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Abstract. Modulated travelling waves are solutions to reaction–diffusion equations that are
time–periodic in an appropriate moving coordinate frame. They may arise through Hopf bifurcations
or essential instabilities from pulses or fronts. In this article, a framework for the stability analysis of
such solutions is presented: the reaction–diffusion equation is cast as an ill–posed elliptic dynamical
system in the spatial variable acting upon time–periodic functions. Using this formulation, points
in the resolvent set, the point spectrum, and the essential spectrum of the linearization about a
modulated travelling wave are related to the existence of exponential dichotomies on appropriate
intervals for the associated spatial elliptic eigenvalue problem. Fredholm properties of the linearized
operator are characterized by a relative Morse–Floer index of the elliptic equation. These results are
proved without assumptions on the asymptotic shape of the wave. Analogous results are true for the
spectra of travelling waves to parabolic equations on unbounded cylinders. As an application, we
study the existence and stability of modulated spatially–periodic patterns with long–wavelength that
accompany modulated pulses.

1. Introduction

1.1. Motivation

We consider systems of reaction–diffusion equations posed on the real line or on
unbounded cylinders. An important class of solutions to such equations are travelling
waves that move with a certain constant wave speed c without changing their shape.
Hence, travelling waves are stationary in a coordinate frame that moves with velocity
c. Another interesting class of solutions are modulated waves that are time–periodic
in an appropriate moving frame. Such waves may bifurcate from travelling waves via
a Hopf bifurcation (when a pair of isolated complex–conjugate eigenvalues crosses the
imaginary axis) or through an essential instability (when a part of the continuous
spectrum crosses the imaginary axis [39]). In this article, we investigate the stabil-
ity properties of modulated waves. Since modulated waves are time–periodic in an
appropriate moving frame, they are fixed points of the temporal period map of the
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underlying partial differential equation (PDE) in the moving frame. Their linearized
stability is therefore determined by the linearization of the temporal period map about
the modulated wave. The reader may wonder why we write an article about the stabil-
ity issue if all one has to do is to investigate the spectrum of a certain linear operator
given by the linearized period map. The reason is that there are often other issues
involved besides proving stability of a given primary modulated wave. We give three
examples:
First, any comparison with experiments or numerical simulations requires that the

underlying unbounded domain is replaced by a bounded domain supplemented with
appropriate boundary conditions. It is then important to determine in what way the
existence and stability properties of the modulated wave depend upon the boundary
conditions. In particular, one has to compare the spectra of the linearized operators
posed on two quite different domains (one is compact, the other one is not). For pulses
and fronts, such a comparison has been carried out in [5, 43].
A second related issue is to determine the existence and stability of other modulated

waves that are related to the primary wave. Suppose, for instance, that the primary
wave is localized so that it converges to zero as the spatial variable ξ tends to ±∞.
In this situation, it is then of interest to investigate modulated waves that consist of
several well separated copies of the primary wave. Since such waves are not close to
the primary wave in any Lp or L∞ norm, it is not clear how their stability can be
investigated using the stability properties of the primary wave. Of particular impor-
tance is the stability of modulated spatially–periodic waves that consist of infinitely
many equidistant copies of the primary modulated pulse. We emphasize that not even
the existence of such waves has been proved previously.
The third issue is related to the presence of essential spectrum. As mentioned before,

modulated waves can bifurcate from travelling waves at the onset of instability. In
particular, modulated waves bifurcate from pulses near parameter values where a part
of the essential spectrum associated with the pulse crosses the imaginary axis [39]. To
demonstrate linear stability of the bifurcating modulated pulses, one has to locate the
essential spectrum of the modulated wave. This, however, is not sufficient to ensure
stability of the modulated wave: it is possible that discrete eigenvalues move out of the
essential spectrum and destabilize the modulated wave. For travelling waves, this issue
arises naturally when considering conservation laws [13] or dissipative perturbations
of integrable PDEs such as the nonlinear Schrödinger equation [16]. The difficulty
in locating discrete eigenvalues near the essential spectrum is the lack of Fredholm
properties for the linearized operator near the essential spectrum.
In summary, the issues raised above are all related to changing either the domain

on which the PDE is posed or the underlying wave (or both). If the domains were
close to each other and if the waves of interest were close in some norm, then a
regular perturbation analysis could be used to relate the spectra of the relevant linear
operators. In all the cases listed above, however, they are either not close or the
operators lack the Fredholm properties needed for a perturbation analysis; it is then
not clear how to show closeness of the relevant spectra.
The key observation is that all the aforementioned problems are related to changes

along the spatial direction. Truncating the real line (or the unbounded cylinder) to
a finite but large interval or replacing the underlying wave by several well separated
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copies of it happens in the spatial direction. In either case, the relevant objects are
close to each other locally in the spatial variable ξ but not necessarily uniformly in
ξ ∈ R. In the time variable t, we always have periodicity since we consider modulated
waves. The key to taking the changes in the spatial directions into account is to regard
the PDE as a dynamical system in the unbounded spatial direction acting on functions
that depend on time together with periodic boundary conditions in the time variable.
This approach will allow us to address, and successfully resolve, the issues mentioned
above. We begin by outlining this strategy in more detail for travelling waves.
The spatial–dynamics approach to elliptic equations has been introduced by Kirch-

gässner [19, 20] to investigate the existence of stationary waves of small amplitude.
Since then, there has been a number of contributions using this approach. Stability
of stationary patterns of small amplitude has been studied, for instance, in [6, 28].
In [15], spatial dynamics has been exploited to establish the existence of modulated
waves of small amplitude. The stability of modulated waves of small amplitude to
equations of Ginzburg–Landau type has recently been studied in [46, 47] using again
spatial dynamics.

1.2. Review: spectra of travelling waves

To be specific, consider a reaction–diffusion equation

ut = Duxx + f(u) , x ∈ R(1.1)

on the real line, where u ∈ Rn, D is a diagonal matrix with positive entries, and
f : Rn → Rn is a smooth nonlinearity.
We first consider travelling–wave solutions u(x, t) = q(x− ct) to (1.1). In an appro-

priate moving coordinate frame ξ = x−ct, travelling waves q(ξ) are bounded solutions
to the ordinary differential equation (ODE)

−cqξ = Dqξξ + f(q) .(1.2)

In other words, they are stationary, i. e. time–independent, solutions of

ut = Duξξ + cuξ + f(u) , ξ ∈ R .(1.3)

As such, the spectral stability of q is determined by the linearization

vt = Dvξξ + cvξ + fu(q(ξ))v , ξ ∈ R

of (1.3) about q. The associated eigenvalue problem is given by the linear non–
autonomous ODE

Dvξξ + cvξ + fu(q(ξ))v = λv(1.4)

that can be cast as the first–order ODE(
vξ
wξ

)
=

(
0 id

D−1(λ− fu(q(ξ))) −cD−1

)(
v

w

)
= A(ξ)

(
v

w

)
.(1.5)

Hence, for travelling waves, the eigenvalue problem can be cast as a dynamical system
in the spatial variable ξ. There are two related concepts that are relevant when
determining the spectrum of the linearization about q.
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The first concept are Fredholm properties that can be used to characterize qualita-
tively different points in the spectrum. Denote by L the operator that is defined by
the left–hand side of (1.4) acting on the space L2(R,Cn). By definition, a complex
number λ is in the essential spectrum of L if either L − λ is not Fredholm or else
L − λ is Fredholm with non–zero index. The first case occurs for values of λ where
the Fredholm index of L − λ changes; typically, the range of L − λ is then not closed.
In the case where L − λ is Fredholm with index zero, it suffices to find the null space
of L − λ in order to decide whether λ is in the resolvent set or in the point spectrum
of L.
The second concept we shall introduce are exponential dichotomies of the first–order

equation (1.5). Note that bounded solutions of (1.5) correspond to eigenfunctions of
the operator L. We focus on the situation where any bounded solution to (1.5) actually
decays exponentially to zero as ξ tends to±∞. Roughly speaking (see Definition 2.1 for
a precise statement), we say that (1.5) has exponential dichotomies on R+ and on R− if
there are two subspaces Es

+(λ) and Eu−(λ) of C2n with the following properties: any so-
lution (v, w)(ξ) of (1.5) with (v, w)(0) ∈ Es

+(λ) decays to zero exponentially as ξ → ∞,
while (v, w)(ξ) grows exponentially as ξ → ∞ whenever (v, w)(0) /∈ Es

+(λ). Similarly,
any solution with (v, w)(0) ∈ Eu

−(λ) decays to zero exponentially as ξ → −∞, while
(v, w)(ξ) grows exponentially as ξ → −∞ whenever (v, w)(0) /∈ Eu

−(λ). Finally, we say
that (1.5) has an exponential dichotomy on R provided it has exponential dichotomies
on R+ and on R− such that Es

+(λ) ⊕ Eu−(λ) = C2n.
The relation between these two concepts is as follows. It has been demonstrated in

[14, Appendix to Section 5] and [29, 30] that L − λ is invertible if, and only if, (1.5)
has an exponential dichotomy on R. More generally, L − λ is Fredholm if, and only
if, (1.5) has exponential dichotomies on R

+ and R
−. In this situation, the Fredholm

index of L − λ is given by

ind(L − λ) = dimEu
−(λ) + dimEs

+(λ)− 2n .

In fact, exponential dichotomies of (1.5) on R can be used to construct a Green’s
function for the operator L− λ. In the case where L− λ is Fredholm with index zero,
λ is in the point spectrum of L if, and only if, the intersection of Es

+(λ) and Eu
−(λ)

is non–trivial, since this intersection is isomorphic to the null space of L − λ. Hence,
we can detect isolated eigenvalues by monitoring the distance between the stable and
unstable subspaces Es

+(λ) and Eu−(λ), respectively, of (1.5) as λ varies in a region in
the complex plane where L−λ is Fredholm with index zero. The Evans function E(λ)
measures precisely the aforementioned distance; see, for instance, [1].
Fredholm properties are important since they can, for instance, be used to carry out

a perturbation analysis using Lyapunov–Schmidt reduction that relies on Fredholm’s
alternative. Such an approach is, however, restricted to operators that are close to
each other in norm. The advantage of exponential dichotomies is that they can be
used for a perturbation analysis where the operators are close to each other in a
much weaker sense. Coming back to the issues that we raised at the beginning of the
introduction, we are interested in the stability of waves that consist of several copies
of a given primary travelling wave as well as the stability of waves in situations where
the essential spectrum touches the imaginary axis. In both cases, dichotomies have
been used successfully to determine the stability of waves.
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An example for the first situation are periodic waves that accompany pulses. Suppose
that q(ξ) is a homoclinic orbit of (1.2). Generically, there exists then a family pL(ξ) of
periodic solutions to (1.2) that are close to the homoclinic orbit q(ξ) in phase space;
the periodic solutions are parametrized by their large period 2L. Given that the pulse
q(ξ) is stable, it is then of interest to derive stability criteria for the long–wavelength
periodic waves pL(ξ) on the real line. In the operator norm, however, the linearizations
(1.4) about q(ξ) and pL(ξ) are not close. Still, Gardner [11] showed that the spectra
for the pulse and the periodic waves are close. The reason is that the coefficients of
the associated ODEs (1.5) are close for |ξ| ≤ L. In [42], we located the spectrum of
the periodic waves accurately using exponential dichotomies. This result allowed us
to decide upon the linear stability of spatially periodic waves that accompany a stable
pulse.
Examples for the second situation where the essential spectrum touches the imag-

inary axis arise naturally for dissipative perturbations of integrable PDEs such as
the nonlinear Schrödinger equation. As mentioned above, it is possible that discrete
eigenvalues move out of the essential spectrum upon adding small perturbations to the
operator. Since the essential spectrum is close to the imaginary axis, these discrete
eigenvalues may destabilize the travelling wave; see [17] for an example. It is therefore
important to detect such eigenvalues. Since they pop out of the essential spectrum
where Fredholm properties of L break down, it is difficult to find these eigenvalues.
Often, however, dichotomies can be continued into the essential spectrum; they do not
correspond to exponentially decaying solutions but to solutions that are bounded or
grow with a small exponential rate. Utilizing dichotomies, it is then possible to detect
points in the essential spectrum where discrete eigenvalues can move out upon adding
a small perturbation. We refer to [16] for details; see also [13].

1.3. Outline of the approach for modulated waves

In this article, we are interested in the structure of the spectra of modulated waves
q̃(x, t) to (1.3) that satisfy

q̃(x, t+ T ) = q̃(x− cT, t)

for some temporal period T and all t, x ∈ R. Equivalently, we may require that, in
an appropriate moving frame given by ξ = x− ct, we have q(ξ, t+ T ) = q(ξ, t) for all
t, ξ ∈ R where q(ξ, t) := q̃(ξ + ct, t). The stability properties of modulated waves are
determined by the spectrum of the linearized time–T map associated with (1.3). Our
strategy is to characterize the points λ in the spectrum of the linearized time–T map
by certain properties of the ill–posed first–order system(

vξ
wξ

)
=

(
0 id

D−1(∂t + α− fu(q(ξ, · ))) −cD−1

)(
v

w

)
,

where λ = eαT , and (v, w) are T–periodic in t for every ξ ∈ R. In other words,
rather than investigating the temporal period map associated with a modulated wave
directly, we employ a dynamical–systems approach by using the spatial variable ξ as
an evolution variable.
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Our goal is then to present a general framework for studying the spectral stability of
waves in the aforementioned situations. In particular, we relate Fredholm properties
of the linearized operator to the existence of exponential dichotomies of the associated
first–order system. The main problem in establishing such a relation is that the first–
order system is ill–posed. Hence, it is not clear whether the stable and unstable spaces
Es
+(λ) and Eu

−(λ) exist. In any case, both of them will be infinite–dimensional.
We emphasize that the very same approach is also applicable to travelling waves in

parabolic equations

ut = uxx +∆u+ f(u) , (x, y) ∈ R ×Ω(1.6)

on unbounded cylindrical domains with bounded cross–section Ω ⊂ R
N (we remark

that the approach works also if Ω is unbounded). Here, ∆ is the Laplace operator in
the y–variable. In a moving frame, travelling waves are then solutions u(ξ, y) to the
elliptic problem

uξξ +∆u+ cuξ + f(u) = 0 , (ξ, y) ∈ R × Ω .

The associated linearized eigenvalue–problem is given by

vξξ +∆u+ cvξ + fu(q(ξ, y))v = λv

that can formally be written as(
vξ
wξ

)
=
(

0 id
−∆+ λ− fu(q(ξ, · )) −c

)(
v

w

)
.

This first–order system is ill–posed and does not admit a semiflow or evolution. For
pulses and fronts to (1.6), Fredholm properties of the linearized operator were es-
tablished in [48]; see also [24]. Our contribution is a characterization in terms of
exponential dichotomies that is, for instance, useful for the numerical calculation of
isolated eigenvalues. In addition, our results apply to travelling waves with tails that
are periodic in ξ; in fact, we do not use any information about the asymptotic shape
of the wave.
Exponential dichotomies can be used efficiently in Lyapunov–Schmidt reductions;

they also facilitate the construction of Green’s functions to the linearized elliptic equa-
tion. In particular, using Lyapunov–Schmidt reduction, an Evans function can be
constructed for parabolic equations on unbounded cylinders or for modulated waves,
at least locally (e. g. near given points in the point or essential spectrum). Exploiting
Galerkin approximations as in Section 4 below, it is also possible to construct a global
Evans function so that topological, index–type arguments become applicable.
We demonstrate these ideas by calculating the spectrum of periodic modulated waves

with large spatial period that accompany modulated pulses. As a result, we show that
time–periodic forcing of pulses may change the interaction between consecutive humps
in a wave train drastically: long–wavelength periodic orbits close to the pulse can
destabilize under weak time–periodic forcing, depending on their spatial wavelength.
This phenomenon is caused by oscillatory behavior at the tails of the periodically–
forced pulse and can be interpreted physically as a locking phenomenon. We show
that the oscillations at the tails indicate weakly stable time–periodic eigenfunctions
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of the asymptotic state. On the other hand, we argue that this phenomenon should
not be present for pulses in singularly perturbed systems. In particular, we prove
that long–wavelength patterns that accompany fast pulses in a periodically excited
FitzHugh–Nagumo system are stable.
Modulated waves can emerge via Hopf bifurcations from travelling waves. In [39],

we have shown how Hopf bifurcations can be analyzed by casting (1.3) as an ill–posed
dynamical system in the spatial variable acting upon time–periodic functions. The ad-
vantage of this approach compared with a standard center–manifold reduction is that
it is also applicable in the case where the essential spectrum crosses the imaginary axis
[39]. The linearized stability of the bifurcating modulated waves has been investigated
in [40]. To demonstrate linearized stability, we had to show that discrete eigenvalues
do not move out of the essential spectrum; as mentioned above, this proof relies on the
fact that Fredholm properties imply the existence of exponential dichotomies; see [40].
Here, we concentrate on the abstract properties of the linearization about a modu-
lated wave that is not necessarily close to a bifurcation point and does not necessarily
approach a stationary or periodic pattern.
The paper is organized as follows. The main results on the spectra of modulated

travelling waves are stated in Section 2. The corresponding results for travelling waves
on cylinders are formulated in Section 3. These results are then proved in Sections 4, 5
and 6. In Section 8, we present applications to the spectra of spatially–periodic waves
with long wavelength. Finally, we conclude with a discussion in Section 9.

2. Spectra of modulated waves

2.1. The parabolic equation: temporal dynamics

Suppose that q(ξ, t) is a bounded and smooth modulated wave that satisfies (1.3);
in particular, we have q(ξ, t + T ) = q(ξ, t). The linearized equation about q is given
by

vt = Dvξξ + cvξ + a(ξ, t)v ,(2.1)

where a(ξ, t) := fu(q(ξ, t)) is bounded and smooth.
The nonlinear equation (1.3) is well–posed on a variety of Banach spaces including,

for instance, L∞(R,Rn), C0
unif (R,R

n), Lp(R,Rn) or the space Lpw(R,Rn) for a given
weight function w(ξ). For the last two spaces, we may have to assume that the non-
linearity f satisfies certain growth and sign conditions. The choice of the underlying
space for the nonlinear equation (1.3) certainly affects the dynamics of modulated
waves in that it restricts their shape and their nonlinear stability properties. In this
paper, however, we are mainly interested in spectral stability, i. e. in the linearized
equation (2.1). For the sake of clarity, we consider (2.1) on the space X = L2(R,Cn)
where it is well–posed. Similar results can be derived in other spaces provided certain
maximal regularity properties hold.
Associated with (2.1) posed on the space X = L2(R,Cn) is the linear evolution

operator Φt,s : X → X that maps the ξ–profile v( · , s) of the solution at time s to the
profile v( · , t) at time t. Note that we have Φt+T,s+T = Φt,s due to time–periodicity
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of q. Hence, for the purpose of determining the stability of the linearized equation,
it suffices to investigate the period map Φ := ΦT,0. The eigenvalue equation for Φ is
then given by

v(ξ, T ) = λv(ξ, 0) , ξ ∈ R ,

where v(ξ, t) satisfies (2.1) for 0 < t < T .
The spectrum of Φ regarded as an operator on X is denoted by Σ ⊂ C. We may

divide Σ into two disjoint subsets

Σ = Σess ∪̇ Σpoint .

