
Depinning asymptotics in ergodic media

Arnd Scheel 1 and Sergey Tikhomirov 2

1University of Minnesota, School of Mathematics, 206 Church St. S.E., Minneapolis, MN 55455, USA

2 St.Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg,199034, Russia

Abstract

We study speeds of fronts in bistable, spatially inhomogeneous media at parameter regimes where speeds

approach zero. We provide a set of conceptual assumptions under which we can prove power-law asymp-

totics for the speed, with exponent depending on a local dimension of the ergodic measure near extremal

values. We also show that our conceptual assumptions are satisfied in a context of weak inhomogeneity

of the medium and almost balanced kinetics, and compare asymptotics with numerical simulations.

1 Fronts in inhomogeneous media — a brief introduction and main

results

We are interested in the speed of interfaces in spatially extended systems, separating stable or metastable

states. A prototypical example is the Allen-Cahn or Nagumo equation, for the order parameter u(t, x) ∈ R,

ut = uxx + (u− a)(1− u2), x ∈ R, a ∈ (−1, 1). (1.1)

This system possesses the spatially homogeneous, stable equilibria u ≡ ±1. Initial conditions with u0(x) ∈
(−1, 1), u0(x) → 1, x → +∞, u0(x) → −1, x → −∞, converge to traveling waves for t → ∞. In fact, (1.1)

possesses a unique (up to translation) traveling wave u∗(x− st), connecting −1 and 1, solving

u′′ + su′ + (u− a)(1− u2) = 0, u(x)→ ±1, x→ ±∞. (1.2)

The solution with u(t = 0, x) =: u0(x) will then converge to a suitable translate of u∗ as t→∞,

sup
x∈R
|u(t, x)− u∗(x− st− ξ)| → 0, t→∞,

for some ξ ∈ R. In fact, this convergence is exponential in time, and the family of translates of u∗ can be

viewed as a normally hyperbolic manifold in the phase space of, say, bounded uniformly continuous functions

[11].

From this perspective, much of the information on a bistable medium is captured by a single number, the

speed of propagation s, which is generally a function of a. In the specific example of the cubic, one first notices

that for at a = 0, often referred to as a “balanced nonlinearity”, or the “Maxwell point”, the speed vanishes.

Somewhat surprisingly, the speed is in fact a linear function s =
√

2a of the parameter, for this specific cubic

nonlinearity. More generally, for bistable nonlinearities with three zeros, f(u−) = f(u+) = f(um) = 0, two

stable zeros f ′(u±) < 0 and one unstable zero f ′(um) > 0, one finds the existence of u∗(x− st), with smooth

dependence of speed and profile on parameters. In particular, one expects that, generically in one-parameter

families of nonlinearities fa, s(a) = s1(a−a∗) + O
(
(a− a∗)2

)
, where a∗ refers to the critical parameter value

of a balanced nonlinearity.

In fact, such speed asymptotics can be derived much more generally in systems of equations, provided that

the linearization at a traveling wave u∗(x) with speed s = 0 for a = a∗ possesses an algebraically simple

eigenvalue λ = 0; see the discussion in Section 2 for more details. We therefore briefly write s ∼ µ1, with

µ = a− a∗ the detuning parameter from criticality, thus encoding the linear asymptotics near zero speed. In

the sequel we refer to the parameter a as imbalance, the relation s = s(a) as a speed-imbalance relation. We

normalize a = 0 as the balanced case with s = 0, and write ac = infa{s(a) > 0} for the critical parameter.

The generic situation described so far implies of course that ac = 0.
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Figure 1.1: Schematic illustration of speed versus imbalance parameter in the case of translation invariant, spatially

periodic, and nonlocal media; compare (1.4).

Pinning from inhomogeneity — main questions. The above scenario changes qualitatively when

inhomogeneities are present in the medium. Consider, for example,

ut = uxx + (u− a)(1− u2) + g(x, u; ε), x ∈ R, a ∈ (−1, 1), (1.3)

with inhomogeneity, say, g(x,±1; ε) = 0 and g(x, u; 0) = 0. Examples of interest here are inhomogeneities that

are periodic, quasi-periodic, or, more generally, ergodic with respect to x. In these situations, in particular

for small ε, one then expects average speeds s̄ to exist, thus reducing essential properties of the medium

again to a (average-)speed-imbalance relation s̄(a). Ergodicity of the medium here refers to the action of the

shift on the medium, g(·, u; ε) 7→ g(· + ξ, u; ε) and encodes a transitivity and recurrence property (relative

to an ergodic measure) for this “dynamical systems” of spatial translations, guaranteeing in particular the

existence of averages for functions of the medium.

The phenomenon of pinning refers to a situation when such an average speed vanishes for open sets of

imbalances, that is, ac > 0 and s̄(a) = 0 for a ∈ [0, ac). One then refers to fronts at parameter values

a ∈ (0, ac) as pinned fronts, since small changes in the system will not allow the front to propagate; see

Figure 1.1 for a schematic illustration of speed-balance relations. Key questions concerning the phenomenon

of pinning are:

(i) when do we expect pinning, ac > 0?

(ii) what is the size of the pinning region in terms of system parameters, ac = ac(ε)?

(iii) what are speeds near the pinning region,

s̄(a) ∼ µγ , µ = a− ac, for some γ > 0? (1.4)

The first item, (i), refers to a rather general question and we give several examples where ac > 0, that is,

where a nontrivial pinning region occurs, at the end of this introduction. The second item (ii) refers to a

dependence of ac on system parameters. We are aware of only few cases where such dependencies are known

analytically; see however our analysis in Section 3 and the discussion, below. Our focus will be on (iii),

striving to determine γ.

