
Coherent Structures in Scalar Feed-Forward Chains

Christopher Browne∗ & Andrew L. Dickerson†

Sponsors: Grégory Faye‡ & Arnd Scheel§

Abstract

We study semi-infinite and bi-infinite scalar feed-forward networks. We find that the
temporal dynamics of these systems is closely linked to the spatial dynamics of an asso-
ciated interval map and show how this interval map may be used to describe stationary
interfaces. Beyond stationary structures, we show that the onset of instabilities in fi-
nite networks is intimately related to the emergence of frustrated invasion fronts. These
concepts are then applied to several toy models, whose intracellular dynamics mimic the
normal form of elementary steady-state bifurcations.

1 Introduction

We study coherent structures in scalar feed-forward networks in a systematic fashion. We
focus on linear, nearest-neighbor coupling, and find that the use of spatial dynamics allows
for an almost complete classification of coherent structures. Being more precise, we study
systems of form

u̇j = f(uj) + α(uj − uj−1), j ≥ 1, (1.1a)

u̇0 = f(u0), (1.1b)

where uj ∈ R. We will also extend our analysis to bi-infinite chains where we will take j ∈ Z.
Throughout this paper, we explore three types of nonlinearities,

• fold: f(u) = 1− u2;

• pitchfork: f(u) = u(1− u2);

• cusp: f(u) = u(1− u)(u− a),

which govern the intracellular dynamics of our system. In the first two examples, we are
mostly interested in the competition between stable and unstable states. We study the cubic
nonlinearity (cusp) in order to explore competition between different stable equilibria.
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One may interpret the system (1.1) as the discretization of the simple advection equation

∂tu = f(u) + sgn(α)∂xu.

However, this interpretation is only appropriate for α < 0, |α| � 1. For α > 0, the discretiza-
tion is ill-posed and generates numerical oscillations, which will manifest as “flip flops”, in our
network. For |α| � 1, one expects to see discretization effects, with a plethora of solutions.
In fact, one readily notices that for α = 0, all equations decouple, and the set of stationary
solutions is isomorphic to {f−1(0)}Z.

Our main motivation comes from recent work in [5] and, more specifically, [8]. In these
articles, bifurcations in coupled cell networks are studied systematically, exploiting normal
form transformations in the presence of specific network structures to give predictions for
dynamics near instabilities. One of the most striking observations is the fact that bifurcations
lead to solutions exhibiting a rapid growth in amplitude as a function of cell index. For

instance, Hopf bifurcations lead to amplitudes µ
1
2

1

3j−1 at cell position j, where µ represents
a principal bifurcation parameter. The semi-infinite feed-forward network therefore acts as
an effective amplifier of the input dynamics in cell j = 0 (which is of course independent of
the dynamics in cells j > 0). The particular dynamics at cell j = 0 are motivated by the
presence of “symmetries”, which require dynamics in all cells to be identical in the sense that
the same number of inputs is received. In this sense, the input uj−1 is replaced by uj for cell
j = 0, leading to a cancellation and vanishing of the coupling term α(uj − uj−1).

The rapid growth of equilibrium amplitudes with j also points to limitations of a local bifur-
cation analysis. In particular, one expects that the expansions of these quantities are only

valid for extremely small parameter values µ, i.e. as long as µ
1
2

1

3j−1 � 1.

Our main objective is to elucidate this phenomenon and provide a conceptual analysis be-
yond the limitations of a local analysis for specific models. Our first main observation is
that the instability studied in [8] can be understood as a transition from a convective to an
absolute instability [1, 7, 11]. In the “stable” regime, perturbations grow in amplitude but
are transported along the lattice so that they decay at any fixed initial location j. The speed
of transport c decreases as the parameter approaches a critical value, at which point station-
ary solutions bifurcate. The instability can therefore be understood as the transition from a
receding invasion front to a stationary interface. In other contexts, the emerging stationary
interfaces that typically connect the unstable state to a large, finite-amplitude state at the
end of the lattice j →∞, are often referred to as nonlinear global modes [2, 4].

We analyze this transition in detail and uncover how the receding invasion front picks up an
increasingly rapid exponential decay as the speed converges to zero. This steepening of the
front can be understood as a precursor to the existence of stationary profiles exhibiting a rapid
growth in amplitude with j. Mathematically, this steep decay mirrors the disappearance of a
double root at infinity in the complex plane. Intuitively, exponential, temporal growth gen-
erated by the instability becomes sufficiently strong to compensate for the effective transport
towards increasing j and would, in a non-feed-forward situation, lead to transport towards
j = −∞, that is, negative speeds would emerge. Clearly, such transport is prohibited by our
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network structure, where cells of index j∗ simply ignore cell dynamics at j > j∗. Thus, we
will see the formation of frustrated invasion fronts precisely when this transition occurs.

Beyond these stable-unstable interfaces responsible for transitions from convective to abso-
lute instability, we study existence and stability of more general interfaces between stable
states in the system. We choose to focus on interfaces between the most interesting (and
from a numerical discretization point of view most dangerous) of these stable states, namely,
spatially homogeneous, j-independent, states and period-two states. Our main contribution
is a simple criterion that gives stability information and existence of interfaces based on read-
ily computable properties of an interval map for spatial dynamics. We also illustrate the
effectiveness of these criteria in a systematic numerical exploration of parameter space.

The remainder of this paper is organized as follows. Section 2 contains our main general
results on stability of period-two equilibria and existence of interfaces, independent of the
specific shape of f . Section 3 contains the analysis of fold and pitchfork, including spreading
speed calculations. Section 4 treats the more complex case of the cusp.

2 Coherent Structures and Interval Maps

The core of this section is the relationship between the existence of stationary interfaces, i.e.
temporally stable network configurations, and dynamics of an interval map produced from
(1.1). Throughout the remainder of this section, we will ignore the first node in our network
(though we will later comment on the effects of this truncation), and extend our analysis to
a bi-infinite chain,

u̇j = f(uj) + α(uj − uj−1), ∀j ∈ Z, α 6= 0. (2.1)

2.1 Equilibria and Stability

Seeking a method to compute the values of the temporal equilibria of each subsequent cell in
our system, we set u̇j = 0 in (2.1), producing the one-term backward recursion

u∗j−1 = g(u∗j ) := u∗j +
f(u∗j )

α
. (2.2)

Throughout this paper, we will consistently differentiate between the temporal dynamics of
our system, related to (2.1), and the spatial (in j) dynamics of our system corresponding to

the sequence
(
u∗j

)
j∈Z

, the orbit under g of our temporal steady states.

