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Abstract

We study the effect of directional quenching on patterns formed in simple bistable systems such as the
Allen-Cahn and the Cahn-Hilliard equation on the plane. We model directional quenching as an externally
triggered change in system parameters, changing the system from monostable to bistable across an interface.
We are then interested in patterns forming in the bistable region, in particular as the trigger progresses and
increases the bistable region. We find existence and non-existence results of single interfaces and striped
patterns.

Keywords. Phase separation, directional quenching, Allen-Cahn, Cahn-Hilliard.

1 Introduction

We are interested in phase separation patterns arising when systems parameters are varied across an interface
moving with constant speed, such that the system undergoes a phase separation process in the wake of the
interface. As a simplest model for phase separation, we start with a bistable, double-well energy and a surface
energy term,

1 1
Eu] = / <2|Vu|2 + Z(/L - u2)2> dzdy,
.y

with preferred minima v = #,/u. In the simplest case, we think of u = p(x) = —sign(z), rendering the
medium bistable in the half plane z < 0, and monostable in « > 0. More interestingly, we are interested in
the dynamic question, where y = —sign (x — ct), ¢ > 0, that is, the medium is bistable in the growing region
{(z,y)| x < ct}. We refer to this setting as directional quenching in the z-direction with speed ¢. Our focus here
is on slow quenching, 0 < ¢ < 1. We note that the case ¢ < 0 is mathematically perfectly valid but possibly
not as interesting as ¢ > 0: phase separation patterns could be created for ¢ > 0 rather than annihilated at the
interface for ¢ < 0. Indeed, critical points of the energy for i = 1 include a plethora of phase separation patterns
[8], that is, solutions with nodal lines separating regions with u > 0 from regions where u < 0, including simple
straight interfaces u = u(x) — £1 as © — 400, and periodic stripes v = u(x; k),

@' +u—u=0, w(zr; k) = —tu(z + Ky k) = —u(—x; k) £ 0, for x € R, (1.1)

with half-periods 7 < k < 00, and normalization @' (0) > 0.

In order to study the dynamic setup, where ¢ > 0, we focus on two gradient flows associated with the energy
&, the L2-gradient flow with associated Allen-Cahn equation (AC), and the H~!-gradient flow with associated
Cahn-Hilliard (CH) equation. In a comoving frame & = x — ct, those equations read

up = Au+ p(x)u —u® 4 cuy (Allen-Cahn), (1.2)

and
ur = —A(Au + p(z)u — u?) + cu, (Cahn-Hilliard), (1.3)
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Figure 1.1: Shape and alignment of patterns arising in Langmuir-Blodgett transfer of a homogeneous L-a—
dipalmitoylphosphatidylcholine Langmuir transfer; reproduced with permission from [5]. Copyright 2007, ACS.”
monolayer (right). Liesegang rings and helices formed through recurrent precipiation in tube-in-tube experiments
Cu?T(aq) + CrO3(aq) — CuCrO4(s) in 1% agarose gel, schematic of relation to 2d-patterning, and numerical simuila-
tions; reproduced with permission from [26], Copyright 2013, APS.

where p(z) = —sign (z), ¢ > 0, (z,y) € R?, subscripts denote partial derivatives, and we dropped the tilde for
ease of notation. Our focus will be on stationary solutions, u; = 0, and we will only briefly comment on relevant
solutions with nontrivial time dependence. Throughout, we will be thinking of ¢ > 0 small as a perturbation
parameter, starting from the zero speed case.

We are not aware of a systematic study of directional quenching processes in the mathematical literature. Our
work here is motivated to a large extent by phase separation processes in recurrent precipitation [20, 7, 25, 26],
studies of patterning in LangmuirBlodgett transfer [5, 18, 28], and numerical studies in [9].

Both experimentally and numerically, a plethora of patterns can be observed depending on initial conditions and
parameter values. One particular question of interest there is the orientation of interfaces: depending on system
parameters and initial conditions interfaces parallel, perpendicular, as well as slanted relative to the quenching
boundary {x = 0} are observed. Our results can roughly be understood as establishing the existence of stripes
perpendicular to the interface and ruling out slanted stripes. Stripes parallel to the interface were found in an
asymptotic analysis in [17] for the Cahn-Hilliard equation. We rule out the creation of stripes parallel to the
interface in the Allen-Cahn equation.