Pinning from inhomogeneity — outline of our main results. Our results here give a rather simple

formula for γ as a function of the effective dimension of the medium near criticality. We give three different

types of results:

(i) an abstract skew-product formalism for depinning dynamics, deriving depinning asymptotics from

Birkhoff’s ergodic theorem;

(ii) a specific application to weakly inhomogeneous media;

(iii) some numerical results in agreement with the abstract results.
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Figure 1.2: Schematic illustration of speed versus imbalance parameter in the case of periodic and quasiperiodic media.

From this point of view, the main open questions are how widely the abstract approach in (i) can be shown

to be valid, beyond simple examples (ii) and numerics (iii).

To state our main results briefly, consider an equation of the form (1.3) with ε-independent inhomogeneity

g(x, u; ε) ≡ h(ϑ(x), u),

where ϑ(x) = Sx(θ) denotes a trajectory of a flow Sx(ϑ0) on a smooth manifold M with ergodic measure ν.

The simplest example is a quasiperiodic medium

ϑ(x) = ωx mod 1, ω ∈ Rm, ωj independent over R \Q, ϑ(x) ∈M = Tm = Rm/Zm, (1.5)

such that h(·, u) : Tm → R is quasiperiodic with m frequencies, and ν is simply Lebesgue measure on Tm.

Our key assumption is that the dynamics near depinning can be reduced to a skew-product flow on M× R,

with flow Sx acting on M as determined by the medium, and reduced flow ξ′ = s(Sξ(θ);µ), s :M×R→ R.

Let us assume that a = ac, µ = 0 as in (1.4) is critical. More precisely, we assume that at µ = 0, s(ϑ∗; 0) = 0

and s(ϑ; 0) > 0 for ϑ 6= ϑ∗ in M. Moreover, we assume nondegenerate criticality,

D2
ϑs(ϑ∗; 0) > 0, ∂µs(ϑ∗; 0) > 0.

Then we find, for ν-almost all media,

s̄(µ) ∼ µγ , γ = max{1− κ

2
, 0}, κ 6= 2, (1.6)

where κ is the dimension of the ergodic measure ν at ϑ∗; see Definition 2.3, below. Here, γ = 0 refers to

discontinuous behavior at µ = 0, that is, limµ↘0 s̄(µ) > 0. For κ = 2, we find logarithmic asymptotics,

s̄(µ) ∼ 1

| log(µ)|
, κ = 2. (1.7)

For quasiperiodic media, κ simply stands for the number of frequencies, and our results predict hard depinning,

that is, discontinuous speeds, for three or more frequencies; see Figure 1.2.

To our knowledge, such asymptotics for speeds are new beyond periodic media. Existence and propagation

of fronts has been established in various contexts; see [24] for existence of speed in random and ergodic

media, with ignition type nonlinearities, not allowing for pinning, and see [21, 27] for the bistable case with

no-pinning assumption, and [29] for an overview. For depinning asymptotics, we refer to [3, 16, 22, 28, 32]

for results using renormalization group theory for random media, and for results in specific model problems.

In the remainder of this introduction, in order to give some context to the somewhat general setup here, we

review several special cases that are understood to some degree.

Depinning in periodic media. The key ingredients to our main result is the description of front dynamics

through positional dynamics, and the presence of a saddle-node bifurcation. We illustrate those ingredients

in the well understood case of media with spatial period P . Similar to the translation invariant case, one may

expect, for instance when ε� 1 in (1.3), that there exists a family of interfaces parameterized by a position
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Figure 1.3: Schematic illustration dynamics in phase (function) space. Homogeneous media with a normally attracting

(red) invariant manifold (black) of translated traveling wave profiles (left); the invariant manifold with spatially

periodic vector field for periodic media, showing the depinning transition as a saddle-node (right).

variable ξ ∈ R, which form a normally hyperbolic manifold in a suitable function space such as the bounded

uniformly continuous functions. In the pinning regime, this manifold contains pinned fronts as equilibria, and

heteroclinic orbits between those equilibria; see Figure 1.3 for a schematic picture and [6] for general results

towards establishing existence of such manifolds in a non-perturbative setting. Parameterizing the manifold

by ξ ∈ R, one then infers positional dynamics

ξ′ = s(ξ; a), s(ξ + P ; a) = s(ξ; a),

where P is the spatial period of the medium. Pinning regions are given by the values of a where s possesses

a zero. Generically, zeros will disappear in a saddle-node bifurcation, with local expansion

ξ′ = α1(a− ac) + α2(ξ − ξ0)2 + . . .

One readily finds that for α1, α2 > 0, say, and a & ac, the passage time T from ξ0 − δ to ξ0 + δ, δ > 0, fixed,

scales as T ∼ (a− ac)−1/2, such that the average speed scales

s̄(a) ∼ (a− ac)1/2, (1.8)

that is, γ = 1/2 in (iii), or κ = 1 in (1.6), consistent with the one-dimensional nature of a periodic medium,

m = 1 in (1.5). Results that establish asymptotics of this type are abundant in the literature, and we mention

here [7, 17] for rigorous results with weak inhomogeneities and [4] for explicit asymptotics in lattices.

Slowly varying media — intuition on pinning. The most intuitively accessible scenario are slowly

varying media, for instance

ut = uxx + (u− a)(1− u2) + g(x, u; ε), g(x, u; ε) = A(εx)(1− u2),

where A(y) ∈ (−1, 1) and ε� 1. Intuitively, since the front interface experiences an almost constant medium

with effective imbalance aeff(ξ) = a−A(εξ), one expects that speeds depend on the front position ξ through

s = s(a − A(εξ)), where s(·) is the speed-balance relation from the spatially homogeneous case ε = 0. One

then infers a leading-order differential equation for the front position

ξ′ = s(a−A(εξ)),

which exhibits equilibria whenever a − A(ζ) has at least one zero. Phenomenologically, front propagation

is blocked at locations where s(a − A(εx)) = 0. Suitably defined averages of the speed can now vanish for

open sets of the parameter a since zeros can be robust. Although this result appears intuitive, and although

a formal expansion in ε gives such a result to leading order, we are not aware of a result that rigorously

establishes such a description; see however [13, 14] for results on depinning bifurcations in this context.
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Figure 1.4: Schematics of phase portraits for period maps associated with (1.10) or (1.9); depinning transition corre-

sponds to heteroclinic tangency.