Lemma 2.1. Spatially homogeneous (j-independent) equilibria u∗j ≡ ū, j ∈ Z of (2.1) are
given precisely by the zeros of f . These equilibria are linearly asymptotically stable for our
temporal dynamics precisely when they are linearly unstable for the spatial dynamics (when
|g′(ū)| > 1) and when αg′(ū) < 0.

Proof. It suffices to show that the spectrum of the bi-infinite matrix obtained by linearizing
(2.1) is strictly contained in the left hand side of the complex plane precisely when |g′(ū)| > 1
and αg′(ū) < 0. To this end, we employ a Fourier transform, uj(t) = ûν(t)eijν to change our
linearization

u̇j = f ′(ū)uj + α(uj − uj−1), j ∈ Z,
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into
˙̂uνe

ijν = f ′(ū)ûνe
ijν + α

(
ûνe

ijν − ûνeijνe−iν
)
, j ∈ Z. (2.3)

Upon substitution of the ansatz ûν(t) = eλt into (2.3), we find the dispersion relation

λ(ν) = f ′(ū) + α(1− e−iν)

We see that for α > 0 we will have <(λ(ν)) < 0 precisely when f ′(ū) + 2α < 0, while for
α < 0, we will require f ′(ū) < 0. Recalling (2.2), we see that

f ′(ū) = α(g′(ū)− 1). (2.4)

Thus, we see that for α > 0, f ′(ū) + 2α < 0 precisely when g′(ū) < −1, while for α < 0,
f ′(ū) < 0 precisely when g′(ū) > 1. Then noting that our condition αg′(ū) < 0 effectively
forces g′(ū) and α to be of opposite sign, we see that for α > 0, g′(ū) < 0, while for α < 0,
g′(ū) > 0. This, together with the conditions discussed in the previous paragraph, ensures
that we will have <(λ) < 0 precisely when |g′(ū)| > 1 and αg′(ū) < 0, from which the result
follows.

We now turn our attention to describing period-two solutions of (2.2), which we will refer to
as ”flip flops”.

To compute explicitly these period two equilibria, we reduce (2.1) to the system

u̇0 = f(u0) + α(u0 − u1), (2.5a)

u̇1 = f(u1) + α(u1 − u0). (2.5b)

Equilibrium solutions of this period-two chain, u0 = uflip, u1 = uflop will themselves be equi-
libria on our bi-infinite lattice, that is, u2j = uflip, u2j+1 = uflop, j ∈ Z will constitute an
equilibrium solution of (2.1).

Lemma 2.2. A non homogeneous, period two equilibrium of (2.1), u0 = uflip, u1 = uflop, is
linearly stable in our temporal dynamics precisely when |G′(uf )| > 1 and αg′(uf ) < 0 for both
uf = uflip and uf = uflop, where G = g ◦ g.

Proof.
From our definition of G, we note that

G′(uflip) = g′(uflip)g′(g(uflip)) = g′(uflip)g′(uflop) = g′(g(uflop))g′(uflop) = G′(uflop). (2.6)

So, we will have both |G′(uflip)| > 1 and |G′(uflop)| > 1 precisely when |g′(uflip)g′(uflop)| > 1.

To begin, we set u2j = vj , u2j+1 = wj , and rewrite the linearization of our system (2.1) about
our equilibrium (uflip, uflop),

v̇j = f ′(uflip)vj + α(vj − wj−1) and ẇj = f ′(uflop)wj + α(wj − vj).
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Substituting vj(t) = v̂ν(t)e−ijν , wj(t) = ŵν(t)e−ijν into the above equations we obtain the
Jacobian matrix

J(ν) =

(
f ′(uflop) + α −αe−iν
−α f ′(uflip) + α

)
, (2.7)

where ν ∈ [0, 2π]. We note that the trace of this matrix is independent of ν and real.

• We first assume temporal stability of our equilibrium. Thus we must have that the real
part of the eigenvalues associated with J(ν) are strictly negative for all ν ∈ [0, 2π]. In
particular, at ν = 0, we must have both det(J(0)) > 0, and tr(J) < 0. Noting that we
may rewrite det(J(0)) as

det(J(0)) = α2

((
f ′(uflip)

α
+ 1

)(
f ′(uflop)

α
+ 1

)
− 1

)
. (2.8)

We see that by using (2.4), we may rewrite our condition det(J(0)) > 0

det(J(0)) = g′(uflip)g′(uflop) = G′(uflip) > 1, (2.9)

and so |G′(uflip)| > 1.

Then, noting that we may rewrite tr(J(0)) < 0 as

(αg′(uflip)) + (αg′(uflop)) < 0

and that αg′(uflip)αg′(uflop) > 0, we immediately see that both αg′(uflip) and αg′(uflop)
are negative. Thus, tr(J) < 0.

• Now reversing directions, and keeping in mind that the assumptions αg′(uf ) < 0 and
|G′(uf )| > 1 for uf = uflip, uf = uflop are equivalent to the conditions tr(J) < 0 and
det(J(0)) > 0, we will proceed to show temporal stability of our solution by showing
that for all ν ∈ [0, 2π],

<(λ±(ν)) =
tr(J)

2
±<

(√
D(ν)

)
< 0,

where

D(ν) =
tr2

4
− det(J(ν)) =

(
f ′(uflip)− f ′(uflop)

2

)2

+ α2e−iν

denotes the discriminant of J(ν). As we are already have that < (λ±(0)) = λ±(0)) < 0,
it will suffice to show that

<
(√

D(ν)
)
<
√
D(0), ∀ν ∈ [0, 2π]. (2.10)

Writing D(ν) = A+Be−iν , A,B > 0, we begin by rewriting (2.10) as√
A+Beiν +

√
A+Be−iν < 2

√
A+B, ∀ν ∈ [0, 2π]. (2.11)
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Taking without loss of generality A = 1, and squaring both sides of (2.11), we find the
positive, real, relation

2 + 2B cos(ν) + 2
√

1 +B2 + 2B cos(ν) < 4 + 4B

which is equivalent to the obviously valid relation

1 +B2 + 2B cos(ν) <
(2 + 2B(2− cos(ν)))2

4
= 1 +B2(2− cos(ν))2 + 2B(2− cos(ν)).