In the case of zero speed, solutions to the Cahn-Hilliard equation solve
A+ p(z)u — u® = v, (1.4)

where v is usually referred to as the chemical potential. If we require zero mass, © — 0 as x — oo, we find v =0
and we recover the Allen-Cahn problem at ¢ =0

Au+ p(z)u —u® =0, (1.5)

As a consequence, much of the present work treats both cases simultaneously. We note here that the unbalanced
cases, v # 0, as well as more generally unbalanced or even non-odd nonlinearities pose significant obstacles to
the analysis here and likely give rise to different phenomena.

We remark here that somewhat related problems arise in the context of ecology, where a change of stability of the
trivial state encodes a spatial boundary to the habitat of a species, that is, to the region, where small populations
can grow and spread. Much recent work has focused on the effect of shifting habitats due to say climate change,
and the question whether species can follow the spatial shift; see for instance [1, 2, 3, 19, 27] and the references
therein. As we explained above, the main thrust of the present work is towards the characterization of patterns
in the wake of such shifting boundaries, slightly different from the major questions arising in the context of
ecology.



In the remainder of the introduction, we first characterize more precisely possible morphologies in the wake of
the quenching process, then state our main results for speeds ¢ = 0 and then ¢ > 0, briefly discuss methods
employed in the proofs, and briefly discuss some of the many open questions.

1.1 Stripe mopholologies in the wake.

Depending on the pattern in the wake of the quenching process, we distinguish four cases of interest to us
here. Our terminology refers to an orientation where the quenching process progresses “horizontally”, in the
z-direction.

Pure phase selection — 1 ~» 0 fronts The simplest and least interesting case is when the quenching
process generates a pure phase, that is, it does not generate interfaces between regions where v > 0 and u < 0,
respectively. Such solutions can of course be found in one space dimension, z € R, requiring lim,_, o, u(z) = +1
and lim,_, u(xz) = 0; see Figure 1.2.
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Figure 1.2: Pure phase selection 1 ~ 0, solution u(z) (left) and contour plot for (z,y) € R? (right).

We will see that such solutions exist at ¢ 2 0 for AC but only at ¢ = 0 for CH.

Vertical stripes (V). An essentially one-dimensional problem is the formation of vertical stripes in the wake of
the quenching process; see Figure 1.3. We look for solutions with lim, o u(x) = 0, im,—, o |u(x)—a(z; k)| =0
for some x > 0.
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Figure 1.3: Vertical stripes V, solution u(x) (left) and contour plot for (z,y) € R? (right).

We will see that such solutions exist for ¢ = 0. For ¢ > 0, such solutions would necessarily be time-dependent,
since the asymptotic pattern @ is time-periodic. It turns out that such time-periodic solutions do not exist
in AC. For CH, a matched asymptotics analysis in [17], supported by numerical simulations, shows that such
time-periodic solutions exist in CH for small speed. Moreover, the wavenumber is computed as a function of
the quenching speed k = k(c¢) = O(c) as ¢ — 0. Such patterns can be viewed as a prototype of the horizontally
banded stripes in Liesegang band generation [7].

Horizontal (H,H) and oblique stripes (O). True two-dimensional solutions arise when the periodic
patterns are not vertically oriented; see Figure 1.4. Solutions in this case have asymptotics lim,_, o |u(z,y) —
t(cos(d)x + sin(¢)y; k)| — 0, where ¢ € [0,7/2]. Horizontal stripes correspond to ¢ = 7/2. A particularly
interesting limiting case is the creation of one interface, lim,_, o |u(x,y) — tanh(y/v/2)| — 0.

We will see that oblique stripes do not exist at ¢ = 0, horizontal stripes exist for ¢ = 0 and ¢ 2 0, in both AC

and CH. Single interfaces exist at ¢ = 0, and for ¢ = 0 in AC but not in CH. Curiously, oblique stripes are
observed for finite speed [25] and their existence region remains a challenging problem in this area.

We remark that we do not discuss the possibility of cellular patterns emerging in the wake of the quenching
process, a phenomenon of interest and observed in [9], but beyond the reach of our methods here.



Figure 1.4: Horizontal patterns, Hoo (top left) and H (bottom left) and oblique stripes with small and large angles
relative to x = 0, respectively (right).

Nomenclatura and brief summary. We refer to the existence of the pure phase fronts as the 1 ~» 0-
problem, the creation of vertical, horizontal, and oblique stripes as the V-, H-, and O-problem, and the creation
of a single interface as the Ho,-problem. A grasshoppers guide to our main results is contained in the following
table.