Rapidly varying media, homogenization, and exponential asymptotics. In the opposite direction,

one can consider rapidly varying media g(x, u; ε) = A(x/ε)(1− u2). When variations of the medium are fast

compared to the scale of variations for the front, one would hope to replace A by its (local) average, obtaining

a homogenized equation with recovered translational invariance. Therefore, the pinning region is trivial in the

averaged equation, but one expects non-trivial pinning regions for ε > 0. In fact, assuming A periodic, with
−
∫
A = 0, say, one can see that ac(ε) > 0, generically, in the class of smooth periodic functions, following the

steps in [10]. For analytic functions A(ξ), the estimates there imply ac = O(e−c/ε) for some c > 0, implying

an extremely small pinning region. Similar considerations also apply to the case where inhomogeneitiy is

reflected in a space-dependent diffusivity. Still following the ideas in [10], we can also think of a spatial finite-

differences discretization of (1.1) as encoding a spatially periodic dependence of the diffusion coefficient; see

also [26]. Fine discretizations would then lead to extremely small pinning regions in the above sense.

Lattice dynamical systems. Pinning is also present in lattice differential equations,

uj,t = d(uj+1 − 2uj + uj−1) + fa(uj), j ∈ Z, (1.9)

where more general, say next-nearest neighbor coupling is also possible. Here, fa(u) is a general bistable

nonlinearity, for instance the function fa(u) = (u − a)(1 − u2) from above. Pinning regions are explicit in

the case of lattice differential equations with piecewise linear nonlinearities [8], but the general phenomenon

had been noticed much earlier in the literature; see for instance [30, 31, 35] for spatially periodic media and

[2, 20, 33] for results on lattice dynamical systems.

Lattices can be thought of as inherently spatially inhomogeneous, periodic media, where the translation

symmetry is reduced to the discrete group Z. They can be rigorously approximately embedded into spatially

periodic media of the form

ut = (dp(x)ux)x + fa(u), dp(x) = dp(x+ 1), (1.10)

see [26].

Pinning regions can be associated with regions where stationary solutions exist. Such stationary solutions

solve a two-term recursion d(uj+1 − 2uj + uj−1) + fa(uj) = 0, or a time-periodic differential equation,

(dp(x)u′)′ + fa(u) = 0 in the case of (1.10). Both define a diffeomorphism of the plane, the latter after

passing to the time-one map, the first by simply writing the recursion as a first-order recursion in the plane.

Both possess heteroclinic orbits between hyperbolic equilibria at a = 0. Since these heteroclinic orbits are

generically transverse, they occur for open intervals of the parameter a, thus implying pinning; see Figure

1.4 for a schematic picture of heteroclinic orbits unfolding when varying a. We refer however to [8, 15] for

examples of discrete systems which do not exhibit pinning.

Nonlocal coupling. We also mention a curious phenomenon that arises when interpreting (1.9) as an

equation on the real line,

ut(t, x) = d(u(t, x+ 1) + u(t, x− 1)− 2u(t, x)) + f(u(t, x)) = 2d(−u+K ∗ u)(t, x) + f(u(t, x)), (1.11)
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with K = (δ−1+δ+1)/2, Dirac-δ functions shifted by ±1. Naturally (1.11) decouples into a family of equations

on x0 + Z, each equivalent to (1.10), for which we expect non-trivial pinning and depinning with depinning

exponent asymptotics γ = 1/2 in (1.4). Curiously, this happens to be a very degenerate situation, as far

as asymptotics are concerned, as demonstrated in [1]. For smooth convolution kernels K, the results there

demonstrate that one has γ = 3/2 for some simple kernels with rational Fourier transform, which formally

corresponds to an ergodic dimension κ = −1 in (1.6). Numerical results strongly suggest that γ = 3/2 for all

smooth enough kernels, and γ > 3/2 for kernels with strong singularities at the origin; see Figure 1.1 for a

schematic comparison.

Outline. We give a precise statement and prove our main result in Section 2. Section 3 contains an example

which allows for a verification of our main assumptions in the case of weak inhomogeneities. We study more

general situations numerically in Section 4 and conclude with a brief discussion, Section 5.

Acknowledgements. A. Scheel was partially supported through NSF grants DMS-1612441 and DMS-

1311740, through a DAAD Faculty Research Visit Grant, WWU Fellowship, and a Humboldt Research

Award. S. Tikhomirov was supported by Saint-Petersburg State University research grant 6.38.223.2014, and

RFBR 15-01-03797a and by ”Native towns”, a social investment program of PJSC ”Gazprom Neft”.

2 Depinning — abstract result

We consider an abstract system,

Ut = F (U, θ;µ),

θt = 0, (2.1)

where U ∈ X, a Banach space, is the state vector, θ ∈M, a smooth compact manifold, encodes the medium,

and µ ∈ R encodes the depinning parameter. The equation for U is understood to generate a smooth

semiflow, although this is not a technically relevant assumption in addition to the hypotheses listed below,

rather relevant for their verification in specific examples. We assume that the system possesses a translation

symmetry acting on U and θ,

Tζ = diag (Tζ , Sζ), ζ ∈ R,

with action Sζ being a smooth flow on M, and Tζ encoding translations of profiles.