The set Σpoint denotes the point spectrum of Φ, i. e. the union of eigenvalues λ for
which Φ − λ is Fredholm with index zero. Its complement Σess in Σ is the essential
spectrum. The pure point spectrum Σppoint is the set of isolated eigenvalues with
finite multiplicity; it is contained in Σpoint. Note that the point spectrum may be
empty; the essential spectrum is always non–empty since the equation is posed on the
unbounded real line. We remark that there are other, slightly different, definitions of
the essential spectrum.

2.2. The elliptic formulation: spatial dynamics

We write the eigenvalue problem for Φ formally as a dynamical system in the
ξ–variable. We obtain

ṽξ = w̃ , w̃ξ = D−1(ṽt − c w̃ − a(ξ, t)ṽ)

together with the boundary conditions

ṽ(ξ, T ) = λṽ(ξ, 0) , w̃(ξ, T ) = λw̃(ξ, 0) ,

where λ ∈ C denotes a prospective eigenvalue of Φ. In order to remove the dependence
on λ from the boundary conditions, we introduce the new variables

v(ξ, t) = e−αtṽ(ξ, t) , w(ξ, t) = e−αtw̃(ξ, t)

for λ �= 0, where α ∈ C is chosen such that eαT = λ. In other words, α is the
temporal Floquet exponent that belongs to the prospective temporal eigenvalue λ.
The transformed equation is given by

vξ = w , wξ = D−1(vt + αv − cw − a(ξ, t)v)(2.2)

with periodic boundary conditions

v(ξ, T ) = v(ξ, 0) , w(ξ, T ) = w(ξ, 0) .

We consider (2.2) on the Hilbert space Y = H
1
2 (R/TZ) × L2(R/TZ) of T–periodic

functions of t with values in Cn. The reader may think of Y as the phase space for
(2.2). We write (2.2) in the abstract form

d
dξ

V = A(ξ)V(2.3)
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where V (ξ) = (v, w)(ξ) ∈ Y for every ξ and

A(ξ) =
(

0 id
D−1(∂t + α− a(ξ, t)) −cD−1

)
: Y −→ Y(2.4)

is closed and densely defined with domain Y 1 = H1(R/TZ) × H
1
2 (R/TZ) for every

ξ ∈ R. Note, however, that the initial–value problem V (0) = V0 on Y is ill–posed
which can be seen after setting α = c = 0, a = 0, and D = id: the spectrum of the
linear operator A(ξ) on the right–hand side of (2.2) then consists of the points ±

√
ik,

k ∈ Z, that have unbounded positive and negative real part.
We say that a function V = (v, w) ∈ C0(J, Y ) is a solution of (2.2) on an interval J

if, for any ξ in the interior of J , V (ξ) is continuous with values in Y 1, differentiable
in ξ as a function into Y , and satisfies (2.2) in Y .

Definition 2.1. [32, Section 2.1.] Let J = R+, R− or R. Equation (2.2) is said
to have an exponential dichotomy on J if there exist positive constants K and η and
a strongly continuous family of projections P : J → L(Y ) such that the following is
true.
(a) Stability. For any ζ ∈ J and V0 ∈ Y , there exists a solution ϕs(ξ; ζ)V0 of (2.2)

that is defined for ξ ≥ ζ in J , is continuous in (ξ, ζ) for ξ ≥ ζ and differentiable in
(ξ, ζ) for ξ > ζ, and we have ϕs(ζ; ζ)V0 = P (ζ)V0 as well as

|ϕs(ξ; ζ)V0|Y ≤ Ke−η |ξ−ζ| |V0|Y

for all ξ ≥ ζ such that ξ, ζ ∈ J .
(b) Instability. For any ζ ∈ J and V0 ∈ Y , there exists a solution ϕu(ξ; ζ)V0 of (2.2)

that is defined for ξ ≤ ζ in J , is continuous in (ξ, ζ) for ξ ≤ ζ and differentiable in
(ξ, ζ) for ξ < ζ, and we have ϕu(ζ; ζ)V0 = (id−P (ζ))V0 as well as

|ϕu(ξ; ζ)V0|Y ≤ Ke−η |ξ−ζ| |V0|Y

for all ξ ≤ ζ such that ξ, ζ ∈ J .
(c) Invariance. The solutions ϕs(ξ; ζ)V0 and ϕu(ξ; ζ)V0 satisfy

ϕs(ξ; ζ)V0 ∈ R(P (ξ)) for all ξ ≥ ζ with ξ , ζ ∈ J ,

ϕu(ξ; ζ)V0 ∈ N(P (ξ)) for all ξ ≤ ζ with ξ , ζ ∈ J .

Finally, we require that the solution operators ϕs(ξ; ζ) and ϕu(ξ; ζ) are linear on Y .

Note that this definition is almost the same as the usual definition of exponential
dichotomies for ODEs. The difference is that, due to ill–posedness of the initial–value
problem, the existence of solutions in forward or backward time on the range R(P (ξ))
or the null space N(P (ξ)), respectively, is an important part of the definition.
Note also that we assumed differentiability with respect to the initial time ζ. Often,

this property is a consequence of differentiability in time; we do not know, however,
whether that is always the case. The reason that we require differentiability in the
initial time is that we want to prove that the adjoint equation of (2.3) has an expo-
nential dichotomy whenever (2.3) does; see Lemma 5.1. Again, this may hold without
having differentiability in ζ, but we do not know how to prove it.
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2.3. Relative Morse indices

If the elliptic equation (2.2) has an exponential dichotomy on R+, R− or R, we expect
that both the range R(P (0)) and the null space N(P (0)) are infinite–dimensional, since
this is true for the principal part of the equation with a = 0; see [39]. In order to
count dimensions, we introduce the reference equation

vξ = w , wξ = D−1(vt + v − cw) .(2.5)

Note that the time–T map of the associated parabolic equation

vt = Dvξξ + cvξ − v

is a contraction. A direct computation using Fourier series expansions in Y shows
that (2.5) has an exponential dichotomy on R; see [39] and the example below. It also
follows that the associated projections P (ξ) are in fact independent of ξ; we denote
them by Pref . Initial values in the range R(Pref) of Pref lead to solutions of (2.5) that
are bounded on R+; similarly, initial values in the null space N(Pref) of Pref correspond
to solutions that are bounded on R−.

Theorem 2.2. Fix α ∈ C. Suppose that (2.2) has an exponential dichotomy on J =
R+ with projections P (ξ) for this value of α; see Definition 2.1. The restriction P (ξ) :
R(Pref) → R(P (ξ)) is then Fredholm, and its Fredholm index ind(P ) is independent
of ξ. If the exponential dichotomy P (ξ) is defined on J = R, then the restriction
(id−Pref) : N(P (ξ)) → N(Pref) is also Fredholm with the same index.

Definition 2.3. Fix α ∈ C, and suppose that (2.2) has an exponential dichotomy
on R+ with projections P+(ξ). The relative Morse index of (2.2) at +∞ is then
defined by i+ = ind(P+); it is the Fredholm index of P+(ξ) : R(Pref) → R(P+(ξ)).
Analogously, if (2.2) has an exponential dichotomy on R− with projections P−(ξ),
then the associated relative Morse index at −∞ is defined as the Fredholm index
i− = ind(P−) of the operator (id−Pref) : N(P−(ξ)) → N(Pref).

Recall that the indices i± are well–defined by Theorem 2.2. Note, however, that
they depend upon the choice of the reference equation. Choosing a different reference
equation might lead to a shift of all relative Morse indices by the same integer. This is
the reason why we call the indices i± the relative Morse indices. The absolute Morse
index, i. e. the dimension of R(P (ξ)) or N(P (ξ)), would be infinite and of poor interest.
We refer to Section 2.6 for an equivalent definition for operators with asymptotically
periodic coefficients that uses spectral–flow ideas from Floer theory.

Example 2.4. Suppose that a(ξ, t) = a(ξ) does not depend upon t and a(ξ) → a±
as ξ → ±∞. We may then restrict (2.2) to the 2n–dimensional subspace of Y that
consists of all t–independent functions. On this subspace, (2.2) is an ODE, and the
existence of exponential dichotomies on R± is equivalent to the hyperbolicity of the
asymptotic equations where a(ξ) is replaced by the constants a±. Hyperbolicity of the
asymptotic ODEs reduces to the condition

det
(
Dk2 − cik − α+ a±

)
�= 0
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for all k ∈ R. Similarly, for any l ∈ Z, we may consider solutions of (2.2) that are of
the form (u, v)(ξ) e2πilt/T . The resulting ODE on C2n has dichotomies if

det
(
Dk2 − cik − α+ a± + 2πil/T

)
�= 0

for all k ∈ R. In fact, the existence of dichotomies for the full problem on the phase
space Y is equivalent to the condition that the ODEs on the Fourier subspaces have
exponential dichotomies for all l; the relevant computations can be found in [39,
Lemma 3.1].

2.4. Exponential dichotomies and elliptic boundary–value problems

In this section, we seek solutions to the eigenvalue problem (2.2) as elements in the
null space of the operator

T : H1(R, Y ) ∩ L2
(
R, Y 1

)
−→ L2(R, Y )

(v, w) �−→
(
vξ −w,wξ −D−1(vt + αv − cw − a(ξ, t)v)

)
.

(2.6)

Recall the definitions Y = H
1
2
(
S1
)
× L2

(
S1
)
and Y 1 = H1

(
S1
)
× H

1
2
(
S1
)
of the

phase space Y and the domain Y 1, respectively, of the closed operator A(ξ) : Y → Y
that has been defined in (2.4). Here, S1 = R/TZ. We often write

T =
d
dξ

−A(ξ) .

Note that the adjoint operator A(ξ)∗ exists and is again closed and densely defined
with the same domain Y 1 in Y ; see Section 6.2 for an explicit representation of A(ξ)∗.
Hence, we can consider the adjoint equation

d
dξ

V = −A(ξ)∗V .(2.7)

Hypothesis (U1). If (v, w)(ξ) is a solution on R, bounded uniformly in ξ with
values in Y , of either (2.2) or its adjoint equation (2.7) such that (v, w)(ξ0) = 0 for
some ξ0 ∈ R, then (v, w)(ξ) vanishes identically.

In other words, we need a weak uniqueness property of the ill–posed Cauchy problem
associated with (2.2) and its adjoint equation (2.7).

Remark 2.5. Our regularity assumptions on the coefficients a(ξ, t) actually imply
that Hypothesis (U1) is always met. Indeed, parabolic regularity ensures that bounded
solutions actually belong to

W 2,1
2,loc

(
R × S1

)
=
{
u; u, ut, ux, uxx ∈ L2(Q) for any compact Q ⊂ R × S1

}
.

Hence, once V = (v, w) ∈ N(T ), the hypotheses of [7, Theorem 2.1] are satisfied. As
a consequence of [7, Theorem 2.1], we have that either v(x, t) = 0 vanishes identically
or else there is an integer m ≥ 0 such that

limε→0 ε
−mv

(
x0 + εy, ε2s

)
= h(y, s) ,

limε→0 ε
−m+1vx

(
x0 + εy, ε2s

)
= hy(y, s)

(2.8)
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uniformly in (y, s) in bounded subsets of R × R. Furthermore, it follows from [7,
Section 3] that h(y,−1) is then a Hermite polynomial. In particular, h(y,−1) has
only simple zeros.
Suppose therefore that V = (v, w) ∈ N(T ) with v(x0, · ) = vx(x0, · ) = 0, then either

V = 0 or else

lim
ε→0

ε−mv
(
x0, ε

2s
)

= 0 = h(0, s) ,

lim
ε→0

ε−m+1vx
(
x0, ε

2s
)

= 0 = hy(0, s)

upon setting y = 0 in (2.8). This, however, is not possible since h(y,−1) has only
simple zeros. Thus, we conclude that V = 0.

We then have the following theorem.

Theorem 2.6. Fix α ∈ C. Assume that (U1) is met. The operator T is Fredholm
if, and only if, (2.2) has exponential dichotomies on R+ and on R−. If T is Fredholm,
its index is given by ind(T ) = i− − i+, where i± are the relative Morse indices of (2.2)
at ±∞ according to Definition 2.3. Furthermore, the operator T is invertible if, and
only if, (2.2) has an exponential dichotomy on R.

Palmer [29] proved this theorem when Y 1 = Y = Rn. For evolutionary equations
that admit semiflows, similar results have been demonstrated, for instance, in [30, 22].
In the context of elliptic equations, however, the proof of Theorem 2.6 requires the
construction of a Green’s function that is carried out in Section 5.3 below.
The spaces H1 and L2 in the independent variable ξ ∈ R are somewhat arbitrary.

The property we need is a maximal–regularity result for solutions to the inhomoge-
neous linearized equation.
We emphasize that the first–order operator T is Fredholm (invertible) if, and only

if, the second–order operator

T̃ : H2(R, Y ) ∩ L2
(
R, Y 1

)
−→ L2(R, Y )

v �−→ Dvξξ − vt − αv + cvξ + a(ξ, t)v

is Fredholm (invertible), and their Fredholm indices are equal. This is a consequence
of the proof of Theorem 2.8 below in Section 6.1; see in particular the transformation
from (6.4) to (6.6) and vice versa.

Remark 2.7. As we shall see in the proof, Hypothesis (U1) is only needed for
the “only if”–part. The existence of exponential dichotomies always implies Fredholm
properties.

2.5. Spectra of modulated travelling waves

The next theorem gives the structure of the spectrum associated with the lineariza-
tion about a modulated travelling wave.

Theorem 2.8. Let λ ∈ C with λ �= 0 and choose α ∈ C so that eαT = λ. Assume
that (U1) is met. We then have the following alternatives.
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i) λ is in the resolvent set of Φ if, and only if, (2.2) has an exponential dichotomy
on R.

ii) λ is in the point spectrum Σpoint if, and only if, (2.2) has exponential dichotomies
on R+ and R− with the same relative Morse index and dimN(T ) > 0.
iii) λ is in the essential spectrum Σess if either (2.2) does not have exponential di-
chotomies on R+ or R− or else if it does but the relative Morse indices on R+ and
R− differ.
Finally, the pure point spectrum is characterized as follows. Let C ⊂ C be a con-
nected component of C \Σess; in particular, Φ−λ is Fredholm with index zero for any
λ ∈ C. If there is a point λ0 such that Φ− λ0 is invertible, then C ∩Σpoint ⊂ Σppoint.

Note that λ = 0, which is the only complex number excluded in the above theorem,
belongs to the essential spectrum. In fact, λ = 0 is an accumulation point of Σess.
For λ ∈ Σppoint, choose the temporal Floquet exponent α so that λ = eαT , and

consider the operator T for this value of α. It is then a consequence of the proof
of Theorem 2.8 in Section 6.3 that dimN(T ) = dimN(Φ − λ) so that the geometric
multiplicity of λ is determined by T . A similar statement is true for the algebraic
multiplicity of λ as an eigenvalue of Φ. We define the multiplicity of α as follows:
Assume that N(T ) = span{U1(x)}. We say that α has multiplicity 2 if there are
solutions Uj(x) to

d
dξ

Uj = A(ξ)Uj +BUj−1

for j = 2, . . . , 2 but no solution to U ′ = A(x)U + BU�, where

B =

(
0 0

D−1 0

)
.

In general, we say that α has multiplicity 2 if the sum of the multiplicities of a maximal
set of linearly independent elements in N(T ) is equal to 2. We then have that algebraic
and geometric multiplicities of individual eigenvalues of Φ and the corresponding Flo-
quet exponents are equal. In other words, the Jordan structure of an eigenvalue λ of
Φ is determined by properties of the associated operator T . The proof is not difficult
but tedious, and we omit it. We refer to the proof of Theorem 8.4 in Section 8.1 for a
partial proof; see also [12, 36] for related results.

2.6. Asymptotically constant or periodic coefficients

In this section, we consider the linearized equation

vt = Dvξξ + cvξ + a(ξ, t)v

in the case where a(ξ, t) is asymptotically constant or periodic in ξ.

Hypothesis (P). Assume that there are two differentiable functions a±(ξ, t) and
non–zero constants p± that satisfy

a±(ξ + p±, t) = a±(ξ, t) , a±(ξ, t+ T ) = a±(ξ, t)

for all ξ and t so that |a(ξ, t)− a±(ξ, t)| → 0 as ξ → ±∞.
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Of interest are then the asymptotic elliptic equations

vξ = w , wξ = D−1(vt + αv − cw − a±(ξ, t)v)(2.9)

with (v, w) ∈ Y .
We have to replace Hypothesis (U1) by the following stronger Hypothesis (U2).

Hypothesis (U2). If (v, w)(ξ) is a solution on [ξ0,∞) or on (−∞, ξ0], bounded
uniformly in ξ with values in Y , of either (2.2) or its adjoint equation such that
(v, w)(ξ0) = 0, then (v, w)(ξ) vanishes identically.

Remark 2.9. Similarly to Hypothesis (U1), the uniqueness assumption in Hypoth-
esis (U2) is always satisfied. First observe that a solution on [ξ0,∞) can be extended
to a solution in W 2,1

2,loc

(
R × S1

)
, setting V (x) ≡ 0 for all x < 0. We may now follow

the arguments in Remark 2.5, and conclude that V (x) vanishes for all x ∈ R.

Proposition 2.10. Let λ ∈ C with λ �= 0, choose α ∈ C so that λ = eαT , and
consider (2.2) for this value of α. Assume that (P) and (U2) are met. The following
is then true. Equation (2.2) does not admit exponential dichotomies on R+ if, and only
if, (2.9) for a+(ξ, t) has a spatial Floquet exponent on the imaginary axis. Similarly, the
non–existence of dichotomies of (2.2) on R− and the existence of a purely imaginary
spatial Floquet exponent to (2.9) for a−(ξ, t) are equivalent.

Here, by definition, (2.9) for a+(ξ, t) has a spatial Floquet exponent on the imaginary
axis if there is a solution U(ξ) = (v, w)(ξ) to (2.9) such that U(p+) = eiβU(0) for some
β ∈ R.

Remark 2.11. It is a consequence of [27, Theorem 2.3] and Theorem 2.6 that (2.9)
has a purely imaginary spatial Floquet exponent if, and only if, it has a solution that
is bounded on R. Note that this statement is not quite as obvious as it may sound
since we need the existence of exponential dichotomies (i. e. a Green’s function) for
(2.9) to demonstrate its validity.

Corollary 2.12. If the Hypotheses (P) and (U2) are met, then the spectra Σ2 and
Σ∞ of the operator Φ considered on X = L2(R,Cn) and on C0

unif (R,C
n), respectively,

are the same.

If the coefficients a(ξ, t) are asymptotically constant in ξ, i. e., if a±(ξ, t) = a±(t),
then the relative Morse index can be computed via a linear homotopy to the reference
equation: it is given by the number of eigenvalues, counted with multiplicity, of the
operator (

0 id
D−1(∂t + αv − a±(t)v) −cD−1

)

on the space Y that cross the imaginary axis during the homotopy.
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Similarly, for asymptotically periodic coefficients, the relative Morse index can be
computed by counting the spatial Floquet multipliers of the linearization(

uξ
vξ

)
=

(
0 id

D−1(∂t + αv − a±(ξ, t)v) −cD−1

)(
u

v

)
that cross the unit circle during the homotopy. This procedure is reminiscent of the
construction of Floer homology; see, for instance, [33].