1~0 1% Hoo H @
c=0 yes yes yes yes no
AC/CH Prop 1.1 Prop 1.1 Thm 1 Thm 1 Rem 1.2
c20 yes no yes yes 1o
AC Prop 1.4 Rem 1.6 Prop 1.4 Prop 1.4 Rem 1.5
cz0 no (yes) no yes .
CH Rem 1.8 17] Rem 1.8 Prop 1.7 not fmown

1.2 Main results — zero speed

We will state existence and nonexistence results for zero speeds, that is, we will discuss existence and nonex-
istence of solutions to (1.5) for ¥ = 0, with prescribed asymptotics at spatial infinity. Since the coeflicients of
this elliptic equation are discontinuous at the line x = 0, solutions will be classical only for z # 0, and weak
solutions, Holder continuous together with their first derivatives across x = 0. We will in the following results
simply refer to such functions as solutions and emphasize the behavior at infinity.

Our first result concerns the essentially one-dimensional case. Recall the definition of the one-dimensional
periodic solutions @(z; k) with period 2 from (1.1).

Proposition 1.1 (1~ 0, V) There exists a unique family of solutions 0(z; k), K € (m,00], to (1.5) such that
we have lim,_,« 0(z; k) =0, and,

K=00: EIEI (0(x;00) — 1) = 0
Kk <o00: lim (O(z;k) —a(z — &(k); k) =0 for some smooth function &(k).
T——00

Moreover, 6(z;00) € (0,1) and 6(z; k) € (—1,1), for allx € R, K < co.

Since this result is concerned with an ordinary differential equation, the proof follows by simple phase plane
analysis. We shall give some details in this direction in Section 2 but also give a longer proof that relies on
comparison principles and builds the basis for the proof of the higher-dimensional results that we shall state
next.



Theorem 1 (H, Hoo) There exists a family of solutions Z(z,y; k), , k € (m,00], to (1.5) such that we have
lim, 00 E(x,y; k) = 0, and

p=00: i (S(a, 5 00) — tanh(y/v2)) = 0
K <oo: lim (=(z,y; #) —uly; £)) = 0.

Moreover, the convergence is exponential, uniformly in y. The solutions have symmetries

[1]

K=00: (z,y;00) = —E(z, —y; 00);

(z,y; k) = =E(2, —y; 5) = —E(2,y + £ 8) = =E(2,y + K; K).

[1]

K <00 :

We also have monotonicity, Z(x,y; k) is non-increasing in x for y € (0,k) ((0,00) when k = 00). For k = oo,
we also have uniform vertical limits,

lim (E(z,y;00) — 0(x;00)) =0,

Y—r—00

where 0 is the solution from Proposition 1.1 in the case kK = oo.

The proof of this result will be carried out in Sections 3 and 4.

Remark 1.2 (O) There do not exist solutions asymptotic to oblique interfaces. More precisely, there do not
exist solutions u(x,y) with

lim w(z,y) =0, lim (u(z,y) —a(cos(P)z +sin(¢)y; L)) = 0, w(z,y) = u(z,y+ L), 0 < <m/2.

Tr—r00 [ee]
This can be readily seen by noticing that the “momentum” J, is constant in x,

J[u](x) ::]luxuydy, iJ[u}(:z:) =0,

dx
for solutions, hence J is independent of x. Beyond a direct calculation, this can be seen by writing the elliptic
equation as a first-order dynamical system, which then, due to the variational nature of the problem inherits a
Hamiltonian structure. As a consequence, symmetries, in this case y-translations, are associated with conserved
quantities. The momentum J generates precisely the y-translations with respect to the standard symplectic
structure w((u1, u1,z), (U2, U2,e) = f uruz z — usuy zdz. On the other hand,
72

Thil(+o0) =0, JTful(~00) = T cos(6) sin(9){ (ales n))” de £ 0.

Similarly, there do not exist solutions asymptotic to a single oblique interface,

lim (u(z,y) — tanh(cos(¢)x + sin(¢)y; k) =0, 0 < ¢ < 7/2.
T——00
We refer to [21, §4.1] for another example where spatial symmetries and associated Hamiltonian conservation
laws lead to explicit selection laws for patterns.

