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Abstract.

We consider systems of elliptic equations ∂2
t u + ∆xu + γ∂tu + f(u) = 0, u(t, x) ∈ R

N

in unbounded cylinders (t, x) ∈ R × Ω with bounded cross-section Ω ⊂ R
n and Dirichlet

boundary conditions. We establish existence of bounded solutions u(t, x) with non-trivial

dependence on t ∈ R, ∂tu(t, x) 6≡ 0. Our main assumptions are dissipativity of the nonlin-

earity f and the existence of at least two t-independent solutions w1(x), w2(x) which solve

∆xwj + f(wj) = 0, j = 1, 2.

The proof exploits the dynamical systems structure of the equations: solutions can be

translated along the axis of the cylinder. We first prove existence and compactness of

attractors for the dynamical system induced by this translation. We then compute Conley

indices for cross-sectional Galerkin approximations to conclude that the attractor does not

consist of only the two solutions wj(x), j = 1, 2. We also prove existence of solutions

converging for t → +∞ or t → −∞. If the system possesses a gradient-like structure, in

addition, solutions will converge on both sides of the cylinder.

Résumé.

Nous considérons des systèmes d’équations elliptiques ∂2
t u+∆xu+γ∂tu+f(u) = 0, u(t, x) ∈

R
N dans un cylindre infini (t, x) ∈ R × Ω avec Ω ⊂ R

n borné et des conditions de bord

Dirichlet. Nous établissons l’existence de solutions bornées, dépendant de t ∈ R d’une

façon non-triviale, ∂tu(t, x) 6≡ 0. Nous supposons entre autre dissipativité de la fonction

f et l’existence de deux solutions w1(x), w2(x) de l’équation ∆xwj + f(wj) = 0, j = 1, 2.

Dans la démonstration, nous utilisons la structure d’un système dynamique, engendré par

la translation de solutions le long de l’axe du cylindre. Nous démontrons tout d’abord

l’existence et la compacité de l’attracteur de ce système dynamique. Nous calculons ensuite

des indexes de Conley pour l’approximation de Galerkin afin de déduire que l’attracteur

contient des solutions autre que wj(x), j = 1, 2. Nous démontrons aussi que les solutions

u(t, x) convergent pour t → +∞ ou t → −∞. Si le système possède une fonction de

Lyapunov, en plus, les solutions convergeront des deux côtés du cylindre.

Keywords. attractors, Conley index, traveling waves, elliptic systems

Mots Clés. attracteurs, indexe de Conley, ondes progressives, systèmes elliptiques
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1 Introduction

Let Ω ⊂ Rn be a smooth, bounded domain. We call Q = R × Ω a cylinder. We

consider systems of elliptic equations

∂2
t u + ∆xu + γ∂tu + f(u) = 0 , (t, x) ∈ Q. (1.1)

Here u ∈ RN , f ∈ C1(RN , RN), γ is a constant real N × N− matrix and ∆x is the

Laplacian with respect to x ∈ Ω. We impose Dirichlet boundary conditions at x ∈ ∂Ω

u(t, x) = 0 for (t, x) ∈ R × ∂Ω. (1.2)

Similarly we could impose Neumann, Robin or periodic boundary conditions, with

minor adaptations.

For the nonlinearity f and its Jacobian f ′ we require growth conditions




|f(u)| ≤ C0(1 + |u|p)
|f ′(u)| ≤ C1(1 + |u|p−1)

(1.3)

and a dissipation condition

f(u) · u ≤ C2 − C3|u|2+σ (1.4)

with some C0, C1, C2, C3 and σ positive. Here 1 < p < 1 +
4

n − 1
if n > 1, and p < ∞

otherwise.

We restrict ourselves to the above setting for notational simplicity. Generalizations of

the results below to other growth and dissipation conditions for f = f(u) and to more

general x-dependent second-order elliptic operators replacing ∆x are straightforward.

Similarly, γ = γ(x) and f = f(x, u) may depend on x. It is crucial to our dynamical

systems approach, however, that (1.1) does not depend on “time” t, explicitly. Also,

explicit gradient dependence f = f(u,∇u) is excluded.

Elliptic systems of the form (1.1) arise, for example, when studying traveling wave

solutions of reaction-diffusion systems

D∂τu = ∆t,xu + f(u),
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where τ denotes time and again (t, x) ∈ Q. A traveling wave solution is a bounded

solution of the special form u = u(t−cτ, x), and c is called the wave speed. Note that

γ = cD. For a recent comprehensive survey on traveling waves and their applications,

see for example the book [42].

