λ for λ
close to zero [48]. We then have the following result.

Lemma 4.2 The Fredholm index i of ιd(0) is equal to

i = 2 for sinks and contact defects

i = 1 for transmission defects

i = 0 for sources.

Proof. First, the Fredholm index of ιd(0) is given by the difference of the Morse indices of the
projections P cu

wt,−(0) and P cs
wt,+(0) associated with the asymptotic wave trains. Indeed, we can apply

Lemma 4.1 to the equation

ǔξ = −η̌(ξ)ǔ+ v̌

v̌ξ = −η̌(ξ)v̌ +D−1[ωd∂τ ǔ− cdv̌ − f ′(ud(ξ, τ))ǔ+ λǔ]
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where η̌(ξ) = −η sign ξ for some small η > 0. It therefore remains to compute the Morse indices.

For contact defects, the center subspace is two-dimensional, and the two spatial Floquet exponents
ν1,2 are determined by (3.12) with cd = cg so that ν2

j = λ/d‖ + O(|λ|3/2) where d‖ > 0 by
Hypothesis 3.2. In particular, ν1 and ν2 have opposite real parts for λ > 0. At λ = 0, the
center-stable subspace Ecs

wt,+ and the center-unstable subspace Ecu
wt,− are therefore both augmented

by one-dimensional subspaces compared with the subspaces in the Fredholm index zero regime.
Invoking the bordering lemma 3.5 shows that the index of ιd is two.

For the other defects, the center subspace is one-dimensional. To illustrate the idea, we consider
the center-stable subspace Ecs

wt,+ when c+g < cd, i.e., when transport occurs towards the defect.
Lemma 3.6 shows that the real part of the critical Floquet exponent ν is positive for λ > 0, and
the center subspace continues therefore as part of the center-stable subspace so that Ecs

wt,+(λ) =
Ec

wt,+(λ) ⊕ Es
wt,+(λ). The same argument proves that Ecs

wt,+(λ) = Es
wt,+(λ) whenever c+g > cd so

that transport occurs away from the defect. The analogous statements for Ecu
wt,− show that the

subspace Eu
wt,− is again augmented by a one-dimensional subspace when the transport is towards

the defect so that c−g > cd. Invoking the bordering lemma 3.5, it is now straightforward to compute
the Fredholm indices of ιd for sources, sinks, and transmission defects.

4.3 Spectral stability of defects

We conclude this exposition of the linear theory by commenting on the effects of exponential weights
on the spectra of defects. The discussion of weights in Section 4.1 together with Lemma 4.1 can
be used to infer useful properties of the spectra of the linearized period map in the exponentially
weighted spaces

L2
η−,η+

=
{
u ∈ L2

loc; ‖u‖L2
η−,η+

<∞
}
, ‖u‖2

L2
η−,η+

=
∫

R−
|u(ξ)eη−ξ|2 dξ +

∫
R+

|u(ξ)eη+ξ|2 dξ.

Indeed, the linearized period map Φd − ρ is Fredholm on L2
η−,η+

precisely if there are no spatial
Floquet exponents ν± of the asymptotic wave trains uwt,± for which Re ν± = −η±. Invoking (3.12),

λ =
[
cd − c±g

]
ν + d‖ν

2 + O(ν3)

with d‖ > 0, we see that the critical dispersion curve λ(ν) moves into the left half-plane provided
the weights η± satisfy ±η± > 0 (thus enforcing localization of u(ξ)) when transport occurs towards
the defect, whereas the weights η± have to satisfy ±η± < 0 (thus allowing exponential growth)
when transport is away from the defect. In formulas, we need

sign[cd − c±g ] = sign Re ν 6= sign[−η±]

to ensure that the Floquet spectrum lies in Reλ < 0, which is equivalent to choosing η± such that

sign η± = sign[cd − c±g ].

In summary, we have proved the following result.
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Lemma 4.3 The essential Floquet spectrum of the period map, linearized about sinks, sources and
transmission defects, is contained in the open left half-plane when considered on L2

η−,η+
for any

choice of weights η± close to zero so that

η− < 0 < η+ for sinks with c−g > cd > c+g

η−, η+ > 0 for transmission defects with c±g < cd

η− > 0 > η+ for sources with c−g < cd < c+g .

The essential Floquet spectrum of contact defects intersects the right half-plane in any L2
η−,η+

space
with exponential weights η− 6= 0 or η+ 6= 0.

The next lemma gives lower bounds for the multiplicity of λ = 0 as an isolated eigenvalue of the
linearization Φd about each defect when considered on L2

η−,η+
with η± chosen as in Lemma 4.3.

We also refer to Figure 6.1.

Lemma 4.4 Assume that there is a δ > 0 such that

∂τud(ξ, ·) = −u′wt(k±ξ − ·) + O(e−δ|ξ|), ∂ξud(ξ, ·) = k±u′wt(k±ξ − ·) + O(e−δ|ξ|) (4.7)

for |ξ| → ∞. The geometric multiplicity of λ = 0 as an eigenvalue in the point spectrum of the
linearized period map Φd posed on L2

η−,η+
with η± chosen as in Lemma 4.3 is then at least equal to

0 for sinks

1 for transmission defects

2 for sources.

Proof. Any linear combination of ∂τud and ∂ξud satisfies the linearized equation and is time-
periodic with the correct period. We have to check which of these linear combinations belongs
to the space L2

η−,η+
with η± chosen as in Lemma 4.3. For sinks, there is nothing to prove. For

transmission defects with cd > c±g , eigenfunctions need to be exponentially localized as ξ → ∞.
By assumption, (k+∂τ + ∂ξ)ud(ξ, ·) generates a one-dimensional subspace of solutions that decay
exponentially with rate δ at ξ = ∞. For sources, the exponential weights allow for exponential
growth. Thus, any linear combination of ∂τud and ∂ξud contributes to the null space of Φd.

The following result for contact defects has been proved in [49]. It will not be relevant for the
robustness results in Theorem 1, although it is crucial for various dynamical stability considerations.

Theorem 2 ([49]) Let Ω = {λ ∈ C; |λ| < δ}, where δ > 0 is sufficiently small. We consider a
contact defect and assume that the null space of the map ιd(0) is two-dimensional. There exists then
an analytic Evans function E(λ), defined for λ ∈ Ω \R−, whose roots, counted with their order, are
in 1-1 correspondence with Floquet multipliers exp(2πλ/ωd), counted with algebraic multiplicity, of
the linearization Φd of the period map about a contact defect. Moreover, E can be extended into
λ = 0 as a C2-function of

√
λ, and we have E(0) = 0 and E ′(0) 6= 0 so that λ = 0 is a Floquet

exponent with algebraic multiplicity one.

31



Lastly, we state the following corollary which we shall exploit later. Note that the adjoint equation
associated with (1.10) is given by

ωduτ = Duξξ − cduξ + f ′(ud(ξ, τ))∗u. (4.8)

We denote its period map by Φad
d .

Corollary 4.5 Assume that ud(ξ, τ) is a transverse source. The null space of the adjoint operator
Φad

d − 1 on L2(R,Cn) is at least two-dimensional and contains two linearly independent functions
ψc

d(ξ, 0) and ψω
d (ξ, 0) that satisfy∫

R

(
〈ψc

d(ξ, 0), ∂ξud(ξ, 0)〉 〈ψc
d(ξ, 0), ∂τud(ξ, 0)〉

〈ψω
d (ξ, 0), ∂ξud(ξ, 0)〉 〈ψω

d (ξ, 0), ∂τud(ξ, 0)〉

)
dξ =

(
1 0
0 1

)
.

Furthermore, the corresponding solutions ψc
d(ξ, τ) and ψω

d (ξ, τ) of (4.8) decay exponentially with a
uniform rate as ξ → ±∞ for all τ .

Proof. The corollary is a consequence of [48, Lemma 5.1 and Section 6] and Lemma 4.3 and 4.4.
Note that these results imply that Φad

d −1 is bounded and Fredholm with index zero on L2
−η(R,Cn)

where η = (η−, η+) is chosen as in Lemma 4.3.

5 Robustness of defects in oscillatory media

5.1 Invariant manifolds

We begin by investigating the existence of stable and unstable manifolds for the ill-posed equation
(4.2)

uξ = v

vξ = D−1[ωd∂τu− cdv − f(u)].

Throughout this section, we fix an integer 1 ≤ ` <∞ and use the term smooth to refer to functions
of class C`.

We define the stable manifold of the wave train uwt to be the set of initial conditions u0 for which
there exists a solution u(ξ) of (4.2) with u(0) = u0 and a continuous phase function θ(ξ) such that

‖u(ξ)− uwt(kξ + θ(ξ); k)‖Y → 0

as ξ →∞. The unstable manifold is defined in the same way with the limit considered as ξ → −∞.
A center manifold Wc is a locally invariant manifold that contains all solutions which stay in a
sufficiently small neighborhood of the orbit uwt(kξ − ·) for all ξ ∈ R. Local invariance means that,
for each u0 ∈ Wc, there exists a constant δ > 0 and a solution u(ξ) ∈ Wc, defined for |ξ| < δ, with
u(0) = u0. Similarly, center-stable and center-unstable manifolds are locally invariant in forward
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and backward ξ-direction, respectively, and contain all solutions that stay in a sufficiently small
neighborhood of the wave-train orbit for all ξ ∈ R+ and R−, respectively. The strong-stable manifold
of a point uwt(θ) consists of all u0 for which there is a solution u(ξ) with ‖u(ξ)−uwt(kξ+θ−·)‖Y → 0
as ξ →∞. The strong-unstable manifold is defined analogously using the limit ξ → −∞.

We say that the above manifolds are smooth if they are smooth as manifolds and if the solutions
u(ξ;u0) define smooth local semiflows for ξ ≥ 0 and/or ξ ≤ 0 for initial data u0 in these manifolds.
We say that the center-stable manifold is smoothly fibered over the center manifold if it is the
union of disjoint smooth fibers that intersect the center manifold transversely, depend continuously
on the base point in the center manifold, and are mapped into each other by the local semiflow.
We say that the above manifolds are local if they contain all solutions with the prescribed behavior
whose initial data are close to the defect ud(0) and its τ -translates. The following result will be
proved in Appendix A.1.

Theorem 3 Each wave train has smooth local strong-stable, center-stable, center-unstable and
strong-unstable manifolds that depend smoothly on the parameters c and ω. If cd 6= cg, the center-
stable and center-unstable manifolds are smoothly fibered by the union of the strong-stable and
strong-unstable manifolds. The latter manifolds are parametrized by the asymptotic phase θ of the
periodic wave train that the solutions approach. The center-stable (center-unstable) manifolds can
be chosen so large that the given orbit {ud(ξ); ξ ≥ 0} ({ud(ξ); ξ ≤ 0}) and its τ -translates are
contained in their interior. The tangent space of the invariant manifolds evaluated at the defect
ud(0) coincide with the corresponding ranges Ej

±(0), with j = ss, cs, s, c,u, cu,uu, of the exponential
dichotomies for the linearized equation (4.3) with λ = 0 that we constructed in Section 4.1.

Corollary 5.1 Sinks, sources, and transmission defects have an asymptotic phase. More precisely,
there are constants δ > 0 and θ± ∈ R such that

ud(ξ) = uwt(k±ξ − ·+ θ±; k±) + O(e−δ|ξ|)

in Y as |ξ| → ∞. The same estimate is true for the derivatives with respect to ξ and τ . In partic-
ular, Hypothesis (4.7) in Lemma 4.4 is automatically satisfied for sinks, sources, and transmission
defects.

The following proposition is a reformulation of Lemma 4.2 using Theorem 3.

Proposition 5.2 Denote by Ecu
− and Ecs

+ the tangent spaces of the center-unstable and the center-
stable manifold at ud(0). The injection map

ι : W cu
− ×W cs

+ −→ Y, (u−,u+) 7−→ u− − u+ (5.1)

is Fredholm, i.e., it has continuous derivatives near u− = u+ = ud(0) which are Fredholm. Fur-
thermore, the Fredholm index of the derivative ι′ is given by

i = 2 if c−g ≥ cd ≥ c+g (sinks and contact defects)

i = 1 if c±g < cd or c±g > cd (transmission defects)

i = 0 if c−g < cd < c+g (sources).
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Lastly, ∂τud(0) and ∂ξud(0) belong to Ecu
− ∩ Ecs

+ , and the null space of ι′ is therefore at least
two-dimensional.

The map ι can be constructed for all (ω, c) close to (ωd, cd). If we view W cs
+ (ω, c) as the graph

of a smooth function Gcs
+ that maps W cs

+ (ωd, cd) into Euu
+ and that depends smoothly on (ω, c),

and if we define in an analogous fashion a function Gcu
− , then we can define a parameter-dependent

injection map ιp

ιp : W cu
− (ωd, cd)×W cs

+ (ωd, cd)× R× R −→ Y

(u−,u+, ω, c) 7−→ u− +Gcu
− (u−, ω, c)− u+ −Gcs

+(u+, ω, c).

Our goal is to show the persistence of defects upon varying the asymptotic wavenumbers and,
possibly, external parameters. The geometric intuition that leads to our results is illustrated in
Figure 5.1.