Remark 1.3 The list of patterns mentioned here is connected through various limits. vertical stripes limit on
1 ~~ 0 configurations, as the period Kk goes to oo, in a locally uniform sense. Similarly, horizontal stripes H-
problem, limit on the Hoo solution, locally uniformly, or, when shifted in y by k/2, on the 1 ~ 0 solution, for
Kk — oo. Similarly, oblique stripes limit on horizontal or vertical stripes, as the angle limits on 0 and /2.



1.3 Main results: small speeds

We now state results concerning the existence and nonexistence of solutions to Allen-Cahn (1.2) and Cahn-
Hilliard (1.3) with ¢ = 0.

We start with the traveling-wave solutions to Allen-Cahn,
—cuy = Au+ p(x)u — u. (1.6)

Proposition 1.4 (AC existence, 1 ~ 0, H, Hoo; ¢ > 0) The solutions found for ¢ = 0 can be continued
smoothly to ¢ > 0. More precisely, there exist families of solutions to (1.6) 6(z;c) for 0 < ¢ < 61 and E(z, y; k, ¢),
T < Kk < oo, for 0 < ¢ < 6a(k), with 0(x;0) = 6(x) , E(x,y;k,0) = Z(z,y; k), where § and = were found in
Proposition 1.1 and Theorem 1, respectively, satisfying the same limiting conditions as the solutions at ¢ = 0
for x — +oo. In the case Hxo,

lim (E(x,y;00,¢) —6(z;¢)) = 0.

Y—>00

Moreover, the solutions depend smoothly on ¢, uniformly in (x,y).

The proof will be carried out in Section 5 and is based on the Implicit Function Theorem.

We conclude the discussion of AC-dynamics with remarks on non-existence.

Remark 1.5 (AC non-existence, O, ¢ > 0) Oblique stripes are traveling waves in a coordinate system mov-
ing with speed c, in the y-direction, when ccos(¢) + ¢, sin(¢) = 0, so that they are solutions to

—Cytly — Uy = Au+ p(x)u — u®.

The momentum J introduced in Remark 1.2, evaluated on a solution now solves

Jp=—cJ — c][uf/,

with limits J(+00) = 0, J(—00) = kykyf (@)% Solving the differential equation for J with the boundary

condition gives .
J(z) = e‘c(””_ﬂ”o)J(wo) +/ e @9 (—c][ ui(ﬁ,y)dy) .

Zo

Letting ©o — —oo and using that J is bounded gives

J(x) = /; el ) (6][ Uf,(&y)dy> ,

which, passing to the limit x = —oco or x = 400 gives a contradiction.

Solutions to the V-problem would naturally continue as periodic solutions to (1.2) with temporal period T =
27w, w = ck, k = /K.

Remark 1.6 (AC non-existence, V; ¢ > 0) There do not exist time-periodic solutions to (1.2) with ¢ > 0
with spatial asymptotics
lim (u(t,z) —a(z+ct;k)) =0.

T—r—00

To see this, we mimic the oblique case, Remark 1.5. Define

Ju] = ]{umut,

for a time-periodic solution uw. Then a short calculation gives

Jpy = —cJ — c]l u?,

which leads to a contradiction in the same fashion as in Remark 1.5.



We now turn to traveling-wave solutions of theCahn-Hilliard equation,

—cuy = —A (Au+ p(z)u — u3) , (1.7)

Proposition 1.7 (CH existence, H; ¢ > 0) The solutions found for ¢ = 0 can be continued smoothly to ¢ > 0.
More precisely, there exist families of solutions to (1.7) Z(z,y;k,c), K € (7, 00), for 0 < ¢ < da(k), with
E(z,y;k,0) = E(x,y; k), where E was found in Theorem 1, satisfying the same limiting conditions as the
solutions at ¢ = 0 for x — +oo. Moreover, the solutions depend smoothly on ¢, uniformly in (z,y).

Solutions 1 ~ 0 and H, cannot exist for Cahn-Hilliard due to mass conservation.
Remark 1.8 (CH non-existence, 1 ~ 0, Ho; ¢ > 0) Mass conservation is exploited by integrating (1.7),

)

—cu = — (Ugg + p(z)u — uS)x

using that w — 0 for x — co. As a consequence, u = 1 is not an equilibrium of this ODE, such that u — 1 for
T — —00 is not possible, hence existence of solutions with 1 ~» 0 is excluded for ¢ > 0. Since such solutions
constitute boundary values at oo for the Hoo-problem, we also conclude non-existence of solutions generating
single interfaces.