Hypothesis 2.1 (invariant manifold) We assume that there exists a family of smooth manifolds Nµ ⊂
X ×M diffeomorphic to R ×M, invariant under the action of Tζ . The manifold Nµ carries a flow such

that all trajectories are solutions to (2.1). In the “coordinates” (ξ, θ) ∈ R × M, the translations act as

(ξ, θ) 7→ (ξ + ζ, Sζ(θ)), and the flow on Nµ is generated by a C2-vector field

ξ′ = s(Sξ(θ);µ), θ′ = 0. (2.2)

Typically the existence of such an invariant manifold with smooth flow, smoothly depending on parameters,

will be obtained by establishing normal hyperbolicity. We will give an example in the next section. The

ξ-direction is associated with the translation group, parameterizes translates in U -space. As a consequence,

s is naturally interpreted as a speed. Zeros of s are pinned profiles, s > 0 on M corresponds to a depinned

situation.

Our next hypothesis is concerned with the flow on the reduced manifold.
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Hypothesis 2.2 (critical, generic pinning, and depinning) There is a unique θ∗ ∈M such that

s(θ; 0) > 0 for θ 6= θ∗,

s(θ∗; 0) = 0,

∂µs(θ∗; 0) > 0,

D2
θs(θ∗; 0) > 0,

that is, in words, we have positive drift speed s except at a non-degenerate minimum θ∗, whose value increases

linearly with µ.

Our last assumption concerns the medium.

Hypothesis 2.3 (ergodic inhomogeneities and dimension) We assume that the flow Sζ is ergodic with

respect to an invariant measure ν on M and that the local dimension κ of ν at θ∗, as defined below, exists.

Definition 2.4 (local dimension) We say that the measure ν at a point y∗ has the dimension κ > 0, if

there are constants c, C > 0 such that the measure of balls of radius r can be estimated through

crκ 6 ν(Br(y∗)) 6 Crκ.

We note that the definition of dimension here is more restrictive than the more common definition κ =

limr→0 log ν(Br)/ log r. In other words, the local dimension might not exist for many ergodic measures. We

suspect that results of the type derived here are possible for weaker characterizations of a local dimension,

allowing for instance for slowly varying constants c = c(log r), C = C(log r) in our characterization. We note

that the definition of dimension used here is independent of Lipshitz coordinate changes. With these three

assumptions, we are now ready to state a precise version of our main abstract result.

Theorem 1 Assume Hypotheses 2.1–2.3 on invariant manifolds, pinning, and ergodicity of the medium,

respectively. Then we have, for ν-almost every medium θ ∈M, and |µ| sufficiently small,

• pinning for µ < 0, that is, ξ(t) is bounded for t ∈ R;

• depinning for µ > 0, that is, ξ(t)→ ±∞ for t→ ±∞;

• depinning asymptotics depending on the local dimension, that is, limT→∞ ξ(T )/T = limT→−∞ ξ(T )/T =

s̄(µ) exist, with

s̄(µ) ∼


µ1−κ/2, κ < 2,

(| log(µ)|−1, κ = 2,

1, κ > 2,

(2.3)

as µ → 0, where the similarity sign refers to inequalities bounding the left-hand side in terms of the

right-hand side from above and below with µ-independent nonzero constants.

Proof. To prove depinning, note that s > 0 for µ > 0, small. Hence, by compactness of M, s > smin

and ξ′ > smin, which proves the claim. To prove pinning, note that s < 0 in an open neighborhood of θ∗
when µ < 0, which, according to Hypothesis 2.3 has positive but not full measure. Therefore, for ν-almost

every medium, s(Sξ(t)(θ);µ) < 0 and s(Sξ(t′)(θ);µ) > 0 for arbitrarily large values of t, t′ > 0 or t, t′ < 0,

implying that s(Sξ(t)(θ);µ) changes sign. As a consequence, the trajectory ξ(t) converges to an equilibrium

and remains bounded. It remains to establish depinning asymptotics. We therefore solve the equation for ξ

explicitly, using that s > 0, ∫ ξ

0

1

s(Sζ(θ);µ)
dζ = T.
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Therefore,

s̄(µ) =

(
lim
ξ→∞

1

ξ

∫ ξ

0

1

s(Sζ(θ);µ)
dζ

)−1

,

whenever the limit exists. Inspecting this integral, we notice that Birkhoff’s ergodic theorem guarantees

that the “temporal” ζ-average exists ν-almost everywhere and can be replaced by the space average over M
weighted with the ergodic measure ν, for almost all media θ (alias initial conditions for the spatial flow Sζ),

s̄ =

(∫
M

1

s(ϑ;µ)
dν(ϑ)

)−1

.

One realizes that the integral gives a bounded contribution in a complement of a fixed small ball Bδ(θ∗) of

radius δ > 0, centered at the singularity ϑ∗ of s, as µ→ 0. We therefore find the leading-order contribution

s̄ ∼

(∫
Bδ(θ∗)

1

s(ϑ;µ)
dν

)−1

.

Further simplifying the calculation, we can choose coordinates according to the Morse Lemma ϑ̃ = Ψ(ϑ;µ),

such that θ∗ = 0 and s(ϑ;µ) = µ+ |ϑ|2 in a small neighborhood of the origin, possibly also reparameterizing

the parameter µ. Smoothness of the coordinate change ensures that the dimension of the transformed measure

is unchanged. This leads to the integral asymptotics

s̄ ∼

(∫
Bδ′ (0)

1

µ+ |ϑ|2
dν̃

)−1

,

with transformed measure ν̃. Here, we also changed the domain of integration to a small ball Bδ′(0) ⊂
ψ(Bδ(θ∗);µ) centered at the origin, which again does not affect asymptotics since contributions outside of a

small neighborhood are bounded. Rescaling, we may assume δ′ = 1.