5.2 Sinks, sources, and transmission defects

For sinks, we set
ιsi = ιp(·, ·, ωd, cd) : W cu

− ×W cs
+ −→ Y. (5.2)

For transmission defects with c±g < cd, we fix k+ which, on account of (1.7), implies ω = ωnl(k+)−
ck+. We then define

ιtr : W cu
− ×W cs

+ × R −→ Y, ιtr(u−,u+, c) := ιp(u−,u+, ωnl(k+)− ck+, c). (5.3)

Sinks

Contact
defects

Transmission defects Sources

2

Figure 5.1: Sinks, contact defects, transmission defects (with c±g < cd), and sources correspond to
homoclinic and heteroclinic orbits of the spatial dynamical system (4.2). The asymptotic equilibria
symbolize periodic orbits, which in turn correspond to wave trains, after factoring the time-shift
symmetry (3.17). The insets show the spatial spectra of the linearization of (4.2) about the wave
trains.
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Lastly, for sources, we set

ιso = ιp : W cu
− ×W cs

+ × R× R −→ Y. (5.4)

Lemma 5.3 The maps ιj with j = si, tr, so are Fredholm maps with index i(ι′j) = 2. If ι′j is onto,
then each defect is robust. In particular, sinks occur then as two-parameter families (parametrized
by (k−, k+)), transmission defects as one-parameter families (parametrized by k+ if c±g < cd), and
sources are isolated.

Proof. The index formula follows from the bordering lemma 3.5. Thus, suppose that ι′j is onto.
For sources, there is then a locally unique root of ιso. For sinks, we can solve the equation ιsi = 0
for (u−,u+), which lives in a complement of the two-dimensional null space of ι′si, as a function
of (ωd, cd) using the implicit function theorem. The result is a two-parameter family of sinks
parametrized by (ωd, cd). Note that (ωd, cd) depend on the asymptotic wavenumbers (k−, k+)
through (1.7) and (1.8):

(k+, k−) 7−→ (ωd, cd) =
(
ωnl(k−)k+ − ωnl(k+)k−

k+ − k−
,
ωnl(k+)− ωnl(k−)

k+ − k−

)
.

Since the determinant of the derivative of this map is given by

(c+g − cd)(c−g − cd)
k+ − k−

6= 0,

we can alternatively parametrize sinks by the asymptotic wavenumbers (k−, k+). Recall here that
we assumed that sinks have k− 6= k+. Lastly, for transmission defects, the same arguments show
that they persist as one-parameter families which are parametrized by the wavenumber k+.

Note that the smooth dependence of ud(0) on parameters implies the smooth dependence of ud(ξ)
on parameters on any finite interval ξ ∈ [−L,L]. For large values of ξ, the defects select a strong-
stable fiber that itself depends smoothly on parameters and on its base point in a uniform topology,
possibly after reparametrizing ξ. We refer to Appendix A.1 for the existence of these fibers.

We remark that we may also include external parameters, for instance, parameters in the nonlinear-
ity f or the diffusion matrix D, in the definition of our maps ιj . As a result, the defects considered
in Lemma 5.3 depend smoothly on external parameters provided the maps ι′j are onto.

The following proposition links spectral properties of transverse defects to the codimension of the
range of ι′j .

Proposition 5.4 For sinks, sources, and transmission defects, the linear operator ι′j with j =
si, tr, so is onto if, and only if, the defect is transverse, i.e., if, and only if, the spectrum of the
defect at the origin is minimal.

Proof. We have to show that, under the spectral assumptions for elementary transverse defects,
the map ιj is onto if, and only if, the critical spectrum is minimal. This then proves the robustness
theorem for sinks, transmission defects, and sources, invoking Lemma 5.3.
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Sinks: Suppose that ι′si is onto. Proposition 5.2 and Lemma 5.3 imply that each bounded solution
to equation (4.3) with λ = 0,

uξ = v (5.5)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u],

is a linear combination of ∂τud and ∂ξud. We claim that Ess
+(0) and Euu

− (0) intersect trivially.
Indeed, as a consequence of Corollary 5.1, the linear combinations (k+∂τ + ∂ξ)ud(ξ, ·) and (k−∂τ +
∂ξ)ud(ξ, ·) are the unique linear combinations that result in exponentially decaying functions as
ξ → ∞ and ξ → −∞, respectively. Since k− 6= k+, however, these combinations do not match,
and none of the linear combinations will therefore decay at both ξ = ∞ and ξ = −∞. This shows
that there are no solutions to (5.5) that decay exponentially as |ξ| → ∞, and the sink is therefore
transverse.

Conversely, assume that the dimension of the null space of ι′si is at least three, then there exists
a solution u∗ to (5.5) which is linearly independent of ∂ξud and ∂τud. Since the spatial Floquet
exponent ν = 0 of the equation for the asymptotic wave trains is simple, we may write the solution
u∗ as

u∗(ξ, ·) = a±u′wt(k±ξ − ·; k±) + O(e−δ|ξ|)

for some δ > 0 as ξ → ±∞. Exploiting the expansion for ud and the fact that k− 6= k+, we find
constants c1 and c2 so that

u∗ + c1∂τud + c2∂ξud

decays exponentially as |ξ| → ∞. This shows that the null space of the linearized period map,
considered in L2

η−,η+
with η− > 0 > η+ close to zero, is not trivial.

Sources: Assume that ι′so is onto. The first components of the two bounded, linearly independent
solutions ∂ξud and ∂τud of (5.5) form a two-dimensional subspace in the null space of the linearized
period map Φd considered in L2

η−,η+
with η− < 0 < η+. Since the null space of ι′so contains all

solutions with sufficiently mild exponential growth, the geometric multiplicity of λ = 0 is equal to
two. We need to exclude generalized eigenfunctions. Assume therefore that ǔ∗ satisfies

ǔ∗(·, 2π) = Φdǔ∗(·, 0) = ǔ∗(·, 0) + (c1∂τ + c2∂ξ)ud(·, 2π).

If we set
u∗(ξ, τ) = ǔ∗(ξ, τ)−

τ

2π
[c1∂τ + c2∂ξ]ud(ξ, τ),

then u∗ = (u∗, ∂ξu∗) is in Y for all ξ and satisfies

uξ = v (5.6)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, ·))u− (ωd/2π)(c1∂τud(ξ, ·) + c2vd(ξ, ·))],

where ud = (ud, vd). Equation (5.6) is exactly the variational equation in the extended phase space,
where ω and c are considered as additional variables. In particular, this equation in the extended
phase space has a bounded solution that is linearly independent of the derivatives of the defect
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with respect to τ and ξ. As a consequence, the null space of ι′so is at least three-dimensional, and
ι′so cannot be onto. This proves that the algebraic multiplicity of λ = 0 is equal to two.

Conversely, assume that the algebraic multiplicity of the linearized period map Φd is two, but that
ι′so is not onto. By Fredholm theory, either the null space of ∂(u−,u+)ιso has dimension larger than
two or else the ranges of ∂(ω,c)ιso and of ∂(u−,u+)ιso have a non-trivial intersection. In the first case,
we can easily construct additional eigenfunctions and, in the second case, generalized eigenfunctions
of the linearized period map Φd, contradicting our starting assumption.

Transmission defects: We assume that ι′tr is onto. Arguing as for sources, we conclude that the
geometric multiplicity of λ = 0 is equal to one with the null space of Φd spanned by (k+∂τ +∂ξ)ud.
We argue by contradiction and assume there is a generalized eigenvector. As for sources, this
assumption gives a solution of

uξ = v (5.7)

vξ = D−1[ωd∂τu− cdv − f ′(ud(ξ, τ))u− vd(ξ, τ)− k+∂τud(ξ, τ)]

which is bounded as ξ → −∞ and decays exponentially as ξ →∞. The construction of ιtr in (5.3)
shows that (5.7) is the variational equation associated with ∂cι. Therefore, ι′tr will have a null space
of dimension larger than two, contradicting our assumption. The converse follows similarly.

5.3 Contact defects

Recall that Ec
± is two-dimensional for contact defects. We shall need the two injection maps

ι+ : W cu
− ×W ss

+ −→ Y, (u−,u+) 7−→ u− − u+ (5.8)

ι− : W uu
− ×W cs

+ −→ Y, (u−,u+) 7−→ u− − u+.

Both maps depend smoothly on additional parameters if any are present. Counting dimensions,
the bordering lemma 3.5 shows that ι± are both Fredholm maps with index zero.

Lemma 5.5 Contact defects occur as robust one-parameter families in the asymptotic wavenumber
k = k± provided both ι′+ and ι′− are onto (and therefore invertible).

Proof. First note that, since ι+ is onto, so is the map ι from (5.1). In particular, via Lyapunov–
Schmidt reduction, the intersection of center-unstable and center-stable manifolds persists. We
claim that the defect lies neither in the strong-stable nor the strong-unstable manifold. Indeed,
if it were, ι+ or ι− would have a non-trivial kernel and could therefore not be onto. The com-
plement of the strong-stable manifold in the center-stable manifold of the wave train is an open
subset of the center-stable manifold (initially in a neighborhood of the wave train, but then also in
a neighborhood of ud(0) upon using continuity of the evolution on the center-stable manifold). In
particular, the perturbed intersection points in W cs

+ still belong to the interior of the center-stable
manifold. A similar description is true for the center-unstable manifold which shows persistence
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for nearby wavenumbers and parameters upon varying cd = ω′nl(k) appropriately. Smooth depen-
dence of contact defects on parameters in a ξ-uniform topology is achieved after an appropriate
reparametrization of the spatial time variable ξ.

Proposition 5.6 The injection maps ι′± are both onto if, and only if, the minimal-spectrum as-
sumption holds, i.e., if, and only if, the contact defect is transverse.

Proof. The null spaces of ι′− and ι′+ consist exactly of eigenfunctions of the linearized period map
Φd in L2

η−,η+
with exponential weights η− = η+ < 0 and η− = η+ > 0, respectively.

Lemma 5.5 and Proposition 5.6 implicitly show that higher-dimensional intersections of center-
stable and center-unstable manifolds would contribute to the null spaces of ι+ and ι−. They would,
however, typically not contribute an additional root of the extension into λ = 0 of the Evans
function E(λ) of Theorem 2. Indeed, we proved in [49] that roots of the extended Evans function
are generated by solutions of the linearized equation that decay like 1/|ξ|. The additional solutions
u∗ of the linearized equation, which correspond to the additional direction in the intersection of
center-stable and center-unstable manifolds, would have asymptotics of the form u∗ ≈ a±u′wt as
ξ → ±∞. We expect a+ 6= a−, and since ∂τud and ∂ξud have the same asymptotics at ξ = ∞ and
at ξ = −∞ (recall that k− = k+ for contact defects), we cannot make a− = a+ = 0 by adding
appropriate linear combinations of ∂τud and ∂ξud.

Similarly, the orbit-flip situation where the contact defect lies in the strong-stable or the strong-
unstable manifold cannot be excluded from considerations of the extended Evans function that we
constructed in [49]. We refer to Section 6.4 for some puzzling consequences of these facts.

Proof of Theorem 1. For transverse sinks, sources, and transmission defects, Proposition 5.4
shows that we can apply Lemma 5.3 to find locally unique and robust families of defects. On the
other hand, the maps ι′j , evaluated along this family, remain onto which, using the equivalence
proved in Proposition 5.4, shows that the defects in the family are transverse, i.e., that they
satisfy the minimal-spectrum assumption. For contact defects, the same conclusion is reached by
combining Lemma 5.5 and Proposition 5.6.

6 Stability, bifurcations, pinning, and truncation

We collect various consequences of our results and point out a number of open problems related to
the proposed classification of defects in one-dimensional media.

6.1 Stability

An important feature of transverse defects are the point and essential spectra of the linearized
period map. The following theorem summarizes our findings, illustrated also in Figure 6.1, for the
temporal Floquet exponents of Φd.
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Figure 6.1: Plotted are the Floquet spectra near λ = 0 of the maps Φd, posed on L2
η(R,Cn), for

transverse sinks, contact defects, transmission defects, and sources with weights η = (η−, η+) as in
(6.1). Solid lines denote the Floquet spectra of the asymptotic wave trains, while the shaded areas
correspond to regions where Φd − ρ is Fredholm with non-zero index i. The bullets label eigenvalues
with the attached number indicating their multiplicity (the algebraic and geometric multiplicities
coincide).

Theorem 4 The following is true for transverse sinks, contact defects, transmission defects, and
sources. Choose weights η = (η−, η+) close to zero such that

η− < 0 < η+ for sinks

η− = η+ = 0 for contact defects (6.1)

η−, η+ > 0 for transmission defects with c±g < cd

η− > 0 > η+ for sources.

The Floquet spectra, in a sufficiently small neighborhood of λ = 0, of the period map Φd posed on
L2

η(R,Cn) are as shown in Figure 6.1.

Transverse sinks that have no additional isolated eigenvalues in the closed right half-plane are
nonlinearly asymptotically stable for (1.1) in that perturbations decay in L2

η for weights η as in
(6.1). For transverse sources, the two eigenfunctions of the adjoint operator Φad

d −1 on L2
−η(R,Cn)

are exponentially localized.

Proof. We proved in Lemma 4.3 that the essential Floquet spectrum of sinks, sources, and
transmission defects lies in the left half-plane for the weights chosen in (6.1). For contact defects,
there is an additional subtlety: The curve that corresponds to the linear dispersion relation of the
asymptotic wave train has a cusp at λ = 0. Indeed, the dispersion relation in the frame moving
with speed cd is given by (3.12)

λlin(ν) = [cd − cg]ν + d‖ν
2 + d3ν

3 + O(ν4)

where the coefficients d‖ and d3 are real. Since we have cd = cg, we obtain

λ(iγ) = −d‖γ2 + id3γ
3 + O(γ4) (6.2)

so that Reλ = [d3 Imλ/d‖]2/3 has a cusp point at the origin as claimed provided d3 6= 0.