We denote by H l,p
loc, l = 0, 1, 2 and 1 ≤ p ≤ ∞, the subspace of locally integrable

functions u, for which the following semi-norms are finite:

||u , QT ||l,p := ||u||Hl,p(QT ,RN ) = C(T, u) < ∞ , T ∈ R (1.5)

where QT = [T, T + 1] × Ω.

The space H l,p
loc with this system of semi-norms is a Fréchet space and metrizable. We

write

Hloc := H0,2
loc and H2

loc := H2,2
loc ∩ {u = 0 on ∂Q}. (1.6)

The space H l,p
a consists of functions u ∈ H l,p

loc with finite norm

||u||Hl,p
a

:= sup
T∈R ||u , QT ||l,p < ∞. (1.7)

Throughout we use the abbreviations Ha := H0,2
a and H2

a := H2,2
a ∩ {u = 0 on ∂Q}.

A solution u(t, x), x ∈ Ω, t ∈ R of (1.1), (1.2) is always understood to be a weak

solution which belongs to the space H2
loc. A solution is said to be bounded if it

belongs to the space H2
a . Of course, equation (1.1) is satisfied in Ha for a bounded

solution u.

In fact, every solution u ∈ H2
loc of (1.1), (1.2) is automatically bounded, due to the

dissipation condition (1.4); see [43].

Also note that the growth conditions on f ensure the Nemitskii operator

f̃ : H2(QT , RN) → H(QT , RN), f̃(u)(t, x) = f(u(t, x)), (t, x) ∈ QT (1.8)

for every T ∈ R to be of class C1 and compact, by Sobolev embedding and Kras-

noselskii’s theorem; see [2] for example.

Equilibria are particular solutions of (1.1), (1.2), which do not depend on t, and

therefore solve

∆xw + f(w) = 0,
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for x ∈ Ω, and w = 0 on ∂Ω. Equilibria w can be interpreted as functions in

(H2(Ω) ∩H1
0 (Ω))N , or as bounded, t-independent solutions of (1.1) in H2

loc or in H2
a .

An equilibrium w(x) is called hyperbolic if the formally linearized operator

L̂(λ) := −λ2 + iλγ + ∆x + f ′(w(x)) (1.9)

possesses only trivial kernel on H2(Ω, CN)∩H1
0 (Ω, CN ), for any λ ∈ R. Note that non-

trivial kernel indicates the existence of a bounded solution eiλtz(x) of the linearization

of (1.1), (1.2) at u(t, x) = w(x), where z(·) ∈ ker L(λ).

We call a bounded solution u of (1.1), (1.2) a non-equilibrium solution if it is not an

equilibrium. Our main purpose is to find conditions which guarantee the existence of

non-equilibrium solutions.

If Ω is just a single point, n = dim Ω = 0, without boundary conditions, then (1.1)

defines a second order system of ordinary differential equations. Global dynamical

systems methods like the Conley index have proved to be very useful in detecting

bounded solutions [10], [37].

For elliptic systems in a cylinder, dim Ω = n ≥ 2, such global methods have not been

developed. Hadamard was the first to notice that the initial value problem for elliptic

equations is ill-posed; see [22, Bk. I, Ch. II, §18]. Prescribing u and ∂tu at t = 0, a

solution need not exist, even for small times. Nevertheless this difficulty has been

overcome in several interesting, particular cases. We first mention the pioneering

work by Kirchgässner [25] on small solutions of elliptic equations in infinite cylinders.

His idea was to construct invariant manifolds, where the elliptic initial value problem

is well-posed and a flow, or at least a semiflow, is defined; see also [15]. This idea was

extended to large solutions, later, in the “parabolic”, convection dominated limiting

case of large wave speeds γ ∈ R; see [7] and [34]. Without such a restriction, Babin

and Mielke have treated the case of elliptic equations in a strip, Ω = [0, 1]; see [30]

and [3].

We also mention the remarkably early work by Gardner, who used finite difference

approximations and applied Conley index to the resulting ODE’s [19]. Although his

results were restricted to scalar equations N = 1, cubic f , and to one dimensional

cross-section, dim Ω = 1, we essentially follow Gardner’s idea below. Technically, we

replace finite difference discretization by Galerkin projections.
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Theorem 1. Assume f ∈ C1 satisfies the growth conditions (1.3) and the dissipation

condition (1.4). Moreover assume that there exist at least 2κ distinct equilibria which

are hyperbolic. Then there exist at least κ distinct bounded non-equilibrium solutions

of (1.1), (1.2) in H2
a .