Outline. We prove the results for ¢ = 0 in Sections 24, starting with the 1 ~» 0 case as a technical warmup,
followed by the H., case, and the H case. The technical arguments here follow ideas from [16]. We address
perturbation arguments that establish Propositions 1.4 and 1.7, in Section 5. We conclude in Section 6 with a
brief discussion.

Notation. In this paper we write Rt := {2 € Rz > 0}. €*(X;Y), 6¢(X;Y) and € (X;Y) denote respec-
tively, the space of k-times continuously differentiable functions, the space of k times continuously differentiable
functions with compact support in X, the space of (k, «) Holder continuously differentiable functions from X to
Y. We denote the Sobolev spaces over an open set £ by H*(€2). The inner product of elements in a Hilbert space
H is written as (, )%. Norms on a Banach space B are denoted as || - ||g. The domain of an unbounded operator
£ is written D (). For a given operator .Z : D(.¥) C X — Y we write Ker (&) := {u € 2(&)|-Lu =0} and
Rg (L) :={f eY|Fue 2(%),Lu= f}. A distribution T € D’'(Q) satisfies T > 0 in the sense of distributions
if T(¢) > 0 for any ¢(-) € C¥(£2;[0,00)). Let T be a closed operator between Banach spaces X and Y.

Acknoledgments. R.M and A.S. are grateful to the University of Miinster, Germany, where part of this work
carried out. R.M. also would like to thanks Itsvan Lagzi and Zoltan Récz from Eotvos University, Hungary,
for stimulating discussions. R.M. acknowledges financial support through a DAAD Research Grant. A.S.
acknowledges partial support throug NSF grants DMS-1612441 and DMS-1311740.

2 One-dimensional quenched patterns at zero speed and proof of
Proposition 1.1

We prove Proposition 1.1. We first outline a simple geometric proof, Section 2.1 based on phase plane analysis.
We then, proceed with an alternative proof, based on comparison comparison principles and taking limits of
domains of finite size in Sections 2.2-2.4. This latter proof will carry over to the construction of solutions in
the H and the H., setting.



2.1 Phase plane analysis

In order to prove Proposition 1.1, we study bounded solutions to the ODE
O2u + p(x)u —u® = 0. (2.1)
For x > 0 and = < 0, separately, solutions can readily be found by inspecting the phase portrait, which in turn

is explicitly determined by the conserved Hamiltonians

1 1 1
H™ (u,ug)(x) = 5%2” + Juz ~ Eu‘l, x <0,

1 1 1
H (u,uy)(z) = iui — 52— Zu4, x> 0.

Continuity of u and wu, at x = 0 implies that we find bounded solutions by intersecting level sets of H~ and
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Figure 2.1: Phase portrait from level sets of H~ (left, red and blue), H' (right, green) and an overlay exhibiting
intersections of the stable manifold and periodic orbits. .

HT and solving from the intersection point backwards and forwards, respectively. Bounded solutions for z > 0
lie in the level set HT = 0 and are given by the stable manifold of the origin. Figure 2.1 shows that the stable
manifold of the origin intersects the family of periodic orbits as well as the stable manifold of £1, yielding the
family of solutions described in Proposition 1.1.

2.2 The truncated problem

Of course, the phase plane arguments we relied on in the previous section do not obviously carry over to a
two-dimensional PDE setup. We therefore pursue here an alternative strategy using PDE a priori estimates and
comparison principles. We solve

u + () —uP =0, -M <z <L, u(—=M) =1, u(L) =0, (2.2)

for 0 < M, L < oo, with continuity of v and u, at x = 0 as explained before. The idea then is to let M — oo
subsequently L — oo, to find that in the solution converges to a solution converging to 1 and 0 as x — +o0,
respectively, thus proving the assertion in Proposition 1.1 fvor Kk = oo; see the diagram below for a schematic
representation.

1 ~~ O-problem
in R

(solution 6(+))

truncation, L — oo

Truncated
1 ~~» O-problem
in (=M, L)
(solution 0(_y71)(-))

|
|

|
|

Truncated
1 ~~ O-problem
in (—oo, L)
(solution 6_.. 1)(-))

The basic ideas of our approach are contained in the work of Kolli-Schatzmann [16], where problems on a quarter
plane were considered, with added difficulties due to the additional limit L — co. Roughly following [16], we



define the following iterative scheme,

{00 (o)~ 5 ) ). in(MD
Opt1(=M) =1, 60,41(L)=0,

We will start this iterative scheme with initial data 6y(-) from the class

U= {9 e €L (=M, L) | 0(~M) =1, 0(L) > 0, 6(z) € [0,1] for all x}
N{0"(z) + p(x)b(z) — 6%(z) <0, 0”(z) + p(x)f(z) — 6°(x) Z 0, in the sense of distributions} .