In the case of κ-dimensional Lebesgue measure, the right-hand side can now be evaluated explicitly to find

the result. Alternatively, one would obtain the asympmtotics by scaling θ =
√
µθ̃ and exploiting scaling

properties of Lebesgue measure. This latter approach can be exploited in our context of measures with

possibly fractal dimension.

In order to estimate the integral, define D` = Bρ`(0) \Bρ`+1(0), for ρ < 1 sufficiently small, and find

c̃ρκ` 6
∞∑
`=1

∫
D`

dν 6 C̃ρκ`,

where c̃ = c− ρκC > 0, C̃ = C − ρκc in terms of c, C from Hypothesis 2.3.

Suppose now that κ < 2. We evaluate the integral by first decomposing into sums,
∫
B1(0)

=
∑∞
`=0

∫
D`

, which

gives ∫
Bδ(ϑ∗)

1

s(ϑ;µ)
dν ∼

∞∑
`=0

∫
D`

1

µ+ |ϑ|2
dν̃.

In a region D`, the integrand can be estimated from above and below with µ-uniform constants as (µ+ρ2`)−1,

which gives∫
Bδ(ϑ∗)

1

s(ϑ;µ)
dν ∼

∞∑
`=0

ρκ`
1

µ+ ρ2`
∼
∫ ∞
x=1

ρκx
1

µ+ ρ2x
dx ∼

∫ 1

0

rκ−1 1

µ+ r2
dr ∼ µκ/2−1.

Here we used the integral criterion for sums to reduce the sum to an elementary integral, which can be

computed after the substitution r = ρx.
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For κ > 2, the resulting integral is uniformly bounded away from zero,∫
Bδ(ϑ∗)

1

s(ϑ;µ)
dν ∼

∫ ∞
x=1

ρκx
1

µ+ ρ2x
dx ∼ 1,

and for κ = 2 we find logarithmic asymptotics,∫
Bδ(ϑ∗)

1

s(ϑ;µ)
dν ∼

∫ ∞
x=1

ρ2x 1

µ+ ρ2x
dx ∼ | log(µ)|.

Intuitively, for larger dimensions, regions where the front is almost pinned are less frequently explored, such

that the front encounters regions where it is very slow less frequently. In this sense, our result can be thought

of as simply describing the effect of extreme-value statistics on the average speed of the front: the front will

experience an effective slow down near the depinning threshold only when the extremely small values of the

speed are explored sufficiently frequently in a power law scaling sense. Depinning is “soft”, with small speeds

near the threshold, for κ < 2, and “hard” for κ > 2, with speeds O(1) immediately after depinning.

The simplest examples are of course quasi-periodic media, whereM = Rκ/Zκ, the κ-dimensional torus, with

irrational flow preserving κ-dimensional Lebesgue measure. Depinning occurs with exponent 1/2 for one

frequency, with logarithmic asymptotics for two frequencies, and we find hard depinning for more than two

frequencies. The degenerate case of κ = 0 comprises the case of a Dirac measure at θ∗, which corresponds

to a translation-invariant medium, where we expect smooth asymptotics for the speed s ∼ µ, consistent with

our expansions for κ = 0.

Remark 2.5 (autonomous formulation) The reduced equation can be written in somewhat more compact

form. Introducing the shifted medium Sξ(θ) =: ψ ∈M as a new variable, we find the system

ξ̇ = s(ψ), ψ̇ = s(ψ)σ(ψ),

where σ is the vector field associated with the flow S. Geometrically, the flow for ψ is the same flow as the

ergodic flow of the medium, scaled by the scalar local velocity associated with the medium. Pinning occurs

when the flow for ψ possesses hypersurfaces of equilibria. Depinning occurs when those equilibria disappear,

generically in the form of small shrinking ellipsoid. Slow speeds are caused by long passage times of trajectories

in those regions.

Remark 2.6 (Birkhoff-a.e.) In the theorem, we exploit the measure in order to use Birkhoff’s ergodic

theorem. While Birkhoff’s theorem guarantees ergodic averages to converge to the average over the ergodic

measure, convergence often holds for more trajectories, for instance trajectories with positive Lebesgue mea-

sure; see for instance [5]. In the simple example of quasiperiodic media with irrational flow on a torus,

Birkhoff’s theorem holds of course for all initial conditions, such that results are valid for all rather than

almost every medium.

In the next section, we address how the assumptions made here can be verified in a prototypical example of

weakly inhomogeneous media.

3 Depinning with weak inhomogeneities — an example

Our goal here is to provide an example where the hypotheses of Theorem 1 can be verified. Consider therefore

the classical bistable Nagumo equation

ut = uxx + (u+ µ)(1− u2) + εα(x; θ)g(u). (3.1)
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Note that for µ = ε = 0, the equation possesses a family of standing fronts, given explicitly as translates of

u∗(x) = tanh(x/
√

2).

It is natural to assume that the weak inhomogeneity εα(x; θ) depends on the variable θ ∈ M in a smooth

fashion, on compact intervals of x. Thinking for instance about solving (3.1) in spaces of bounded, uni-

formly continuous functions BC0
unif(R), equipped with the supremum norm, one would then like to assume

even stronger uniform smooth dependence, that is, smoothness of the map θ 7→ α(·; θ) ∈ BC0
unif(R), say.