Thus for all ν ∈ [0, 2π] we have <
(√

D(ν)
)
<
√
D(0), and so < (λ±(ν)) < 0. Thus,

our equilibrium is temporally stable.

Remark 2.3. In later sections, where we discuss the temporal and spatial stability of partic-
ular equilibria for specific f , it will suffice to consider only the case ν = 0, as we have shown
that stability in this case will imply stability ∀ν ∈ [0, 2π].

Corollary 2.4. Period-two equilibria are temporally stable precisely when they are stable in
a period-two chain, that is, when j ∈ Z/(2Z).

Remark 2.5. While higher period solutions to (2.1) may exist, we will examine only ho-
mogeneous and flip flop solutions. When α = 0, we see that the set of equilibria of (2.1)
is isomorphic to {f−1(0)}Z. We will not attempt to describe how this plethora of solutions
evolves as |α| is increased.

2.2 Stationary Interfaces

We now define our first coherent network structure in terms of heteroclinic connections, which
we will refer to as a stationary profile, as follows. A heteroclinic connection between two
equilibria is a spatial trajectory, (uj)j∈Z, joining u+ at j = ∞, and u− at j = −∞. We will
also consider heteroclinic connections to flip flop equilibria, i.e. |u2j−uflip|+|u2j+1−uflop| → 0
as j → ∞. We say that a stationary profile exists between two states, A at j = −∞ and
B at j = ∞, if and only if such a heteroclinic connection exists between these two states.
Throughout this paper, we will use the notation A→ B, to denote the existence of a stationary
profile between A and B. Further, the notation FF → B, will denote a stationary profile
whose left hand side (at j = −∞) is a flip flop equilibrium.

Lemma 2.6. Let the state ū at j = −∞ be stable for the temporal dynamics of our system.
Then, a heteroclinic cannot exist if there does not exist up 6= ū such that g(up) = ū. Similarly,
heteroclinic connections to flip flops, ūflip, ūflop as j = −∞ cannot exist when there exists no
up /∈ {ūflip, ūflop}, such that g(up) = ūflip or g(up) = ūflop.

Proof. Let ū denote a temporally stable equilibrium solution at j = −∞, whose only
preimage under g is ū, but with uj → up as j →∞. By Lemma 2.1, this cannot happen, as a
temporally stable state must be unstable for our spatial, g, dynamics, and so ū is a repeller
for our map g.
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Remark 2.7. There do not exist heteroclinic connections to a temporally unstable state at
j = ∞, as these states are stable for our map g by Lemma 2.1, and therefore there exist no
trajectories converging to them in backward spatial iteration.

Lemma 2.8. In semi-infinite networks, i.e., when 0 ≤ j < N,N = ∞, the conditions of
Lemma 2.6 may be extended to include temporally unstable states at j = 0.

Proof. Let the state ū1 be a temporally unstable solution at j = 0, whose only preimage
under g is ū1. Let ū2 denote an equilibrium solution at j = ∞, ū1 6= ū2. If a heteroclinic
connection existed between the two states in question, it would follow that there exists up 6= ū1

such that, g−1(up) 6= ū1, which is clearly a contradiction.

Remark 2.9. In semi-infinite networks, there exists a heteroclinic connection between the
state A at j = 0 and B at j =∞ if and only if there exists a preimage up such that g(up) = A
and the subsequent preimages of up, g

−j(up), j ∈ Z+ satisfy g−j(up)→ B as j →∞.

Remark 2.10. If there exists a stationary profile in a semi-infinite network, then there exists
an analogous stationary profile in an infinite network.

2.3 Moving Interfaces: Propagation into Unstable States

Taking motivation from the original bifurcation studies of [8] carried out in finite networks, we
focus on describing possible bifurcations on our infinite lattice, corresponding to the transition
between convective and absolute spreading of instabilities through our network.

To find these bifurcation points, we will attempt to describe the speed at which instabilities
propagate from cell to cell. Knowing from [10] that these speeds may be computed by ex-
amining the linear speed of propagation away from the unstable state, ū, subject to a small
perturbation, we linearize our system (2.1) about ū giving

u̇j = f ′(ū)uj + α(uj − uj−1).

We then employ the Fourier Transform uj = eλte−i(j−ct)σ, (where σ may be complex) to
obtain the dispersion relation d(λ, iσ) = λ+f ′(ū) +α(1− e−iσ). We may then use the double
root conditions

d(icσ, iσ) = 0, (2.12a)

∂2d(icσ, iσ) = 0 (2.12b)

to find our spreading speeds.

In general, we find that equations (2.12) have at most two solutions, c1, c2. Further, we find
that the precise moment of transition from convective to absolute spreading of instability
coincides with the moment at which one of our speeds becomes 0, and then vanishes.

Remark 2.11. In a network with initial condition uj = A for j ≤ j∗, A stable and uj =
B for j > j∗, B unstable, the speed at which the state A ”invades” B will be given by c =
max{c1, c2}; see [10] for details.
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Remark 2.12. By definition of our network coupling, negative wavespeeds will not be possible.
This means that a stable state cannot invade an unstable state to the left, leading to the
presence of what we will call ”Frustrated Invasion Fronts”, whose propagation is blocked by
our network structure.

Beyond our linear analysis, one may consider nonlinear front solutions. There typically exists a
one-parameter family of such fronts and the steepest front is selected by compactly supported
initial conditions. Existence of such fronts leads to delay equations rather than the map g
and has been studied with slightly different objectives in [6]. Similarly, information about
traveling fronts that connect stable equilibria also leads to delay equations and is beyond the
scope of this article.

3 Fold and Pitchfork Bifurcations

In this section, we examine the two specific nonlinearities, f(u) = 1−u2, and f(u) = u(1−u2),
associated with the normal forms of the saddle node and pitchfork bifurcations respectively.
We will later see that by understanding the dynamics of this system, we gain valuable insight
into more complicated dynamics such as the nonlinearity associated with the normal forms
of the cusp bifurcation.