The norm in H2
a , uniform with respect to t, was introduced in (1.7). Of course,

solutions u(t, x) which only differ by a constant (time) shift of t are not considered

distinct.

In fact, when proving Theorem 1 we obtain slightly more precise information on the

bounded non-equilibrium solutions, besides mere existence.

Theorem 2. Under the assumptions of Theorem 1, for any hyperbolic equilibrium

wj, except possibly one, there is a bounded non-equilibrium solution uj converging to

wj at one end of the unbounded cylinder:

||uj − wj , QT ||2,2 → 0

for T → +∞ or for T → −∞.

For parabolic equations in bounded domains, a result as in Theorem 1 is far from

optimal. In fact, 2κ+1 hyperbolic equilibria then produce at least 2κ non-equilibrium

solutions. In the elliptic context, however, our bound κ is optimal. Indeed, fix

γ ∈ R nonzero and consider dim Ω = 0 again with the dissipative nonlinearity f(u) =

−εu + cos u, for fixed ε > 0. Then Theorems 1 and 2 also hold. Explicit phase plane

analysis shows the count

♯{bounded non-equilibrium solutions} =
1

2
(♯{equilibria} − 1)

for almost all ε.

Note that the number of equilibria is in fact odd in the above example, if all equi-

libria are hyperbolic. The same observation holds true in our general setting, by

dissipativeness and Leray-Schauder degree.

Our notion of hyperbolicity mimics hyperbolicity of equilibria in ordinary differential

equations. For example, if f = ∇F , then the Jacobian f ′ is symmetric. Therefore

any equilibrium is hyperbolic in our sense (1.9), if and only if, ∆ + f ′(w(x)) has
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trivial kernel. The gradient case is also interesting from another point of view. Let

γT denote the transpose of the real matrix γ. If γ + γT > 0 or γ + γT < 0 are strictly

definite matrices, then the elliptic system (1.1) possesses a Lyapunov function

V (u, ∂tu) =

∫

Ω

[|∂tu|2 − |∇xu|2 + 2F (u)]dx. (1.10)

In particular, any bounded solution converges to the set of equilibria for t → +∞
and for t → −∞.

Corollary 1.1. Assume γ + γT > 0 or γ + γT < 0 are strictly definite matrices, and

f ∈ C1 is a gradient, f = ∇F , in addition to satisfying growth conditions (1.3) and

dissipation conditions (1.4). Moreover, assume there are precisely 2κ + 1 equilibria,

all of which are hyperbolic. Then there are at least κ distinct heteroclinic orbits, that

is, solutions converging to different equilibria for t → ±∞. For any two of these

heteroclinics, the equilibria they are converging two are distinct.

In contrast to this corollary, however, our above theorems neither rely on variational

methods nor on comparison principles. Therefore, in general, we cannot claim specific

properties of our bounded non-equilibrium solutions like positivity, monotonicity with

respect to t, or convergence to cross-sectional equilibria for t → ±∞. For some results

on non-equilibrium solutions which rely on such additional structure see, for example,

[6], [23] and the references therein.

Outline: In Sections 2 and 3, we introduce the concept of global attractors for our

particular setting. One of the main tools for our proof of Theorem 1, the Galerkin

approximation, is explained and applied to global attractors of elliptic systems (1.1),

(1.2). In Section 4 we review Conley index which is the second main tool in our

proof. Section 5 is devoted to a detailed study of the neighborhood of a hyperbolic

equilibrium. In Section 6 we prove Theorem 1 for the special case κ = 1 of two

hyperbolic equilibria. In Section 7 we extend this result to a proof of Theorems 1

and 2, and we prove Corollary 1.1. We conclude with a brief discussion in Section 8.

Acknowledgment: This work was done during the stay of one of the authors

(M.I.Vishik) at the Free University (Berlin) supported by the Alexander von Hum-

boldt Stiftung.
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2 Elliptic Attractors

The set of bounded solutions of elliptic equations in infinite cylinders Q = R×Ω has

been studied by several authors, from the viewpoint of dynamical systems methods;

see for example [4], [7], [15], [25], [30], [40].

We define

A = {u ∈ H2
a | u is a solution of (1.1)},

to be the set of bounded solutions of (1.1), (1.2). We recall that Dirichlet boundary

conditions (1.2) are incorporated in the function space H2
a ; see (1.6), (1.7).