Lemma 3.6 and 4.1 together show that the Fredholm index for sinks and sources jumps by +1 and
−1, respectively, when λ crosses Σ−

wt or Σ+
wt from right to left, while the Fredholm index of contact

and transmission defects is zero to the left of the Floquet spectra Σ−
wt∪Σ+

wt. The statements about
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Figure 6.2: Plotted are the Floquet spectra of contact defects near λ = 0 of the maps Φd on L2(R,Cn)
and L2

η(R,Cn) for non-zero η− = η+ close to zero. The map Φd − ρ is Fredholm with index zero off
the solid lines.

the algebraic and geometric multiplicity of eigenvalues at λ = 0 follows at once from Lemma 4.4
and the proof of Proposition 5.4. Theorem 2 shows that the Evans function of transverse contact
defects has a simple root at λ = 0.

Nonlinear stability of spectrally stable sinks in L2
η(R,Cn) follows easily since the period map is a

contraction, while the nonlinearity f is well-defined and smooth on L2
η(R,Cn) provided the weights

are chosen as in (6.1). We refer to [10, 53] for details. Lastly, the statement about the exponential
localization of the two adjoint eigenfunctions for sources is simply Corollary 4.5.

The spectrum of contact defects in L2
η is shown in Figure 6.2. In particular, it is an immediate

consequence of (6.2) that the essential spectrum is always unstable whenever the rates η− = η+ of
the exponential weights are not zero.

The above theorem implies, in particular, that spectrally stable transverse sinks are nonlinearly
asymptotically stable under small exponentially localized perturbations7: these perturbations decay
exponentially in time, and we recover the same sink with no shift in its spatial or phase position
since there is no point spectrum in the closed right half-plane.

The nonlinear stability of a specific transmission defect has been proved recently in a context of
small-amplitude background waves [16]. For contact defects, the only related results we know of
are in the context of conservation laws where Howard [24] recently investigated degenerate shock
waves. We are not aware of any nonlinear stability results for sources. We expect, however, results
along the following lines:

Perturbations of transmission defects should relax to a spatio-temporal translate of the original
defect that preserves the relative phase of the wave train whose group velocity is directed towards
the defect. Thus, if c+g < cd, say, then an initial condition u(x, 0) close to the transmission defect
ud(x, 0) evolves towards a shifted transmission defect

u(x, t) −→ ud(x̌− cdť, ť)

as t → ∞ where kx̌ − ωť = kx − ωt. This is immediately clear on the linearized level, using the
exponential weights (6.1), and has been proved for the example considered in [16].

Sources, on the other hand, should have a unique position and a unique phase as evidenced by
the fact that the adjoint eigenfunctions are exponentially localized. This implies that the spectral

7Nonlinear stability results using weaker polynomials weights have been established in specific examples [14, 28].
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projection onto the two-dimensional eigenspace consisting of space and time translations of the
defect is well defined in L2

η with weights as in (6.1). Thus, the linear analysis predicts that the
shifts in space x̌− x and time ť− t are uncorrelated.

6.2 Phase matching

Phase matching at defects has recently been discussed quite extensively in the physics literature
[1, 22, 35, 36]. To explain this issue, we fix a continuous function ϑ(k) and define the phase of a
wave train to be its argument

φ[uwt(φ; k)] := φ− ϑ(k) (6.3)

after subtracting the fixed phase shift ϑ(k). Note that it is natural to choose ϑ(k) subject to
ϑ(k) = −ϑ(−k) to account for the reflection symmetry of the reaction-diffusion system (1.1).

Elementary defects ǔd(x, t) with asymptotic phase, i.e. sinks, transmission defects and sources,
satisfy

ǔd(x, t)− u±wt(k±x− ωnl(k±)t+ θ±; k±) −→ 0

as x → ±∞ for appropriate constant phase corrections θ±. If we wish to measure the phase
mismatch [φ] across the characteristic x − cdt = ξpm for some fixed ξpm ∈ R, we can do so by
defining the two phases

φ±(t) := φ[u±wt(k±x− ωnl(k±)t+ θ±; k±)] = φ[u±wt(k±ξpm − ωdt+ θ±; k±)]

= k±ξpm − ωdt+ θ± − ϑ(k±)

and then take their difference to get

[φ] := φ+(t)− φ−(t) = [k]ξpm + [θ]− [ϑ] (6.4)

where we use the notation [F ] = F (k+) − F (k−) to denote jumps of functions across the defect.
We call [φ] the phase slip across the defect along the characteristic line x − cdt = ξpm. Note that
the position ξpm along which we measure the phase slip is somewhat arbitrary. We also emphasize
that the definition of the phase slip relies on the assumption that the frequencies of the asymptotic
wave trains coincide when computed in the frame that moves with the speed cd of the defect.

The phase slip [φ] for transmission defects with k− = k+ is given by [φ] = [θ] = θ+ − θ− and
therefore independent of the position ξ±. Instead, it depends only on the difference between the
asymptotic phase corrections θ±. For contact defects, we can also define a phase slip. Contact
defects satisfy [10, 49]

ǔd(x, t)− uwt(kx− ωnl(k)t+ θ± + θ̌ log(x− cdt); k) −→ 0

so that their phase slip is again given by [φ] = [θ] since the logarithmic terms cancel.

In summary, sinks and sources have a phase slip [φ] = [k]ξpm + [θ − ϑ] that is periodic in ξpm with
period 2π/[k]. In particular, we can always arrange to obtain zero phase-slip [φ] = 0 by measuring
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at the “correct” characteristic line. For contact defects and for transmission defects with [k] = 0,
the phase slip [φ] = [θ] is an intrinsic property of the defect that, in particular, does not depend on
where we measure it.

We may use the phase slip to track the position x = ξpm + cdt of sinks and sources (even though
the phase slip defines the position only in S1 which is a minor complication when we consider small
perturbations of a given defect). A given phase slip [φ] therefore gives a certain well defined position
x = ξpm + cdt of the defect. We may then compare the position of an unperturbed defect with the
position of the defect after adding a small perturbation. For sinks, the asymptotic relaxation of
perturbations to exactly the same sink guarantees that the position of the perturbed defect is the
same as the position of the unperturbed defect, whereas we expect shifts of the position for sources.

6.3 Reflection symmetries

The reaction-diffusion system (1.1) respects the reflection symmetry x 7→ −x in addition to the
spatio-temporal translation symmetries. Thus, defects with speed zero are somewhat distinguished.
We therefore set c = 0 in this section, so that x is the spatial variable in the modulated-wave
equation (4.2)

ux = v (6.5)

vx = D−1[ωd∂τu− f(u)].

The reflection symmetry x 7→ −x for (1.1) manifests itself as a reversibility for (6.5). In fact,
exploiting also the time-shift symmetry of (6.5), both

R0 : (u, v)(τ) 7→ (u,−v)(τ) and Rπ : (u, v)(τ) 7→ (u,−v)(τ + π) (6.6)

are reversibility operators that anti-commute with the right-hand side of (6.5).

We may now seek symmetric defects to (1.1) which correspond to reversible homoclinic and
heteroclinic orbits of (6.5). Reversible connecting orbits can be found as intersections of the
center-unstable manifold of the asymptotic wave train at x = −∞ with the fixed-point spaces
Fix(R0) = {(u, v); v = 0} or Fix(Rπ) = {(u, v); v(τ) = −v(τ + π)} of the reversibility operators
R0 or Rπ, respectively. Note that the resulting defects have k+ = −k−, and therefore c+g = −c−g
since ωnl(−k) = −ωnl(k). In particular, transmission defects cannot be symmetric, since the group
velocities to the left and right can have the same sign only if they both vanish.

Using the map
ιj : W cu

− × Fix(Rj) −→ Y, (u−,u0) 7−→ u− − u0

for j = 0, π, we can again compute its Fredholm index and compare it with robustness properties
of symmetric defects. We obtain that symmetric sinks (with respect to either R0 or Rπ) arise as
robust one-parameter families, while symmetric sources and contact defects are robust and occur
for isolated values of the parameter k− (note that c = 0 is required for symmetric defects). We
remark that both Rπ-symmetric sources [37] and Rπ-symmetric contact defects [57] have been
observed in experiments.
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6.4 Bifurcations

We address instabilities of defects and transitions between different defect types. From the spatial-
dynamics perspective, this amounts to investigating homoclinic and heteroclinic bifurcations.

Saddle-node bifurcations of wave trains

As outlined in Example II of Section 1.3, stable sinks with “small” amplitude are created at saddle-
node bifurcations of wave trains [10, 25]. Indeed, if we consider the modulated-wave equation near
a wave train in the frame that moves with its group velocity cd = cg, then the wave train has an
algebraically double spatial Floquet exponent ν = 0 (see Section 3.4 and Figure 3.1). If we keep the
defect speed fixed at cd = cg(k∗), then the saddle node can be unfolded by varying the frequency
ωd near ωnl(k∗), where k∗ is the wavenumber of the wave train we started with. The vector field on
the resulting two-dimensional center manifold is invariant under the temporal time-shift symmetry
and is given by

φξ = q + O(q2), λ′′lin(0)qξ = ω̌ − ω′′nl(k)q
2 + O(|ω̌2|+ |ω̌q|+ |q|3) (6.7)

where (φ, q) correspond roughly to phase and wavenumber, and where ω = ω̌+ωnl(k∗). To leading
order, we therefore recover the steady-state equation of Burgers equation (1.19) which, as discussed
in Section 1.3, admits stable sinks. We refer to Figure 6.3 for an illustration.

Large-amplitude sinks arise close to contact defects. If we vary frequency or speed so that the
saddle-node wave trains splits into two wave trains, then the saddle-node homoclinic orbit that
corresponds to the contact defect becomes a heteroclinic orbit—in fact, a sink—that connects the
two wave trains (as illustrated in the lower-left half of Figure 6.4). It is an interesting problem
to determine whether the resulting sink is stable or not. On account of Theorem 2, the Evans
function of the contact defect will have a simple zero at the origin, while the sink does not have
an eigenvalue at λ = 0. Thus, we expect that the sink will have either a weakly stable or a weakly
unstable eigenvalue near zero.

We remark that the bottom of Figure 6.4 also illustrates that the same wave trains can accommodate
several distinct defects. Indeed, the two wave trains in the bottom plot of Figure 6.4 are connected
by a “small-amplitude” and a “large-amplitude” sink.

ωd = ωnl(k∗) ωd > ωnl(k∗)

sink

Figure 6.3: The unfolding of a saddle-node wave train generates a “small-amplitude” sink that
connects two wave trains (the sketch assumes that ω′′nl(k∗) > 0).
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Folds

Next, we discuss what happens when the minimal-spectrum assumption, which is equivalent to the
transversality condition for center-stable and center-unstable manifolds in the proof of Theorem 1, is
violated. In this case, sinks acquire a simple eigenvalue at λ = 0 in the space L2

η with sign η± = ±1.
This degeneracy corresponds to a tangency of the center-unstable and center-stable manifolds of the
wave trains in the modulated-wave equation (4.2). Thus, if the tangency is quadratic as expected,
it will persist along a curve in (k−, k+)-parameter space. On one side of this curve, there exists a
pair of sinks, while there are no sinks on its other side. It is not hard to prove that the additional
critical eigenvalue near λ = 0 will stabilize one of the two sinks and destabilize the other one. The
scenario for transmission defects and sources is similar since the linearization acquires a Jordan
block of length two. For transmission defects, we then see two defects for k < k∗, say, and none for
k > k∗, while folds for sources occur only when an additional external parameter is present.

Contact defects behave differently. If the center-stable and center-unstable manifolds intersect tan-
gentially, we expect again a standard saddle-node bifurcation of contact defects in the modulated-
wave equation that is unfolded by the wavenumber k. Since the asymptotic wavenumbers are
identical, the tangency will, however, not generate a localized eigenfunction of the linearization. In
particular, the Evans function near λ = 0 does not change at all. Thus, none of the two contact
defects will acquire any additional eigenvalues, and both of them will be spectrally stable! Instead,
an unstable root arises for the Evans functions associated with the maps ι± from (5.8) which have
the wrong Morse index. Of course, the two stable contact defects are not close to each other in the
supremum norm which precludes viewing one of them as a small perturbation of the other one.

Locking and unlocking via flip bifurcations

Contact defects are also destroyed at values of k at which the center-unstable manifold intersects
the center-stable manifold along the strong-stable manifold of the asymptotic wave train. The

contact defect transmission defect

sink

Figure 6.4: The saddle-node homoclinic bifurcation in the two-dimensional parameter space.
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contact defect
source

Figure 6.5: The double-flip homoclinic bifurcation in the three-dimensional parameter space.

associated homoclinic flip bifurcation has been analysed in [5] for ODEs, and the resulting bifur-
cation diagram is shown in Figure 6.4. We remark that it is straightforward to obtain the same
for (4.2) by using exponential dichotomies and foliations of center-stable and center-unstable man-
ifolds. Note that the contact defect exists for wavenumbers below a critical wavenumber, say, and
its speed is therefore determined solely by the group velocity. Above the critical wavenumber, the
defect changes into a transmission defect whose speed is now determined by a Melnikov integral
that depends on the profile of the defect. Thus, we may refer to this bifurcation as an unlocking
bifurcation at which the speed of the defect unlocks from the group velocity of the underlying wave
trains. We remark that neither the transmission defect nor the contact defect acquires any addi-
tional eigenvalues during this transition. Phenomenologically, the unlocking transition is preceded
by an increasing localization of the defect structure. At the bifurcation point, the convergence
towards the wave trains changes from algebraic to exponential. The unlocked transmission defect
approaches the wave train ahead8 of it with a uniform exponential rate, whereas the relaxation to-
wards the wave train behind the defect occurs with a weak exponential rate. A similar phenomenon
occurs when transmission defects bifurcate from pulses at parameter values where the homogeneous
background undergoes a Turing instability [43].