This, however, would conflict with allowing for spatially “chaotic” media, which would incoporate some

sensitive dependence of the spatial “trajectory” Sx(θ) on θ, typically through exponential growth in the

linearization measured by Lyaupunov exponents. As a consequence, there will exist locations xj such that

d(Sxj (θj), Sxj (θ∞)) > δ > 0 when θj → θ∞, such that the map θ 7→ α(·; θ) ∈ BC0
unif(R) cannot be continuous

(it would of course be continuous in a local topology). In order to recover smooth dependence of solutions on

θ, we exploit the fact that the bounded function α is multiplied by a term g(u). Making suitable assumptions

on g will ensure exponential decay, that is, the effect of the medium vanishes at the asymptotic states of the

front.

The following hypothesis quantifies this divergence. Therefore, define the function space of exponentially

growing continuous functions BC0
η as the image of BC0

unif under the multiplication map u(·) 7→ eη|·|u(·), that

is, we allow for exponential growth with rate η > 0.

Hypothesis 3.1 (small Lyapunov exponent inhomogeneity) We assume that the function α : R ×
M → R is smooth, bounded, and equivariant in the sense that α(x; θ) = α(0;Sx(θ)) for a smooth flow S on

M with ergodic invariant measure ν. Moreover, we assume that the map

Iα :M→ BC0
η , θ 7→ α(0;S·(θ)),

is of class C2 for some η ∈ R.

We next state our assumption on the nonlinearity in the perturbation g.

Hypothesis 3.2 (vanishing tail corrections) We assume that the effect of inhomogeneities vanishes to

zeroth and first order at the asymptotic states, g(±1) = g′(±1) = 0, g ∈ C2.

Theorem 2 Consider equation (3.1) for ε sufficiently small, with α satisfying Hypothesis 3.1 and g satisfying

Hypothesis 3.2. Furthermore, assume tail-Lyapunov dominance, δ > η, where δ =
√

2 is the decay rate of the

front and η was specified in Hypothesis 3.1.

Then Hypothesis 2.1 is satisfied, that is, there is a flow-invariant normally hyperbolic invariant manifold with

an equivariant flow as stated there. Moreover, the reduced vector field s :M× R→ R is smooth in ε, µ and

C2 in θ, and possesses the expansion

s(θ; ε, µ) = sε(θ)ε+ sµµ+ O
(
ε2 + µ2

)
,

where

sε(θ) =
〈u′∗(y), α(y; θ)g(u∗)〉

〈u′∗, u′∗〉
,

sµ =
〈u′∗(y), g(u∗)〉
〈u′∗, u′∗〉

.

Proof. In our ansatz, we start with the basic front u∗(x) = tanh(x/
√

2), which solves (3.1) at µ = ε = 0.

We account for translations and corrections with the ansatz

u(t, x) = u∗(x− ξ(t)) + w(t, x− ξ(t)),
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which yields the equation

−ξ̇u′∗ + wt − wy ξ̇ = wyy + f ′(u∗)w + h(y, w;µ) + εα(y + ξ; θ)g(u∗ + w),

where f(u) = u(1− u2) and

h(y, w;µ) = f(u∗ + w)− f(u∗)− f ′(u∗)w + µ(1 + u∗ + w)(1− u∗ − w) = O(|w|2 + |µ|).

The linear operator L = ∂yy + f ′(u∗) is self-adjoint with kernel u′∗, and we will normalize w through

〈w, u′∗〉 :=

∫
R
w(t, y) · u′∗(y)dy = 0,

which implies 〈wt, u′∗〉 = 0. Decomposing with the orthogonal projection onto u′∗, we obtain

ξ̇ = − 1

〈u′∗ + wy, u′∗〉
〈u′∗, h(y, w;µ) + εα(y + ξ; θ)g(u∗ + w)〉

wt = Lw + h(y, w;µ) + εα(y + ξ; θ)g(u∗ + w) + ξ̇(u′∗ + wy),

where in the equation for wt, we substitute the expression from the first equation for ξ̇ to obtain a system of

evolution equations for (ξ, w).

Clearly, given ξ and w, we can reconstruct u and vice-versa. Translation symmetries act trivially in these

new coordinates, Tζ(ξ, w) = (ξ + ζ, w). Since α(y+ ξ; θ) = α(y;Sξ(θ)), the right-hand side of the w-equation

depends on ξ only through its dependence on Sξ.

We pose this equation in a space of exponentially localized functions w(t, ·) ∈ BC0
−δ, where δ is sufficiently

small such that u′∗ ∈ BC0
−δ. Since g and g′ vanish at ±1, the map w 7→ g(u∗ + w) is smooth from BC0

−δ
to BC0

−2δ. Multiplication with α yields a smooth map (θ, w) ∈ M× BC0
−δ → BC0

η−2δ. For tail-Lyapunov

dominance, δ > η, the nonlinearity therefore defines a smooth automorphism on BC0
−δ with C2-dependence

on θ, by Hypothesis 3.1.

A standard contraction mapping theorem [11], now gives the existence of a center manifold smoothly depend-

ing on the parameters µ and θ with induced flow respecting the symmetry. Expansions for the reduced vector

field follow by projecting the leading order terms in ε and µ onto the eigenspace, which here is equivalent to

computing the leading order terms of the ξ-vector field.

Remark 3.3 (vanishing tail vs Lyapunov growth) It is clear from the proof that tail-Lyapunov domi-

nance can be weakened when assuming higher order of vanishing tail corrections, say, g(j)(±1) = 0, 0 6 j 6 `,

which readily gives a required tail-Lyapunov dominance relation of η 6 `δ.

Remark 3.4 (quasiperiodic media) When the flow S is simply irrational rotation on a torus, one readily

sees that trajectories are bounded and Hypothesis 3.2 on vanishing tail corrections is not needed.