3. Spectra of travelling waves to parabolic equations on un-
bounded cylinders

In this section, we investigate travelling waves to the parabolic equation

ut = uxx +∆u+ f(u) , (x, y) ∈ R ×Ω(3.1)

on unbounded cylindrical domains where the bounded cross–section Ω ⊂ Rm has a
smooth boundary. Here, ∆ is the Laplace operator in the y–variable, and we impose
appropriate boundary conditions such as Neumann or Dirichlet conditions on ∂Ω. The
operator ∆ is then a sectorial operator in the space X = L2(Ω), and we denote its
dense domain by X1; also, the associated fractional power spaces are denoted by Xα.
For Dirichlet and Neumann boundary conditions on ∂Ω, we have X1 = H2(Ω)∩H1

0(Ω)
andX1 =

{
u ∈ H2(Ω); ∂νu|∂Ω = 0

}
, respectively. In a moving frame, travelling waves

to (3.1) satisfy the elliptic problem

uξξ +∆u+ cuξ + f(u) = 0 , (ξ, y) ∈ R × Ω .

The linearization of (3.1), in a moving frame, about a travelling wave q(ξ, y) is

Lv = vξξ +∆u+ cvξ + fu(q(ξ, y))v .

We are interested in the operator

T : H1(R, Y ) ∩ L2
(
R, Y 1

)
−→ L2(R, Y )

(v, w) �−→ (vξ − w,wξ +∆v − λv + fu(q(ξ, y))v + cw)(3.2)

associated with the eigenvalue problem (L − λ)v = 0. Here, Y = X
1
2 × X and

Y 1 = X1 ×X
1
2 . The equation T (v, w) = 0, written as a first–order equation, is given

by (
vξ
wξ

)
=

(
0 id

−∆+ λ− fu(q(ξ, · )) −c

)(
v

w

)
.(3.3)

We again need uniqueness of the ill–posed Cauchy problem associated with (3.3) and
its adjoint equation, where the latter is defined as in (2.7).

Hypothesis (U3). If (v, w)(ξ) is a solution on R, bounded uniformly in ξ with
values in Y , of either (3.3) or its adjoint equation such that (v, w)(ξ0) = 0, then
(v, w)(ξ) vanishes identically.
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We remark that Hypothesis (U3) is satisfied whenever f : X
1
2 → X is analytic.

Theorem 3.1. Fix λ ∈ C. Assume that (U3) is met. The operator T is Fredholm
if, and only if, (3.3) has exponential dichotomies on R+ and on R−. Furthermore, the
operator T is invertible if, and only if, (3.3) has an exponential dichotomy on R.

We emphasize that, in contrast to the results in [48, 32], there are no assumptions
on the asymptotic behavior of the wave as ξ → ±∞.
Fix λ ∈ C, then T is Fredholm if, and only if, L − λ is Fredholm, with the same

index. Furthermore, the algebraic and geometric multiplicity of an eigenvalue λ of the
operator L are determined by the operator T , used with that value of λ.
If the travelling wave q(ξ, y) has tails that are asymptotically constant or periodic

in ξ, then the characterization of the essential spectrum given in Proposition 2.10 is
also true for (3.1).

4. Proof of Theorem 2.2

First, assume that (2.2) has an exponential dichotomy on R+. We use Galerkin
approximations to reduce the elliptic equation to a finite–dimensional problem. Func-
tions in Y can be represented by their Fourier series. We denote by Qm the L2–
orthogonal projection that assigns the Fourier series truncated at orderm to a function
in L2(R/TZ,Cn):

Qmu =
m∑

k=−m
e2πikt/Tuk ,

where uk ∈ Cn is defined by

uk =
1
T

∫ T

0

u(t)e−2πikt/Tdt

for any k ∈ Z. Consider the approximating equation

vξ = w , wξ = D−1(vt + v − cw − Qm(a(ξ, · )− α+ 1)v) .(4.1)

Since a(ξ, t) is bounded and smooth and Qmv → v as m → ∞, it is easy to see that
the operator

H
1
2 (R/TZ) −→ L2(R/TZ) , v �−→ (id−Qm)(a(ξ, · )− α+ 1)v

converges to zero in norm as m → ∞. Hence, the approximating equation (4.1) is a
small perturbation of the full equation (2.2).
On account of the robustness of exponential dichotomies [32], the approximating

equation also has exponential dichotomies provided m ≥ m0 is sufficiently large. We
denote the corresponding projections by Pm(ξ). Again by robustness, Pm(ξ) → P (ξ)
in L(Y ), uniformly in ξ, for m → ∞; though not needed here, we remark that the
proof in [32] even gives compactness of the difference Pm(ξ) − P (ξ).
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The operator diag(Qm, Qm) acts diagonally on Y = H
1
2 × L2. Let Y = Ym ⊕ Y ⊥

m

where Ym := diag(Qm, Qm)Y and Y ⊥
m := (id−diag(Qm, Qm))Y are the range and

null space, respectively, of diag(Qm, Qm) on Y . Note that the space Ym has dimension
2(2m+ 1)n. The approximating equation (4.1) restricted to Y ⊥

m decouples

vξ = w , wξ = D−1(vt + v − cw) .(4.2)

Hence, (4.2) and the reference equation (2.5) restricted to Y ⊥
m coincide. Note that it

is here where we used that the wave speeds c appearing in (2.5) and (4.2) are equal.
Collecting these findings, we see that the projection of the dichotomy to the approx-

imating equation (4.1) has a tridiagonal structure

Pm(ξ) =

(
P
(11)
m (ξ) P

(12)
m (ξ)

0 P
(22)
m (ξ)

)
: Ym ⊕ Y ⊥

m −→ Ym ⊕ Y ⊥
m .

The projection Pref of the reference equation is diagonal

Pref =

(
P
(11)
ref 0

0 P
(22)
ref

)
.

Since the equations (4.2) and the reference equation (2.5) coincide on Y ⊥
m , we conclude

that R
(
P
(22)
ref

)
= R

(
P
(22)
m (ξ)

)
, and both ranges are equal to the set of initial values to

bounded solutions on Y ⊥
m for ξ ≥ 0. But then we obtain

Pm(ξ)
∣∣
R(Pref )

= Pm(ξ)
∣∣
R(P

(11)
ref )×R(P

(22)
ref )

=

(
P
(11)
m (ξ) P

(12)
m (ξ)

0 id

)

on R
(
P
(11)
ref

)
× R

(
P
(22)
ref

)
, and the restriction Pm(ξ) : R(Pref) → R(Pm(ξ)) is therefore

Fredholm as a finite–dimensional extension of the identity with index independent
of ξ.
Next, we prove that P (ξ) : R(Pref) → R(P (ξ)) is a Fredholm operator with the same

index. Note that

P (ξ)(id+(Pm(ξ) − P (ξ))) = (id+(P (ξ)− Pm(ξ)))Pm(ξ) .

Since Pm(ξ) → P (ξ) in norm, it follows that

P (ξ) = (id+(P (ξ) − Pm(ξ)))Pm(ξ) (id+(Pm(ξ)− P (ξ)))−1 .

Hence, P (ξ) is the composition of the Fredholm operator Pm(ξ) with invertible oper-
ators and therefore itself Fredholm with the same index. Since P (ξ) and Pm(ξ) are
close uniformly in ξ, the above argument applies to all values of ξ and proves that
P (ξ) is a Fredholm operator for any ξ and its index is independent of ξ.
This proves the first part of Theorem 2.2. The statements about exponential di-

chotomies on J = R
− are proved analogously. It remains to show that the indices of

P+(ξ) : R(Pref) → R(P+(ξ)) and (id−Pref) : N(P−(ξ)) → N(Pref) coincide whenever
(2.2) has an exponential dichotomy on R. To prove this claim, we use the expression
for Pm(ξ) and the analogous expression for the approximating dichotomy on R−. The
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indices at ±∞ can then be reduced to indices of P (11)
m and P

(11)
ref and the analogous ex-

pressions on R−. The claim is then a straightforward consequence of the corresponding
results for finite–dimensional spaces. This completes the proof of the theorem.

Remark 4.1. In [32, Equation (3.20)], we showed that, given an exponential di-
chotomy with projection P (ξ) on R+, we can construct a new dichotomy to any given
prescribed closed subspace Eu

+(0) that satisfies R(P (0))⊕Eu
+(0) = Y . In other words,

only the range of the projection to a dichotomy on R+ is uniquely determined, whereas
the null space is arbitrary. By a suitable choice of this null space for Pm(ξ), we can
achieve that P (22)

ref = P
(22)
m (ξ). The difference Pref − Pm(ξ) is then compact for any ξ.

Since this difference converges in norm to Pref − P (ξ), we see that Pref − P (ξ) is also
compact.

5. Proof of Theorem 2.6

5.1. Dichotomies for the adjoint equation

As before, we write (2.2) in the more compact form Vξ = A(ξ)V . The adjoint
equation is then abstractly given by Wξ = −A(ξ)∗W where the adjoint of the closed
and densely defined operators A(ξ) is taken with respect to the inner product in Y .
We refer to Section 6.2 for a more explicit representation of A(ξ)∗.

Lemma 5.1. Suppose that (2.2) has an exponential dichotomy on J with constants
K and η and evolution operators ϕs,u. The adjoint equation then has an exponential
dichotomy with the same constants and evolution operators ϕ̂s,u given by

ϕ̂s(ξ; ζ) = ϕu(ζ; ξ)∗ , ϕ̂u(ξ; ζ) = ϕs(ζ; ξ)∗ ,

where the adjoint is again taken with respect to the inner product in Y .

Proof . We compute

0 =
∂

∂τ
ϕs,u(ξ; ζ)V

=
∂

∂τ
(ϕs,u(ξ; τ )ϕs,u(τ ; ζ)V )

=
∂

∂τ
(ϕs,u(ξ; τ ))ϕs,u(τ ; ζ)V + ϕs,u(ξ; τ )

∂

∂τ
ϕs,u(τ ; ζ)V

=
∂

∂τ
(ϕs,u(ξ; τ ))ϕs,u(τ ; ζ)V + ϕs,u(ξ; τ )A(τ )ϕs,u(τ ; ζ)V .

Passing to the limit ζ → τ , we obtain
∂

∂τ
ϕs,u(ξ; τ )V = −ϕs,u(ξ; τ )A(τ )V .

Taking the adjoint proves the Lemma. ✷

As mentioned in Section 2.2, the statement of the lemma could be true without
assuming differentiability with respect to the initial time; see, for instance, [14, Proof
of Theorem 7.3.1] and [32] for arguments that work for asymptotically constant or
periodic coefficients.



Sandstede and Scheel, Spectra of Modulated Waves 57

5.2. The existence of dichotomies implies that T is Fredholm

We begin the proof of Theorem 2.6 by showing that the existence of exponential
dichotomies on R± implies that T is Fredholm. The proof of this statement is quite
similar to the one given in [29] for ODEs.
First, we show that T is a closed operator with domain D(T ) = H1(R, Y ) ∩

L2
(
R, Y 1

)
. Let Tref be the operator that corresponds to the reference equation (2.5);

Tref is then given by (2.6) with α = 1 and a = 0. An explicit computation using
Fourier series shows that

Tref : D(Tref) = H1(R, Y ) ∩ L2
(
R, Y 1

)
↪→ L2(R, Y ) −→ L2(R, Y )

is invertible. In particular, Tref is a closed operator in L2(R, Y ) with domain D(Tref) =
H1(R, Y )∩L2

(
R, Y 1

)
. Hence, it follows from [18, Theorem IV.1.1] that T is also closed

with the same domain since T − Tref is bounded.
As a preparation for the following arguments, we claim that we can assume that

P+(0) − P−(0) is compact. Note that only R(P+(0)) and N(P−(0)) are uniquely de-
termined; see [32, (3.20)]. Following the arguments in the proof of Theorem 2.2 and
Remark 4.1, we see that P+(0) and P−(0) are limits of projections P+

m(0) and P−
m(0),

respectively, for the Galerkin approximation (4.1) of (2.2). Furthermore, the projec-
tions P+

m(0) and P−
m(0) restricted to Y ⊥

m coincide with the projection Pref restricted
to Y ⊥

m . Hence, P+(0) − P−(0) is the limit, in norm, of degenerate operators with
finite–dimensional range and thus compact.
Consider the null space of T . Due to Lemma 5.1, the adjoint equation has an

exponential dichotomy, and the associated evolution operators are the adjoints of
the evolution operators of the original equation. As a consequence, any bounded
solution to (2.2) lies in R(P+(0)) ∩ N(P−(0)) and in fact decays exponentially as
ξ → ±∞. The fact that P+(0)−P−(0) is compact implies that P−(0)+(id−P+(0)) is
Fredholm. Hence, dimN(P−(0)+(id−P+(0))) < ∞ and, since R(P+(0))∩N(P−(0)) ⊂
N(P−(0) + (id−P+(0))), we conclude that N(T ) is finite–dimensional.
In the next step, we prove that the range of T is closed. We use an integral repre-

sentation for mild solutions U of T U = G. Suppose that Gl ∈ R(T ) so that T Ul = Gl

for some Ul and Gl → G in L2(R, Y ). Recall that ϕs,u
± are the evolution operators

appearing in Definition 2.1 of exponential dichotomies on R
±. For ξ ≥ 0 and ξ ≤ 0,

define

U+
l (ξ) = ϕs

+(ξ; 0)V
+
l +

∫ ξ

0

ϕs
+(ξ; ζ)Gl(ζ) dζ +

∫ ξ

∞
ϕu
+(ξ; ζ)Gl(ζ) dζ ,

U−
l (ξ) = ϕu

−(ξ; 0)V
−
l +

∫ ξ

0

ϕu
−(ξ; ζ)Gl(ζ) dζ +

∫ ξ

−∞
ϕs
−(ξ; ζ)Gl(ζ) dζ ,

(5.1)

respectively, where the initial values V ±
l are chosen according to

V +
l = P+(0)Ul(0) , V −

l = (id−P−(0))Ul(0) .

Note that Ul(0) is well–defined since Ul ∈ D(T ) and H1(R, Y ) ↪→ C0(R, Y ). Observe
that the functions U±

l are mild solutions of T U±
l = Gl on L2(R±, Y ). We claim

that U+
l (ξ) = Ul(ξ) for ξ ≥ 0. Note that the difference U+

l (ξ) − Ul(ξ) satisfies the
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homogeneous equation for ξ ∈ R+ and is bounded uniformly in ξ ∈ R+. In addition,
the initial condition U+

l (0) − Ul(0) is contained in the unstable space N(P+(0)) =
R(id−P+(0)). Multiplying by a suitable bounded solution of the adjoint equation, we
obtain a contradiction since the scalar product of solutions of a linear equation and
its adjoint equation is constant in ξ. Thus, we have that U+

l (ξ) = Ul(ξ) for ξ ∈ R+.
The same argument shows that U−

l (ξ) = Ul(ξ) for ξ ∈ R−. Using U±
l (0) = Ul(0) and

setting ξ = 0 in the above integral equation, we obtain

V +
l = P+(0)

[
V −
l +

∫ 0

−∞
ϕs
−(0; ζ)Gl(ζ) dζ

]
,

V −
l = (id−P−(0))

[
V +
l +

∫ 0

∞
ϕu
+(0; ζ)Gl(ζ) dζ

]
or, in a more compact form,

V +
l = P+(0)V −

l + h−
l , V −

l = (id−P−(0))V +
l + h+l

where h−
l ∈ R(P+(0)) and h+l ∈ N(P−(0)). We may write this as K

(
V +
l , V −

l

)
=(

h−
l , h

+
l

)
, where the linear operator K is defined by

K : R(P+(0))× N(P−(0)) −→ R(P+(0))× N(P−(0)) ,

(V +, V −) �−→
(
V + − P+(0)V −, V − − (id−P−(0))V +

)
.

Below, we prove that K is Fredholm. For the moment, we assume that K is Fredholm
and complete the proof that T is closed. The solution

(
V +
l , V −

l

)
of K

(
V +
l , V −

l

)
=(

h−
l , h

+
l

)
is unique and bounded in terms of h±

l , up to elements in the null space
N(K). Since Gl → G in L2(R, Y ), we have h±

l → h± in Y . Thus, possibly after
subtracting appropriate elements in N(K), the sequence

(
V +
l , V −

l

)
converges to some

element
(
V +, V −) in Y . Therefore, the solutions Ul converge to an element U in

L2(R, Y ) that is obtained by substituting
(
V +, V −) for (V +

l , V −
l

)
and G for Gl into

the integral equation (5.1).
It remains to prove that K is Fredholm. We begin by calculating its null space. The

equations V + = P+(0)V − and V − = (id−P−(0))V + imply that P+(0)P−(0)V + = 0.
Since P+(0) and id−P−(0) differ from Pref and id−Pref by compact operators, see
Remark 4.1, we have

P+(0)P−(0) = P+(0)− P+(0)(id−P−(0)) = P+(0) − Pref(id−Pref) + cpt.

= P+(0) + cpt.

Therefore, P+(0)P−(0) restricted to R(P+(0)) is Fredholm. This shows that N(K) is
finite–dimensional. In the next step, we prove that the range R(K) is closed. Thus,
consider

V +
l − P+(0)V −

l = h−
l , V −

l − (id−P−(0))V +
l = h+l

and assume that h±
l → h± in Y . It follows that P+(0)P−(0)V +

l = h−
l + P+(0)h+l

converges to h− + P+(0)h+. Thus, V +
l → V + possibly after subtracting elements

in the null space of the Fredholm operator P+(0)P−(0)
∣∣
R(P+(0))

. We conclude that
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V −
l = (id−P−(0))V +

l +h+l converges to (id−P−(0))V ++h+ which proves that R(K)
is closed. Applying the aforementioned arguments to the adjoint operator, it is not
too hard to show that the complement of the range is finite–dimensional. Therefore,
K is Fredholm as claimed above.
Next, we establish that the range of T has finite codimension. Regarding T as a

closed operator on the Hilbert space L2(R, Y ), we can compute its adjoint T ∗ which is
again a closed operator on L2(R, Y ). The null space N(T ∗) of T ∗ has finite dimension
since P−(0)∗ + (id−P+(0)∗) is Fredholm. Hence, R(T ) has finite codimension since
R(T )⊥ = N(T ∗). Therefore, T is Fredholm.
The formula for the index follows from the finite–dimensional analogue since, as

in the preceding section, we can use Galerkin approximations to reduce to a finite–
dimensional problem.
Hence, we have proved that the existence of exponential dichotomies on R± implies

that T is Fredholm. It remains to show that, if there exists an exponential dichotomy
on R, then T is invertible. From the discussion above, it follows that T is Fredholm
with index zero if it has an exponential dichotomy on R. In addition, due to [32,
Theorem 2], T has trivial null space. Thus, T is invertible.