A more dramatic unlocking bifurcation occurs if we allow an additional external parameter µ to
vary. It can then happen that both the strong-stable and strong-unstable manifolds of a saddle-
node periodic orbit intersect, which can be interpreted as the simultaneous unlocking of the contact
defect at both end points. The analysis of this bifurcation is very similar to the one for localized in-
homogeneities of wave trains with zero group velocity that we will discuss in Section 6.5. According
to the bifurcation diagram shown in Figure 6.5, we find contact defects before the bifurcation and
sources afterwards. Note that the source coexists with the small-amplitude sink that is created in
the saddle-node bifurcation. Source and sink together can now form a bound state that corresponds
to a transmission defect.

8If cg(k±) < cd, then we say, by definition, that the wave train at ξ = −∞ is behind the defect, while the wave

train at ξ =∞ is ahead of the defect. If cg(k±) > cd, then we reverse these definitions.
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Other bifurcations

Defects may also arise when additional harmonic frequencies are introduced. Motivated by exper-
iments [57] and numerical simulations [17], we have analysed which defects can be created near
period-doubling bifurcations of wave trains. We showed in [51] that phase-slip defects can arise as
interfaces between spatially homogeneous oscillations with a relative phase shift of π.

Of course, there are many more bifurcations that we expect to encounter. Sinks, for instance,
persist even if we vary the two wavenumbers of the asymptotic wave trains independently, and we
should therefore expect to observe any heteroclinic bifurcation of codimension two. In fact, even
non-transverse homoclinic orbits may occur for large sets in parameter space.

The examples above notwithstanding, homoclinic and heteroclinic bifurcations can result in very
complicated solution structures, and a complete classification appears to be impossible. To give
a few examples, homoclinic orbits with complex spatial Floquet exponents are accompanied by
a plethora of multi-loop solutions. Sources and sinks that travel with the same speed form a
heteroclinic loop, and the resulting heteroclinic bifurcation may lead to various different source-
sink bound states (each being a transmission defect).

6.5 Pinning at inhomogeneities

Most of the counting arguments in Sections 4 and 5 rely on the fact that ∂τud and ∂ξud provide
bounded solutions of the linearization of (4.2) about a defect, while ωd and cd provided the cor-
responding Lagrange multipliers. Spatial inhomogeneities break the translation symmetry, which
prevents us from using moving frames. In particular, we will only be able to study defects with
vanishing speed cd = 0. Thus, consider the equation

ut = Duxx + f(u) + εg(x, u) (6.8)

where we assume that the inhomogeneity g is localized so that g(x, u) → 0 exponentially as x →
±∞. The following result shows that standing sources persist at isolated positions for ε 6= 0 and
are therefore pinned to the inhomogeneity. Similar results are true for contact defects with zero
speed.

Theorem 5 Suppose that ud(x, τ) is a transverse source of (1.1) with cd = 0. If we define9

M(p) :=
∫ ∞

−∞

∫ 2π

0
〈ψc

d(x, τ), g(x− p, ud(x, τ))〉Rn dτ dx,

then the source ud(x+ p, τ) persists as a solution to (6.8) for ε close to zero provided p is a simple
root of the Melnikov function M(p). Furthermore, the temporal frequency ω∗d(ε) of the perturbed
source is given by

ω∗d(ε) = ωd + ε

∫ ∞

−∞

∫ 2π

0
〈ψω

d (x, τ), g(x− p, ud(x, τ))〉Rn dτ dx+ O(ε2).

9The functions ψc
d(x, τ) and ψω

d (x, τ) have been defined in Corollary 4.5.
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Proof. The result follows from Lyapunov–Schmidt reduction applied to the spatial dynamical
system (4.2). We omit the details and refer instead to [38, Section 5] and [48, Section 8], where
analogous analyses have been carried out.

Corollary 6.1 If the hypotheses of the preceding theorem are met, and both the source and the
inhomogeneity are symmetric (i.e. invariant under x 7→ −x), then the Melnikov function M(p) is
odd. The symmetric source located at x = 0 persists for ε 6= 0 provided∫ ∞

−∞

∫ 2π

0
〈ψc

d(x, τ), gx(x, ud(x, τ))〉dτ dx 6= 0.

Proof. The bounded solution of (2.17) that corresponds to ψc
d is of the form

ψ(ξ, τ) =

(
cdψ(ξ, τ)− ∂ξψ(ξ, τ)

Dψ(ξ, τ)

)
.

It is a consequence of [56] and the discussion in Section 6.3 that ψ(0, ·) lies in the fixed-point space
Fix(R0) of the reversibility operator R0. In particular, ψc

d(x, τ) is odd in x, and the corollary
follows then from Theorem 5.

In summary, large-amplitude sources with zero speed will be pinned to inhomogeneities, and their
temporal frequency will change according to Theorem 5. In general, we therefore expect to see
several pinned sources that have different temporal frequencies which depend on the location of
the defects. Thus, our analysis seems to corroborate the statements made in [22, §6.2.1] where
inhomogeneities are mentioned as a possible explanation for the occurrence of what appears to be
a one-parameter family of sources in the experiments [1]. The experimental observations reported
in [35] seem to indicate, however, that these sources drift and are therefore not pinned. This issue
therefore warrants further investigation.

For sinks with cd = 0, we do not expect pinning. Indeed, the intersection of center-unstable
and center-stable manifolds is transverse for sinks at ε = 0 and therefore persists as a family of
transverse intersections for all small ε independently of where we place the sink.

An alternative heuristic way of investigating the interaction of small-amplitude sinks with even
smaller localized slowly-varying inhomogeneities is via the approximation by Burgers equation that
we discussed in Section 1.3. For ε = 0, the sinks or shocks in Burgers equation have an eigenvalue
at zero which is induced by translation symmetry. The resulting normally-hyperbolic invariant
manifold that consists of all translates of the sink persists for all ε close to zero. The leading-
order terms of the perturbed flow on the invariant manifold are obtained by projecting the term in
Burgers equation that represents the inhomogeneous term g(x, u) in (6.8) onto the manifold using
the adjoint eigenfunction associated with the translation eigenvalue. In conservation laws, the null
space of the adjoint is spanned by the constant function, so that the perturbed flow is given by
the mass of the term that represents the inhomogeneity g(x, u). Since Burgers equation (1.19) is
written in terms of the wavenumber, it turns out that the derivative gx(x, u) of the inhomogeneity
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(i) (ii) (iii)

Ss
+

Su
−

Ss
+

Su
−

W c

W ss
+ (u+

wt)

W uu
− (u−wt)

source

Figure 6.6: Inhomogeneities may create contact defects (ii) or sources (iii).

arises in Burgers equation. Therefore, since the mass of gx(x, u) is zero, the reduced flow on the
perturbed manifold vanishes to leading order, and the family of sinks persists with positions that
are independent of the inhomogeneity. The spatial-dynamics argument presented above shows that
the higher-order terms do not make a difference and that the situation remains unchanged for
large-amplitude sinks and, typically, for large inhomogeneities.

This analysis of Burgers equation suggests also that sinks with cd 6= 0 will simply outrun the
inhomogeneity without experiencing a noticeable change of velocity, so that the inhomogeneity
will merely affect the asymptotic wave train. Thus, we shall now briefly discuss the influence
of inhomogeneities on wave trains. Note that wave trains with non-zero group velocity are not
affected by an inhomogeneity as they arise as transverse intersections of their center-stable and
center-unstable manifolds of (6.8) with ε = 0 which persist for all ε close to zero. In this setting,
we may interpret inhomogeneities as pinned transmission defects.

Wave trains with zero group velocity behave differently since small localized inhomogeneities create
either contact defects or sources within such wave trains. To prove this, we again interpret wave
trains as transverse intersections of center-unstable and center-stable manifolds. For wave trains
with zero group velocity, this intersection, which consists precisely of the center manifold, is two-
dimensional, and the vector field on it is given by (6.7) [10]. Factoring out the S1-symmetry that
is generated by the temporal time-shift, we are left with a small line segment parametrized by
the wavenumber q. As illustrated in Figure 6.6(i), this line segment, considered as a subset of
W cu
− , is separated at uuu

− into two half-lines by the strong-unstable manifold of the periodic orbit
that corresponds to the wave train. Similarly, the strong-stable manifold cuts the line segment,
considered as a subset of W cs

+ , into two half-lines at uss
+. Without an inhomogeneity, we have

uss
+ = uuu

− = uwt as shown in Figure 6.6(i). The set of those initial data in W cu
− whose solutions

converge towards the wave train as ξ → −∞ (which we will refer to as the unstable set Su
−) consists

of points with line-segment coordinate u < uuu
− , i.e. of “half” of W cu

− . Analogously, the stable set
Ss

+ of those data whose solutions converge to the wave train as ξ → ∞ consists of points whose
line-segment coordinate satisfies u > uss

+.

Upon introducing the inhomogeneity, the transverse intersection will persist, but the stable and
unstable sets may split. If uuu

− > uss
+ as illustrated in Figure 6.6(ii), then an intersection

Ss
+ ∩ Su

− = {u ∈W cu
− ∩W cs

+ ; uuu
− > u > uss

+}
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occurs which corresponds to a one-parameter family of contact defects with varying phase-slip. If
the stable and unstable sets split in the opposite direction, so that uuu

− < uss
+, then contact defects

cannot appear. In this case, we may, however, use the parameter ω = ωnl(k∗) + ω̌ to unfold the
saddle-node wave trains at x = ±∞. While the intersection points on the fibers move linearly with
ω̌, the dynamics on the base points of the fibers changes with the square root of ω̌. Thus, we denote
the strong-stable manifold of the wave train u+

wt at x = ∞ with positive group velocity by W ss
+ (u+

wt)
and, analogously, the strong-unstable manifold of the wave train u−wt at x = −∞ with negative
group velocity by W uu

− (u−wt). Furthermore, we denote their intersections with the one-dimensional
manifold W c at x = 0 by vss

+ and vuu
− , respectively. We then have vss

+(ω̌) = uss(ε) − a+

√
ω̌ and

vuu
− (ω̌) = uuu(ε) + a−

√
ω̌ for certain positive coefficients a± > 0. In particular, we find a unique ω̌

such that uss
+(ω̌) = uuu

− (ω̌) which corresponds to a source as claimed.

6.6 Frequency locking through periodic forcing

Time-periodic forcing of the reaction-diffusion system breaks the temporal translation invariance
and therefore tends to lock the frequency of defects to integer multiples of the forcing frequency
ωf . As a consequence, the frequency is effectively removed as a parameter, and the time-derivative
∂τud of defects does no longer contribute to the null space of Φd. Wave trains are still parametrized
by their wavenumber k and arise as time-periodic solutions in a frame that moves with speed c

where
ωnl(k)− kc = ωf . (6.9)

Note that the forcing frequency ωf and the nonlinear dispersion relation ωnl in the above equation
can be replaced by rational multiples which leads to further complications. For simplicity, we
therefore focus on the simplest possible scenario. Thus, assume that the autonomous system (4.2)
admits a transverse defect so that (6.9) is met for both k = k− and k = k+ with c = cd. We then
add a forcing term εg(t, u) with temporal frequency ωf to (1.1). A sink will persist regardless of its
phase relative to the periodic forcing since the map ιsi defined in (5.2) is onto (here, we add ε as
a parameter and keep k± fixed). For sources, we cannot vary the variable ωd that appears in the
map ιso from (5.4). Instead, we use the relative phase difference θ defined via ud(ξ, τ + θ). As in
Section 6.5, we can then prove that sources persist for phase differences that correspond to simple
roots of an appropriate Melnikov function M(θ). There should be an even number of such roots,
which correspond to persisting sources that are alternately spectrally stable and unstable.

Alternatively, we may seek small-amplitude defects by studying the effect of temporal forcing on
wave trains. As outlined above, wave trains will simply adjust their speed to ensure that (6.9) is
met, and small-amplitude defects will therefore not occur. This works except when the forcing is
in resonance with the group velocity so that

ωnl(k∗)− k∗cg(k∗) = ωf .

The spatial dynamics near the forced wave train is then described by an autonomous saddle-node
bifurcation

θξ = k∗ + ǩ + O(ε), ǩξ = č(k∗ + ǩ)− ǩ2 + O(ε)
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of a periodic orbit whose temporal frequency is locked to ωf . The variables ǩ and č denote the
deviations from the wavenumber k∗ and the group velocity cg(k∗), respectively. Thus, we find small
heteroclinic orbits that correspond to small-amplitude sinks. If we wish to find more complicated
defects, we need to consider forcing frequencies that are in resonance with spatially homogeneous
oscillations for which k∗ = 0.

6.7 Locking of defect speed and phase velocity

Frequency locking can also occur when ωd vanishes at a given defect. In this case, the defect does
not depend on time when considered in its co-moving frame, and therefore satisfies the travelling-
wave ODE (2.4). We briefly discuss for each defect type with what codimension this situation
arises. Note that ωd = 0 if, and only if, the phase velocities cp(k−) = cp(k+) are equal. Since
we are mainly interested in waves with a non-zero group velocity, we assume that the nonlinear
dispersion relation ωnl(k) is not constant on any open non-empty interval.

Transmission defects with k− = k+ occur as transverse homoclinic connections of a hyperbolic
periodic orbit of (2.4). The periodic orbits as well as the homoclinic connection therefore persist if
we vary k− = k+, provided we choose c = cp = ωnl(k)/k. Thus, transmission defects arise with the
same codimension as travelling waves and as proper modulated waves. In particular, defect speed
and phase velocities can lock.