3.1 Fold Bifurcation

3.1.1 Temporal Stability of Steady States

Letting f(u) = 1 − u2, we begin by characterizing the conditions on α which will permit
the existence and temporal stability of various period-two (i.e. homogeneous and flip flop)
equilibria of (2.1).

Lemma 3.1. There exist precisely two homogeneous equilibria of our system corresponding
to the states −1 and 1. For |α| < 1, there also exists one flip flop equilibrium given by
u2j ≡ α +

√
1− α2 and u2j+1 ≡ α −

√
1− α2, for all j ∈ Z. Furthermore, we find that the

states −1 and flip flop are always temporally unstable, while 1 is temporally stable provided
α < 1.

Proof. Our desired result follows by a simple application of Remark 2.3 and Corollary 2.4.
To verify, for instance, the stability of our flip flop equilibrium, we inspect the Jacobian of
our 2-cell system

J(0) =

(
f ′(u0) + α −α
−α f ′(u1) + α

)
,

from which we derive the eigenvalues associated with our flip flop equilibrium,

λff± = −α±
√

4− 3α2

Noting that for |α| < 1, λff+ > 0, temporal instability follows.
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3.1.2 Stationary Interfaces

Considering both semi-infinite and bi-infinite length chains, we now discuss the existence
of stationary interfaces in our network. We know from Remark 2.7 that we can expect to
observe at most two stationary interfaces in our system, each of form −1 → 1 and FF → 1
respectively. Further, since 1 is stable only when α < 1, and since flip flops only exist for
|α| < 1, we already have upper bounds on the region of existence for these structures.

Lemma 3.2. We find for semi-infinite networks that stationary profiles of form −1 → 1
exist precisely for −2 < α < 1, while for bi-infinite networks, such a profile exists for α < 1.
Stationary profiles of form FF → 1 exist for |α| < 1 in both semi-infinite and bi-infinite
networks.

Proof. Here we use Remarks 2.9 and 2.10 to derive conditions on α which will permit the
existence of various stationary profiles. Here we will show only the methods by which we
determine the conditions on α which allow a stationary interface between the states −1 and
1. The same methods are used to uncover these regions for FF → 1 stationary profiles. To
determine the bounds of existence for stationary profiles of form −1 → 1, we examine case
by case the preimages of −1 under g for various α.

• 0 < α < 1 : With our just mentioned remarks in mind, we note that in this parameter
regime, there exists up 6= −1 such that g(up) = −1. Further, subsequent preimages of
up converge to 1 as j → ∞, and so we conclude for both semi-infinite and bi-infinite
networks that a −1→ 1 stationary profile exists.

• −2 < α < 0 : Here, we find precisely the same behavior as in the previous region,
and thus arrive at the same conclusion. An illustrative example of such a heteroclinic
connection is given in Figure 1.

• α = −2 : We note that, as the minimum of g now occurs at umin = −1, we no
longer have our desired up 6= −1 such that g(up) = −1. Thus, we conclude that for
a semi-infinite network, there exists no heteroclinic connection between −1 and 1, and
so no such stationary profile exists. Interestingly, we still have the existence of such a
connection, and thus a stationary profile, in our bi-infinite network (one can imagine
such a heteroclinic by observing Figure 1).

• α < −2: In our final case, we see no change in behavior from α = −2 in our bi-infinite
network. A heteroclinic connection between −1 and 1 still exists, and so we still have a
−1→ 1 stationary profile. In the semi-infinite case, −1 regains its preimage, up 6= −1,
however, subsequent preimages of up fail to exist under g, and so we have no stationary
profile.

3.1.3 Linear Wavespeeds

Armed with a complete understanding of conditions on α which force the existence of a
stationary front we now turn our attention to characterizing the speed at which invading

9



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

5

Figure 1: An example of 15 iterations under the map g when α = −1. As the point −1 has a preimage
under g, we find a heteroclinic connection joining −1 to 1 at j = ∞, implying the existence of a
−1→ 1 stationary profile. The diagonal has been shown for illustrative purposes.

fronts propagate through our network. Recalling the discussion in Section 2.3 we deduce the
dispersion relation,

λ(σ) = icσ − 2ū+ α(1− e−iσ).

We then employ our double root criterion (2.12) to find

λ = −2ū+ α(1− e−iσ) + icσ = 0 (3.1)

and
∂λ

∂σ
= αie−iσ + ic = 0. (3.2)

From (3.2), we find the relations

c = −αe−iσ and σ = i log
(
− c
α

)
,

which, upon substitution into (3.1), produce the equation in c

−2ū+ α+ c
(

1− log
(
− c
α

))
= 0,

with solution

c =
−2ū+ α

W (2ū−α
eα )

. (3.3)

Here, W (x) denotes the Lambert W function, which is defined as the solution to

W (x)eW (x) = x. (3.4)

For −e−1 ≤ x ≤ 0, W (x) will have two solutions, or branches, denoted W−1(x) and W0(x)
respectively. As we will see, both of these branches will be of use later, with the −1 branch
corresponding to solutions of (3.4) smaller than −1, that is, W−1(x) ≤ −1, while all other
solutions will be found on the higher, 0, branch i.e. W0(x) ≥ −1. Further, this 0 branch
will eventually become the only real solution to (3.4) when x > 0 (no real solutions exist for
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x < −1
e ). While this description of the Lambert function will be sufficient for our purposes,

a more detailed examination may be found in [3].

Simply setting ū = −1, we see that we will have at most two wavespeeds (shown in Figure 2),
corresponding to the 0 and −1 branches of W (x) respectively. The former branch will give
us the speed of our leading front, c0, i.e. the “linear speed of propagation” away from the
unstable equilibrium −1 discussed in Section 2.3, and is equivalent to the speed at which a
stable state such as 1, will invade the unstable −1. The latter branch will respectively give us
the speed, c−1, of the back end of a convecting instability. The wave speed c−1 may then be
understood as the speed of a “restoring front” which returns our network to its initial state
−1, and is equivalent to the speed at which the state −1 invades 1.