5.3. Fredholm properties of T imply the existence of dichotomies

In this section, we show that, if the operator T defined in (2.6) is Fredholm, then the
elliptic problem (2.2) has exponential dichotomies on R+ and R−. The construction
of the dichotomies is carried out by seeking solutions to the homogeneous equation
V ′ = A(ξ)V for ξ ∈ R with “boundary” conditions at ξ = ξ0 for any fixed ξ0.
We may assume that α = 0 by incorporating the parameter α into the function

a(ξ, t). We write (2.2) in the more compact form

d
dξ

U = A(ξ)U(5.2)

as a differential equation on the Hilbert space Y . Define

H = L2(R, Y ) , D = D(T ) = H1(R, Y ) ∩ L2
(
R, Y 1

)
.

Throughout the remainder of the paper, we identify H and H∗ so that

D ⊂ H = H∗ ⊂ D∗.
Note that

T =
d
dξ

− A(ξ) : D −→ H

is bounded. We regard T as a closed, densely defined operator on L2(R, Y ). The ad-
joint operator T ∗ = − d

dξ−A(ξ)∗ is also closed and densely defined. The domain D(T ∗)
of T ∗ is equal to D = H1(R, Y ) ∩ L2

(
R, Y 1

)
since the arguments at the beginning

of Section 5.2 apply to the adjoint operator; we also refer to Section 6.2 below where
we calculate the adjoint operator A(ξ)∗ explicitly. As a consequence, the operator T ∗

restricted to its domain D is bounded and Fredholm with index − ind(T ). Let

(T ∗)ad : H = H∗ −→ D∗
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be the adjoint of T ∗, considered as a bounded operator from D to H. In particular,
(T ∗)adU = G with U ∈ H and G ∈ D∗ means that ((T ∗)ψ, U) = (ψ,G) for all ψ ∈ D,
where ( · , · ) denotes the dual pairing between D and D∗. More explicitly, we have

−
∫
ξ∈R

(ψξ +A(ξ)∗ψ, U)Y dξ =
∫
ξ∈R

(ψ,G)Y dξ(5.3)

for all ψ ∈ D, and the pairings in (5.3) are understood as scalar products in Y in the
sense of distributions. Note that the operator (T ∗)ad restricted to D is equal to T .

5.3.1. The operator T is invertible

First, we consider the case where T is invertible.

Lemma 5.2. Suppose that T is invertible. There is then a constant C > 0 with the
following property. Let G(ξ, t) = G0(t)δ(ξ) for some G0 ∈ Y , where δ( · ) ∈ H−1(R)
is the usual δ–distribution. The equation (T ∗)adU = G has then a unique solution
U ∈ H. The restrictions of U to R± belong to C0

(
R±, Y

)
and are differentiable; in

particular, the limits U+ = limξ↘0 U(ξ) and U− = limξ↗0 U(ξ) exist in Y , and we
have U+ − U− = G0. Furthermore, U satisfies |U |L∞(R,Y ) + |U |H ≤ C |G0|Y .

Proof . Note that G is a bounded linear functional on H1(R, Y ) acting through
G(V ) = (G0, V (0))Y . Hence, G ∈ D∗. Since T is invertible, so is T ∗. Consequently,
(T ∗)ad is invertible, and the equation (T ∗)adU = G has a unique solution U ∈ H.
We construct the solution U in a different fashion. Write A(ξ) = Aref + B(ξ) with

Aref =

(
0 id

D−1(∂t + id) 0

)
, B(ξ) =

(
0 0

−D−1(a(ξ, t)− id) −cD−1

)
.

In particular, B(ξ) ∈ C0(R,L(Y )).
First, we solve the equation

(
T ∗
ref

)ad
V =

(
d
dξ

− Aref

)
V = G .

The equation d
dξV = ArefV has exponential dichotomies; these can be calculated

explicitly using Fourier series. Therefore, there is a continuous projection Pref defined
on Y so that ArefPref and −Aref(id−Pref) are sectorial operators on R(Pref) and
R(id−Pref), respectively, and so that their spectrum is contained in the open left
half–plane. In particular, the semigroups eArefPrefξ, defined on R(Pref) for ξ ≥ 0, and
eAref (id−Pref )ξ, defined on R(id−Pref) for ξ ≤ 0, exist and are exponentially decaying
in ξ on R+ and R−, respectively. Define

V (ξ) =

{
eArefPrefξPrefG0 for ξ > 0 ,

−eAref (id−Pref )ξ(id−Pref)G0 for ξ < 0 .
(5.4)
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The function V then satisfies d
dξ
V = ArefV for ξ �= 0, and V ∈ H with |V |H ≤ C |G0|Y .

Suppose that G0 ∈ Y 1. For any ψ ∈ C∞
0

(
R, Y 1

)
, we have

−
∫ ∞

−∞

(
V, ψξ + A∗

refψ
)
Y
dξ = −

∫ ∞

0

(
eArefPrefξPrefG0, ψξ +A∗

refψ
)
Y
dξ

+
∫ 0

−∞

(
eAref (id−Pref )ξ(id−Pref)G0, ψξ + A∗

refψ
)
Y
dξ

=
(
eArefPrefξPrefG0, ψ

)
Y

∣∣
ξ=0

+
(
eAref (id−Pref )ξ(id−Pref)G0, ψ

)
Y

∣∣
ξ=0

=
(
lim
ξ↘0

V (ξ)− lim
ξ↗0

V (ξ), ψ(0)
)
Y

= (G0, ψ(0))Y

=
∫ ∞

−∞
(G0δ(ξ), ψ(ξ))Y dξ ,

where we used integration by parts with respect to ξ and the fact that V satisfies
Vξ − ArefV = 0 for ξ �= 0. This proves that V is a solution of

(
T ∗
ref

)ad
V = G for any

G0 ∈ Y 1. For G0 ∈ Y , we approximate G0 by functions G(n)
0 ∈ Y 1 so that G(n)

0 → G0

in Y and observe that the associated solutions V (n) converge to the function V defined
in (5.4) by strong continuity of the semigroups eArefPrefξ and eAref (id−Pref )ξ .
In summary, for any G0 ∈ Y , the weak solution of

(
d
dξ

− Aref

)
V = G0δ(ξ) is a

strong solution for ξ �= 0, it belongs to L∞(R, Y ) with |V |L∞(R,Y ) ≤ C |G0|Y , and
we have that V |[0,∞) and V |(−∞,0] are continuous. In fact, these restrictions are
differentiable in (0,∞) and (−∞, 0), respectively. In addition, we have that V ∈ H
with |V |H ≤ C |G0|Y .
In the next step, we solve

(T ∗)adŨ = −BV ,(5.5)

where V is the solution defined in (5.4). Note that BV ∈ H. Therefore, there is a
unique solution Ũ of (5.5) with Ũ ∈ D since T : D → H is invertible and it coincides
with (T ∗)ad : H → D∗ restricted to D. In addition, we have that

∣∣Ũ ∣∣D ≤ C |V |H.
In particular, we conclude that Ũ ∈ C0(R, Y ). Since the weak derivative of Ũ is
continuous on (0,∞) and (−∞, 0), we conclude that Ũ is actually differentiable in the
strong sense on these open intervals.
Thus, we have shown that U = Ũ + V is the weak solution to the original problem

(T ∗)adU = G. Moreover, U is continuous on R+ and R−, and we have |U |L∞(R,Y ) ≤
C |G0|Y . The jump of U at ξ = 0 is equal to U+ − U− = V+ − V− = G0 since Ũ is
continuous at ξ = 0 and the jump of V is equal to G0 by construction. ✷

We define the map

Π : Y −→ Y × Y , G0 �−→ (U+, U−) ,

where G0 = U+ − U−, and U+, U− have been defined in Lemma 5.2. The map Π is
continuous and injective; injectivity follows since Π has a bounded left–inverse given
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by Y ×Y → Y , (U+, U−) �→ U+ −U−. Finally, we introduce the canonical projections
Pi : Y × Y → Y , (U1, U2) �→ Ui for i = 1, 2. By definition, we then have

G = P1ΠG− P2ΠG

for any G ∈ Y .

Lemma 5.3. Suppose that T is invertible. The images R(PiΠ) are then closed
subspaces of Y . Moreover, we have that

R(P1Π)⊕ R(P2Π) = Y .

Proof . Closedness of the ranges of PiΠ follows once we have proved that R(Π)
is closed. This, however, is an immediate consequence of the continuity of the left–
inverse of Π given above. Hence, Π is an isomorphism onto its closed range, and the
first assertion of the lemma is proved.
Next, we prove that R(P1Π) ∩ R(P2Π) = {0}. If P1Π(G1) = P2Π(G2), then

ΠG1 = (U∗, U1) , ΠG2 = (U2, U∗) .

Thus, U∗ is an initial value to two bounded weak solutions defined for ξ ≥ 0 and
ξ ≤ 0, respectively, each of which is equal to the same value U∗ at ξ = 0. Patching
these solutions together gives a weak solution of the homogeneous equation with jump
G0 = 0. It is not difficult to see that this solution is in fact a strong solution and
therefore belongs to the null space of T ; this null space, however, is trivial. Hence,
U∗ = 0, and R(P1Π) ∩ R(P2Π) = {0}.
It remains to prove that the sum of the spaces R(P1Π) and R(P2Π) is Y . Arguing

by contradiction, we suppose that G⊥ is orthogonal to their direct sum. We have

G⊥ = P1ΠG⊥ − P2ΠG⊥ ,

and therefore G⊥ ∈ R(P1Π)⊕ R(P2Π). Thus, G⊥ = 0. This proves the lemma. ✷

The above construction can be carried out for any initial time ξ = ξ0. We obtain
families of operators Π(ξ) and subspaces R(P1Π(ξ)) and R(P2Π(ξ)) that depend on ξ.
With the families R(P1Π(ξ)) and R(P2Π(ξ)), we can associate a family of projections
P (ξ) defined by R(P (ξ)) = R(P1Π(ξ)) and N(P (ξ)) = R(P2Π(ξ)).

Remark 5.4. There is a constant C > 0 with the following property. For any
U+ ∈ R(P (ξ0)), there is a unique strong solution V s(ξ) of (5.2) for ξ > ξ0 with
initial value V s(ξ0) = U+. This solution satisfies |V s(ξ)| ≤ C |U+| for ξ ≥ ξ0, and
it is continuous in ξ ≥ ξ0. Similarly, for any U− ∈ N(P (ξ0)), there is a unique
strong solution V u(ξ) defined for ξ < ξ0 with initial value V u(ξ0) = U−, we have
|V u(ξ)| ≤ C |U−| for ξ ≤ ξ0, and the solution is continuous for ξ ≤ ξ0.

Lemma 5.5. Suppose that T is invertible. The family of projections defined above
together with the solutions V s and V u given in Remark 5.4 defines an exponential
dichotomy. In particular, the estimates in Definition 2.1 are satisfied on J = R for
appropriate positive constants K and η.
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Proof . We have already constructed the solutions V s and V u above. It remains
therefore to prove the uniform exponential decay estimates and invariance.
First, we prove uniform boundedness, i. e. the estimates for η = 0. Observe that

G0δ(ξ − ξ0) is continuous and uniformly bounded in ξ0 with values in D∗. Therefore,
the map Π as well as the subspaces that have been used to define the projections vary
continuously with ξ0. The norm of the map Π is also bounded uniformly in ξ0: it is
not difficult to check that the constant C that appears in Lemma 5.2 does not depend
upon the point ξ0. The angle between the two subspaces is bounded away from zero;
otherwise, the norm of the operators Π could not be uniformly bounded since there
would be elements U± of unit norm that correspond to arbitrarily small jumps G0.
This establishes uniform bounds on the norms of the projections. The projections
are also strongly continuous in ξ; that follows once more from the continuity of Π.
Uniform bounds on the solutions in terms of the initial values can then be established
as follows: to each initial value U+, we choose the jump G0 = U+, and use that the
solution is uniformly bounded in terms of its jump.
By Lemma 5.2, the solutions constructed above are continuously differentiable in ξ.

Differentiability with respect to the initial time can be seen as follows. We need to show
that d

dh
Uh(ξ) exists for any fixed ξ > ξ0 where Uh(ξ) satisfies d

dξ
U = A(ξ)U with initial

time ξ0+h. We define Ũh(ξ) := Uh(ξ+h) so that Ũh(ξ) satisfies d
dξU = A(ξ+h)U with

initial time ξ0. It then suffices to show that d
dh
Ũh(ξ − h) exists. Since the operator

Th = d
dξ

− A(ξ + h) depends smoothly upon the parameter h, we see that d
dh
Ũh(ξ)

exists for every fixed ξ > ξ0. This proves the claim since Ũh(ξ) is also differentiable
with respect to ξ.
The exponential decay estimates can be derived by applying the aforementioned

arguments to the equation

d
dξ

U = (A(ξ) + η sign(ξ − ξ0))U =: Aη,ξ0 (ξ)U

with η > 0. The operator Tη,ξ0 = d
dξ − Aη,ξ0 (ξ) is continuous in (η, ξ0) and invertible

provided η is small enough. Applying the results established above to the operator
Tη,ξ0 shows that the modified operator d

dξ − Aη,ξ0 (ξ) on R
± has dichotomies with

uniform bounds. It then suffices to remark that the solutions to the modified equation

d
dξ

Ũ = Aη,ξ0 (ξ)Ũ

are given by Ũ(ξ) = U(ξ)eη |ξ−ξ0| where U(ξ) satisfies the original equation (5.2).
Hence, the uniform bounds for the solutions of the modified equation provide expo-
nential bounds for the dichotomies of d

dξ
− A(ξ).

It remains to prove invariance of the ranges of the projection. Given a solution U(ξ)
for ξ ≥ 0, we have to show that U(ξ0) ∈ R(P (ξ0)) for any ξ0 > 0. Assume that, for
some positive ξ0, we have

U(ξ0) = U+(ξ0) + U−(ξ0) ∈ R(P (ξ0)) ⊕N(P (ξ0)) .

By construction, there exists then a bounded solution U−(ξ) defined for ξ < ξ0 with
initial value U−(ξ0). The pair of solutions U−(ξ) with ξ < ξ0 and U(ξ) with ξ > ξ0
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is a solution on R that has the jump G0 = U+(ξ0). Another pair of solutions that
have the same jump can be constructed as follows: use U−(ξ) = 0 for ξ < ξ0 and the
bounded solution to the initial value U+(ξ0) for ξ > ξ0; the latter exists on account of
Remark 5.4. Since both these pairs have the same jump, they must coincide, and we
conclude that U−(ξ0) = 0. ✷

In summary, we have established the existence of exponential dichotomies on R

provided T is invertible. Next, we address this issue for dichotomies on R+ and R−

in the case where T is merely Fredholm.

Remark 5.6. Note that the Hypothesis (U1) has not been used in this section.

5.3.2. The operator T is Fredholm

Let φ1(ξ), . . . , φk(ξ) be a basis of the null space of T . Exploiting regularity prop-
erties of solutions to the homogeneous equation (5.2), we see that the null spaces of
(T ∗)ad and T are equal: weak solutions to the homogeneous elliptic equation (5.2)
are weak solutions of the underlying parabolic equation which in turn are strong so-
lutions due to standard parabolic regularity theory; see [40] for similar arguments.
Let ψ1(ξ), . . . , ψm(ξ) be a basis of the null space of T ∗. By duality, this space is the
orthogonal complement of the ranges of both operators T and (T ∗)ad. On account of
Hypothesis (U1), φ1(0), . . . , φk(0) as well as ψ1(0), . . . , ψm(0) are linearly indepen-
dent and we may assume that they are orthonormal bases. We remark that this is the
only place where we use Hypothesis (U1). We write

V0 = span{φ1(0), . . . , φk(0)} , W0 = span{ψ1(0), . . . , ψm(0)} .

We first prove that elements in the null space of (T ∗)ad decay exponentially in ξ.

Lemma 5.7. There are constants C > 0 and η > 0 such that

|V (ξ)|Y ≤ Ce−η |ξ| |V (0)|Y

for any V (0) ∈ V0 and any ξ ∈ R.

Proof . As before, we consider the operator

Tη =
d
dξ

− A(ξ) + η sign(ξ) ,

and note that the operator B̃ defined by
(
B̃U

)
(ξ) = sign(ξ)U(ξ) is contained in

L(D,H). Choose φ ∈ N(T ), and let U =
∑∞

n=0 η
nUn with U0 = φ and Un ∈ N(T )⊥

for n ≥ 1. We then have TηU = 0 provided the series for U converges and

T Un = −B̃Un−1

for any n ≥ 1. This equation can be solved for Un provided B̃Un−1 ∈ R(T ). In this
case, we have

|Un|D ≤
∥∥B̃∥∥∥∥T −1

∥∥ |Un−1|D = C |Un−1|D
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where T −1 is the inverse of the invertible operator T : N(T )⊥ → R(T ). If B̃Un ∈ R(T )
for all n, then we obtain |Un|D ≤ Cn |φ|D and the series for U converges provided η

is smaller than 1/C. It therefore remains to prove that B̃Un ∈ R(T ) for all n ≥ 0.
We proceed by induction and claim that, if (ψ(ξ), Un−1(ξ))Y = 0 for all ξ and any
ψ ∈ N(T ∗), then we can solve T Un = −B̃Un−1 and (ψ(ξ), Un(ξ))Y = 0 for all ξ and
any ψ ∈ N(T ∗). Indeed, if (ψ(ξ), Un−1(ξ))Y = 0, then also

(
ψ(ξ), B̃Un−1(ξ)

)
Y

= 0,
and therefore B̃Un−1 ∈ R(T ). Thus, there is a unique Un ∈ N(T )⊥ such that T Un =
−B̃Un−1. We shall prove that (ψ(ξ), Un(ξ))Y = 0 for all ξ. We have

d
dξ

(ψ(ξ), Un(ξ))Y = (ψ(ξ), (T Un)(ξ))Y

= −
(
ψ(ξ),

(
B̃Un−1

)
(ξ)
)
Y

= − sign(ξ) (ψ(ξ), Un−1(ξ))Y
= 0 .

Since (ψ(ξ), Un(ξ))Y ∈ L1(R) and (ψ(ξ), Un(ξ))Y does not depend upon ξ by the above
argument, we conclude that (ψ(ξ), Un(ξ))Y = 0 which proves our claim. Finally, the
same arguments show that (ψ(ξ), φ(ξ))Y = 0 completing the induction. ✷

The equation (T ∗)adU = G0(t)δ(ξ) has a solution if, and only if, G0 ⊥ W0 in Y .
The difference of any two such solutions, evaluated at ξ = 0, lies in V0. We have the
following regularity result.

Lemma 5.8. Suppose that T is Fredholm. There is then a constant C > 0 with the
following property. Let G = G0δ(ξ) for some G0 ∈ Y with G0 ⊥ W0. There is then a
unique solution U ∈ H of (T ∗)adU = G that, at the same time, is perpendicular to the
null space of T in H. The restrictions of U to R± belong to C0

(
R±, Y

)
; in fact, they

are differentiable. In particular, the limits U+ = limξ↘0 U(ξ) and U− = limξ↗0U(ξ)
exist in Y , and the jump at ξ = 0 is given by U+ − U− = G0. Finally, we have
|U |L∞(R,Y ) + |U |H ≤ C |G0|Y .