In contrast, phase velocity and defect speed of sinks, sources, and contact defects do not lock,
since these defects arise as travelling waves only with a larger codimension than as defects with
ωd 6= 0. Indeed, sinks and sources have k− 6= k+, so that the condition cp(k−) = cp(k+) is a genuine
additional equation that raises the codimension by one. For contact defects, we need cp(k) = cg(k)
along the branch which holds only if ω′′nl(k) = 0 as an explicit computation shows.

6.8 Large bounded domains

So far, we focused on defects on the unbounded real line. Experiments, however, take place on
bounded domains in a fixed laboratory frame. Thus, defects with non-zero speed are transient
phenomena that disappear by colliding either with other defects or with the domain boundaries.
Defects with speed close to zero, however, should exist over much longer time intervals. In this
section, we shall therefore discuss the persistence of defects on large but bounded domains.

An additional motivation is provided by the need for computational tools that allow us to compute
defects in an efficient way. Stable defects can, of course, be computed using direct simulations. If
we are, however, interested in computing defects for many different parameter values, in finding
their bifurcation points, or in computing unstable defects, then a formulation as a boundary-value
problem that allows for a systematic continuation—using, for instance, auto97 [8]—would be
desirable. To obtain such a formulation, we consider (4.2) in the frame of the defect, truncate the
real line to a finite bounded interval, and impose appropriate phase and boundary conditions. We
currently implement this procedure in auto97.
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Boundary layers

We begin by investigating how wave trains interact with boundaries. Thus, consider the half line
R+ with a boundary at x = 0. We focus on c = 0 and seek defects that are caused by the boundary
conditions at x = 0. In the context of the modulated-wave equation (4.2), the boundary conditions
at x = 0 are represented by the infinite-dimensional subspace B− of Y that consists of all elements
of Y which satisfy the boundary conditions. We are interested in finding defects as orbits of (4.2)
that lie in the intersection of B− and the center-stable manifold W cs

+ (uwt) of a wave train uwt.
Thus, in analogy to Section 6.3, we consider the map

ιbc : B− ×W cs
+ −→ Y, (u0,u+) 7−→ u0 − u+.

For boundary conditions such as Dirichlet, Neumann and various mixed conditions, for which the
reaction-diffusion system (1.1) is well-posed, the injection map ιbc is Fredholm, and its index is
zero if cg > 0, and one if cg ≤ 0.

Therefore, we expect one-parameter families of sinks for wave trains, with group velocity cg < 0
towards the boundary, that connect to the boundary at x = 0. This family of sinks is parametrized
by the wavenumber k of the wave train at x = ∞. On the other hand, boundary-layer sources,
which connect to wave trains with group velocity cg > 0 away from the boundary, occur only for
isolated wavenumbers k. Similarly, there is typically only a finite number of boundary-layer contact
defects since cg = 0 is fixed, even though the Fredholm index is one.

Examples of boundary-layer contact defects are homogeneous oscillations under Neumann boundary
conditions. For small wavenumbers, and group velocities directed towards the boundary, we then
find boundary-layer sinks which, for Neumann boundary conditions, can be thought of as symmetric
sinks since we can extend the equation to the entire real line by reflecting across the boundary. Our
discussion of inhomogeneities in Section 6.5 can also be used to show that, for any homogeneous
oscillation, there exists an open set, in fact a half space, of Robin boundary conditions that emit
wave trains. The resulting defects are therefore boundary-layer sources. The boundary conditions in
the complementary half space produce solutions that are asymptotically homogeneous oscillations,
that is, boundary-layer contact defects. We also refer to the discussion in [54, Section 5.3] on the
existence of two-dimensional radially symmetric target patterns that are generated by boundary
conditions imposed at a small hole in the domain.

Truncation

We are now prepared to discuss whether defects on R can be approximated by defects on large
but bounded intervals (−L,L). The discussion in the preceding section shows that the boundary
conditions should be compatible in the sense that boundary-layer defects exist which absorb or
generate the wave trains in the far field of the sources, contact defects or sinks whose persistence
we would like to prove.

Suppose, for instance, that there exists a source between wave trains with asymptotic wavenumbers
k± and boundary-layer sinks that absorb these wave trains at the boundaries x = ±L. As in [32],
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it then follows that the source persists as a solution to the truncated problem in a frame moving
with speed c(L) provided the frequency is adjusted to ω(L). Here, the corrections to speed and
frequency satisfy (c(L), ω(L)) = (cd, ωd) + O(e−δL) for some δ > 0. Furthermore, the solution
is O(e−δL) close to the profile of the defect on R for |ξ| < L/2 and to the boundary-layer sinks
for |ξ| > L/2. For symmetric sources and symmetric boundary conditions10 at ξ = ±L, we have
c(L) ≡ 0.

Similar results are true for sinks, although there is the severe restriction that both asymptotic wave
trains need to be created by boundary-layer sources. For contact defects, we need to assume the
existence of boundary-layer contact defects that connect to the boundary. To obtain persistence,
we need to unfold the saddle-node wave trains in a fashion similar to the discussion in Section 6.5.
We omit the details.

Stability

Stability properties of defects on bounded intervals (−L,L) with fixed boundary conditions are
remarkably different from their counterparts on R. First, the period map ΦL

d of a defect on (−L,L)
will have only point spectrum. We denote the union of all Floquet exponents of ΦL

d by ΣL. If we
take the limit as L → ∞, then the set ΣL converges to a limiting set in the symmetric Hausdorff
distance where the convergence is uniform on bounded subsets of C [46]. The limiting set is the
disjoint union of three sets, namely the boundary spectrum Σbdy, the extended point spectrum Σext,
and the absolute spectrum Σabs. Before defining them in detail, we remark that Σbdy and Σext

are discrete, while Σabs is continuous in a sense that will be made precise below. The convergence
of ΣL towards both the boundary spectrum and the extended spectrum is exponential in L and
includes convergence of the algebraic multiplicity. The convergence towards the absolute spectrum,
however, is algebraic of order O(1/L), and the number of elements in ΣL in any fixed neighborhood
of an element of Σabs tends to infinity as L→∞.

We now define the three sets whose union is the limiting spectral set, and begin with the absolute
spectrum. We say that λ belongs to the complement of the absolute spectrum in C if there exist
exponential weights η± such that Φd − ρ is Fredholm with index zero on L2

η−,η+
(R,Cn) and the

relative Morse index of both asymptotic wave trains is zero relative to the exponential weights11.
The absolute spectrum consists of a countable union of semi-algebraic curves which end precisely
in spatial double roots ν with Re ν = η± of the dispersion relation of one of the asymptotic wave
trains. We refer to [45, 46] for more details.

The extended point spectrum consists of all λ ∈ C for which there are exponential weights η± with
the same properties as above so that the null space of Φd−ρ on L2

η−,η+
(R,Cn) is not trivial. Lastly,

the boundary spectrum is defined as the extended point spectrum of the boundary-layer defects
that are involved in the construction of the defect on (−L,L).

10We say that the boundary conditions B− and B+ at ξ = −L and ξ = L are symmetric if R0(B−) = B+ with R0

as in (6.6).
11Which means that the relative Morse indices are computed for (4.6) with η = η± and ud replaced by the

asymptotic wave train.
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Since we assumed that the wave trains are spectrally stable, we see that the absolute spectrum of
sinks, transmission defects, and sources lies in the open left half-plane since the group velocities of
the asymptotic wave trains are not zero. The absolute spectrum of contact defects always touches
the imaginary axis at λ = 0 and consists, in fact, of a line segment λ < 0 inside a sufficiently small
neighborhood of the origin. Indeed, the two roots ν± near zero of the dispersion relation (6.2)
λ = d‖ν

2 + d3ν
3 + O(ν4) are complex conjugates for λ < 0.

The extended point spectrum of sinks, transmission defects, and sources contains λ = 0 with
multiplicity

0 for sinks
1 for transmission defects
2 for sources.

(6.10)

Lastly, the boundary spectrum near the origin is given as follows:

0 for each boundary-layer sink
1 for each boundary-layer source

(6.11)

where the time-derivative of the boundary-layer source provides the eigenfunction.

Thus, in summary, if we consider the union of boundary and extended point spectrum near the
origin for truncated sinks and sources, then both of them have two eigenvalues near the origin.
For truncated sinks, these two eigenvalues arise due to the two boundary-layer sources near the
boundaries x = ±L, whereas the eigenvalues for truncated sources occur from the source itself with
the two boundary-layer sinks not contributing any eigenvalues. While one of the two eigenvalues
for truncated sinks or sources accounts for the time-derivative, i.e. for the temporal translation
symmetry that is still present, the other eigenvalue, which is associated with the position of the
defect relative to the boundary, is free to move and may stabilize or destabilize the truncated defect.

6.9 Interactions of defects

Heuristically, the interaction of defects with each other or with boundaries can be explained to
a large extent by deriving formal solvability conditions. These conditions arise when we try to
match defects, and they can be calculated by projecting certain matching terms onto the null space
of Φd − 1, i.e. onto the eigenfunctions associated with λ = 0, using the adjoint eigenfunctions
[12, 13, 42].

First, we need to clarify what we mean when we refer to the eigenfunctions of Φd associated with
the Floquet exponent λ = 0, since the essential spectrum of Φd touches λ = 0. We believe that
the eigenfunctions and eigenvalues that we need to take into account are those that arise in the
weighted spaces given in Theorem 4. Indeed, the essential spectrum of defects is generated by
the asymptotic wave trains, and its effect is accounted for by Burgers equation (1.19). Given our
spatial-dynamics interpretation of the group velocities, we believe that the interaction of defects
manifests itself in their spectra in the spaces L2

η(R,Rn) with η chosen as in Theorem 4.

Transverse sinks do not have any eigenvalues at λ = 0 (see Theorem 4). They do therefore not
interact with the tails of adjacent sources but instead react passively by adjusting their speed via
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(1.8) according to changes of the wavenumbers in the far field. Changing the phase (6.3) of one of
the asymptotic wave trains will cause the sink to correct its position and temporal phase according
to the algebraic phase jump condition (6.4).

Transverse sources have a double eigenvalue at λ = 0 that is induced by the derivatives of the source
with respect to time and space. Therefore, for each source, we obtain two differential equations
that define the time derivatives of its position and its phase as functions of perturbations in the far
field. Since the associated adjoint eigenfunctions at λ = 0 are exponentially localized by Theorem 4,
sources interact with adjacent defects or boundaries only very weakly, namely exponentially small
in the distance.

Transmission defects have a simple eigenvalue at λ = 0, and the associated adjoint eigenfunction is
localized behind the defect, where the group velocity points away from the interface, and constant
ahead of the defect. We therefore believe that transmission defects will adjust their phase instan-
taneously whenever the phase of the wave train ahead of them is changed. Position and temporal
phase of transmission defects are also affected by the presence of boundaries or perturbations in
their wake. These interactions are described by a single differential equation. Note that position
and temporal phase are implicitly related through phase matching with the wave trains ahead of
the transmission defect (see Sections 6.1 and 6.2).

Interactions that involve contact defects have, to our knowledge, not been studied previously (not
even on a formal level). We believe that Theorem 2, which asserts that the Evans function has a
simple root at λ = 0, may play an important role, since this root may change the temporal algebraic
decay rate of localized perturbations [34].

6.10 Genericity

Our goal in this paper has been to present a list of transverse defects. It is a challenging task to
prove whether, and in what sense, this list is complete.

¿From a formal point of view, we included all possible combinations of group velocities c±g relative
to the defect velocity cd with the exception of one-sided contact defects for which one of the group
velocities is equal to the defect speed but the other one is not, i.e. for which either c−g = cd 6= c+g
or c−g 6= cd = c+g . The reason for omitting one-sided contact defects is that they form part of the
boundary of the region in (k−, k+) space where transverse sinks exist. Put differently, in any given
system, we expect that only a finite number of wavenumbers occur that are generated by boundaries
or by sources. In general, there is no reason why one-sided defects should be selected as they occur
only in one-parameter families. For the same reasons, we do not take degenerate sinks, transmission
defects, or contact defects into account even though degeneracies, such as eigenvalues at the origin
with higher multiplicity, can typically be found by varying only the asymptotic wavenumbers. If we
therefore wish to exclude degenerate defects as well as one-sided contact defects, we may consider
introducing a notion of genericity that requires the persistence of generic defects when we truncate
the real line to a large but finite interval with generic boundary layers in the sense of Section 6.8.

The reason for including sources as generic defects is that they actively select wavenumbers. Sim-
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ilarly, we wish to regard contact and transmission defects as generic since they occur within a
background of wave trains with identical wavenumber. In other words, the reason for their generic
existence is that they accommodate phase slips within an oscillatory medium (see Section 6.2).
Interpreted in a different way, contact and transmission defect occur in open sets of wavenumbers
once we impose the constraint that k− = k+.

¿From a purely mathematical viewpoint, and thinking solely in terms of the codimension with which
a certain heteroclinic orbit exists, there is no difference between, say, transmission defects and one-
sided contact defects. However, the goal would be to find a notion of genericity that accurately
reflects the physical intuition that we described above, i.e., that allows sources, for instance, but
rejects one-sided contact defects.

6.11 Higher space dimensions

The classification we have presented is valid for essentially one-dimensional media. In particular,
our approach, and therefore our results, apply equally well to problems on cylindrical domains
with a bounded higher-dimensional cross section. Indeed, the key feature that we exploited are
exponential dichotomies which exist provided the operators encountered enjoy certain compactness
properties that are satisfied for the cross-sectional variables whenever the cross section is bounded
[38, 48].