In analogy to dissipative evolution equations, the set A is called the global attractor

of the elliptic system (1.1), (1.2). We refer to the monographs [5], [21], [26], and [38]

for theory and applications of global attractors in dissipative equations; see also [8],

[9] for a more recent account.

Though we do not make use of the attractivity property, we now briefly explain

in which sense this terminology is justified in our elliptic set-up. Let K+ denote

the set of solutions which are defined only in the half-cylinder Q+ = R+ × Ω, and

which belong to the space H2
a(Q+) := H2

a

∣∣
t≥0

. We can define a semigroup on K+ by

translating solutions

(Tsu)(t, x) := u(t + s, x) , s ≥ 0 (2.1)

This semigroup {Ts, s ≥ 0} acts on K+, because

TsK
+ ⊂ K+,

by translational invariance of equations (1.1), (1.2) and of the norm in H2
a ; see (1.7).

In fact, using the dissipation condition (1.4) it can be shown that there exists a global

attractor A+ for the dynamics of Ts on K+, with respect to the local topology H2
loc;

see [40] and [35]. In addition,

A+ = ⋄+A
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where Π+ : H2
a(Q) → H2

a(Q+) is the restriction operator. It is in this sense that we

call A the ‘global attractor’.

Unfortunately very little is known on the set K+ in general. For the case of large

γ, however, the set K+ is an infinite-dimensional, smooth manifold; see [7] and [34].

We will not refer to the dynamical system structure on K+ in the present paper.

The main result of this section is an existence result for A.

Theorem 3. Assume that f ∈ C1(RN , RN) satisfies the growth conditions (1.3) and

the dissipation condition (1.4). Then the global attractor A ⊂ H2
a is bounded and

nonempty. Moreover A ⊂ H2
loc is compact.

The proof will be given in Section 3. As our main tool in the proof of Theorem 1, we

introduce Galerkin approximations next.

Let 0 < µ1 < µ2 ≤ ... denote the eigenvalues of −∆x on L2(Ω) with Dirichlet

boundary conditions, repeated with multiplicity. Let ej(x), j = 1, 2, 3, ... be the

corresponding complete L2-orthonormal family of eigenfunctions



−∆xej(x) = µjej(x) , x ∈ Ω

ej(x)
∣∣
∂Ω

= 0

The projections Pm : L2(Ω)N → L2(Ω)N are defined as the componentwise orthogonal

projection onto span {e1, ..., em} in L2(Ω).

The Galerkin approximation of (1.1) is defined as

∂2
t um + γ∂tum + ∆xum + Pmf(um) = 0. (2.2)

By Am we denote the global attractor, alias the set of H2
a bounded solutions, of

equation (2.2).

Let um ∈ Am. Then ūm(t, ·) = (1 − Pm)um(t, ·) satisfies the linear equation

∂2
t ūm(t, x) + γ∂tūm(t, x) + ∆xūm(t, x) = 0.

We claim ūm ≡ 0, for large m. Indeed, projecting the above equation onto span {ej},
we obtain a linear equation for yj(t) = ‖Pj+1(1 − Pj)ūm(t, ·)‖L2,

∂2
t yj(t) + γ∂tyj(t) − µjyj(t) = 0. (2.3)
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Solutions are of the form eλty0
j with λ such that det(λ2 + γλ−µj) = 0. Equivalently,

λ satisfies

det
((

λ/
√

µj

)2
+ µ

−1/2
j γ(λ/

√
µj) − 1

)
= 0.

Since µj → +∞ for j → ∞, the N eigenvalues satisfy λ = ±√
µj + o(1) for j → ∞.

In particular, for j ≥ m0 large enough, all eigenvalues are bounded away from the

imaginary axis. In consequence, there do not exist nontrivial bounded solutions

of (2.3). Hence ūm(t, ·) = (1 − Pm)um(t, ·) ≡ 0. This proves our claim.

In other words, the above computation shows that for sufficiently large m our defi-

nition of Galerkin approximation coincides with the traditional one, that is solutions

um ∈ Am of the Galerkin approximation (2.2) really lie in the finite-dimensional range

of Pm:

um(t, ·) =
m∑

j=1

uj
m(t)ej(·) = Pmum(t, ·), for m ≥ m0, (2.4)

where uj
m : R → RN are the appropriate vector functions. Note that the range of

Pm is in fact a subspace of (H2(Ω) ∩ H1
0 (Ω))N because eigenfunctions are smooth.