Examining our explicit formula for computing our wavespeeds (3.3), we see that as α→ −2,
c−1 → 0, our network undergoes a bifurcation from a convective to absolute instability about
−1, corresponding to the bifurcations discussed by [8]. Of further interest is that this is the
precise moment at which we gain the existence of a −1 → 1 stationary profile, that is, as
α → −2, we see an increasingly sharp restoring wave, which eventually degenerates into a
stationary profile. A visual representation of this information may be found in Figure 2.

�5 �4 �3 �2 �1 0 1
0

2

4

6

8

10

12
c

Figure 2: The two leftmost pictures show numerical simulations of a feed-forward network with 40
cells (horizontally) over 300 time units (vertically). Black denotes the state 1, while copper denotes
−1. The far left picture shows such a simulation for α = −3, at which point both c−1, c0 6= 0. Thus,
we see a convecting instability. In contrast, the middle picture, a simulation with α = −1, shows
the propagation of an absolute instability, which remains indefinitely. The final figure shows the two
analytically computed branches of (3.3), together with numerically computed, nonlinear wavespeeds
shown as dots.

3.1.4 Wavespeed Asymptotics

Here we make use of the known asymptotic behavior of the 0 and −1 branches of the Lambert
W function to elucidate a first order approximation to the behavior of both c0 and c−1 near
their respective annihilation points.

Beginning first with an examination of c−1, we have from (3.3) and the preceding discussion

c−1(α) =
2 + α

W−1

(−2−α
eα

) . (3.5)

Setting x = −2−α
eα , we see that as α → −2−, x → 0−. Making use of the known behavior of

W−1(x) as x→ 0− (see [3]), we have

W−1(x) ∼ log(−x) as x→ 0−.

11



We obtain the following asymptotic for c−1

c−1(α) ∼ 2 + α

log (−2− α)
, as α→ −2−.

Now turning our attention to c0, defined as

c0(α) =
2 + α

W0

(−2−α
eα

) , (3.6)

we see upon setting x = −2−α
eα , that as α → 0−, x → ∞, and so W0(x) ∼ log(x). Using this

information we find the asymptotic

c0(α) ∼ − 2

log(−α)
as α→ 0−.

As a closing note, we could in principle apply the same techniques discussed throughout the
two previous sections to find the various wavespeeds associated with our unstable flip flop
equilibrium. We choose to omit such a discussion to avoid excessive repetition.

3.2 Pitchfork Bifurcation

With our discussion of the fold nonlinearity now complete, we next examine f(u) = u(1−u2).
Here, we will repeat a similar analysis to our previous section though we will restrict our
analysis to semi-infinite networks. To begin, we will address constraints on α which permit
the existence and stability of various equilibria and specific stationary profiles.

3.2.1 Existence and Stability of Equilibria

Using precisely the same methods as in the previous section, we seek to find conditions on α
which will permit the existence and stability of certain stationary profiles. To this end, we
must first categorize the various equilibria of our system and their temporal stability.

Lemma 3.3. There exist precisely three homogeneous equilibria, −1, 1, and 0. There also
exists up to three flip flop equilibria, given by:

• uflip1
=
√

1 + 2α, uflop1
= −
√

1 + 2α for α ≥ −1
2 ;

• uflip2
= 1

2

√
2 + 2α+ 2

√
1 + 2α− 3α2, uflop2

= 1
2

√
2 + 2α− 2

√
1 + 2α− 3α2

for −1
3 ≤ α ≤ 1;

• uflip3
= −1

2

√
2 + 2α− 2

√
1 + 2α− 3α2, uflop3

= −1
2

√
2 + 2α+ 2

√
1 + 2α− 3α2

for −1
3 ≤ α ≤ 1.

Further, the temporal stability of these equilibria is characterized as follows:

• ±1 are stable for α < 1;

• 0 is always unstable;

• uflip1
, uflop1

is stable for α > −1
3 ;

12



• uflipk
, uflopk

is always unstable for k = 2, 3.

In Figure 3, we show the values of all flip flop equilibria (and homogeneous equilibria) as
a function of α, and summarize the regions in which they are stable. Note that the value
α = −1

3 is the location of the pitchfork bifurcation denoted by diamonds in Figure 3, which
in turn corresponds to the loss of stability of (uflip1

, uflop1
).

Proof. The proof is identical to the proof of Lemma 3.1, and is thus omitted.

Figure 3: Bifurcation diagram in α. Here, dotted lines represent temporally unstable equilibria, while
solid represent temporally stable. The three horizontal lines correspond to the three homogeneous
equilibria, and the remaining six curves correspond to the various flips and flops of Lemma 3.3.
Specifically, the two outermost curves correspond to uflip1

, uflip1
. The four remaining curves give,

going from highest to lowest, uflip2
, uflop2

, uflip3
, uflop3

. Triangles and diamonds represent the location of
various pitchfork bifurcations, with the diamond pitchfork bifurcation being precisely the bifurcations
referenced in Lemma 3.3.

3.2.2 Stationary Interfaces

Though the general structure of this section will be similar to that of the fold, a complete
evaluation of every possible stationary profile and traveling front associated with this network
would be too lengthy, and so we will avoid such an analysis. Instead, we will examine interfaces
between 0→ 1 and 0→ FF , where for the duration of this section, we will always assume the
state FF corresponds to our flip flop equilibrium uflip1

, uflip1
. Further, we also note that by

understanding the behavior of a 0→ 1 interface, we simultaneously gain insight into interfaces
of form 0→ −1 thanks to the reflection symmetry of our system about 0.

Lemma 3.4. In a semi-infinite network, we find that

13



• A stationary profile of form 0→ FF exists provided α− < α, where

α− =
4− 6

√
3

23

• A stationary profile of form 0→ 1 exists provided −1 < α < α+, where

α+ =
4 + 6

√
3

23
.

Further, a 0→ 1 stationary profile exists precisely when a 0→ −1 profile exists.

An illustration of these results can be found in Figure 5.

Proof. Recalling Remark 2.9, a stationary profile of form 0 → ū will exist precisely when
there exists up 6= 0 such that g(up) = 0, whose subsequent preimages under g converge to
converge to ū.