Note Uy, # 0 since 8y = 1 € ¥y.,9. Moreover, the condition of 6y(-) not being a solution implies that
0o(L) > 0 or that the distributional inequality 6 (x) + u(z)8p(x) — 63(x) < 0 is not an equality.

Notice that the right hand side of (2.3) is non-decreasing as a function of 6,, for 6,,(-) € [0, 1]. Exploiting uniform
ellipticity of the operator (—0., + 5)[-] [4, §8 & 9], we readily find that the scheme represented (2.3) is well

defined and generates a unique sequence (0,,(-)) for every fixed initialization 6y € ¥1.,9 . In what follows

neN
we investigate some of the properties of this sequence.

Lemma 2.1 For every 0y € U109, the sequence (0;(-)) of iterates from (2.3) satisfies for all j > 1 that

JEN
(i) 0 < O_nr,ry(x) < Oj41(x) < O5(x) <1 for all x € (=M, L) and any solution 0(_ps 1yof (2.2);

(it) the sequence (0;(-)),, is precompact in ¢V *(—M, L), forall0<a<l.

Proof. All results follow by induction and successive applications of the maximum principle; see for instance
[10, §3]. Assume without loss of generality that 63(L) > 0. We begin by proving (i) for j = 1. We use (2.3)
and the fact 6y € ¥;1.,0 to conclude that —(6g — 61)” + 5(0g — 61) > 0 in the sense of distributions. We know
that 8g — 61 > 0 on 9(—M, L), and that 6y # 0; since 6y is not a solution. We shall prove that 6y > 6; in
(—M, L). We first show that 6y > 6, in (=M, L): by construction we have that 6y —6; € C(») ([-M, L];[0,1]) C
HY((=M, L)). Using ellipticity of (=92 + 5)[-] and the maximum principle [10, §8, Thm. 8.1] we conclude that
sup(_ s,y [~ (0o —01)] < supy(_s,1)[— (0o —01)] as claimed. We now argue by contradiction to show that 6y > 64
in (—M, L). Assume that there exists a xg € (=M, L) such that (6p — 1) (z9) = 0 and let B CC (—M, L) be
an open ball centered at xg. Again by the maximum principle [10, §8, Thm. 8.19] applied to —(6p — 1) we
conclude that

sup (—(0o —01)) = sup (—(6p —01)),
B 8(—M,L)

such that (0y — 61) is a constant in (—M, L), which however is incompatible with continuity of (6 — 61)(+) and
its boundary conditions. By induction, we conclude pointwise monotonicity and 6;(z) € (0,1). Following the
same reasoning, one readily concludes strict positivity of any solution 6(_ys, 1), which concludes the proof of (i).

To show (ii), notice that the sequence 6; bounded in W?2? for any p < oco. Using the compactness of the
embedding into €1 gives the desired precompactness.

The next result gives the uniqueness of the solution to problem 2.2.

Lemma 2.2 (Uniqueness to truncated 1~ 0) There ezists at most one solution to problem (2.2).

Proof. The proof here is similar to [16, Lem. 1.2]. Assume there are two solutions, 6(-), 8(-) so that 6(-) # 6(-).
Define the set 2 = {x € [-M, L] |0(x) # 0(z)}. Now Z is open by continuity of § and we choose a connected
component (a,b), such that 6(x) > 0(z), = € (a,b), 8(z) > 0(z), = € {a,b}. Now, since both € and 6 are



solutions, we can integrate against test functions 6 and 6 on the interval (a,b)t, which gives

b b b
/ (—0"6 +0"0)dx + / (0 — 6%)00de =0 — (—0'0 + é’e)\z + / (0% — 6%)00dx = 0,

a

where the first term was integrated by parts. Since 6 > 0 in (a,b), 6(z) = 0(z) for = € {a,b} and we find that
the first term is non-negative. The second term is however strictly positive, thanks to Proposition 2.1(i) and
the assumption that 6 > 6 in (a,b), thus proving the result by contradiction. [ |

Proposition 2.3 (Existence to truncated 1 ~» 0-problem) There exists a unique solution 6y 1)(z) to

problem (2.2).