One can clearly construct examples of nonlinearities satisfying Hypothesis 3.2 quite easily, using for instance

g(u) = (u2 − 1)2. A simplest example for Hypothesis 2.1 are quasiperiodic flows on Tκ with zero Lyapunov

exponent η and invariant ergodic Lebesgue measure, for instance

α(y; θ) =

κ∑
j=1

αj cos(ωjy + 2πθj), (3.2)

with (ωj)j=1,...,κ independent over the rationals, and αj 6= 0.

Remark 3.5 (ergodic media beyond quasiperioidicity) More intriguing examples can be constructed

from suspensions of ergodic diffeomorphisms. Consider a diffeomorphism on a compact manifold Ψ :M0 and
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define M := (M0 × [0, 1])/ ∼, where the equivalence relation identifies (1, θ) and (0,Ψ(θ)). The suspension

flow Sζ simply translates along the interval [0, 1], such that S1(θ, 0) = (Ψ(θ), 0). An ergodic measure ν0 for Ψ

induces an ergodic product measure for the suspension flow ν = ν×νR, where νR is Lebesgue measure on [0, 1],

augmenting the dimension of ν0 by 1. Anosov diffeomorphisms such as the cat map (u, v) 7→ (2u+ v, u+ v)

on R2/Z2 are examples of ergodic maps with in this particular case, 2-dimensional ergodic Lebesgue measure.

Lower-dimensional examples can be obtained from horseshoe maps; see for instance [34]. For the simplest

horseshoe and precisely (affine) linear dynamics on the invariant set, one finds

κ0 = dim ν0 = (log 2)

(
1

log(ρu)
− 1

log(ρs)

)
,

where log 2 is the entropy (more generally given through log(#{crossings})), and ρu/s are expansion and

contraction rates, respectively. To see this, one first notices that the ergodic measure of maximal dimension

is a product measure. One then uses invariance of the measure to see that the measure of a narrow vertical

stripe equals the measure of two vertical stripes with width contracted by ρs, which gives, after iteration,

ν(Sr) = (1/2)n with r = (ρs)n for vertical strips Sr of width r. A similar consideration for vertical strips and

backward iteration then yields the desired result for the dimension.

Noting that ρu > 2 and ρs < 1/2, we note that we can realize arbitrary dimensions κ0 ∈ (0, 2) and hence

ergodic dimensions κ ∈ (1, 3) for the suspension flow.

Abandoning invertibility of Sξ and focusing on t→ +∞, simpler examples can be constructed from suspensions

of (expanding) interval maps such as x 7→ 2x mod 1 or x 7→ 4x(1− x).

Remark 3.6 (hypothesis on depinning) Hypothesis 2.2 can be realized under suitable assumptions on the

inhomogeneity α(y; θ).With the example from irrational media (3.2), g(u) = (u2 − 1)2, one finds

sε(θ) =

∫
R

3

4
sech (x/

√
2)6

κ∑
j=1

αj cos(ωjy + 2πθj)dy =

κ∑
j=1

αj
πωj(2 + ω2

j )(8 + ω2
j )

20
csch (πωj/

√
2) cos(2πθj),

which is an expression of the form
∑
j βj cos(2πθj) with nondegenerate minimum θ = 0 ∈ Tκ for βj < 0, say.

4 Depinning — numerical corroborations

We expect the results from the abstract framework in Section 2 to be applicable in a much wider context

than guaranteed by the results in Section 3. We therefore tested the predicted asymptotics in the context

of lattice-dynamical systems. Due to the discrete nature of translation symmetry, motion of traveling waves

here is inherently periodic, such that the dimension of the medium needs to be increased by one. Considering

for instance a lattice-differential equation

u̇j = d(uj+1 − 2uj + uj−1) + (uj − aj)(1− u2
j ), (4.1)

one would consider the dimension of the set of translates of the sequences (aj)j∈Z in a local topology, and

add one, to obtain our dimension κ. The additional dimension can also be understood from the results in

[26], where lattice dynamical systems were approximately embedded into reaction-diffusion equations with

spatially periodic coefficients. In that respect, a constant, translational invariant lattice dynamical system

aj ≡ a, would correspond to a periodic medium, κ = 1.

We performed numerical experiments for (4.1) with various choices for the aj . Since we expect results to be

robust across many systems, we used rough numerical discretization, explicit Euler with step size h = 0.1,

on a finite-dimensional approximation with N = 71 points. We used appropriate shifts to keep the moving

interface in the center of the domain; see [2] for an equivalent setup. We ran simulations for times that

amount to about 500 effective shifts on the lattice.

Specifically, we chose
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Figure 4.1: Speed-imbalance relations computed for the lattice-dynamical system (1.9), with spatially periodic, 2-

frequency, and 3-frequency media from left to right, top row, as specified in the text; plot of s̄2 for periodic and

exp(−c/s̄) with visual best fit c = 0.14 exhibit linear asymptotics as predicted by our analysis.

Periodic: aj = a+ ε cos(ωj + θ), with ε = 0.1, ω = π/2, θ = 0;

2-Frequency: aj = a+ ε cos(ωj + θ), with ε = 0.1, ω =
√

2, θ =
√

3

3-Frequency: aj = a+ε cos(ω1j+θ1)+ε cos(ω2j+θ2), with ε = 0.05, ω1 =
√

2, θ1 =
√

3, ω2 =
√

5, θ2 =
√

6.

The results are shown in Figure 4.1. The plots show the steepening of speed-imabalance relations as the

dimension of the medium increases. We also plotted s̄1/κ in the periodic medium, which according to our

prediction should exhibit linear asymptotics. For the critical dimension κ = 2, 2-frequency medium, we

plotted exp(−c/s̄), which should again exhibit linear asymptotics when s̄ ∼ c| logµ|. We found c = 0.14 for

a best visual fit. More rigorously fitting the parameter c would require a more accurate computation of the

depinning threshold ac.