Proof . We closely follow the proof of Lemma 5.2. As in Lemma 5.2, we first solve(
T ∗
ref

)ad
V = G. Using the definition B = (T ∗)ad −

(
T ∗
ref

)ad, we obtain
(T ∗)adV =

(
T ∗
ref

)ad
V + BV = G+BV ,

and we conclude that BV ∈ R
(
(T ∗)ad

)
since G ∈ R

(
(T ∗)ad

)
. We can therefore

proceed exactly as in Lemma 5.2, and obtain a unique solution Ũ of (T ∗)adŨ = −BV

with Ũ ∈ N
(
(T ∗)ad

)⊥. Finally, we project the function V onto N
(
(T ∗)ad

)
along the

orthogonal complement N
(
(T ∗)ad

)⊥. The resulting function in N
(
(T ∗)ad

)
is denoted

by φ. The element U = Ũ +V −φ ∈ H is then the desired solution of (T ∗)adU = G0δ.
The estimates for U follow as in Lemma 5.2. ✷

As before, we define the map

Π : W⊥
0 −→ Y × Y , G0 �−→ (U+, U−) ,
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where U+ and U− have been defined in Lemma 5.8. The map Π is again continuous
and injective. Proceeding as in Lemma 5.3, and using that functions in N(T ) decay
exponentially in ξ by Lemma 5.7, we see that

R(P1Π) ∩R(P2Π) = V0 , R(P1Π) + R(P2Π) = W⊥
0 .

In other words, initial values of bounded solutions on R+ are contained in R(P1Π),
initial values of bounded solutions on R− lie necessarily in R(P2Π), and the sum of the
subspaces R(P1Π) and R(P2Π) is equal to the entire phase space up to the orthogonal
complement W0.
As in the case where T is invertible, we can carry out the construction described

above for any initial time ξ = ξ0, and obtain families of operators Π(ξ) and subspaces
R(P1Π(ξ)) and R(P2Π(ξ)) that depend on ξ. We emphasize that the constant C
appearing in Lemma 5.8 does not depend upon the initial time ξ0. Define

Vξ0 = span{φ1(ξ0), . . . , φk(ξ0)} , Wξ0 = span{ψ1(ξ0), . . . , ψm(ξ0)} .

Initial values of bounded solutions on ξ ≥ ξ0 are contained in R(P1Π(ξ0)), initial values
of bounded solutions on ξ ≤ ξ0 lie necessarily in R(P2Π(ξ0)). The two subspaces
intersect along the space Vξ0 and their sum is equal to the entire phase space up to
the orthogonal complement Wξ0 .
To complete the construction of dichotomies, we have to find forward and backward

solutions of (5.2) with initial conditions in appropriate complements of the spaces
R(P2Π(ξ0)) and R(P1Π(ξ0)), respectively. We concentrate on the case where ξ0 < 0.

Lemma 5.9. There is a constant C > 0 and projections P (ξ0) in L(Y ) defined for
ξ0 ≤ 0 with the following properties. First, we have ‖P (ξ0)‖ ≤ C uniformly in ξ0 ≤ 0.
Also, for any element U(ξ0) ∈ R(P (ξ0)), there is a unique solution U(ξ) of (5.2) defined
for ξ0 ≤ ξ ≤ 0, and we have |U(ξ)|Y ≤ C |U(ξ0)|Y for all ξ0 ≤ ξ ≤ 0. Furthermore,
for any U(ξ0) ∈ N(P (ξ0)), there is a unique solution U(ξ) of (5.2) defined for ξ < ξ0,
and |U(ξ)|Y ≤ C |U(ξ0)|Y for all ξ ≤ ξ0. Finally, we have N(P (ξ0)) = R(P2Π(ξ0)) for
ξ0 ≤ 0.

In contrast to the situation where T is invertible, the assertions of the lemma do
not follow directly from Lemma 5.8 since the spaces R(P1Π(ξ0)) and R(P2Π(ξ0)) have
a non–zero intersection.

Proof . We begin by constructing N(P (ξ0)). On account of Lemma 5.8 and its proof,
there is a constant C that does not depend upon ξ0 with the following properties. For
G ∈ R(P2Π(ξ0)), we have Π(ξ0)G = (V0, G + V0) for some V0 ∈ Vξ0 with |V0|Y ≤
C |G|Y . Furthermore, there is a solution U(ξ) of (5.2) defined for ξ < ξ0 such that
U(ξ0) = G + V0. Also, there is a V ∈ N(T ) with V (ξ0) = V0. These solutions
satisfy |U(ξ)|Y ≤ C |G|Y for ξ < ξ0 and |V (ξ)|Y ≤ C |G|Y for ξ > ξ0. Since ξ0 < 0,
it follows that |V (0)|Y ≤ C |G|Y . Due to Lemma 5.7, we therefore conclude that
|V (ξ)|Y ≤ C |V0|Y ≤ C |G|Y for any ξ ∈ R. Thus, the solution U − V of (5.2) defined
for ξ ≤ ξ0 satisfies (U − V )(ξ0) = G and |(U − V )(ξ)|Y ≤ C |G|Y for ξ ≤ ξ0. Hence,
set N(P (ξ0)) = R(P2Π(ξ0)). This proves the part of the lemma related to ξ < ξ0.
We continue by constructing the intersection of R(P (ξ0)) with R(P1Π(ξ0)). Let Y s

ξ0
be the unique space that satisfies Y s

ξ0
⊕ Vξ0 = R(P1Π(ξ0)) and Y s

ξ0
⊥ Vξ0 . If G ∈ Y s

ξ0
,
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then ΠG = (G + V0, V0) where V0 ∈ Vξ0 with |V0|Y ≤ C |G|Y . We are interested in
vectors for which the second component U− of ΠG is equal to zero. Hence, for any
fixed G ∈ Y s

ξ0
, we shall find an element V̂0 ∈ Vξ0 such that Π

(
G+ V̂0

)
=
(
G+ V̂0, 0

)
.

This is equivalent to solving

ΠV̂0 =
(
V̂0 − V0,−V0

)
,

where we used ΠG = (G+V0, V0). Using the definition of Π, we see that this equation
is satisfied provided we define V̂0 = βV0 where

β =

√√√√∫∞
−∞ |V (ξ)|2Y dξ∫∞
ξ0

|V (ξ)|2Y dξ

and V ∈ N(T ) with V (ξ0) = V0. On account of Lemma 5.7, we have |β| ≤ C
uniformly in ξ0 ≤ 0. Therefore, for any G ∈ Y s

ξ0
, there is a unique V̂0 ∈ Vξ0 such that

Π
(
G+ V̂0

)
=
(
G+ V̂0, 0

)
, and we have

∣∣V̂0∣∣Y ≤ C |G|Y since |V0|Y ≤ C |G|Y . Let

Ỹ s
ξ0 :=

{
G+ V̂0; G ∈ Y s

ξ0

}
,

then Ỹ s
ξ0

⊕Vξ0 = R(P1Π(ξ0)) and the associated projection is bounded uniformly in ξ0

since
∣∣V̂0∣∣Y ≤ C |G|Y . Moreover, by construction, for any U0 ∈ Ỹ s

ξ0
, there is a unique

strong solution of (5.2) defined for ξ > ξ0 such that U(ξ0) = U0. It also follows from
Lemma 5.8 that |U(ξ)|Y ≤ C |U0|Y for any ξ ≥ ξ0.
It remains to construct a subspace that is transverse to R(P1Π(ξ0)) + R(P2Π(ξ0))

such that, for elements U0 in that subspace, we can solve the equation for 0 ≥ ξ ≥ ξ0,
and the associated solution U(ξ) satisfies U(ξ0) = U0 and |U(ξ)|Y ≤ C |U0|Y for
0 ≥ ξ ≥ ξ0. Let G0 ∈ Wξ0 , and choose ψ0 ∈ W0 so that ψ0 =

∑m
j=1(ψj(ξ0), G0)Y ψj(0).

Note that |ψ0|Y ≤ C |G0|Y on account of Lemma 5.7 applied to the adjoint operator.
Finally, choose the right–hand side of the equation (T ∗)adU = G according to

G = G0δ(ξ − ξ0)− ψ0δ(ξ) .

By construction, the function G is orthogonal to ψj(ξ) in H for any j, and G is
therefore contained in the range of (T ∗)ad. Thus, we can construct a unique solution
U of (T ∗)adU = G with U ∈ N

(
(T ∗)ad

)
as in Lemma 5.8: first, we solve the reference

equation with right–hand side G0δ(ξ − ξ0), and then again for the right–hand side
−ψ0δ(ξ). The sum of these two solutions to the reference equation has the jumps G0

at ξ = ξ0 and −ψ0 at ξ = 0. Afterwards, we proceed as in the proof of Lemma 5.8 and
obtain, as claimed, a solution U to (T ∗)adU = G with |U |L∞(R,Y ) + |U |H ≤ C |G0|Y .
By adding suitable elements in N(P (ξ0))+N

(
(T ∗)ad

)
as above in the case of the space

Y s
ξ0
, we can then construct an appropriate complement of R(P1Π(ξ0)) + R(P2Π(ξ0))

on which we can solve the equation for 0 ≥ ξ ≥ ξ0. We omit the details as they are
similar to the arguments given before. ✷

The complements for ξ ≥ 0 can be constructed in an analogous fashion.
The uniform exponential decay estimates of solutions can be established as in the

case where T is invertible. Indeed, Lemma 5.7 shows that the dimensions of the null
spaces of

(
T ∗
η

)ad and T ∗
η defined in Lemma 5.7 do not depend upon η. Moreover,
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the dimensions of the spaces Vη,ξ0 and Wη,ξ0 for the operators
(
T ∗
η

)ad and T ∗
η are

independent of ξ0 since the functions in the null spaces Vη and Wη are given by the
functions in V and W multiplied by eη |ξ−ξ0|.
The projections that we constructed above do not necessarily satisfy the invariance

property. Using the exponential decay estimates, it is, however, not difficult to redefine
these projections so that their ranges and null spaces are invariant; see [9] for the
relevant arguments that apply also in our case.

6. Proof of Theorem 2.8

We can assume that λ = 1 so that α = 0; otherwise, we replace a(ξ, t) by a(ξ, t)−α.
In Section 6.1, we prove that T is invertible if, and only if, Φ − id is invertible.

In Section 6.3, we demonstrate that Φ − id is Fredholm with index zero if, and only
if, T enjoys the same property. In addition, we show that the null spaces of T and
Φ − id have the same dimension. Once we have established these results, it follows
from Theorem 2.6 that λ = 1 is in the essential spectrum of Φ if, and only if, either
T does not have dichotomies on R+ or R−, or else T has exponential dichotomies on
R+ and R− but their indices are different at +∞ and −∞.
Note that the last statement of Theorem 2.8 is a consequence of the above. Let λ

vary in a connected component of C\Σess and consider the set Λ of values of λ for which
Φ − λ has a non–trivial null space. Since the family Φ − λ is analytic in λ, it follows
from [18, Theorem VII.1.9] that the set Λ is either the entire component or else consists
of isolated elements. Therefore, if there is a point λ0 in the aforementioned connected
component for which Φ−λ0 is invertible, only the latter case can occur; consequently,
any element in the point spectrum that is contained in the fixed connected component
of C \ Σess belongs necessarily to the pure point spectrum.

6.1. T is invertible if, and only if, Φ− id is invertible

We begin by demonstrating that Φ− id is invertible whenever T is invertible. The
operator Φ − id is invertible if there is a constant C such that, for any g ∈ L2(R),
there is a unique solution v of

vt = Dvξξ + a(ξ, t)v + cvξ ,

v(ξ, T ) = v(ξ, 0) + g(ξ)
(6.1)

and |v( · , T )|L2(R) ≤ C |g|L2(R). Following [40], we first solve the equation

Gt = DGξξ + a(ξ, t)G+ cGξ −mG(6.2)

with G(ξ, T ) = G(ξ, 0) + g(ξ) for some large m > 0. If m is sufficiently large, the
time–T map of the parabolic equation (6.2) is a contraction. Therefore, for any g,
there is a unique solution to (6.2) such that G(ξ, T ) = G(ξ, 0) + g(ξ). If we set
v = G+ w̃, then v satisfies (6.1) if, and only if, w̃ is a solution to

w̃t = Dw̃ξξ + a(ξ, t)w̃ + cw̃ +mG ,

w̃(ξ, 0) = w̃(ξ, T ) .
(6.3)
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If T admits an exponential dichotomy, then T is invertible due to Theorem 2.6. In
particular, for any G̃ ∈ L2

(
R, L2(R/TZ)

)
, there exists a unique solution to

vξ = w , wξ = D−1(vt − cw − a( · , ξ)v) + G̃(ξ)

in H1(R, Y ) ∩ L2
(
R, Y 1

)
. Hence, upon setting G̃ = −mG, we can solve (6.3) in a

unique fashion. Under the given smoothness assumptions, it is straightforward to
verify that G as well as w̃ are bounded in terms of g; the details can be found in
[40, Lemma 4.1]. We conclude that the inverse of the operator Φ − id exists and is
bounded.
It remains to prove the converse. Hence, assume that Φ− id is invertible; we have to

prove that, for any G ∈ L2(R, Y ), there is a unique solution V ∈ H1(R, Y )∩L2
(
R, Y 1

)
of

Vξ = A(ξ)V +G(ξ)(6.4)

and that the norm of V can be estimated by the norm of G. We first solve the equation

Ṽξ = Aref Ṽ +G(ξ) .(6.5)

Using Fourier series, it is straightforward to prove that (6.5) has a unique solution
Ṽ = (ṽ, w̃) ∈ H1(R, Y ) ∩ L2

(
R, Y 1

)
. We set V = Ṽ + W , then V satisfies (6.4)

provided W is a solution of

Wξ = A(ξ)W + (A(ξ) − Aref)Ṽ (ξ) = A(ξ)W +
(

0
D−1aṽ

)
(6.6)

where ṽ ∈ H1
(
R, H

1
2 (R/TZ)

)
∩L2

(
R, H1(R/TZ)

)
. In particular, we can rewrite (6.6)

according to

wt = Dwξξ + cwξ + aw − aṽ(6.7)

with w(ξ, T ) = w(ξ, 0). Using the regularity properties of ṽ, we see that

ṽ ∈ C0
(
[0, T ], L2(R)

)
.

Hence, we can solve (6.7) using the variation–of–constant formula and get

w( · , t) = Φt,0w( · , 0)−
∫ t

0

Φt,s a( · , s)ṽ( · , s) ds ,(6.8)

where Φt,s is the evolution associated with the homogeneous part of (6.7); see also
Section 2.1. The integral on the right–hand side of (6.8) is well defined and belongs
to L2(R) due to the regularity properties of ṽ. We shall solve w(ξ, T ) = w(ξ, 0), i. e.,

w( · , 0) = Φw( · , 0)−
∫ T

0

ΦT,s a( · , s)ṽ( · , s) ds ,

which can be written as

(Φ− id)w( · , 0) =
∫ T

0

ΦT,s a( · , s)ṽ( · , s) ds .
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Since, by assumption, Φ − id is invertible, we can solve this equation for w(ξ, 0).
Substituting the expression for w(ξ, 0) into (6.8), we see that W = (w,wξ) satisfies
(6.6). Exploiting the various regularity results obtained above, it is straightforward to
establish the necessary estimate of V in terms of G.

6.2. The adjoint equation

As a preparation for the next section, we consider the adjoint parabolic equation

−vt = Dvξξ − cvξ + a(ξ, t)∗v .

The evolution problem for this equation is well–posed in backward time. The corre-
sponding time–(−T ) map, which maps profiles v( · , T ) to profiles v( · , 0), is equal to
the adjoint operator Φ∗ of Φ. We may then associate with Φ∗ the elliptic operator

T̃ : H1(R, Y ) ∩ L2
(
R, Y 1

)
−→ L2(R, Y ) ,

(v, w) �−→
(
vξ −w,wξ − D−1(−vt + cw − a(ξ, t)∗v)

)
.

Next, we calculate the adjoint operator T ∗ of T considered as a closed operator in
L2(R, Y ). Let T = d

dξ −A, where

A =

(
0 id

D−1(∂t − a(ξ, · )) −D−1c

)
.

We then have T ∗ = − d
dξ

−A∗. Define the linear isomorphism

J : H1(R/TZ) −→ L2(R/TZ) , v =
∑
k∈Z

vkeikt/T �−→ J v =
∑
k∈Z

(1+|k|)vkeikt/T .

Using the explicit scalar product〈(
v

w

)
,

(
ṽ

w̃

)〉
Y

:= 〈v,J ṽ〉L2 + 〈w, w̃〉L2

on Y , we calculate A∗ as follows:〈
A

(
v

w

)
,

(
ṽ

w̃

)〉
Y

=
〈(

w

D−1(∂t − a(ξ, · ))v −D−1cw

)
,

(
ṽ

w̃

)〉
Y

= 〈w,J ṽ〉L2 +
〈
D−1(∂t − a(ξ, · ))v − D−1cw, w̃

〉
L2

=
〈
v, (∂t − a(ξ, · ))∗D−1w̃

〉
L2 +

〈
w,J ṽ −D−1cw̃

〉
L2

=
〈(

v

w

)
,

(
J−1(∂t − a(ξ, · ))∗D−1w̃

J ṽ − D−1cw̃

)〉
Y

=
〈(

v

w

)
, A∗

(
ṽ

w̃

)〉
Y

and therefore

A∗ =

(
0 J−1(∂t − a(ξ, · ))∗D−1

J −D−1c

)
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with D(A∗) = H1(R/TZ)×H
1
2 (R/TZ).

In summary, we have

T ∗ = − d
dξ

−
(

0 −J −1(∂t + a(ξ, · )∗)D−1

J −D−1c

)
and

T̃ =
d
dξ

−
(

0 id
−D−1(∂t + a(ξ, · )∗) −D−1c

)
.

Lemma 6.1. We have that N(T ∗) ∼= N
(
T̃
)
.

Proof . The functions (v, w) and (ṽ, w̃) are in the null spaces of T ∗ and T̃ , respec-
tively, if

vξ = J −1(∂t + a∗)D−1w , wξ = −J v + cD−1w

and
ṽξ = w̃ , w̃ξ = −D−1(∂t + a∗)ṽ − cD−1w̃ .