• α < −1: Here, the point 0 ceases to have any preimage, up 6= 0, and so no stationary
profile with state 0 at j = 0 will exist.

• −1 < α < α−: Here we find two possible preimages of 0 which are equal in magnitude,
±up. We find that the subsequent preimages under g of up exist and converge to 1, while
those of −up converge to −1. Thus, we conclude the existence of a 0 → ±1 stationary
profile in this region.

• α− < α < α+: In this region, we find the existence of several possible heteroclinic
connections to 0 at j = 0. While heteroclinic connections joining 0 and±1 are evident by
graphical inspection (see Figure 4), the precise conditions which allow for a heteroclinic
connection to flip flops are slightly more obscure. Denoting the two preimages of 0 on
this interval as ±up, we compute α− and α+ by computing the precise moment at which
there exists additional preimages of ±up in addition to those used in the heteroclinic
connections to ±1. Clearly, α− is then found by the relation g−1(up) = umax where umax
denotes the local maximum of g on (−1, 1), while α+ is found using g−1(up) = umin,
where umin denotes the local minimum of g on the same interval.

• α+ < α: We lose only our 0 → 1 stationary profiles, as both the local maximum and
minimum of g now lie in the interval (−1, 1) and so our previously discussed heteroclinic
connections corresponding to these two states disappear.

3.2.3 Linear Wavespeeds

Applying precisely the same techniques used in Section 3.1.3, we find an expression for the
linear wavespeeds associated with our 0 equilibrium,

c =
1 + α

W
(−1−α

eα

) . (3.7)
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Figure 4: Preimages of 0 under g when α & α−. Here, one can imagine four possible heteroclinic
connections, corresponding to the four preimages of the points ±1, which are themselves the two
preimages of 0.

(a) (b) (c) (d)

Figure 5: Numerical simulations of a semi-infinite pitchfork network using 350 time units (vertically)
and 40 cells (horizontally). In (a), α . α−,while in (b) α & α− and so we see the existence of a
0→ FF stationary profile only in (b). Similarly, in (c), α . α+, and in (d) α & α+, and so we see a
0→ 1 stationary profile in (c), but not in (d).
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In accordance with our earlier results, we see that for α < −1, equation (3.7) has two solutions,
c−1 and c0, corresponding to the −1 and 0 branches of our solution respectively. When
α = −1, i.e. at the moment at which we gain the existence of a 0→ 1 stationary profile, c−1

becomes 0, and the propagation of our instability becomes absolute as opposed to convective.
Finally, as α → 0, c0 → 0, at which point a frustrated front emerges, and instabilities about
0 no longer propagate through our network. Noting that (3.7) is functionally identical to
(3.3), we obtain precisely the same asymptotic behavior for c−1 and c0 near their annihilation
points. That is

c−1 ∼
1 + α

log(−1− α)
as α→ −1−,

and

c0 ∼
−1

log(−α)
as α→ 0−.

4 Cusp

Keeping the methods and results of the previous sections in mind, we now move to study our
final nonlinear dynamics, which will now mimic a rescaled cusp bifurcation with codimension
2. Throughout this section, we will work with the following cubic nonlinearity f(u) = u(1−
u)(u− a), where we will restrict to 0 < a < 1

2 .

The remainder of this section is organized as follows. We begin with a discussion of the
various period-two equilibria of our system, which we will take throughout this section to be
of semi-infinite length. We will then describe various stationary profiles which exist in our
network. During this discussion, we will see that for our semi-infinite network the unique
dynamics of our j = 0 cell given from (1.1) will play an important role in the characterization
of certain stationary profiles.

4.1 Existence and Stability of Equilibria

Here, we discuss all period-two equilibria of (1.1) and their stability, the results of which are
summarized in Figures 6 and 7. We will drop the Lemma-Proof nature of the previous sections,
and instead give a more general overview of the methods used to construct the previously
mentioned figures. In general, the values and stability of our equilibria shown in Figure 6 have
been computed numerically by solving system (2.5) and examining the eigenvalues associated
with the linearization of (2.5) about the equilibria in question.

Since finding the homogeneous equilibria of our system remains a trivial task, we immediately
find the existence of three homogeneous equilibria, 0, a, and 1. We find explicit relations
between a and α which impart temporal stability to our equilibria, which are summarized
below.

• 0 is temporally stable provided α < a
2 ;

• a is always temporally unstable, though as α increases past α = a2−a
2 , the period-two

Morse index of this equilibrium changes from 1 to 2;

• 1 is temporally stable provided α < 1−a
2 ;
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Of particular importance are the points in (a, α) space at which our various homogeneous
equilibria lose their temporal stability (or when the Morse index of our equilibria changes).
These are precisely the points associated with the locations of the pitchfork bifurcations
shown in Figure 6, and the lines in Figure 7. These bifurcation points will further correspond
precisely to the bounds of existence for the flip flop equilibria.

We find in addition to our homogeneous equilibria up to three flip flops. Lacking an explicit
expression for the values of these equilibria, we will simply describe them in terms of the
curves in Figure 6 as follows:

• Our first flip flop equilibrium, uflip1 , uflop1 , corresponds to the two outermost curves (the
lower of which will correspond to uflop1 , the higher to uflip1). This flip flop is temporally
stable over its entire interval of existence, αsaddle(a) < α, where αsaddle(a) denotes the
location of the saddle-node bifurcation in our system. In future sections, any stationary
interface using the symbol FF will refer to this equilibrium.

• We define uflip2 , uflop2 to be the equilibrium given by the two lower curves, which are

always temporally unstable, and exist for a2−a
2 < α < a

2 .

• Our final flip flop equilibrium uflip3 , uflop3 corresponds to the two remaining curves, and
is always unstable. It exists for αsaddle(a) < α < 1−a

2 .

u

(a) a = .3

u

(b) a = .49

Figure 6: Bifurcation diagram in the (a, α) plane of the period-two equilibria of our system. Similarly
to Figure 3, dotted lines represent temporally unstable equilibria, while solid represent stable equilibria.
Triangles correspond to the pitchfork bifurcations associated with our homogeneous equilibria, and
diamonds correspond to the saddle node bifurcation. Observe that, at a = 1

2 we recover Figure 3.