In fact, our results can also be adapted immediately to cover line defects in the plane that are
spatially periodic in the direction parallel to the line defect [51]. If we, for the sake of clarity,
choose coordinates so that the line defect corresponds to x = 0, so that y denotes the variable
parallel to the line defect, then the modulated-wave equation (4.2) would contain the Laplace
operator in the y variable, while the spatial evolution variable would be the x-variable transverse
to the defect. We would then pose (4.2) on the space of functions that are periodic in time and in
y. For instance, line defects between planar wave trains that propagate in a direction parallel to
the defect can be easily analysed in this framework.

Certain two-dimensional point defects, such as spiral waves and target patterns in the Belousov–
Zhabotinsky reaction or stationary focus patterns in convection experiments, are amenable to
a similar description since we can measure group velocities in the radial variable [52, 54]. A
classification analogous to the one presented here has not yet been attempted in higher space
dimensions.

7 Example: The cubic-quintic Ginzburg–Landau equation

In this section, we illustrate that all four elementary transverse defects arise in the complex cubic-
quintic Ginzburg–Landau equation (CQGL) for appropriate values of the coefficients. In fact, the
existence of sources, sinks, and transmission defects in the CQGL has been established in [9], and
we therefore focus here on the existence of contact defects. Thus, consider the CQGL

Ǎt = (1 + iα̌)Ǎxx + Ǎ− (1 + iγ̌)Ǎ|Ǎ|2 − (δ̌0 + iδ̌)Ǎ|Ǎ|4 (7.1)
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where x ∈ R, Ǎ(x, t) ∈ C, and all coefficients are real. The CQGL arises as a special case of the
modulation equation that describes degenerate Hopf bifurcations in reaction-diffusion systems [11]
and, for α̌ = 0, coincides with the λ-ω system that has been investigated, for instance, in [31]. The
CQGL respects the gauge symmetry Ǎ 7→ eiφǍ so that we should seek relative equilibria of the
form

Ǎ(x, t) = A(x− čt)e−iω̌t.

Substituting this ansatz into (7.1) yields the ODE

A′′ = − 1
1 + iα̌

[
(1 + iω̌)A+ čA′ − (1 + iγ̌)A|A|2 − (δ̌0 + iδ̌)A|A|4

]
. (7.2)

We choose 1 + α̌γ̌ > 0, which allows us to rescale A and the parameters so that (7.2) becomes

A′′ = −(1 + iω)A− cA′ + (1 + iγ)A|A|2 + (δ0 + iδ)A|A|4. (7.3)

For the sake of clarity, we set δ0 = 0 from now on, but remark that most of the subsequent analysis
remains valid, with appropriate modifications, when δ0 > 0. An essential assumption is that we
take the remaining parameters (γ, δ, ω, c) to be close to zero, so that we perturb from the real cubic
Ginzburg–Landau equation.

In summary, we consider the complex two-dimensional ODE

A′ = B (7.4)

B′ = −(1 + iω)A− cB + (1 + iγ)A|A|2 + iδA|A|4

with small external parameters (γ, δ) and small internal parameters (ω, c). In passing, we remark
that (7.4) has the same structure as the modulated-wave equation (4.2). In fact, regardless of
whether (7.4) is derived near a degenerate Hopf bifurcation or represents a λ-ω system, (7.4) is
the modulated-wave equation, restricted to either a center manifold or a finite-dimensional Fourier
subspace. In each case, the gauge invariance is induced by the time-shift symmetry and is therefore
a genuine symmetry rather than a normal-form symmetry. For c = 0, (7.4) has two reversibility
symmetries given by

R0 : (A,B) 7−→ (A,−B), Rπ : (A,B) 7−→ (−A,B).

As already alluded to, we study (7.4) as a perturbation from the real Ginzburg–Landau equation

A′ = B (7.5)

B′ = −A+A|A|2.

Note that (7.5) is a Hamiltonian system where the Hamiltonian H and the symplectic matrix J

are given by

H = |A|2 + |B|2 − 1
2
|A|4, J(A,B, Ā, B̄) = (B̄,−Ā, B,−A).

The real Ginzburg–Landau equation (7.5) has a family

A(x; k) =
√

1− k2eikx (7.6)
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of wave trains for |k| < 1. In particular, the dispersion relation ω = ωnl(k) is degenerate as all
these wave trains have ω = 0. There also is an explicit defect given by

A(x) = tanh
(
x√
2

)
(7.7)

which connects the wave trains with zero wavenumber with a phase slip of π (see Section 6.2).

Once γ or δ are non-zero, the wave trains (7.6) are solutions to (7.4) if, and only if,

ω = ωnl(k; γ, δ, c) = (1− k2)γ + (1− k2)2δ − kc (7.8)

which is the dispersion relation in the frame moving with speed c. The wave trains disappear in
saddle-node bifurcations precisely when

c = cg(k; γ, δ) = −2kγ + 4k(k2 − 1)δ. (7.9)

We are interested in the fate of the defect (7.7) for (γ, δ) small but non-zero.

It will be convenient to eliminate the gauge symmetry of (7.5). Often, this is achieved by introducing
the blow-up coordinates B/A (or A/B) and |A|2. In our example, however, this would force us to
use two blow-up charts since both A and B vanish somewhere along the defect. Instead, we use
the generators of the ring of invariant polynomials with respect to the S1-gauge symmetry as new
coordinates and define

R = AĀ, S = BB̄, N = AB̄, (7.10)

with N = Nr + iNi. A result by Hilbert (see, for instance, [4]) shows that the invariants smoothly
parametrize the group orbits of the S1-symmetry. For later use, we remark that, if we evaluate N
on the wave trains (7.6), we obtain N = AĀ′ = −ik(1− k2) so that

Ni = −k(1− k2). (7.11)

In the new variables (7.10), equation (7.5) becomes

R′ = 2Nr

S′ = 2(R− 1)Nr − 2cS + 2(ω − γR− δR2)Ni (7.12)

N ′
r = S − cNr −R+R2

N ′
i = −cNi + ωR− γR2 − δR3.

Note that we eliminated the phase invariance without reducing the dimension, at the expense of
introducing an algebraic relation

C(R,S,N) := RS −NN̄ = 0 (7.13)

which must be satisfied for solutions of (7.12) to correspond to solutions of (7.5). For c = 0, (7.12)
is reversible under N 7→ −N (which represents both R0 and Rπ).
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For (γ, δ) = (ω, c) = 0, we find

R′ = 2Nr

S′ = 2(R− 1)Nr (7.14)

N ′
r = S −R+R2

N ′
i = 0.

We note that both C and H are conserved along trajectories of (7.14). Exploiting that the Hamil-
tonian is now given by

H = S +R− R2

2
(7.15)

equation (7.14) can therefore be written as

R′′ = 2H − 4R+ 3R2, S = H −R+R2/2, N = R′/2. (7.16)

The equilibria of (7.14) are given by S = R−R2 and Nr = 0 for arbitrary R and Ni. Using (7.11)
and the algebraic relation (7.13), we obtain the parametrization

(R∞, S∞, N∞
r , N∞

i ) = (1− k2)(1, k2, 0,−k), H∞ =
(1− k2)(1 + 3k2)

2
(7.17)

for those equilibria of (7.12) that correspond to solutions of (7.5). The eigenvalues of the lin-
earization of (7.14) about the equilibria (7.17) are given by two zero eigenvalues, λ1 = λ2 = 0,
which arise due to translation symmetry and the conserved quantity C, and two eigenvalues
λ3/4 = ±

√
2(1− 3k2), which are hyperbolic if k2 < 1/3. Since the waves with k2 > 1/3 are known

to be unstable with respect to long-wavelength perturbations, the well-known Eckhaus instability,
we focus exclusively on the case

|k| < 1√
3

(7.18)

so that we are away from the Eckhaus instability.

On the other hand, solving (7.16), we find the one-parameter family

Rd(x) = (1− k2)− (1− 3k2) sech2
(√

1− 3k2x/
√

2
)

Sd(x) = H∞ −Rd(x) +
1
2
R2

d(x) (7.19)

Nd,r(x) = R′d(x)/2

Nd,i(x) = −k(1− k2)

of homoclinic orbits that are parametrized by the asymptotic wavenumber k. Linearizing (7.14)
about these orbits gives the variational equation

R′ = 2Nr

S′ = 2(Rd(x)− 1)Nr +R′d(x)R (7.20)

N ′
r = S −R+ 2Rd(x)R

N ′
i = 0
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k

Ni
ψ0(0)

ψ1(0)

Figure 7.1: The dynamics of (7.14) within the level set C = 0 is illustrated. The two lines of
equilibria are drawn separately even though they both correspond to the same family given in (7.22).

and the corresponding adjoint variational equation

r′ = −R′d(x)s− (2Rd(x)− 1)nr

s′ = −nr (7.21)

n′r = −2r − 2(Rd(x)− 1)s

n′i = 0.

Solutions to the adjoint variational equation (7.21) can be computed explicitly in various different
ways. One approach is to observe, and exploit, that

[s′]′′ = (6Rd(x)− 4)[s′].

Alternatively, the gradients ∇C and ∇H of the conserved quantity (7.13) and the energy (7.15) are
automatically solutions to (7.21). Either way, we see that three bounded solutions to (7.15) are
given by

ψ0(x) =
(

1
2
R2

d(x) + (R∞ − 1)Rd(x) +R∞ − 3
2
(R∞)2, Rd(x)−R∞,−R′d(x), 0

)
ψ1(x) = (0, 0, 0, 1)

ψ2(x) = ∇H(x) = (1−Rd(x), 1, 0, 0) ,

while the fourth, linearly independent solution ψ3(x) is unbounded. Note that ψ0(x) decays expo-
nentially and points into the direction perpendicular to the sum of the center-stable and center-
unstable manifolds along the homoclinic orbit (7.19). The two vectors ψ0(x) and ψ1(x) together
are part of the orthogonal complement of the strong-unstable manifold, which coincides with the
strong-stable manifold. We refer to Figure 7.1 for an illustration.

Our goal is to understand the intersections of various stable and unstable manifolds as well as
their dependence on the wavenumber k of the wave trains. Their intersections will be studied
using the Melnikov integrals in the directions of ψ0 and ψ1 for the derivatives of the right-hand
side of (7.12) with respect to (γ, δ, ω, c). The resulting bifurcation scenario is, in fact, similar to
the double-flip bifurcation that we discussed in Sections 6.4 and 6.5 in the context of transitions
from contact defects to sources and of inhomogeneities embedded in media of wave trains with zero
group velocity.
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We begin with a local analysis of the slow manifold

(R∞, S∞, N∞
r , N∞

i ) =
(
1− k2, k2(1− k2), 0,−k(1− k2)

)
(7.22)

that consists of all equilibria of (7.14) that satisfy (7.13). The tangent space to this family of
equilibria is spanned by

d
dk

(R∞, S∞, N∞
r , N∞

i ) =
(
−2k, 2k(1− 2k2), 0, 3k2 − 1

)
, (7.23)

while the associated adjoint eigenvector is

ψ∞1 = (0, 0, 0, 1).

The flow along the family of equilibria for (γ, δ, ω, c) 6= 0 is obtained [15] by evaluating the deriva-
tives of the right-hand side of (7.12) with respect to (γ, δ, ω, c) at the equilibria and projecting them
with ψ∞1 . If we parametrize the center manifold by the wavenumber k, the reduced equation is

(3k2 − 1)k̇ = ck(1− k2) + ω(1− k2)− γ(1− k2)2 − δ(1− k2)3 + O(2), (7.24)

where O(2) denotes quadratic terms in (γ, δ, ω, c). A point k∗ is an equilibrium if, and only if, ω is
given by the nonlinear dispersion relation (7.8)

ω = ωnl(k∗; γ, δ, c) = γ(1− k2
∗) + δ(1− k2

∗)
2 − ck∗ (7.25)

in which case (7.24) becomes

k̇ = − 1− k2

1− 3k2
[ωnl(k∗; γ, δ, c)− ωnl(k; γ, δ, c)] + O(2).

The linearization of (7.24) about an equilibrium k∗ is therefore not hyperbolic precisely when c is
given by the group velocity (7.9)

c = cg(k∗; γ, δ) = −2k∗γ − 4k∗(1− k2
∗)δ (7.26)

ω = ωnl(k∗; γ, δ, cg(k∗)) = (1 + k2
∗)γ + (1− k2

∗)(1 + 3k2
∗)δ.

With these choices of ω and c, the slow reduced equation near k = k∗ is given by

κ̇ = − 1− k2
∗

1− 3k2
∗

[
γ + 2δ(1− 3k2

∗)
]
κ2 + O(κ3) (7.27)

in the variable κ = k − k∗. In particular, to leading order in κ, the unstable manifold W u of the
equilibrium k = k∗ is contained in k < k∗ if γ + 2δ > 0, and in k > k∗ if γ + 2δ < 0.

We now compute the Melnikov integrals in the direction of ψ0(x) which are defined by

M j
0 =

∫
R
〈ψ0(x), ∂jF (Rd, Sd, Nd,r, Nd,i)(x)〉 dx
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where F denotes the right-hand side of (7.12) and j = γ, δ, ω, c. These integrals show how the
center-stable and center-unstable manifolds split along the homoclinic orbit given in (7.19) upon
varying (γ, δ, ω, c) near zero. A tedious calculation gives

Mγ
0 (k) = −4

3
k(1− k2)(1 + 3k2)

√
2(1− 3k2)

M δ
0 (k) = − 4

15
k(1− k2)(3 + 2k2 + 27k4)

√
2(1− 3k2) (7.28)

Mω
0 (k) = 4k(1− k2)

√
2(1− 3k2)

M c
0(k) =

4
3
(1− k2)

√
2(1− 3k2).