Proof. Since (0,(-)),cy is monotone, we can define 6(_p; 1) := ian;I (0,,(+)) which is clearly measurable. As
ne

each term in this sequence is bounded uniformly by 1, pointwise convergence implies convergence in L', which
in turn implies that the limiting function is a solution in the sense of distributions, satisfying the boundary
conditions due to pointwise convergence. [

Note that the infimum of an iteration (3.3) is independent of the choice of the starting point in ¥q... Slightly
stronger then the simple uniqueness result, this is the basis of the comparison methods we shall employ later,
when classical strong maximum principles do not apply directly due to lack of sufficient regularity.

2.3 Properties of solutions to the truncated problem

In this section we study the qualitative properties of 6y 1)(x) as we vary x, M and L separately. We start
with a lemma, which we appeal to repeatedly.

Lemma 2.4 (Comparison principles, 1 ~» 0-problem) Let 6_;1)(-,-) be the solution from Proposition
2.3.

(i) (1D supersolutions) Suppose that v satisfies, in the sense of distributions,
v () + p(z)v(z) —v*(x) <0, 0<v<l, o(-M)=1, wv(L)>0. (2.4)
Then v(x) > 0, 1y(x) for x € (=M, L). In particular, v(z) = 0,1y (x) for any solution v of
v (z) +v(z) —v3(x) =0, 0<v<l, v(-M)=1, wo(L)>0. (2.5)
(ii) (1D subsolutions) Suppose that v satisfies, in the sense of distributions,
w”(z) + p(z)w(x) —w(z) >0, 0<w<1, w(-=M)<1, w(L)=0.
Then w(x) < 0_n,1)(x) for v € (=M, L). In particular, w(z) < 0,1y (x) for any solution w of
(—M

w’(z) —w(z) —w?(2) =0, 0<w<l, w )< 1, w(L)=0.

Proof. Inequality (2.5) is an easy consequence of inequality (2.4): indeed, if v satisfies (2.5) then
V(@) + (@) = v (@) = 0 = 0" () + p(z)v(z) - v*(2) = (u@) - Do(z) <O0.

To prove (i), we assume that v € ;.. since otherwise v = 0(_7,zy by uniqueness. Setting 6 = v and using
Lemma 2.1(i) now implies the result.

To prove (ii), set 8y = 1. Notice that 8y € ¥1.,9 and that w < 6y by definition of w. By induction, following

the proof of Lemma 2.1(i), it follows that (6;)._y satisfies 6; > w, hence ingﬁj =0mL) = w. ]

jeN ot

INotice that this is not direct, since these function don’t solve the PDE in the classical sense and distributions are applied to
the space of smooth compactly supported functions. However, we know that distributions with finite order (say, order k) can be
extended to the space of € functions (cf. [13, §2]).
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In order to compare the families of solutions as M, L vary, we construct trivial constant extensions of functions
u defined on (—M, L) — R, formalized as an operator &,

u(z), for xe(-M,L)
& u)(x) = 1, for < -M
for x> L.

)

Lemma 2.5 (Properties of the extension) The following properties of &[0(_n,1)](+) hold.

Furthermore, for w defined on a subset A,

(i) (Monotonicity of &) We have 0 < & [0_ar,1)] (1) < 1.
0 < w() < Onmpy() in (=M, L), we have 0 <

(-M,L) € A C (—o0,L) with 0 < w(:) 271 and
81wl () < & Bnny] () on .

(#i) (Monotonicity in M) Let 0 < M < M and L >0 be fized. Then & [0(7@7@)} (2) < E[0—m.1)] ().

(iii) (Monotonicity in L) Let 0 < L < L and M > 0 be fized. Then & 0 -rp)] (@) <& {0(7M,Z)} (x).

(iv) (Monotonicity in ) For every fized M and L the mapping x — & [6(_pr,1)] (%) is non-increasing.

Proof.  The first assertion (i) is immediate from the definition of &. To show (ii), we use Lemma 2.1(i)
together with Lemma 2.4(ii) to conclude that

v(z) =& {Q(M,L)} |[,M’L] () = 9(]\7,L)|[—M,L] ()

is a subsolution to (2.2). Hence, using again Lemma 2.4(ii), v(z) < 0(_p7,1)(), for 2 € (=M, L), and, applying
(i), we obtain the result. The proof of (iii) is analogous.