To complete the picture, it now remains to describe how we computed the previously men-
tioned αsaddle(a), the location of the saddle node bifurcation from which our first flip flop
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Line 1

Line 2

Line 3
Line 4

Figure 7: Locations of the various bifurcations in the a−α plane. Here, Line 1 = 1
2 (1−a) corresponds

to the location of the pitchfork bifurcation associated with the homogeneous equilibrium 1. Line 2 =
a
2 corresponds to the pitchfork associated with 0. Line 3 shows αsaddle(a). Line 4 = a2−a

2 gives the
location of our final pitchfork bifurcation, associated with the equilibrium a.

equilibrium emerges. To this end we note that upon adding, and respectively subtracting,
the nullclines corresponding to equations (2.5), we find

f(u0) + f(u1) = 0, (4.1a)

f(u0)− f(u1)

u0 − u1
= −2α. (4.1b)

With these equations in mind, we set u0 = uflip1
, u1 = uflop1

, and will now make use of a
geometric intuition to find the location of our saddle node. From Figure 6, we see that for
α large, uflip1

� 0 while uflop1
� 0. As α decreases, we see that uflop1

briefly becomes 0
precisely as uflip1

becomes 1. Finally, as α continues to decrease, uflip1
attains its minimum

value just as uflop1
attains its maximum value.

Keeping this information in mind we then turn our attention to Figure 8. From (4.1), we see
that the images under f of uflip1

and uflop1
must be equal but opposite in sign. Starting at

α = 0, i.e. when uflop1
= 0 and uflip1

= 1 and slowing decreasing α, we see that the slope
of the secant line between our two points must become slowly more positive, attaining its
maximum precisely at the location of our saddle node. By visual inspection, we see that this
occurs precisely when

uflop1
=

1 + a−
√
a2 − a+ 1

3
= umin,

where umin denotes the minimum of f on the interval (0, 1). This constraint may then be
used in conjunction with (4.1) to produce a relation αsaddle(a), giving the location of our
saddle node bifurcation for all a.
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f (u)

Figure 8: Illustrative example using the geometric argument for computing αsaddle(a). Each secant
line joints the image of uflip1

with that of uflop1
under f . We see that the red dotted line, which has

negative slope, corresponds to positive α, while the green dash-dot line with positive slope corresponds
to α negative.

4.2 Stationary Profiles

Having looked at the stability of our equilibria, we now analyze existence conditions of sta-
tionary interfaces of forms 0 → FF , 1 → FF , 0 → 1, 1 → 0, FF → 1, FF → 0, and
FF → FF ′. Here FF → FF ′ designates a cell system of flip flops with a defect, e.g. a
system that goes flip flop flip flip flop or flop flip flop flop flip. Similarly to previous sections,
we make use of Remark 2.9 to establish boundaries in the a, α in which heteroclinics, and
thus stationary profiles, exist between our two states in question. While the tedious details
of this analysis will not be given here, upon inspecting the map in detail, one can in fact
verify that our boundaries are sharp. Our results are given in Figure 9 and Table 1. In the
following section, we compare these predictions to numerical results.

To illustrate those results, consider Regions 1 and 2. In Region 1, Table 1 shows that there
exist only two stationary interfaces, 0 → FF and 1 → FF . We now examine changes as we
cross the boundary from Region 1 into Region 2. Referencing Table 1 and looking at both
the rows for Region 1 and Region 2, we see that the only change is for the interface 0 → 1,
which exists in Region 2 but not in Region 1. One can examine all region boundaries in this
fashion, obtaining a complete bifurcation diagram for stationary interfaces.

Remark 4.1. We find that only the boundary between Region 5 and Region 8 and the boundary
between Regions 6 and 7 can be expressed explicitly as −(a2 )2 and −(1−a

2 )2, respectively. In
fact, Regions 8 and 9 are subregions of Regions 6 and 7, respectively. In these subregions,
the same behavior is observed for the interfaces 0→ 1, 1→ 0; however, since stable flip flops
still exist in these subregions we distinguish them as separate regions in order to examine the
interfaces 0 → FF , 1 → FF , FF → 1, FF → 0, and FF → FF ′. The line specifying the
boundary between each of these regions and their subregions is given by the flip flop saddle
node.
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Region 1
Region 2

Region 3

Region 5

Region 6

Region 9
Region 7

Region 6

Region 5

Region 8

Region 7

Region 3

Region 5

Region 2 Region 1

Region 10Region 4

Figure 9: Each solid line expresses α as a function of a and each one represents the upper bounds for
the existence of a stationary interface. The dotted line expresses the value of α for which a saddle
node bifurcation occurs. For each region the existence of a given interface can be found in Table 1.

Region 0→ FF 1→ FF 0→ 1 1→ 0 FF → 1 FF → 0 FF → FF ′

1 X X N N N N N

2 X X X N N N N

3 X X X N X N X

4 X X X X X N X

5 X X X X X X X

6 NA NA X N NA NA NA

7 NA NA N N NA NA NA

8 X N X N T T T

9 N N N N T T N

10 X X X X N N N

Table 1: Existence of stationary interfaces: X indicates that the stationary interface exists, N indicates
that the stationary interface does not exist, NA indicates that we cannot examine the interface because
stable flip flops no longer exist in the region, and T indicates that the stationary interface exists in
the infinite but possibly not in the semi-infinite lattice; see Section 4.4 for more details on this case.
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4.3 Numerical Simulations

In this section, we display numerical simulations exhibiting interface dynamics for various
regions of Figure 9. These simulations confirm that the necessary information gathered in
Figure 9 and Table 1 give sharp criteria. In all the simulation figures of this section the
notation RA/RB specifies that we are looking at region A near region B. Time is increasing
vertically, and the horizontal axis of each picture is the cell index j where 1 ≤ j ≤ 40. In
addition, for all simulation figures lighter colors correspond to values near 1, while darker
colors correspond to values near 0. Note however that the color scaling is not uniform across
figures.

(a) (b) (c) (d)

Figure 10: (a): R1, 1 → FF , a = 0.3, α = 0.197, and t = 300 units. (b): R1, 0 → FF , a = 0.3,
α = 0.197, and t = 300 units. (c): R1/R2, 0→ 1 , a = 0.3, α = 0.197, and t = 300 units. (d): R2/R1,
0→ 1 , a = 0.3, α = 0.192, and t = 300 units.