The distance of the center-unstable and center-stable manifolds is given by the expression

∆0(k; γ, δ, ω, c) = ωMω
0 (k) + cM c

0(k) + γMγ
0 (k) + δM δ

0 (k) + O(2).

If we seek contact defects, we should find intersections related to a saddle-node equilibrium k∗

of (7.26). Thus, we shall choose (ω, c) according to (7.26), and investigate roots of the splitting
distance

∆cd
0 (k, k∗; γ, δ) = ωnl(k∗)Mω

0 (k) + cg(k∗)M c
0(k) + γMγ

0 (k) + δM δ
0 (k) + O(2)

=
4
3
(1− k2)(2− 3kk∗ − 3k2)(k − k∗)

√
2(1− 3k2) γ (7.29)

+
4
15

(1− k2)
(
k[12− 2k2 − 27k4]− k∗

[
20(1− k2

∗) + 15kk∗(3k2
∗ − 2)

])
×
√

2(1− 3k2) δ + O(2)

of the center-unstable and center-stable manifolds of the equilibrium k∗ along the homoclinic orbit
at level k.

Next, we investigate the splitting of the strong-stable and strong-unstable manifolds in the center
direction which is given by Melnikov integrals in the direction of ψ1(x). We therefore choose ω and
c as in (7.26) so that a given point k = k∗ on the manifold of equilibria persists as a saddle-node
equilibrium for (γ, δ) 6= 0. We define the Melnikov integrals

Mγ
1 (k∗) =

∫
R

〈
ψ1(x), [∂γ + (1 + k2

∗)∂ω − 2k∗∂c]F (Rd, Sd, Nd,r, Nd,i)(x)
〉

dx

M δ
1 (k∗) =

∫
R

〈
ψ1(x), [∂δ + (1− k2

∗)(1 + 3k2
∗)∂ω − 4k∗(1− k2

∗)∂c]F (Rd, Sd, Nd,r, Nd,i)(x)
〉

dx

where F denotes again the right-hand side of (7.12). A tedious but straightforward computation
gives

Mγ
1 (k∗) =

2
3
(1− 3k2

∗)
√

2(1− 3k2
∗) > 0, M δ

1 (k∗) =
16
15

(1− 3k2
∗)

2
√

2(1− 3k2
∗) > 0. (7.30)

We are now ready to describe the bifurcation picture for small (γ, δ). Consider a two-dimensional
section transverse to the flow that lies in a small neighborhood of (Rd, Sd, Nd,r, Nd,i)(0) in the three-
dimensional manifold described by the algebraic relation (7.13). In this two-dimensional section,
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(i) (ii)

k k

k∗

k∗

k∗

k∗
ψ1(0)

Fix(R)

Figure 7.2: The splitting of the strong-unstable and strong-stable manifolds of the equilibrium k∗ = 0
of (7.12) is illustrated for γ + 8

5δ > 0 in (i) and for γ + 8
5δ < 0 in (ii). The sketch of the flow on

the slow manifold assumes γ + 2δ > 0.

the center-stable and center-unstable manifolds coincide when (γ, δ, ω, c) = 0. Their intersection
forms a line which is parametrized by the coordinate k of the base point of the corresponding
strong-stable fiber on the center manifold (which is, in fact, the manifold of equilibria). Since the
general bifurcation diagram is rather complicated, we focus separately on the two cases δ = 0 (the
cubic Ginzburg–Landau equation) and k∗ = 0.

First, we set δ = 0. Since we are interested in contact defects, we choose (ω, c) according to (7.26)
so that the fixed base point k∗ persists as a saddle-node equilibrium. To find contact defects, we
need to solve ∆cd

0 (k, k∗; γ, 0) = 0. Using its definition (7.29), we see that the non-trivial roots of
this equation are given by k = ±1/

√
3 and by k = k∗. The first case is close to the Eckhaus

instability, and we will not consider it here. Instead, we show that the second case cannot lead to
contact defects: We focus first on the region γ > 0, so that the unstable manifold of the saddle-node
equilibrium k∗ for (7.27) is the set k < k∗. Since Mγ

1 (k∗) > 0, however, the strong-unstable manifold
of the equilibrium k∗ will miss the stable set of the equilibrium k∗ as illustrated in Figure 7.2(i).
For γ < 0, both the sign of the splitting distance and the flow on the slow manifold change sign,
and we again conclude that there is no homoclinic orbit to k∗ = 0. In particular, there are no
contact defects for δ = 0. Varying ω and c to unfold the saddle node at k = k∗, we see that sources
are created. Indeed, we can parametrize the equilibria in the unfolding of the saddle node using
µ1 :=

√
|ω − ωnl(k∗)| or µ2 :=

√
|c− cg(k∗)|. The Melnikov integrals with respect to µj vanish

since the parameters µj enter only at second order. The base points, however, change to leading
order in µj which allows us to find an intersection of the strong-stable and strong-unstable fibers.
These intersections, which correspond to sources, are known as the Nozaki–Bekki holes and can be
given explicitly in terms of elementary functions [2, 40].

Next, we set k∗ = 0. In particular, c = cg = 0 by (7.26) which makes (7.12) reversible under
R : N 7→ −N with fixed-point space {N = 0}. The unstable manifold of the equilibrium k∗ = 0 of
equation (7.27) is the set k < 0 when γ + 2δ > 0 and the set k > 0 for γ + 2δ < 0. The splitting
distance of the strong-unstable and the strong-stable manifold, on the other hand, is given by

∆cd
1 (γ, δ) = 〈ψ1(0),W uu(0)−W ss(0)〉 = Mγ

1 (0)γ +M δ
1 (0)δ + O(2)

(7.30)
=

2
√

2
3

[
γ +

8
5
δ

]
+ O(2).

As shown in (7.23) and indicated in Figure 7.1, the vector ψ1(0) points to the positive Ni and the
negative k direction. Thus, the strong-unstable and stable manifolds of k∗ = 0 split as shown in
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Figure 7.3: The plot in upper right corner shows the parameter space (γ, δ). Contact defects exist
in the shaded region, while sources and transmission defects exist outside. Along the line γ+ 8

5δ = 0,
contact defects and sources collide in a double-flip configuration as outlined in Section 6.4.

Figure 7.2. We therefore need

(γ + 2δ)
(
γ +

8
5
δ

)
+ O(3) < 0 (7.31)

to get a reversible homoclinic connection of the saddle-node equilibrium k∗ = 0 as in Figure 7.2(ii).
The inequality (7.31) defines, to leading order, a small non-empty cone in the (γ, δ)-plane (see
Figure 7.3). The reversible connection indeed exists as both the center-unstable and the center-
stable manifold intersect the fixed-point space {N = 0} of the reversibility operator transversely,
which follows from the expression for ψ1(0) and since N ′

d(0) = R′′d(0)/2 6= 0. Lastly, we show that
the reversible contact defects persist if we vary the wavenumber k∗ near k∗ = 0. To accomplish this,
it suffices to prove that the center-unstable and center-stable manifolds of the equilibrium k∗ = 0
intersect transversely along the contact defect. Thus, we evaluate their splitting distance (7.29) at
k∗ = 0 which yields

∆cd
0 (k, 0; γ, δ) =

4
3
k(1− k2)(2− 3k2)

√
2(1− 3k2) γ

+
4
15
k(1− k2)(12− 2k2 − 27k4)

√
2(1− 3k2) δ + O(2)

=
8
√

2
3
k

[
(1 + O(k))γ +

(
6
5

+ O(k)
)
δ + O(2)

]
,

where we exploited the fact that the splitting distance vanishes at k = 0 due to reversibility of
(7.12). We infer from the above expression that the center-unstable and center-stable manifolds
intersect transversely at k = 0 provided γ + 6

5δ + O(2) 6= 0. This curve, along which transversality
fails, lies outside the existence cone (7.31) for contact defects, which proves that the reversible
contact defects are robust and persist under variations of k∗.
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Theorem 6 Equation (7.31) defines a non-empty open cone in (γ, δ)-space with the property that
the complex cubic-quintic Ginzburg–Landau equation (7.4) has, for each fixed (γ, δ) in that cone, a
one-parameter family of elementary transverse contact defects parametrized by the wavenumber k
with k close to zero.

We remark that, at the boundary γ+ 8
5δ = 0 of (7.31), a double-flip transition between sources and

contact defects occurs, while at the other boundary γ + 2δ = 0, the nonlinear dispersion relation
of the asymptotic wave trains of the contact defects changes from convex to concave.

Transmission defects can be found as bound states of the Nozaki–Bekki holes and the small sinks
that arise in the unfolding of the saddle-node on the center manifold. We refer to Figure 7.3 for an
illustration.

8 Conclusion

We have presented a framework that allows us to systematically study interfaces between nonlinear
wave trains with possibly different wavenumber. We used this approach to analyse sinks, contact
defects, transmission defects and sources which are specific defects with distinguished characteris-
tics that occur robustly in reaction-diffusion systems. In addition, we discussed the stability and
interaction properties of these defects and investigated some of their bifurcations.

The major open problem is the completeness of the above classification. Other open issues are the
nonlinear stability of contact defects, transmission defects and sources. We also emphasize that
the list of bifurcations that we discussed is not exhaustive. Lastly, it would be interesting to see
how individual defects can be accounted for in a macroscopic description of oscillatory media by
coupling mean-field equations of Burgers type to ordinary differential equations for the position
and phases of defects.

A Invariant manifolds

We prove the invariant-manifold Theorem 3 and establish the existence of exponential dichotomies
for the linearization of the spatial dynamical system about the defect.

A.1 Existence of center-stable manifolds

Our first goal is to prove the existence of a center-stable manifold for the modulated-wave equation

uξ = v (A.1)

vξ = D−1[ωd∂τu− cdv − f(u)]

near a given defect. We use the notation u = (u, v) and recall the spaces

Y = H1/2(S1)× L2(S1), Y 1 = H1(S1)×H1/2(S1).
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Throughout the appendix, we assume that ud(ξ, τ) is a defect solution of (A.1) so that ud(ξ, ·) −
uwt(kdξ + θd(ξ)− ·) converges to zero as ξ →∞ for an appropriate differentiable phase-correction
function θd(ξ) with θ′d(ξ) → 0 as ξ →∞. We will show later how changes of (ω, c) can be accounted
for.

We write (A.1) as the abstract differential equation

uξ = A0u + F(u) (A.2)

where

A0 =

(
0 1

ωdD
−1∂τ −cdD−1

)
, F(u) =

(
0

−D−1f(u)

)
. (A.3)

We use the ansatz
u(ξ, τ) = ud(ξ, θ(ξ) + τ) + w(ξ, τ) (A.4)

together with the pointwise normalization

〈w(ξ, ·), ∂τud(ξ, θ(ξ) + ·)〉Y = 0. (A.5)

We emphasize that we do not shift w relative to the group since this would change the type of the
equation we are considering. Equation (A.2) becomes

θ′∂τud(ξ, θ(ξ) + ·) + wξ = A0w + F(ud(ξ, θ(ξ) + ·) + w)−F(ud(ξ, θ(ξ) + ·)). (A.6)

For later use, we differentiate (A.5) and obtain the relation

〈∂ξw(ξ, ·), ∂τud(ξ, θ(ξ) + ·)〉 = −〈w(ξ, ·), [∂ξ + θ′(ξ)∂τ ]∂τud(ξ, θ(ξ) + ·)〉. (A.7)

¿From now on, we shall use the notation uθ(ξ) := u(ξ, θ(ξ) + ·). To derive differential equations
for θ and w, we take the scalar product of (A.6) with ∂τud(ξ, θ(ξ) + ·) and substitute (A.7), which
gives the equation

θξ =
1

|∂τud|2 − 〈w, ∂ττuθ
d〉

(〈
∂τξuθ

d,w
〉

+
〈
∂τuθ

d,A0w + F(uθ
d + w)−F(uθ

d)
〉)

(A.8)

= B0(θ)w + G0(θ,w)

for θ. The scalar products and norms that appear in (A.8) are in Y , and we introduced the linear
operator

B0(θ) :=

〈
∂τξuθ

d + [A0 + Fu(uθ
d)]

∗∂τuθ
d, ·
〉

|∂τud|2
, (A.9)

where ∗ denotes the adjoint, with the nonlinear term G0(θ,w) making up the difference. For w, we
obtain

wξ = A0w + Fu(uθ
d)w +

[
F(uθ

d + w)−F(uθ
d)−Fu(uθ

d)w
]
− [B0(θ)w + G0(θ,w)] ∂τuθ

d. (A.10)

To prepare for the later use of the contraction-mapping principle, we modify the nonlinear terms.
We choose two cut-off functions χ0(r) and χ1(r) such that χ′0(r) ≥ 0, χ′1(r) ≤ 0 and

χ0(r) =

{
r for 0 ≤ r ≤ 1
2 for r ≥ 2

χ1(r) =

{
1 for 0 ≤ r ≤ 1
0 for r ≥ 2.

65



Instead of (A.8) and (A.10), we then consider the equations

θξ = δχ0

(
B0(θ)w + G0(θ,w)

δ

)
(A.11)

wξ = A(θ)w + G1(θ,w) (A.12)

where

A(θ) = A0 + Fu(uθ
d)−

[
∂τuθ

d

]
B0(θ) (A.13)

G1(θ,w) = χ1

(
|w|Y
δ

)[
F(uθ

d + w)−F(uθ
d)−Fu(uθ

d)w − G0(θ,w)∂τuθ
d

]
.