To prove (iv), fix 2o > 0 and pick L > x9, M > . Notice that w(z) := 0 1)(x + o) is well defined in
x € (=M, L — x9). We claim that w(-) is a subsolution to the problem (2.2) in (=M, L — xg). Indeed, on the
boundary x = —M we have

w(=M) = 0_p0) (=M +20) <1=0_p0—14)(—M),

and
w(L —x0) = 0,y (L — 0 +x0) = 0—nr,1)(L) =0=0(_pr,L—1,)(L — o).
It remains to show that w(-) satisfies Lemma 2.4(ii) in (—M, L — xg). We have that

w”(x) + p()w (@) —w(z)® = {w" (@) + p(z + zo)w(z) —w’(z)}
+ (u(z) — p(@ + o)) w(@ + xo) =: L1 + L.

First note that I; = 0 in the sense of distributions, by definition of w(-). Next, I > 0 in the sense of distributions,
since p(x) = p(x + xo), for zo > 0, and w(-) is non-negative. We conclude that w(z) < 0(_ s, 1—a,) (), due to
Lemma 2.4(ii). Now the result follows, since by (iii),

w(x) = 0,0y (T + 20) < O—p1,1—20) (2)<O—p1,1) ().

The next result is relevant only for the solutions to the H and H..-problems.

Lemma 2.6 (Continuous dependence of 6(_,;1)(-) on L, M) Let 0 < M < 00, 0 < L < co. The map-
pings L — & [9(_M,L)] () and M — & [9(_M7L)} (1) are continuous in the sup norm.
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Proof. Fix ¢ > 0. First we prove continuity from the right in L. Since the extension operator extends the
functions (_p,z)(-) as uniformly continuous functions in R the result will follow if we show that

E0mn)] (@) <E 0w r49] @) SE[ricrio] (2) <E [0 mp)] (x—e) (2.6)
for x € (—M, L + €). Indeed, (2.6) implies that
&0 n,L4¢) ()] = E0rr,0)[(2)] < |E0—n1,0)]( — €) = E[0rr,1)](2))]

and the result follows from uniform continuity of the function &[0z, 1)][-] in R.

The first two inequalities in (2.6) are clearly true, due to monotonicity of 6(ys,z)(-) in L and M thus we focus
our attention on the last inequality. It turns out that the latter is clearly true in (—M, —M + €) so it suffices to
show that the inequality

& [9(7M+6,L+6)] ’(—M+E,L+E) (z) = 9(7M+5,L+e) (x)
SE0mp] | aryerio@ =0 =0Cun(@—¢

holds true in x € (=M + ¢, L + €). We prove this by showing that u(-) := 6(_s,)(- — €) is a supersolution to
problem (2.2) in the interval (—M + €, L + €). Indeed, u(—M + €) = 1 and u(L + €) = 0. Furthermore,

(@) + p(a)u(w) — u(2) = 0 gy 1y (2 — ©) + p(2)0Carpy (2 — €) = B pp ) (0 =€)
<A ry@— )+ e - B apy@—e) =0y (@ -}
+{lne) — e~ Narny (@~} = S+ Fo.

First note that _#; = 0 in the sense of distributions, since (_;,(-) is a solution to problem (2.2) in (—M, L).
Next, #> < 0 because x +— p(z) is non-increasing. Now apply Lemma 2.4(i) to conclude the argument.
Analogously, one can show that

& [0(—IVI,L)] (CL’ + 6) < & [9(—M—5,L—e)] ({E) < & [9(—M,L—e)] (.’E) < 9(_M7L)($), (27)

inxz € (—M — ¢, L — ¢€), which proves the continuity in L from the left and therefore continuity in L. The proof
of the result for M is analogous. [

Corollary 2.7 The mapping L — & [9(700,@] (+) is continuous in the sup norm on 0 < L, oo.

Proof. Fix € > 0. Right continuity is a consequence of inequality (2.6) after taking the infimum in M;
analogously, one can prove continuity on the left using (2.7). ]

2.4 Passing to the limit

We are now ready to pass to the limit M = oo and subsequently prove Proposition 1.1 by letting L — oc.
Define
9(,007[/)(.');‘) = inf & [9(,M’L)] (x) = lim & [9(7M,L)] (2), (2.8)

M>0 M —o00

where the last equality is a consequence of Lemma 2.5(i).
Proposition 2.8 The following properties hold for the family 0(_ 1)
(i) (Monotonicity) The functions x +— 0(_o 1,)(x) are define