5 Summary and extensions

After summarizing our point of view, we comment on a number of open questions related to the results here.

Summary of results. Our goal was to derive universal scaling laws near depinning transitions. Our

main result distills a framework in which depinning asymptotics are governed by power laws with exponent

depending on the local dimension of the invariant measure near criticality. The framework is inspired by

symmetry considerations, viewing translations of the front as equivalent to shifts of the medium. Those shifts

of the medium are naturally viewed as a flow, which, as our main assumption, we view as being induced by a

smooth flow on a smooth compact manifold, with an ergodic measure capturing the statistics of translates of

the medium when considered in a local topology. The emphasis on symmetry and reduction to skew-product

flows is inspired by [9, 25], where motion on groups was forced by “internal” dynamics of fronts or other

coherent structures. As such, our results rely crucially on smoothness of extensions. We view ergodicity as

somewhat more natural, given that flows on a manifold always possess ergodic measures. When constructing
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the reduced skew-product flow in a more concrete example, we noticed a subtle condition, requiring bounds

on spatial Lyapunov exponents of the medium in terms of exponential convergence rates of the front.

Critical fronts. At µ = 0, the critical threshold for depinning, the medium supports a pinned front — in

the support of the ergodic measure, therefore not necessarily in the given fixed medium. The rate of growth

of ξ depends very much on the dimension and on the particular medium. Clearly, trajectories are bounded in

one-dimensional media. In quasi-periodic media, the orbit is bounded whenever the critical medium θ∗ is a

specific shift of the given medium, that is, the maximum lies on the given trajectory on the torus. For most

media θ, however, this will not be the case, and the front position will not be bounded. For dimensions κ > 2,

the propagation will be ballistic ξ ∼ t, with limiting speed the continuous limit of speeds for µ > 0, as one

can readily see from the calculation of the speed, exploiting that the singular integral converges for µ = 0.

For dimensions κ 6 2, we expect propagation to be sub-ballistic. Heuristically, times spent near the pinned

front scale with 1/|ψ|, where ψ is a variable parameterizing a section to the flow for ψ onM near the pinned

value θ∗; see Remark 2.5 for a description of geometry. We then expect that ξ = N at times T ∼
∑N
j=1 ψ

−1
j ,

which, for ψj asymptotically uniformly distributed according to a κ− 1-dimensional measure in the section,

gives

T ∼ N
∫ 1

r=N
−1
κ−1

1

rκ−2
dr ∼ N ·N

2−κ
κ−1 for κ ∈ (1, 2),

which then gives

ξ ∼ Tκ−1, 1 < κ < 2. (5.1)

A similar calculation for κ = 2 gives

ξ ∼ T/| log(T )|. (5.2)

Sharp asymptotics. In the case of two-dimensional quasi-periodic media, the expansion coefficient is

in fact explicit, given quadratic terms of the minimum and the dependence on µ. Consider therefore the

inhomogeneity (1− u2)2
∑2
j=1 αj cos(ωjx+ θj), which gives the reduced vector field expansion

sε(θ) =

2∑
j=1

βj cos(2πθj), sµ =
√

2,

with

βj = αj
ωj(2 + ω2

j )(8 + ω2
j )π

20
csch (πωj/

√
2).

Assuming αj < 0, we find minima at θj = 0, which leads to depinning thresholds µc = ε
∑
βj and to an

expansion s(θ) =
√

2µ−
∑

2π2βjθ
2
j , with resulting depinning asymptotics for the ergodic integral

s̄(µ) = 16π
√
β1β2| log(µ)|−1.

Similar calculations are possible whenever the measure ν is known explicitly.

Higher asymptotics. Beyond ballistic asymptotics, corresponding to the ergodic average, one could ask

for rates of convergence. In quasi-periodic media, one encounters subtle dependence on frequencies [19, §2,3],

with convergence ξ(T )/T ∼ s̄+ O(log T/T ) for “good” irrational numbers, hence not quite asymptotic phase

to an appropriately shifted uniformly translating front of speed s̄. The correction to ξ(T ) is usually referred

to as the discrepancy, for which log T/T bounds are optimal, and bounds T δ/T are common for (positive

measure) diophantine numbers.

For “chaotic” media, we expect Brownian deviations, as is common for ergodic averages; see [5] for general

background and [23] for results on fronts. Deviations can, however, be arbitrarily slowly decaying [18].
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Extensions. There clearly is a multitude of possible extensions. In immediate generalizations, one could

focus on averages as t→ +∞, only, allowing for “heteroclinic” media with ergodic measures on the limit sets

with respect to right shifts in a local topology. One could also allow more directly for random samplings of the

medium. Generalizations that affect the scalings more directly are degenerate minima, or, more interestingly,

minima that occur at the boundary of the support of ν, such that ∇s 6= 0 at θ∗. In that case, one could

obtain integrals of the type
∫ 1

0
rκ−1 1

µ+rdr, resulting in asymptotics µ1−κ.

Beyond the more narrow scope of one-dimensional inhomogeneous media, one could look at time-dependent

media, periodic, quasi-periodic, or random, or even consider higher dimensional wave-fronts; see for instance

[12] for results in lattices. In a different direction, motion of localized pulses in higher-dimensional media

presents intriguing other possibilities, such as determining the direction of drift. In this context, relaxation

towards translational Goldstone modes may be much slower, due to interaction with continuous spectra,

present whenever the “traveling wave” is not spatially localized. In this direction, one may also wish to

study the effect of long-range interactions, such as through nonlocal coupling K ∗ u, K a weakly localized

convolution kernel.

More modestly, one would also wish to establish the validity of the hypotheses used in our main theorem

beyond a weak inhomogeneity context, or, at least, specify numerical computations that would allow for a

(semi-)rigorous verification.
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