Exploiting the regularity properties of these equations and using the fact that
J : H1(R/TZ) → L2(R/TZ) is an isomorphism, we see that the maps

(v(ξ), w(ξ)) �−→
(
D−1w(−ξ),−D−1wξ(−ξ)

)
,

(ṽ(ξ), w̃(ξ)) �−→
(
J −1(cṽ(−ξ) −Dṽξ(−ξ)), Dṽ(−ξ)

)
are the desired isomorphisms between N(T ∗) and N

(
T̃
)
and its inverse. ✷

6.3. T is Fredholm with index zero if, and only if, Φ− id is Fredholm with
index zero

First, we construct an isomorphism between N(T ) and N(Φ− id). Given an element
V (ξ, t) = (v, w)(ξ, t) in N(T ), we see that v( · , 0) is in N(Φ − id). The inverse of this
map can be constructed as follows. Given an element v0(ξ) in N(Φ− id), we solve the
parabolic equation forward in time with initial condition v0(ξ) at t = 0. Let v(ξ, t)
be the resulting unique solution. Setting V = (v, vξ), we see that V belongs to N(T ).
If either T or Φ − id is Fredholm, the one of the two corresponding null spaces is
finite–dimensional which proves that dimN(T ) = dimN(Φ − id) < ∞.
Using the results obtained in Section 6.1, it is not hard to prove that the range of

T is closed provided Φ − id has closed range. Analogously, if T has closed range, we
see that the range of Φ− id is closed.
Exploiting the results obtained above, we have that

N(T ) ∼= N(Φ − id) , N
(
T̃
) ∼= N(Φ∗ − id) ;(6.9)

we also know that

N(Φ∗ − id) = R(Φ− id)⊥ , N(T ∗) = R(T )⊥ .(6.10)

In the last section, we have proved that N(T ∗) ∼= N
(
T̃
)
; see Lemma 6.1. Hence, using

(6.9) and (6.10), we conclude that

R(Φ− id)⊥ ∼= N
(
T̃
) ∼= N(T ∗) = R(T )⊥ , N(Φ− id) ∼= N(T ) .
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This proves that T is Fredholm with index zero if, and only if, Φ − id enjoys this
property.

7. Proof of Proposition 2.10 and Theorem 3.1

In this section, we prove Proposition 2.10, Corollary 2.12 and Theorem 3.1.

7.1. Proof of Proposition 2.10

In this section, we prove Proposition 2.10. Thus, we have to demonstrate that the
equation (

uξ
vξ

)
=

(
0 id

D−1(∂t + α− a(ξ, t)) −cD−1

)(
u

v

)
(7.1)

has an exponential dichotomy on R+ if, and only if, the equation(
uξ
vξ

)
=

(
0 id

D−1(∂t + α− a+(ξ, t)) −cD−1

)(
u

v

)
(7.2)

does not have a purely imaginary spatial Floquet exponent.
If (7.2) does not have a purely imaginary Floquet exponent, then the operator T+

associated with (7.2) is invertible due to [27, Theorem 2.3]. Thus, on account of
Remark 5.6 and Theorem 2.6, (7.2) has an exponential dichotomy on R. Due to (U2)
and [32, Theorem 1], we know that (7.1) then has an exponential dichotomy on R+.
Next, assume that (7.2) has a purely imaginary Floquet exponent. Thus, there exists

a non–zero solution Ubd(ξ) of (7.2) and a real number β such that Ubd(ξ + np+) =
einβp+Ubd(ξ) for any ξ and any integer n. We argue by contradiction. Hence, suppose
that (7.1) has an exponential dichotomy on R+. By assumption, we know that Ubd

satisfies(
uξ
vξ

)
=

(
0 id

D−1(∂t + α− a(ξ, t)) −cD−1

)(
u

v

)
+
(

0
D−1(a(ξ, t)− a+(ξ, t))u

)
.

For any ξ > ξ0 ≥ 0, and with G(ξ) :=
(
0, D−1(a(ξ, t) − a+(ξ, t))ubd(ξ)

)
, we therefore

have

Ubd(ξ) = ϕs
+(ξ; ξ0)Ubd(ξ0) +

∫ ξ

ξ0

ϕs
+(ξ; ζ)G(ζ) dζ +

∫ ξ

∞
ϕu
+(ξ; ζ)G(ζ) dζ ,

since we assumed that (7.1) has an exponential dichotomy on R
+. Using the estimates

|ϕs(ξ; ζ)U |Y ≤ Ke−η |ξ−ζ| |U |Y for ξ ≥ ζ ≥ 0 ,

|ϕu(ξ; ζ)U |Y ≤ Ke−η |ξ−ζ| |U |Y for ζ ≥ ξ ≥ 0 ,

we therefore get

|Ubd(ξ)|Y ≤ Ke−η |ξ−ξ0| |Ubd(ξ0)|Y +
2K
η

|D−1| sup
ξ≥ξ0

|a(ξ, t)− a+(ξ, t)| |Ubd(ξ)|Y .
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Evaluating at ξ0 = np+ and ξ = (n+m)p+ for large integers n and m, and using that
|Ubd(ξ + np+)|Y = |Ubd(ξ)|Y for all ξ and any integer n, we get

|Ubd(0)|Y ≤ Ke−ηmp+ |Ubd(0)|Y

+
2K
η

∣∣D−1
∣∣( sup

ζ≥np+
|a(ζ, t)− a+(ζ, t)|

)(
sup

0≤ζ≤p+
|Ubd(ζ)|Y

)
.

Since |a(ζ, t) − a+(ζ, t)| → 0 as ζ → ∞, we see that supζ≥np+ |a(ζ, t) − a+(ζ, t)| is
as small as we wish after choosing n sufficiently large. Therefore, Ubd(0) = 0 which
contradicts either Hypothesis (U2) or the assumption that Ubd(ξ) is a non–trivial
bounded solution on R+.

7.2. Proof of Corollary 2.12

We use Theorem 2.8 to prove the assertion of Corollary 2.12. Let Σ2 and Σ∞
denote the spectra of Φ as an operator on L2(R,Cn) and C0

unif (R,C
n), respectively. If

λ = eαT /∈ Σ2, then the spatial dynamical system

vξ = w , wξ = D−1(vt + αv − cw − a(ξ, t)v)(7.3)

with (u, v)(ξ) ∈ Y has an exponential dichotomy on R by Theorem 2.8. It then follows
from [40, Lemma 4.1] that the map Φ − λ is invertible on the space C0

unif (R,C
n).

Hence, λ /∈ Σ∞. It remains to show that, if λ ∈ Σ2, then λ ∈ Σ∞. Thus, assume that
λ = eαT ∈ Σ2. If (7.3) has exponential dichotomies on R+ and R−, then λ is also in
Σ∞; this follows again from [40, Lemma 4.1].
The remaining case is that (7.3) does not have exponential dichotomies on R+ or

on R−. Let us assume that (7.3) does not have an exponential dichotomy on R+; the
other case is analogous. In this case, we know that the asymptotic equation

vξ = w , wξ = D−1(vt + αv − cw − a+(ξ, t)v)

has a bounded solution on R by Proposition 2.10. It then follows from the proof of
[40, Lemma 4.1] that λ is in Σ∞; see also [45, Lemma 6.4].

7.3. Proof of Theorem 3.1

The theorem follows using the arguments presented in Sections 4 and 5. Most of
the arguments apply verbatim to (3.2) and (3.3). The only change is that we employ
Galerkin projections as in [24] instead of Fourier series to approximate the infinite–
dimensional system by ODEs.

8. Applications: spectra of long–wavelength periodic waves

We illustrate our results by investigating the existence and stability of spatially–
periodic modulated waves that accompany modulated pulses.
To motivate our interest in this issue, suppose that a certain reaction–diffusion

system exhibits a pulse that travels with non–zero wave speed c∞. Typically, this
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pulse is then accompanied by a one–parameter family of spatially–periodic wave trains
that consist of an infinite number of copies of the pulse, spaced periodically, i. e.
equidistantly, along the domain R. The wave trains are parametrized by their spatial
period 2L, with L → ∞, and they have wave speeds cL close to c∞. Considered as
waves on the finite interval (−L, L) with periodic boundary conditions, these spatially–
periodic waves are stable provided the pulse is stable. Considered as wave trains on
the entire real line, however, the spectrum of the linearization about these spatially
periodic waves consists entirely of essential spectrum: near each eigenvalue of the
linearization about the pulse, there is a small circle of eigenvalues in the spectrum of
the linearization about each of the wave trains; the diameter of this circle shrinks to
zero as the spatial period 2L tends to infinity [11]. In particular, there is a critical
circle of eigenvalues near λ = 0, which is always an eigenvalue of the pulse due to
translation symmetry. Using exponential dichotomies for the spatial dynamics, we
recently demonstrated [42] how the exact location of this circle can be determined
from spectral information about the single pulse and geometric information about
the homoclinic orbit that corresponds to the pulse in the spatial dynamics; see also
Section 8.1 below.
Suppose next that the pulse destabilizes in a Hopf bifurcation, say. As a consequence,

modulated pulses bifurcate. The issue that interests us is the existence of modulated
spatially–periodic waves, with large spatial period, that accompany the modulated
pulse. These additional waves arise through Hopf bifurcations from the wave trains
that accompany the pulse; alternatively, they can be viewed as bifurcating from the
modulated pulse in very much the same fashion as the wave trains bifurcate from the
pulse. In this section, we investigate the existence and the stability of such spatially–
periodic modulated waves that bifurcate from modulated pulses. We also discuss two
mechanisms that generate modulated pulses: temporally–periodic forcing and Hopf
bifurcations.
It is known that pulses for ill–posed spatial dynamical systems are often accompa-

nied by spatially periodic waves; see [24]. As mentioned above, the stability of these
wave trains has been studied in [42] using again spatial dynamics. The results that
we derived in the previous sections relate the spectrum of the temporal period map,
linearized about a modulated wave, to exponential dichotomies of the spatial dynam-
ical system. Therefore, these results allow us to apply the theorems in [24, 42] to
modulated travelling waves. We will constantly refer to these two articles for further
details.
Our results imply in particular that modulated pulses can be computed safely by

truncating the real line to a finite but large interval and imposing periodic boundary
conditions; the modulated spatially periodic waves are then close to the modulated
pulse and share its stability properties.

8.1. Modulated wave trains with long wavelength in non–autonomous sys-
tems

Consider the non–autonomous equation

ut = Duξξ + cuξ + f(t, u) , u ∈ R
n ,(8.1)
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where the nonlinearity f is periodic in t with period T > 0 so that f(t, u) = f(t+T, u).
Throughout this section, we assume for the sake of clarity that the nonlinearity f is
analytic; this assumption guarantees that the Hypotheses (U1) and (U2) are satisfied.

Notation 8.1. For every modulated wave u(ξ, t) of (8.1) that satisfies u(ξ, t) =
u(ξ, t+ T ) for all (ξ, t), we consider the linearization

vt = Dvξξ + cvξ + fu(t, u(ξ, t))v(8.2)

of (8.1) about the wave u(ξ, t) on the space X = L2(R,Cn). The temporal period map

Φ(u) : X −→ X , v( · , 0) �−→ Φ(u)v( · , 0) = v( · , T )

of (8.2) maps an initial value v( · , 0) ∈ X to the associated solution of (8.2) at time T .

Remark 8.2. Throughout Section 8, we consider the spectra of the linearization
(8.2) about modulated pulses and spatially–periodic modulated waves. In both cases,
the spectrum on X = L2(R,Cn) coincides with the spectrum on C0

unif(R,C
n) by

Corollary 2.12.

As a standing assumption, we assume that q(ξ, t) is a smooth solution of (8.1) so
that q(ξ, t) = q(ξ, t + T ) for all (ξ, t) and q(ξ, t) → p(t) for |ξ| → ∞, uniformly in t.
In other words, q(ξ, t) is a modulated pulse with temporal period T that converges to
the time–periodic spatially homogeneous solution p(t) as |ξ| → ∞.
First, we consider the existence of spatially–periodic modulated waves with large

spatial period that bifurcate from q(ξ, t). We begin by formulating the assumptions on
the asymptotic state p and the pulse q. The next section contains an application of the
forthcoming results to weakly–forced fast pulses of the FitzHugh–Nagumo equation.
Consider the linearization

vt = Dvξξ + cvξ + fu(t, p(t))v(8.3)

of (8.1) about p(t). Of interest is then the spectrum of the temporal period map Φ(p).

Hypothesis (H). We assume that λ = 1 is not in the spectrum of the period map
Φ(p) associated with (8.3).

Alternatively, we could require hyperbolicity of the equilibrium p(t) for the spatial
ξ–dynamics: as before, the equation

uξ = v , vξ = D−1(ut − cv − f(t, u)) ,

with periodic boundary conditions in t describes the spatial dynamics of time–periodic
solutions to (8.1). The linearization of this equation about p(t) is given by

vξ = w , wξ = D−1(vt − cw − fu(t, p(t))v) ,

which we also write as

d
dξ

V = A(p)V , V = (v, w)(8.4)
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on the space Y = H
1
2 (R/TZ,Cn)× L2(R/TZ,Cn) of T–periodic functions of t.

Remark 8.3. By Theorem 2.8, Hypothesis (H) is equivalent to the assumption that
(8.4) has an exponential dichotomy on R. In either case, there is a number η > 0 such
that the spectrum of A(p) : Y → Y does not intersect the strip {z ∈ C; | Im z| ≤ η}.
In fact, a possible choice for η is the rate of exponential decay in Definition 2.1 for an
exponential dichotomy.

Next, consider the linearization

vt = Dvξξ + cvξ + fu(t, q(ξ, t))v(8.5)

of (8.1) about the modulated pulse q(ξ, t). We are again interested in the spectrum of
the temporal period map Φ(q) : X → X associated with (8.5). Since the nonlinearity
f does not explicitly depend upon ξ, we have that λ = 1 is in the spectrum of Φ(q)
with eigenfunction qξ(ξ, 0). On the other hand, λ = 1 is not contained in the essential
spectrum due to Hypothesis (H) and the fact that fu(t, q(ξ, t)) is a relatively compact
perturbation of fu(t, p(t)).

Hypothesis (T). We assume that λ = 1 has geometric and algebraic multiplicity
one as an eigenvalue of the period map Φ(q) to (8.5).

We emphasize that Hypothesis (T) is never satisfied in the situation where the
nonlinearity does not depend upon t since then the time–derivative qt(ξ, 0) of the
modulated pulse supplies another linearly independent eigenfunction of λ = 1.
The spatial dynamical system associated with (8.5) is given by

vξ = w , wξ = D−1(vt − cw − fu(t, q(ξ, t))v)

or, in shorter notation, by

d
dξ

V = A(q)V , V = (v, w) ∈ Y .

We also introduce the adjoint variational equation

d
dξ

V = −A∗(q)V ,(8.6)

where A∗(q) = A(q(ξ, · ))∗ is the adjoint, taken pointwise for every fixed ξ, ofA(q(ξ, · ))
in the Hilbert space Y . Due to Hypothesis (T) and Lemma 6.1, there exists a unique,
up to constant scalar multiples, non–zero bounded solution to (8.6), which we denote
by ψ(ξ, t).
The following theorem guarantees the existence of time–periodic waves that are

spatially periodic with large wavelength. Similar results were proved in [4, 23] for
ODEs and evolutionary PDEs, and in [24] for elliptic PDEs.

Theorem 8.4. Assume that the hyperbolicity assumption (H) and the transversality
assumption (T) are both met. There are then positive numbers L∗ and C so that the
following is true. For every L > L∗, there exists a modulated travelling wave qL(ξ, t)
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for some wave speed cL so that qL(ξ, t) = qL(ξ, t+ T ) and qL(ξ, t) = qL(ξ + 2L, t) as
well as

|cL − c∞|+ sup
|ξ|≤L, 0≤t≤T

|qL(ξ, t)− q(ξ, t)| ≤ Ce−ηL

are satisfied, where c∞ is the wave speed of the modulated pulse q(ξ, t) and η > 0 is
the constant appearing in Remark 8.3.

Proof . The proof is a consequence of [24, Corollary 3]. The assumptions [24, (A1)
– (A3), (H1) – (H2)] are immediate consequences of our set–up together with the
Hypotheses (H) and (T) that we imposed. It remains to check the Melnikov condition
[24, (H3)] which, in our notation, reads

M =
∫ ∞

−∞

〈
ψ(ξ, · ),

(
0, D−1qξ(ξ, · )

)〉
Y
dξ �= 0 .(8.7)

The brackets 〈 · , · 〉Y denote the scalar product in Y . The integrand in the above
integral is the scalar product of the non–zero function ψ(ξ, · ), which lies in the null
space of the adjoint operator, and the derivative of the right–hand side of (8.1) with
respect to the wave speed c, evaluated at the modulated pulse (q, qξ) ∈ Y . Following
[36, Lemma 5.5], we argue that M = 0 implies that λ = 1 has algebraic multiplicity of
at least two as an eigenvalue of the temporal period map Φ(q) of (8.5); this contradicts
Hypothesis (T).
Hence, we argue by contradiction, and suppose that M = 0 is zero. The function(
0, D−1qξ(ξ, · )

)
would then belong to the range of T as defined in (2.6) with a(ξ, t) =

fu(t, q(ξ, t)). Choose (v, w) so that T (v, w) = −
(
0, D−1qξ(ξ, · )

)
, then v satisfies

Dvξξ = vt − cvξ − fu(t, q(ξ, t))v − qξ(ξ, t) .

Therefore, ṽ(ξ, t) := v(ξ, t) + tqξ(ξ, t) satisfies

Dṽξξ = ṽt − cṽξ − fu(t, q(ξ, t))ṽ

and ṽ(ξ, T ) = ṽ(ξ, 0)+Tqξ(ξ, 0). Thus, in contradiction to Hypothesis (T), ṽ is a prin-
cipal eigenfunction to the non–zero eigenfunction Tqξ associated with the eigenvalue
λ = 1 of the period map Φ(q) to the linearized parabolic equation (8.3). ✷

Next, we address the issue of the stability of the spatially–periodic modulated waves
qL(ξ, t) under the assumption that the modulated pulse q(ξ, t) is stable.

Hypothesis (S). Assume that the modulated pulse q(ξ, t) is stable, that is,

Σ ∩ {λ ∈ C; |λ| ≥ 1} = {1}

where Σ is the spectrum of the period map Φ(q) : X → X of the linearized equation
(8.5) about q(ξ, t).

Let λ = eαT , and consider the eigenvalue problem

vξ = w , wξ = D−1(vt + αv − cLw − fu(t, qL(ξ, t))v) .(8.8)
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By Theorem 2.8 and Proposition 2.10, λ is in the spectrum ΣL of the temporal period
map Φ(qL) : X → X if, and only if, there exists a solution (v, w)(ξ, t) to (8.8) for
|ξ| < L so that

(v, w)(L, t) = eiγ(v, w)(−L, t)(8.9)

for some γ ∈ R; recall that the spatial period of qL(ξ, t) is equal to 2L. We call γ the
spatial Floquet exponent. We emphasize that it is here where we apply the results
obtained in the earlier sections of this article. In the remaining part of this section,
we consider the eigenvalue problem (8.8) with the boundary condition (8.9).
The following lemma states that the spectrum ΣL of Φ(qL) is close to the spectrum

Σ of Φ(q). It therefore suffices to locate the spectrum ΣL of the temporal period map
Φ(qL) : X → X near λ = 1 to prove spectral stability of the spatially–periodic wave
trains qL(ξ, t). Recall that, due to the Hypotheses (H) and (S), λ = 1 is a simple
isolated eigenvalue of Φ(q).

Lemma 8.5. Assume that the Hypotheses (H), (T) and (S) are satisfied. There
exists a number 0 < r < 1 so that the following is true. For every neighborhood U of
λ = 1 in C, there is a positive number L0 so that ΣL ⊂ U ∪ {|λ| < r} for all L > L0.