We emphasize that our cut-off preserves the S1-equivariance with respect to the symmetry θ 7→ θ+θ̌
for θ̌ ∈ R. In addition, the cut-off is chosen so that solutions to the modified equations (A.11)–
(A.12) give solutions to the original equations (A.8)–(A.10) provided |w|Y is less than δ for all ξ.
In other words, there is no restriction on the norm of θ.

We remark that

|G0(θ,w)| = O(|w|2Y ), |∂(θ,w)G0(θ,w)|L(R×Y 1,R) = O(|w|Y )

|G1(θ,w)|Y = O(|w|2Y 1), |∂(θ,w)G1(θ,w)|L(R×Y 1,Y ) = |O(|w|Y 1)

uniformly in θ, which allows us to replace w → δw for any small δ > 0. We obtain the new equation

θξ = δχ0(|w|Y )
[
B0(θ)w +

1
δ
G0(θ, δw)

]
= δǦ0(θ,w) (A.14)

wξ = A(θ)w +
1
δ
G1(θ, δw) = A(θ)w + Ǧ1(θ,w). (A.15)

There is a constant C0 > 0 so that Ǧ0 and Ǧ1 are bounded by C0 with Lipschitz constants less than
C0δ uniformly in (θ,w).

Lemma A.1 There are positive numbers κ and C1 such that the equation

wξ = A(θ0)w (A.16)

has exponential dichotomies Φcs
θ0

(ξ, ζ) and Φuu
θ0

(ξ, ζ) with rate κ and constant C1 for each θ0 ∈ R.

Proof. We will prove the lemma by beginning with an equation for which we know that exponential
dichotomies exist and then successively changing the equation until we arrive at (A.16). We will
make sure that the equations will have exponential dichotomies at each stage by appealing to the
roughness theorem for dichotomies [38] and to Theorem 7 in Section A.2. To save notation, we
consider the linear equation

wξ = Aw

and simply give the different operators A in our chain of equations.

We begin by recalling that the linearization A = A0 + Fu(uwt(kξ + θ0)) about the asymptotic
wave train has center-stable and strong-unstable exponential dichotomies uniformly in θ0 by [33,
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Chapter 2]. Since θ′d(ξ) → 0 as ξ →∞, Theorem 7 in Section A.2 implies that there is a ξ0 > 0 so
that A0 + Fu(uwt(kξ + θd(ξ))) has center-stable and strong-unstable exponential dichotomies for
ξ ≥ ξ0. Invoking the roughness theorem [38, Theorem 1] finally shows that A0 + Fu(ud(ξ)) has
center-stable and strong-unstable dichotomies for ξ ≥ 0 with rate κ and constant C1.

In summary, we showed that
wξ = [A0 + Fu(ud(ξ))]w (A.17)

has center-stable and strong-unstable dichotomies for ξ ≥ 0. It therefore remains to establish the
same result for

wξ = [A0 + Fu(ud(ξ))− [∂τud]B0(0)]w (A.18)

where θ ≡ 0. Note that, by construction, any solution w(ξ) of (A.18) for which 〈w(0), ∂τud(0)〉 = 0
satisfies

〈w(ξ), ∂τud(ξ)〉 = 0 (A.19)

for all ξ. It is then not difficult to see that (A.18) restricted to solutions that satisfy (A.19) has
center-stable and strong-unstable dichotomies since (A.18) is merely part of the decomposition of
solutions to (A.17) into w(ξ) and α(ξ)∂τud(ξ) for real-valued functions α. Since we wish to consider
(A.18) for all w, we have to calculate the solution to (A.18) with initial data w(0) = ∂τud(0).
Fortunately, it is easy to see that α(ξ)∂τud(ξ) is the desired solution to (A.18) where α(ξ) satisfies

αξ = −α d
dξ
[
log |∂τud(ξ)|2Y

]
, α(0) = 1

so that α(ξ) = |∂τud(0)|2Y /|∂τud(ξ)|2Y for all ξ. This shows that (A.18) with w ∈ Y has center-stable
and strong-unstable dichotomies for ξ ≥ 0. The remaining statements are once more a consequence
of Theorem 7.

The following corollary summarizes the first part of the proof of the preceding lemma.

Corollary A.2 The linearization

wξ = [A0 + Fu(ud(ξ))]w

about the defect has exponential dichotomies in appropriate weighted spaces if, and only if, the
linearization about the asymptotic wave trains has dichotomies in these spaces.

For each η ∈ R, we define the spaces

Yη = L2
η(R+, Y ), Y1

η = L2
η(R+, Y 1) ∩H1

η (R+, Y ) (A.20)

where L2
η refers to the exponentially weighted L2-space with norm

|u|L2
η(R+) = |e−ηξu(ξ)|L2(R+).

We are interested in proving the existence of a center-stable manifold of class C`, say, for some
integer ` > 0 that we fix from now on. We will then choose η0 and δ with 0 < δ < η0 < κ/`, where
κ appeared in Lemma A.1.
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For every η > δ, and each w ∈ Y1
η , equation (A.14)

θξ = δǦ0(θ,w(ξ)), θ(0) = 0

can be solved uniquely for θ(ξ), and we have supξ≥0 |θ′(ξ)| ≤ C0δ. Furthermore, the function w 7→ θ

is Lipschitz as a map from Y1
η into itself with Lipschitz constant bounded by C0δ/(η − δ) (see [41,

Lemma 2.4(ii)]). We denote this map by θ = θ[w].

Thus, it remains to solve the equation (A.15) for w which reads

wξ = A(θ[w])w + Ǧ1(θ[w],w) (A.21)

after substituting θ = θ[w]. After decreasing δ > 0 if necessary, Lemma A.1 together with the
properties of the map w 7→ θ[w] imply that the linear part of (A.21) has center-stable and strong-
unstable dichotomies Φcs

θ[w](ξ, ζ) and Φuu
θ[w](ξ, ζ), respectively, which allows us to write (A.21) as the

integral equation

w(ξ) = Φcs
θ[w](ξ, 0)wcs

0 +
∫ ξ

0
Φcs

θ[w](ξ, ζ)Ǧ1(θ[w](ζ),w(ζ)) dζ (A.22)

+
∫ ξ

∞
Φuu

θ[w](ξ, ζ)Ǧ1(θ[w](ζ),w(ζ)) dζ.

¿From this point on, we can proceed, with very minor modifications, as in the proof of Fenichel’s
theorem given in [41, Section 2 and Appendix A] by setting up a contraction-mapping argument
on the space Y1

η0
. Since the proof in [41] is very detailed, we decided not to repeat it here. We

should, however, comment on an additional result that we need to make the proof in [41] work. In
order to apply the arguments on [41, Page 73], we need the following optimal-regularity result.

Lemma A.3 If we fix any function θ(ξ) with supξ≥0 |θ′(ξ)| ≤ C0δ and denote by Φcs
θ (ξ, ζ) and

Φuu
θ (ξ, ζ) the dichotomies of

wξ = A(θ(ξ))w,

then the operator S : Yη → Y1
η defined by

[Sg](ξ) =
∫ ξ

0
Φcs

θ (ξ, ζ)g(ζ) dζ +
∫ ξ

∞
Φuu

θ (ξ, ζ)g(ζ) dζ

is well defined and bounded as long as 0 < η < κ.

Proof. Define Eu
0 = Rg(Φuu

θ (0, 0)), and consider the operator

T : D(T ) −→ Yη, u 7−→ dw
dξ

−A(θ(·))w (A.23)

with domain
D(T ) = Y1

η ∩ {w ∈ Y1
η ; w(0) ∈ Eu

0}. (A.24)

It follows as in [48, §5.2] that T is a closed unbounded operator on Yη with inverse given by S,
which proves the lemma.
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The optimal-regularity result allows us also to prove smooth dependence of the fixed point on the
parameters (ω, c). Indeed, if we define

F̌(ǔ) =

(
v

−ω̌D−1∂τu− čD−1v −D−1f(u)

)
, ǔ = (u, v, ω̌, č),

we can replace u and F by ǔ and F̌ and proceed exactly as above.

Finally, we mention that the resulting center-stable manifold is constructed in the artificially aug-
mented phase space w ∈ Y 1. The intersection of this manifold with the smooth bundle defined
by (A.5) is transverse, since the normal direction to the bundle is contained in the center sub-
space. Therefore, the “true” center-stable manifold, defined as the intersection of the center-stable
manifold that we constructed above and the bundle given by (A.5), is the desired smooth and
flow-invariant center-stable manifold. The statements about fibers can be proved as in [41].

A.2 Slowly varying coefficients

We consider the equation
wξ = A(θ)w (A.25)

for a given function θ = θ(ξ) where A(θ) has been defined in (A.13). We assume that (A.25) has
an exponential dichotomy on R+ for each constant function θ(ξ) ≡ θ0 ∈ R and that the rate κ and
the constant C of the dichotomies can be chosen independently of θ0 ∈ R.

The following theorem, proved in [6, 23] for ODEs and PDEs, respectively, shows that (A.25) has
then dichotomies for any slowly varying function θ(ξ).

Theorem 7 There are positive constants ε0, κ̌ and Č such that (A.25) has an exponential di-
chotomy on R+ with rate κ̌ and constant Č for each differentiable function θ(ξ) with θ(0) = 0 and
supξ≥0 |θ′(ξ)| ≤ ε0.

Proof. We denote by Φs
θ0

(ξ, ζ) and Φu
θ0

(ξ, ζ) the exponential dichotomies of the equation

wξ = A(θ0)w

for constant functions θ(ξ) ≡ θ0 ∈ R. Since the θ0-dependent terms of the operator A(θ0) are
bounded and depend smoothly on θ0, see (A.13) and (A.9), the robustness theorem for exponential
dichotomies [6, 23, 38] implies that these dichotomies can be chosen to depend smoothly on θ0 ∈ R.
In fact, there are positive constants C and κ such that∥∥∥∥dΦs

θ0

dθ
(ξ, ζ)

∥∥∥∥+
∥∥∥∥dΦu

θ0

dθ
(ζ, ξ)

∥∥∥∥ ≤ Ce−κ|ξ−ζ| (A.26)

uniformly in ξ ≥ ζ ≥ 0. We denote by Eu
0 the range of the unstable projection Φu

0(0, 0) for θ0 = 0.

Next, pick a function θ(ξ) so that θ(0) = 0 and supξ≥0 |θ′(ξ)| ≤ ε0. Consider the operator

T (θ) : D(T (θ)) −→ L2(R+, Y ), u 7−→ du
dξ

−A(θ(·))u (A.27)
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with domain
D(T (θ)) = L2(R+, Y 1) ∩ {u ∈ H1(R+, Y ); u(0) ∈ Eu

0}, (A.28)

which is independent of θ. We may consider T as a closed unbounded operator on L2(R+, Y ). If
we can prove that T (θ) has a bounded inverse with bounds that are independent of θ, then the
theorem is proved as we may then proceed as in [48, §5.3.1] to construct exponential dichotomies
of (A.25) with constants and rates that do not depend on θ.

Thus, we have to solve the equation

du
dξ

= A(θ(ξ))u + g(ξ) (A.29)

for a given g ∈ L2(R+, Y ). We define

u(ξ) =
[
Ľ(θ)g

]
(ξ) =

∫ ξ

0
Φs

θ(ξ)(ξ, ζ)g(ζ) dζ +
∫ ξ

∞
Φu

θ(ξ)(ξ, ζ)g(ζ) dζ. (A.30)

and set Ľ(θ)g := u. It follows from [48] that u(ξ) lies in D(T (θ)) and that

du
dξ

= A(θ(ξ))u + g(ξ) + [S(θ)g] (ξ) (A.31)

where

[S(θ)g] (ξ) =

[∫ ξ

0

dΦs
θ(ξ)

dθ
(ξ, ζ)g(ζ) dζ +

∫ ξ

∞

dΦu
θ(ξ)

dθ
(ξ, ζ)g(ζ) dζ

]
θ′(ξ). (A.32)

Using (A.26), we see that
S(θ) : L2(R+, Y ) −→ L2(R+, Y )

with ‖S(θ)‖ ≤ ε0C1 for some C1 > 0 that does not depend on θ. Therefore, 1+ S(θ) is invertible
on L2(R+, Y ) uniformly in θ provided ε0 > 0 is smaller than 2/C1. The desired solution to (A.29)
is then given by

u := L(θ)g = Ľ(θ)[1+ S(θ)]−1g

where Ľ(θ) has been defined in (A.30). This proves that T (θ) has a bounded inverse on L2(R+, Y )
and, together with the fact that T (θ) is closed, shows that the inverse is bounded as an operator
into the domain of T (θ). Since the bounds are clearly independent of θ, we have proved our claim
and therefore the theorem.

B Parameter values for the numerical simulations

The numerical simulations in Figure 1.2(i) and (ii) show the v-component of solutions to the
Brusselator

ut = d1uxx + a+ (b+ 1)u+ u2v (B.1)

vt = d2vxx + bu− u2v
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on the interval [0, L] with Neumann boundary conditions. The parameters are as in [37] so that

d1 = 4.11, d2 = 9.73, a = 2.5, b = 10.0.

The length L of the spatial interval is chosen between 250 and 650. Sources and sinks are created
from the initial condition

(u0, v0)(x) =
(
a+

1
2

tanh
(
x− L

2

)
,
b

a
+

1
10

cosx
)

which excites both Turing and Hopf modes. We solved the system (B.1) using a forward Euler
scheme in time and centered finite differences in space.
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