(a) (b) (c) (d)

Figure 11: (a): R2/R3, FF → 1 , a = 0.3, α = 0.183, and t = 800 units. (b): R3/R2, FF → 1 ,
a = 0.3, α = 0.18, and t = 300 units. (c): R2/R3, FF → FF ′ , a = 0.3, α = 0.183, and t = 800 units.
(d): R3/R2, FF → FF ′ , a = 0.3, α = 0.18, and t = 300 units.

(a) (b) (c) (d)

Figure 12: (a): R3/R4, 1 → 0 , a = 0.3, α = 0.072, and t = 800 units. (b): R4/R3, 1 → 0 , a = 0.3,
α = 0.07, and t = 300 units. (c): R4/R5, FF → 0 , a = 0.3, α = 0.07, and t = 1000 units. (d):
R5/R4, FF → 0 , a = 0.3, α = 0.068, and t = 300 units.

4.4 Effects of Truncation

In this section we will briefly discuss the effects of the 0th cell in a semi-infinite system and
discuss Figure 16. More precisely, upon examining (1.1) one can see that if the 0th cell is
initialized to u∗ such that f(u∗) 6= 0, the cell will change in value until equal to the nearest
homogeneous equilibrium ū, e.g. 1 or 0.
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(a) (b) (c) (d)

Figure 13: (a): R5/R8, 1→ 0 , a = 0.3, α = −0.022, and t = 300 units. (b): R8/R5, 1→ 0 , a = 0.3,
α = −0.023, and t = 2000 units. (c): R5/R8, 1→ FF , a = 0.3, α = −0.022, and t = 300 units. (d):
R8/R5, 1→ FF , a = 0.3, α = −0.023, and t = 1500 units.

(a) (b) (c) (d)

Figure 14: (a): R8/R6, 1→ 0 , a = 0.3, α = −0.022, and t = 2000 units. (b): R6/R8, 1→ 0 , a = 0.3,
α = −0.024, and t = 1500 units. (c): R6/R7, 0 → 1 , a = 0.3, α = −0.121, and t = 300 units. (d):
R7/R6, 0→ 1 , a = 0.3, α = −0.124, and t = 2000 units.

(a) (b) (c) (d)

Figure 15: (a): R10, 0→ 1 , a = 0.496, α = 0.128, and t = 300 units. (b): R10, FF → 0 , a = 0.496,
α = 0.128, and t = 800 units. (c): R10, FF → 1 , a = 0.496, α = 0.128, and t = 800 units. (d): R10,
FF → FF ′ , a = 0.496, α = 0.128, and t = 1500 units.

In numerical simulations, we expect a stationary FF → A interface in certain regions, though
these interfaces may in fact appear to be non-stationary when studied in a semi-infinite lattice
(see the entries ’T’ of Table 1). This can be explained by the behavior of the 0th cell creating
a new interface which may be non-stationary. For example, in Region 8 of Figure 9, one would
expect the FF → 1 interface to be stationary; however, if the 0th cell of the FF cluster is
initialized to the flip, the interface will appear non-stationary because the 0th cell goes from
a value of flip to a value of 1 creating a 1→ FF interface which is non-stationary as seen in
Table 1. This causes an invasion front to propagate through the system during the simulation
making the original interface appear non-stationary.

In Figure 16, (a) and (e) illustrate the effect of the 0th node on a FF → FF ′ interface. They
also show how the two different FF → FF ′ interfaces possess different properties. Figures
(b), (c), and (d) all demonstrate boundary effects on the FF → 0 interface. In Region 8, an
effect similar to (c) occurs, but is omitted here. Similarly, (f), (g), and (h) demonstrate the
boundary effects on the FF → 1 interface. Again in Region 8 an effect similar to (g) occurs,
but is omitted here. On the other hand, figures (d) and (h) showcase effects unique to Region
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9, whose their corresponding counterparts in Region 8 are shown in (b) and (f), respectively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 16: (a): R8, FF → FF ′ , a = 0.3, α = −0.023, and t = 300 units. (b): R8, FF → 0 , a = 0.3,
α = −0.023, and t = 300 units. (c): R9, FF → 0 , a = 0.493, α = −0.069, and t = 800 units. (d):
R9, FF → 0 , a = 0.493, α = −0.069, and t = 1500 units. (e): R8, FF → FF ′ , a = 0.3, α = −0.023,
and t = 1500 units. (f): R8, FF → 1 , a = 0.3, α = −0.023, and t = 1500 units. (g): R9, FF → 1 ,
a = 0.493, α = −0.069, and t = 800 units. (h): R8, FF → 1 , a = 0.493, α = −0.069, and t = 2000
units.

5 Discussion

Here we have studied coherent structures in feed-forward chains quite systematically. We
expect that our results can be easily adapted to other nonlinearities f . While our previously
discussed “toy nonlinearities” are motivated by simple normal forms at individual lattice sites,
it would be interesting to obtain these normal forms in a more systematic way using ideas
from [9].

On the other hand, it would be interesting to explore more complicated cell dynamics. We
expect some of our results to survive quite literally. For instance, we expect that bifurcations
in finite lattices can still be viewed as transitions from convective to absolute instabilities,
corresponding to the formation of infinitely steep, frustrated invasion fronts. Further, we
expect that in certain cases these complex systems may still be understood through their
spatial dynamics in j, i.e. by reduction to interval maps. As an example, we mention
excitable dynamics,

u̇j = f(uj)− vj + α(uj − uj−1),

v̇j = ε(uj − γvj),

where stationary interfaces solve a simple scalar recursion after substituting vj := uj/γ into
f(uj)− vj + α(uj − uj−1) = 0. One can then study the effects of front pinning on excitation
pulses in a systematic fashion.

Similarly, Hopf normal form dynamics

u̇j = ujf
(
|uj |2

)
+ α(uj − uj−1), uj ∈ C,
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can be reduced to iterations for |uj | ∈ R, choosing relative phase shifts arg(uj − uj−1) appro-
priately.
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