Proof . Consider a complex number λ = eαT that is not contained in the spectrum
of the temporal period map Φ(q) associated with the modulated pulse q. For such
values of α, the eigenvalue problem

vξ = w , wξ = D−1(vt + αv − cw − fu(t, q(ξ, t))v)(8.10)

has an exponential dichotomy on R by Theorem 2.8. Denote the associated projections
by P (ξ); we suppress the dependence on α. Due to [32, Corollary 2], the projections
P (ξ) converge exponentially, as ξ → ±∞, to the spectral projection P∞ of the asymp-
totic equation

vξ = w , wξ = D−1(vt + αv − cw − fu(t, p(t))v) .

The boundary conditions (8.9) are transverse to the asymptotic stable and unstable
eigenspaces given by R(P∞) and N(P∞) in the sense of [24, (T1)(ii)] since periodic
boundary conditions satisfy [24, (T1)(ii)] by [24, Corollary 3]. Arguing as in [24,
Section 5] demonstrates that the eigenvalue problem (8.9 – 8.10) has only the trivial
solution (v, w) = 0. Since the waves qL are close to q on the spatial interval [−L, L],
the eigenvalue problem (8.8 – 8.9) for qL does not have a non–trivial solution provided
L is sufficiently large. This proves that eαT is not in the spectrum of Φ(qL).
The argument given above is uniform in compact subsets of the resolvent set of

Φ(q). It therefore remains to show that it suffices to consider compact subsets in the
resolvent set.
Consider the linearization

vt = Dvξξ + cvξ + fu(t, u(ξ, t))v , v( · , t) ∈ X for every t ≥ 0

of (8.1) about any modulated wave u(ξ, t). The temporal period map Φ(u) associated
with the above equation is a bounded linear operator onX. In particular, the spectrum
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of Φ(u) is bounded in C by a constant R that depends only on the sup–norm of the
modulated wave u. Thus, the spectrum of Φ(qL) is contained in a ball with radius R
that is independent of L. Also, by Hypothesis (S), there is a number r with 0 < r < 1
such that the entire spectrum of Φ(q), with the exception of the simple eigenvalue at
λ = 1, is contained in the ball with radius r, centered at zero, in the complex plane.
Hence, it suffices to exclude eigenvalues that are contained in the compact annulus
{r ≤ |λ| ≤ R} but that do not lie in the chosen neighborhood U of λ = 1. ✷

It remains to locate the spectrum of Φ(qL) near λ = 1 to determine the stability
properties of the spatially–periodic wave trains qL(ξ, t) of period 2L given in Theo-
rem 8.4. Due to the discussion right before Lemma 8.5, it suffices to find all α close
to zero and γ ∈ R for which the spatial eigenvalue problem (8.8 – 8.9) has a solution
(v, w). We show that there is an analytic, complex–valued function E(α, γ) so that
(8.8 – 8.9) has a solution for α close to zero precisely when E(α, γ) = 0. The function
E is commonly referred to as an Evans function: its zeros correspond to eigenvalues of
spatial eigenvalue problems; see, for instance, [1, 10, 11] for more background. We also
give an expansion of the Evans function in terms of geometric data of the modulated
pulse q(ξ, t) that allows us to actually determine its zeros, i.e. the spectrum of Φ(qL)
near λ = 1.

Theorem 8.6. Assume that the Hypotheses (H), (T) and (S) are met. There are
positive numbers δ, C and L∗ such that the following is true for any L > L∗. A
complex number λ = eαT with |α| < δ is in the spectrum of Φ(qL) : X → X if, and
only if, there is a γ ∈ R so that

E(α, γ) = 0(8.11)

where E : C × R → C is an analytic function that also depends on L (though we omit
explicit mention of the dependence of E on L). Furthermore, we have the expansion

E(α, γ) =
(
eiγ − 1

)
〈ψ(L, · ), (qξ, qξξ)(−L, · )〉Y

+
(
1− e−iγ

)
〈ψ(−L, · ), (qξ, qξξ)(L, · )〉Y − αM

+
(
eiγ − 1

)
R(α, γ) + α R̃(α, γ)

(8.12)

where ψ(ξ, t) is a non–zero bounded solution of the adjoint variational equation (8.6),
qξ(ξ, t) is the spatial derivative of the modulated pulse, the spatial Floquet exponent γ
appears as a parameter in the boundary–value problem (8.8 – 8.9), and the constant
M is the Melnikov integral

M =
∫ ∞

−∞

〈
ψ(ξ, · ),

(
0, D−1qξ(ξ, · )

)〉
Y
dξ

given in (8.7). The remainder terms R(α, γ) and R̃(α, γ) are analytic in (α, γ) and
satisfy ∣∣∂α∂�γR(α, γ)∣∣ ≤ Ce−3ηL ,

∣∣∂�γR̃(α, γ)∣∣ ≤ Ce−ηL(8.13)

for , 2 ≥ 0, uniformly in L, where η is the rate of hyperbolicity that appears in Re-
mark 8.3. Both R(α, γ) and R̃(α, γ) are real whenever

(
α, eiγ

)
is real.
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We refer to [42, Theorem 2.1] for a more detailed expansion and a somewhat stronger
statement, though only for ODEs.

Proof . The proof given in [42] for ODEs carries over almost verbatim to the elliptic
setting as mentioned in [42, Remark 3.1]. The estimates given in [42, Lemma 3.1] for
ODEs are also true in the elliptic case; see [32, Theorem 1 and Corollary 2]. ✷

Finally, we summarize the main conclusions obtained in [42]. Since we assumed in
Hypothesis (T) that M is nonzero, the temporal Floquet exponent α lies on a circle
close to zero: for each fixed L, we can solve (8.11) for α as a function of γ and obtain
a small circle of critical eigenvalues that are parametrized by γ. Thus, the stability
of the spatially–periodic modulated waves qL depends on the precise location of the
circle of critical eigenvalues. Typically, we expect that one of the first two terms in the
expansion (8.12) for the bifurcation function is dominant (an exception are standing
pulses in symmetric systems where the two terms are of the same order; see [42,
Theorem 5.4]). There are then two different cases that we need to consider: denote
by ν the leading eigenvalue of the operator A(p), i. e. the eigenvalue with the smallest
real part in modulus. This eigenvalue is then either real or not.

Case I: monotone tails. Suppose that there is a simple real eigenvalue νu in
the spectrum of A(p) : Y → Y such that |Re ν | > νu > 0 for all other eigenvalue ν of
A(p). Assume also that, for some δ > 0, we have

(qξ, qξξ)(ξ, · ) = eν
uξ
(
ρ+ O

(
eδξ
))

as ξ → −∞ ,

ψ(ξ, · ) = e−ν
uξ
(
ρ∗ + O

(
e−δξ

))
for ξ → ∞

in Y for appropriate function ρ and ρ∗ in Y with 〈ρ, ρ∗〉Y �= 0. The spatially–periodic
modulated waves qL are then stable if, and only if,

M〈ρ, ρ∗〉Y > 0 .(8.14)

Case II: oscillatory tails. Suppose that there is a pair of simple complex–
conjugate eigenvalues νu and νu in the spectrum of A(p) with Im νu �= 0 such that
|Re ν | > Re νu > 0 for all other eigenvalue ν in the spectrum of A(p). We then have〈

ψ(L, · ),
(
qξ, qξξ

)
(−L, · )

〉
Y

= a sin(2 Im νuL+ b)e−2Re νuL +O
(
e−(2 Re νu+δ)L

)
for certain constants a, b. Assume that a �= 0. The spatially–periodicmodulated waves
qL then stabilize and destabilize periodically as the wavelength 2L tends to infinity.
The frequency of the exchange of stability is equal to Im νu, i. e. to the wavenumber
of the spatial oscillations in the dominant tail of the modulated pulse q.

A proof of these statements can be found in [42, Section 5.1].

8.2. Application I: periodically forced pulses

Modulated pulses can be created by adding a small time–periodic perturbation to
an autonomous reaction–diffusion equation that exhibits travelling pulses. We demon-
strate that the forcing term may change the decay properties at the tails of the pulse;
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as a consequence, the individual modulated pulses in a spatially–periodic modulated
wave train interact with each other in a qualitatively different fashion.
Consider

ut = Duξξ + cuξ + f(u) + µg(t, u;µ)(8.15)

where µ is small and, for some temporal period T > 0, we have g(t, u;µ) = g(t+T, u;µ)
for all (t, u, µ). We assume that, for µ = 0 and an appropriate value of c, equation
(8.15) exhibits a stationary pulse q(ξ) such that q(ξ) → 0 as |ξ| → ∞. Suppose that
this pulse is stable so that the spectrum of the linearization L = D∂ξξ+ c∂ξ+fu(q(ξ))
is contained in the open left half–plane with the exception of a simple eigenvalue at
λ = 0 that is inevitable due to translation symmetry.
Applying center–manifold theory to the family q( · +τ ) of equilibria of the parabolic

equation (8.15), we see that there is a family q(ξ, t;µ) of modulated pulses with wave
speed c = c(µ) to (8.15) for every µ close to zero. We are interested in spatially–
periodic modulated waves that accompany this family of modulated pulses. Thus, we
consider the spatial dynamics

uξ = v , vξ = D−1(ut − cv − f(u) + µg(t, u;µ))(8.16)

on the space Y of time–periodic functions with period T in t. The linearization of this
equation about q(ξ) at µ = 0 is given by

vξ = w , wξ = D−1(vt − cw − fu(q(ξ))v) ,

where (v, w)(ξ, · ) has period T in t. For µ = 0, the pulse q(ξ) corresponds to a
homoclinic orbit (q, qξ)(ξ) for the spatial dynamics (8.16) on Y . Theorem 2.8 implies
that q(ξ) satisfies Hypotheses (H) and (T); in other words, the equilibrium (u, v) = 0
of (8.16) is hyperbolic, and the linearization about q(ξ) admits a unique bounded
solution. Theorem 8.4 then guarantees the existence of spatially–periodic modulated
waves qL(ξ, t;µ) with large wavelength 2L to (8.15) for every sufficiently small µ.
As mentioned above, we are interested in the stability of the bifurcating spatially–

periodic modulated waves. Note that these waves can be interpreted as trains of
infinitely many equidistantly spaced copies of the modulated pulse q(ξ, t;µ). The
stability of the wave trains depends then on the interaction properties of the individual
modulated pulses that make up the wave train. The most interesting situation occurs
if the periodic travelling waves qL(ξ) that accompany the original pulse q(ξ) for µ = 0
are all stable. The issue is then whether the modulated wave trains inherit stability.
Before we address this issue, we comment on equation (8.16)

uξ = v , vξ = D−1(ut − cv − f(u))(8.17)

with µ = 0 posed on the space Y of time–periodic functions with period T . Note that
this equation does not depend explicitly on t, and is therefore equivariant with respect
to shifts in time. The perturbation g(t, u;µ) breaks this S1–symmetry for µ �= 0. The
fixed–point space Yfix of the S1–symmetry consists of all time–independent functions;
it is therefore isomorphic to R2n. The dynamics on Yfix is given by the travelling–
wave ODE. In particular, the homoclinic orbit (q, qξ)(ξ) is contained in Yfix as are the
periodic orbits associated with qL(ξ). As we shall see below, the different stability
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properties of the travelling and modulated wave trains are related to the different
dynamical properties of (8.17) regarded as an equation on either Yfix or Y .
The periodic travelling waves qL(ξ) are stable provided the following assumptions

are met. First, we assume that the leading eigenvalue νu of the matrix(
0 1

−D−1fu(0) −cD−1

)
on the space Yfix ∼= R2n is real, positive and simple. Note that this matrix represents
the linearization of (8.16) about (u, v) = 0 at µ = 0 restricted to the fixed–point space
of the symmetry group. In addition, we assume that M〈ρ, ρ∗〉R2n > 0, where M is the
Melnikov integral

M =
∫ ∞

−∞

〈
ψ(ξ),

(
0, D−1qξ(ξ)

)〉
R2n dξ

with respect to the parameter c, and ρ, ρ∗ are defined by

ρ = lim
ξ→−∞

(qξ, qξξ)(ξ)e−ν
uξ , ρ∗ = lim

ξ→∞
ψ(ξ)eν

uξ .

Note that the unique bounded solution ψ(ξ) to the adjoint variational equation about
q(ξ) is independent of t. Under these hypotheses, [42, Corollary 5.1] asserts that the
periodic travelling waves qL(ξ) are stable.
After these preparations, we return to the issue of whether the modulated wave

trains inherit the stability from the travelling wave trains. We shall see below that
either all modulated wave trains are stable or else locking phenomena occur that
render unstable wave trains for a range of spatial wavelengths. Which of these two
cases occurs depends on the linearization

vξ = w , wξ = D−1(vt − cw − fu(0)v)(8.18)

of (8.17) about (u, v) = 0 posed on the entire space Y . We denote by ν∗ the leading
eigenvalue of the right–hand side of (8.18) posed on Y . Recall that νu is the leading
eigenvalue of (8.18) restricted to the fixed–point space Yfix ∼= R2n.

Case I: monotone tails. If νu = ν∗ is also the leading eigenvalue of (8.18) on Y ,
then the modulated wave trains qL(ξ, t;µ) are stable for all sufficiently large L. In other
words, the modulated wave trains inherit the stability from the travelling wave trains.
Indeed, the tails of the homoclinic orbit that corresponds to the modulated pulse
q(ξ, t;µ) decay with rate νu and are therefore monotone. This follows immediately
from the continuity of the expression M〈ρ, ρ∗〉Y in µ. As an example for this case, we
discuss the FitzHugh–Nagumo equation; see below.

Case II: oscillatory tails. This second case occurs if νu �= ν∗. Hence, the eigen-
function to the leading eigenvalue ν∗ is then time–dependent since it is not contained
in Yfix. Therefore, ν∗ is typically non–real due to the non–trivial S1–symmetry on the
eigenspace. We assume that the leading eigenvalues ν∗ and ν∗ are simple and complex
conjugate, and that there are no other eigenvalues with real part equal to ±|Re ν∗|. It
is convenient to assume that Re ν∗ > 0; we emphasize that the results outlined below
are also true if Re ν∗ < 0.
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For µ = 0, the homoclinic orbit for the spatial dynamics on Y lies in Yfix. Therefore,
it is forced to approach the equilibrium (u, v) = 0 along the strong unstable manifold.
This situation is robust in the class of S1–equivariant perturbations. The parameter µ,
however, breaks the S1–symmetry since the perturbation µg(t, u;µ) depends explicitly
on t. Thus, for generic nonlinearities g, the homoclinic orbits that correspond to the
modulated pulses q(ξ, t;µ) approach the equilibrium (u, v) = 0 along the direction
with the smallest possible exponential decay rate Reν∗ as soon as µ �= 0. Since
the eigenvalue ν∗ in the weakest direction has non–zero imaginary part, the tails
of the modulated pulse become spatially oscillatory under periodic forcing, and the
accompanying spatially–periodic modulated waves are alternately stable and unstable
for sufficiently large wavelengths L.
As mentioned above, for µ �= 0, the modulated pulses typically approach the asymp-

totic state (u, v) = 0 along the weak unstable direction as ξ → −∞. The resulting
bifurcation is called an orbit–flip since the homoclinic orbit typically flips from one
side of the strong unstable manifold to the other as µ crosses through zero. Gener-
ically, many multi–hump pulses are created in such an orbit–flip bifurcation as has
been proved in [35]; we also refer to [38] where orbit–flips were studied in equivariant
systems with symmetry–breaking perturbations.

8.3. The FitzHugh–Nagumo equation

In this section, we apply the results above to the FitzHugh–Nagumo equation with
a small diffusion term in the second variable. Consider

ut = uxx + f(u) −w , wt = δ2wxx + ε(u− γw) ,(8.19)

where f(u) = u(1 − u)(a − u), 0 < a < 1/2 and the positive parameters δ, ε and
γ are small. Travelling waves q(x − ct) are described by a differential equation in
R
4 that involves (u, uξ, w, wξ) and the wave speed c. It has been proved in [1] that,

for an appropriate wave speed c, equation (8.19) has a stable pulse q(x − ct) that is
asymptotic to u = w = 0.
We argue that the spatially–periodic wave trains that accompany this pulse are also

stable: the construction in [1] shows that, for δ small enough, the spatial dynamics
can be reduced to a three–dimensional slow manifold. On the slow manifold, the flow
is close to the spatial dynamics with δ = 0. For this flow, we proved in [42] that
the condition M〈ρ, ρ∗〉 > 0 which implies stability of the spatially–periodic travelling
waves is satisfied. Since the slow manifold is normally hyperbolic, and the solutions
ψ and (qξ, qξξ) lie in it, we conclude that the inequality M〈ρ, ρ∗〉 > 0 is also true for
the full four–dimensional flow. Thus, the spatially–periodic wave trains with large
wavelength are also stable.
Next, we consider the FitzHugh–Nagumo equation (8.19) subject to small external

time–periodic forcing. We argue that, for any period of the forcing, we always en-
counter Case I which implies that the spatially–periodic modulated wave trains with
large wavelengths are also stable regardless of their spatial period. Indeed, consider
the linearization of the FitzHugh–Nagumo system about the origin, written as a dy-
namical system in the spatial variable ξ on the space Y of time–periodic functions.
For ε sufficiently small, the leading eigenvalue νu in the fixed–point space Yfix is real,
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positive and of order ε. On the other hand, it is easy to verify that the other eigenval-
ues in the entire space Y keep an O(1)–distance from the imaginary axis as ε tends to
zero. The reason is that an imaginary eigenvalue for ε = 0 would imply that the origin
undergoes a Hopf bifurcation at ε = 0; it is known, however, that such a bifurcation
does not occur. This proves that the eigenvalue νu is the leading eigenvalue for spatial
dynamics on Y .
More generally, the above considerations suggest that, in singularly perturbed sys-

tems, the stability of long–wavelength spatially–periodic wave trains is typically robust
under temporally periodic forcing.

8.4. Modulated wave trains with long wavelength in autonomous systems

In this section, we concentrate on the autonomous reaction–diffusion system

ut = Duξξ + cuξ + f(u) , u ∈ R
n .(8.20)

We assume that q(ξ, t) is a modulated pulse to (8.20) with temporal period T > 0
so that q(ξ, t) converges to some homogeneous time–independent rest state p ∈ Rn of
(8.20) as |ξ| → ∞. We use the same notation as in Section 8.1.
We begin by stating the assumptions on the asymptotic rest state p and the modu-

lated pulse q(ξ, t). As above, we assume hyperbolicity of the asymptotic rest
state p.

Hypothesis
(
H̃
)
. We assume that λ = 1 is not in the spectrum of the temporal

period map Φ(p) : X → X, v( · , 0) �→ v( · , T ) associated with the linearization vt =
Dvξξ + cvξ + fu(p)v of (8.20) about p.

Note that this assumption implies that p cannot depend upon t; otherwise, pt(t)
would be an eigenfunction of Φ(p) associated with the eigenvalue λ = 1. We also
remark that

(
H̃
)
is equivalent to the condition

det
(
−Dν2 + icν + fu(p)− inT

)
�= 0

for all ν ∈ R and n ∈ Z.
Equation (8.20) is invariant under shifts in space and time. Thus, the space and time

translates q(ξ + ξ0, t + t0) are also modulated pulses. Therefore, qξ(ξ, t) and qt(ξ, t)
are eigenfunctions associated with the eigenvalue λ = 1 of the temporal period map
Φ(q) of the linearization

vt = Dvξξ + cvξ + fu(q(ξ, t))v(8.21)

about the modulated pulse. We assume that the modulated pulse q is not a travelling
pulse so that qξ and qt are linearly independent.

Hypothesis
(
T̃
)
. We assume that λ = 1 is an eigenvalue of the temporal pe-

riod map Φ(q) of (8.21) with geometric and algebraic multiplicity two and associated
linearly independent eigenfunctions qξ and qt.
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Equation (8.21), written in the spatial dynamics, reads(
vξ
wξ

)
=

(
0 id

D−1(∂t − fu(q(ξ, t))) −cD−1

)(
v

w

)
= A(q)

(
v

w

)
.

Its adjoint Vξ = −A(q)∗V then has two linearly independent solutions that we denote
by ψ1(ξ, t) and ψ2(ξ, t).
We shall investigate the existence and stability of spatially–periodic modulated

waves that bifurcate from the modulated pulse in the spatial dynamics. Since the
eigenspace, associated with the eigenvalue λ = 1, of the temporal period map Φ(q) is
two–dimensional, we need two parameters for a proper unfolding. The first parameter
is the wave speed c, while the temporal period T supplies the second parameter. We
begin by calculating the relevant Melnikov integrals with respect to the parameters
(c, T ).

Lemma 8.7. Assume that Hypotheses
(
H̃
)
and

(
T̃
)
are met. Define

M1 =
(∫ ∞

−∞

〈
ψ1(ξ, · ),

(
0, D−1qξ(ξ, · )

)〉
Y
dξ,
∫ ∞

−∞

〈
ψ2(ξ, · ),

(
0, D−1qξ(ξ, · )

)〉
Y
dξ
)
,

M2 =
(∫ ∞

−∞

〈
ψ1(ξ, · ),

(
0, D−1qt(ξ, · )

)〉
Y
dξ,
∫ ∞

−∞

〈
ψ2(ξ, · ),

(
0, D−1qt(ξ, · )

)〉
Y
dξ
)
,

then M1 and M2 are linearly independent vectors in R2.

Proof . Suppose that the two vectors are linearly dependent. We argue that the
algebraic multiplicity of the eigenvalue λ = 1 of the linearized temporal period map
Φ(q) is then at least three, contradicting Hypothesis

(
T̃
)
; see the proof of Theorem 8.4

for a similar argument. If rM1 + sM2 = 0 for some constants r and s with rs �= 0,
then (0, rqξ(ξ, · ) + sqt(ξ, · )) belongs to the range of the operator T , defined in (2.6),
with a(ξ, t) = fu(q(ξ, t)). Hence, there is a function v(ξ, t) with v(ξ, T ) = v(ξ, 0) such
that

−(rqξ(ξ, t) + sqt(ξ, t)) = Dvξξ − vt + cvξ + fu(q(ξ, t))v ,

and w = v + t(rqξ + sqt) satisfies

wt = Dwξξ + cwξ + fu(q(ξ, t))w , w(ξ, T ) = w(ξ, 0) + rTqξ(ξ, 0) + sTqt(ξ, 0) .

The function w(ξ, 0) is therefore a generalized eigenfunction associated with the eigen-
value λ = 1 of Φ(q). This contradicts

(
T̃
)
. ✷

A consequence of this observation is that modulated pulses are accompanied by
spatially–periodic modulated waves with large spatial wavelengths.

Theorem 8.8. Assume that
(
H̃
)
and

(
T̃
)
are met. There are then positive numbers

L∗, C and η > 0 so that the following is true. For every L > L∗, there exists a
modulated travelling wave qL(ξ, t) of (8.20) for some wave speed cL and some temporal
period TL so that qL(ξ, t) = qL(ξ, t+ TL) and qL(ξ, t) = qL(ξ + 2L, t) as well as

|cL − c∞|+ |TL − T∞|+ sup
|ξ|≤L, 0≤t≤T∞

|qL(ξ, tTL/T∞)− q(ξ, t)| ≤ C e−ηL
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are satisfied, where c∞ and T∞ are the wave speed and the temporal period, respectively,
of the modulated pulse q(ξ, t).

The exponential rate η > 0 is determined by the linearization of (8.20) about the
homogeneous rest state p; see Remark 8.3.

Proof . Modulated waves with temporal period T̂ are solutions to (8.20) written as
the dynamical system

uξ = v , vξ = D−1(ut − cv − f(u))

in the spatial variable ξ posed on the space (u, v) ∈ H
1
2
(
R/T̂Z

)
× L2

(
R/T̂Z

)
. Since

the parameter T̂ appears in the above function spaces, it is convenient to rescale time
t → ωt where ω = T̂ /T∞. We then obtain the new system

uξ = v , vξ = D−1(ωut − cv − f(u)) ,(8.22)

with (u, v) ∈ H
1
2 (R/T∞Z) × L2(R/T∞Z). Any bounded solution to (8.22) with pa-

rameter ω is a modulated wave to (8.20) with temporal period T̂ = ωT∞. In [42,
Theorem 4.1] we derived the following bifurcation equations for the existence of peri-
odic orbits (i. e. modulated spatially–periodic waves) with period 2L near a homoclinic
orbit (i. e. a modulated pulse) of the equivariant spatial dynamics:

M1(c− c∞) +M2(ω − 1) +R(c, ω) = 0 ,(8.23)

where we omit the dependence of the remainder term R : R2 → R2 on L. The
remainder term is differentiable in (c, ω), and we have

|R(c, ω)| ≤ C
(
e−ηL + |c− c∞|+ |ω − 1|

)2
,∣∣∂(c,ω)R(c, ω)∣∣ ≤ C

(
e−ηL + |c− c∞|+ |ω − 1|

)
for (c, ω) near (c∞, 1), uniformly in L. Here, η is the exponential decay rate that
appears in Remark 8.3. More precisely, there exists a spatially–periodic solution with
period 2L, wave speed c and temporal period ωT∞ if, and only if, (8.23) is satisfied.
The proof given in [42] for ODEs carries over immediately to the spatial dynamics
considered here. Exploiting that M1 and M2 are linearly independent by Lemma 8.7,
we can solve (8.23) for (c, ω) as a function of L for all sufficiently large L by the implicit
function theorem. ✷

Finally, we consider the stability of the spatially–periodic wave trains qL(ξ, t). We
have the following result that reduces the issue of locating the spectrum of the temporal
period map Φ(qL) near λ=1 to solving a nonlinear equation of the form detE(α, γ)=0
where α and γ are temporal and spatial Floquet exponents. The analytic function
E(α, γ) is a matrix–valued Evans function; see also Theorem 8.6 above.
We define

Q1(ξ, t) := (qξ, qξξ)(ξ, t) and Q2(ξ, t) := (qt, qtξ)(ξ, t) .

Theorem 8.9. Assume that the Hypotheses
(
H̃
)
,
(
T̃
)
and (S) are met. There are

positive numbers δ, C and L∗ such that the following is true for any L > L∗. A
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complex number λ = eαT with |α| < δ is in the spectrum of Φ(qL) : X → X if, and
only if, there is a γ ∈ R so that

detE(α, γ) = 0

where E : C × R → C2×2 is an analytic matrix–valued function that also depends on
L (though we shall omit explicit mention of the dependence of E on L). The entries
Ejk of E are given by

Ejk(α, γ) =
(
eiγ − 1

)〈
ψj(L, · ), Qk(−L, · )

〉
Y

+
(
1− e−iγ

)〈
ψj(−L, · ), Qk(L, · )

〉
Y

− αMj,k

+
(
eiγ − 1

)
Rjk(α, γ) + α R̃jk(α, γ)

where j, k = 1, 2. The functions ψj(ξ, t) are two linearly independent, non–zero
bounded solutions of the adjoint variational equation, see Lemma 8.7, Q1 and Q2

have been introduced right before the theorem, the spatial Floquet exponent γ appears
as a parameter in the boundary–value problem (8.8 – 8.9), and the constant Mj,k is
the jth component of the vector Mk introduced in Lemma 8.7. Finally, the remainder
terms R and R̃ satisfy the estimates (8.13) in Theorem 8.6.

The theorem is a consequence of [42, Theorem 2.2] and the discussion in the proof
of Theorem 8.6 above.
In general, it is still difficult to use Theorem 8.9 to locate the spectrum near λ = 1

since the double eigenvalue λ = 1 typically splits into two small circles for finite values
of L. A similar problem arises for travelling pulses to complex Ginzburg–Landau
equations (CGL). For these equations, we have an additional S1–symmetry that is
induced by multiplication by eiβ . This gauge symmetry actually models the time–
shift symmetry that we investigated here; it is therefore no surprise that the stability
analysis for travelling pulses to the CGL is very similar to the one for modulated
pulses to reaction–diffusion equations. We refer to a forthcoming work [37] of one
of the authors for a stability analysis for the CGL that can then also be used for
modulated pulses.
Note that Theorem 8.9 is related to the PDE stability of the modulated wave trains

qL(ξ, t) considered as solutions of

ut = Duξξ + cuξ + f(u) , ξ ∈ R

posed on the real line. It is often natural to regard the waves qL(ξ, t) as solutions to

ut = Duξξ + cuξ + f(u) ,

u(−kL, t) = u(kL, t) , uξ(−kL, t) = uξ(kL, t)
(8.24)

on the interval (−kL, kL) for some positive integer k. Recall that the spatial period
of qL(ξ, t) is 2L. We then have the following stability result for qL considered as a
solution to (8.24).

Corollary 8.10. Fix an integer k > 0. Under the assumptions, and the setting, of
Theorem 8.9, the following is true. A complex number λ = eαT with |α| < δ is in the
spectrum of the linearization of (8.24) about qL(ξ, t) if, and only if,

detE(α, 2πm/k) = 0(8.25)
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for some integer m with 0 ≤ m < k. In particular, the spatially–periodic waves qL(ξ, t)
are stable on the minimal interval (−L, L), and the spectrum near λ = 1 consists of a
double eigenvalue at λ = 1.

Proof . Due to Theorem 8.9, we have that solutions to (8.25) correspond to solutions
of the eigenvalue problem (8.8)

vξ = w , wξ = D−1(vt + αv − cLw − fu(qL(ξ, t))v)

on (−L, L) with boundary conditions (8.9)

(v, w)(L, t) = eiγ(v, w)(−L, t) .

Such solutions fit into the interval (−kL, kL) with periodic boundary conditions if,
and only if, γ = 2πm/k for some m with 0 ≤ m < k. Thus, the first assertion of the
corollary follows. For k = 1, we necessarily have m = 0 so that eiγ = 1. The entries
of the matrix E(α, 0) are given by

Ejk(α, γ) = −αMj,k + α R̃jk(α, γ) ,

and we have detE(α, 0) = 0 if, and only if, α = 0. In fact, since the matrix M is
invertible, we have

detE(α, 0) = α2 detM + O
(
|α|3

)
.

Thus, α is a zero of E(α, 0) of order two. It is a consequence of [36, Lemma 4.1] and
the construction of E(α, γ) in [42] that the order of α as a zero of E(α, 0) is equal to
the algebraic multiplicity of λ = eαT as an eigenvalue of the linearization about qL;
see also [10] for a proof of this assertion for periodic travelling waves. Thus, λ = 1 is
a double eigenvalue. ✷

In numerical simulations, modulated pulses are often calculated by restricting the
real line to an interval and imposing periodic boundary conditions; see, for instance,
[21]. Theorem 8.8 shows that the modulated pulse can indeed be approximated by
spatially–periodic modulated waves provided the interval is sufficiently large. The
corollary then shows that the resulting modulated wave train is also stable. This
justifies the numerical procedure.

8.5. Application II: Hopf bifurcations from pulses

We briefly comment on Hopf bifurcations from travelling to modulated pulses. Sup-
pose that q(ξ) is a pulse to the reaction–diffusion equation

ut = Duξξ + cuξ + f(u;µ)(8.26)

with ξ ∈ R so that q experiences a Hopf instability upon varying µ near zero: the
spectrum Σ of the operator D∂ξξ + c∂ξ + fu(q(ξ); 0) : X → X satisfies

Σ ∩ iR = {0,±iω} .

We assume that these three eigenvalues are algebraically simple and isolated in the
spectrum, that the imaginary eigenvalues at ±iω cross the imaginary axis transversely
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as µ crosses through zero, and that the Hopf bifurcation is super–critical. It follows
then from center–manifold theory [14, 44] that there is a unique stable modulated
pulse q(ξ, t) that bifurcates from the pulse q(ξ). The eigenvalue λ = 1 of the lin-
earized period map about q(ξ, t) has geometric and algebraic multiplicity two, and
Hypotheses

(
H̃
)
,
(
T̃
)
and (S) are satisfied.

Therefore, due to Theorem 8.8, the modulated pulse q(ξ, t) is accompanied by long–
wavelength spatially–periodic modulated waves qL(ξ, t). Corollary 8.10 implies that
these waves are stable when we regard them as solutions to (8.26) on the interval
(−L, L) with periodic boundary conditions. Regarded as solutions on the entire real
line, however, they could well be unstable due to interaction instabilities between
adjacent pulses in the wave train.

9. Discussion

In this section, we summarize our results and comment on open problems.
For dynamical systems or differential equations on Rn, exponential dichotomies are

a useful tool when investigating the linearization about trajectories [34]. On a lin-
ear level, exponential dichotomies separate exponentially decaying from exponentially
growing components. We focused on partial differential equations (PDE) that are
posed on the real line. Instead of viewing the PDE as a dynamical system in the time
variable t, we interpreted the PDE as a dynamical system in the spatial variable ξ
while imposing periodicity or growth conditions in the time variable t. Trajectories
of the resulting dynamical system correspond to travelling or modulated waves. The
linearized equation provides us with information about the spatial growth or decay
of perturbations with a prescribed temporal evolution. This point of view allows us
to characterize the spectrum of the PDE linearization about a modulated wave in
terms of properties of the exponential dichotomies. In particular, the boundary of
the essential spectrum consist of those points for which the linear eigenvalue problem,
considered as a spatial dynamical system, does not have an exponential dichotomy.
This viewpoint has been exploited for travelling waves on the real line where the linear
eigenvalue problem is an ODE; see, for instance, [31, 13, 16, 49]. Spatial dynamics has
been used in [6, 28] for the stability analysis of stationary spatially–periodic patterns
of small amplitude. Our contribution is the extension of these ideas to travelling waves
in unbounded cylinders and to modulated waves. We would also like to point out that
the approach via spatial dynamics has been used first in [15] to establish the existence
of small modulated waves.
Another advantage of this approach is that it allows us to investigate patterns that

exhibit the same temporal behavior as a given primary wave but that are not feasible
to a regular perturbation analysis. For instance, we might be interested in patterns
that are not close, in a uniform sense, to the original wave with respect to the spatial
variable. Or we may want to investigate patterns that have essential spectrum up to
the imaginary axis so that we cannot apply an implicit function theorem. Below, we
comment on these two situations.
Certain patterns that are not close to the modulated pulse in a uniform sense were

studied in Section 8, where we concentrated on the existence and stability of spa-
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tially and temporally periodic waves with large wavelength. These wave trains can
be thought of as consisting of infinitely many, well separated and equidistant copies
of the original modulated pulse. The stability properties of such wave trains depends
on the interaction between adjacent pulses that were, on a linear level and to leading
order, described by a transmission coefficient; see (8.14).
Certain bifurcations that involve the essential spectrum have been studied in [39, 40]

where we gave an existence and stability proof of pulses that travel through a Turing
pattern near a Turing instability. The construction of these pulses was facilitated by
exponential dichotomies, as well as associated invariant manifolds and foliations, that
we constructed in an ad–hoc fashion [39]. In that article, we made extensive use of
the fact that the time–periodic modulations that are created by the Turing patterns
ahead and behind the pulse are of small amplitude. We also refer to [41] where the
interaction of Turing patterns and fronts is studied.
One drawback of viewing the PDE as a dynamical system in the spatial variable is

that the associated initial–value problem is ill–posed. The construction of exponential
dichotomies is then not as standard as for ODEs; for elliptic equations, it has been
carried out in [32]. Similar problems arise for travelling waves on lattices where the
linearized equations are ill–posed forward–backward delay equations. We refer, for
instance, to [25, 8] for results on Fredholm properties in the context of equations on
lattices. We would also like to mention work by Robbin and Salamon [33], see also
[3], on infinite–dimensional variational problems. In [33, 3], Fredholm properties were
established for abstract self–adjoint equations. In contrast to our results, compactness
of the lower–order terms is not required; instead, the unbounded operator has to be
self–adjoint.
Finally, we comment on open problems. Given the equivalence of Fredholm proper-

ties and the existence of dichotomies, one might argue that the aforementioned results
should somehow follow directly from Fredholm properties without deriving and using
exponential dichotomies. Even for the existence of periodic orbits that accompany
homoclinic orbits in ODEs, however, such a direct proof does not seem to exist.
Exponential dichotomies also exist for systems of elliptic equations posed on the

entire space R
N , at least for asymptotically constant coefficients; see [32]. Again, the

equation can be written as an ill–posed dynamical system in one of the unbounded
directions. Note, however, that the choice of this direction is quite arbitrary, and
the approach does not seem to cover all possible phenomena. In the case where the
translational symmetry is broken so that the linearization about a stationary pulse
is invertible, Angenent [2] proved the existence of multi–pulses and even of chaotic
spatial patterns without rewriting the elliptic equation as a spatial dynamical system.
An interesting issue is the existence of patterns near a travelling pulse upon breaking
the translational invariance; this occurs naturally in weakly inhomogeneous media that
have a spatially periodic structure. We may, for instance, add a small spatially periodic
function to the diffusion coefficients. In this setting, and in a moving coordinate frame,
the travelling pulse experiences both temporal and spatial forcing. It is then not clear
what patterns are created by such an interaction between temporal and spatial effects.
The results presented in Sections 2 and 3 apply to reaction–diffusion equations on

unbounded cylinders. In particular, we exploited that the equation is semilinear, and
we used compactness properties of the non–autonomous terms as well as uniqueness
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of solutions to certain initial–value problems. We do not know whether one or all of
these assumptions can be dropped. The question of dropping these assumptions is not
just one of finding the most general setting:
There are many interesting applied problems that involve quasilinear rather than

semilinear equations. For instance, water waves and problems in elasticity are typically
described by quasilinear equation [26]. There are also various interesting equations
that involve operators which are not parabolic. Examples are the FitzHugh–Nagumo
equation without diffusion in the second variable or dispersive equations such as the
nonlinear Schrödinger equation. Dispersive equations, for instance, lead to spatial
dynamical systems that have an infinite–dimensional neutral part on which solutions
neither decay nor grow.
Similar difficulties arise for quasi–periodic modulated waves. The approach we intro-

duced here for time–periodic waves fails for temporally quasi–periodic patterns. Again,
the linearization of the spatial dynamical system is of mixed hyperbolic–elliptic type.
We believe that the view point of spatial dynamics that consists of replacing Fred-

holm’s alternative by intersection properties of suitable subspaces, pointwise in the
spatial coordinate ξ, can facilitate the analysis of many other problems. We hope that
the abstract framework of relative Morse indices and exponential dichotomies that
we presented here can be generalized further and that some of the aforementioned
obstacles will be removed eventually.
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