Moreover, range Pm is closed and has dimension m · N.

Proposition 2.1. The attractors Am of the Galerkin approximation (2.2) are uni-

formly bounded in H2
a and compact in H2

loc for all m ≥ m0, with m0 as in (2.4). More-

over, for every neighborhood O(A) of the set A in H2
loc there exists m1 = m1(O(A)) ≥

m0 such that

Am ⊂ O(A) for m ≥ m1 (2.5)

The proof of this proposition and the next one is given in Section 3.

We conclude this exposition on elliptic attractors with a proposition on a homotopy

from (2.2) to a linear equation, which is used in Section 6. For a homotopy parameter

0 ≤ ϑ ≤ 1, we consider

∂2
t u + ∆xu + ϑ(γ∂tu + Pmf(u)) = 0 (2.6)

We emphasize that the constant m0 in (2.4) can be chosen uniformly with respect to

ϑ ∈ [0, 1].

Proposition 2.2. The global attractors Am,ϑ of (2.6) are bounded in H2
a , uniformly

for all ϑ ∈ [0, 1] and m ≥ m0.
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We caution our reader that the attractors A,Am and Am,ϑ are compact in the H2
loc-

topology, but not necessarily in the t-uniform topology of H2
a !

3 Upper Semicontinuity of Attractors

In this Section we prove Propositions 2.1, 2.2 and Theorem 3 from the previous

section. The proofs are merely adaptations of similar proofs in [40], [41], and [4], to

the case of our growth conditions (1.3) and (1.4).

Throughout this section C, C ′ and C ′′ stand for some positive constants with possibly

updated values in different formulae. Moreover, we use the notation ‖u, Ω‖l,p and

‖u, Q‖l,p for the Sobolev norms of functions on the the cross-section Ω, or on the

cylinder Q = R × Ω, respectively; see (1.5).

We begin with the proof of Proposition 2.2 which is prepared by two lemmata. We

emphasize here, that both lemmata and the proof of Proposition 2.2 carry over almost

verbatim to the case m = ∞, that is, to the original equation (1.1) and its global

attractor A instead of the Galerkin approximation (2.6). In the following two lemmata

uniform bounds in Ha and then in H1,2
a are derived. Uniform bounds in H2

a are then

established using a bootstrap argument.

Lemma 3.1. The sets Am,ϑ are bounded in Ha, uniformly with respect to m ≥ m0

and ϑ ∈ [0, 1].

Proof. We introduce the function

y(t) =

∫

Ω

um(t, x) · um(t, x) dx = (um(t, ·), um(t, ·))

where um = um,ϑ is a solution of (2.6). It is not difficult to check that um ∈ H2
a

implies y′′(t) ∈ H0,1
a (R) and this derivative is given by

y′′(t) = 2 (∂tum(t), ∂tum(t)) + 2
(
∂2

t um(t), um(t)
)

Next, we replace the term ∂2
t um in the above equation by its expression from equa-

tion (2.6). We obtain

y′′(t) − αy(t) = hu(t), (3.1)
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where

hu(t) = 2
(
(∂tum(t, ·), ∂tum(t, ·))+(∇xum(t, ·),∇xum(t, ·))− 1

2
α (um(t, ·), um(t, ·))−

− ϑ ((γ∂tum(t, ·), um(t, ·)) + (f(um(t, ·)), um(t, ·)))
)
, (3.2)

and α is a chosen to be a sufficiently small positive number.

Using the dissipation condition (1.4), Poincaré’s inequality and Hölder’s inequality

in (3.2), we obtain

hu(t) ≥ C(||∂tum(t, ·), Ω||20,2 + ||∇xum(t, ·), Ω||20,2) − C ′ ≥ −C ′ (3.3)

for some positive constants C and C ′ not depending on m ≥ m0 and ϑ ∈ [0, 1].

Actually, this is the only place where we use the dissipation condition (1.4). The

exponent σ is needed in order to compensate for the term −ϑ (γ∂tum(t, ·), um(t, ·)).
By the maximum principle, we have y(t) ≤ C ′′ for every globally bounded solution

y, where the constant C ′′ depends only on α and C ′ from (3.3), and not on the

solution u. Indeed, we can solve (3.1) for any hu ∈ H0,1
a (R) using the explicit Greens

function. The unique solution y ∈ H2,1
a (R) depends continuously on hu and, by the

maximum principle, y is bounded, at least for continuous h, bounded below. We may

now approximate hu in the space H0,1
a (R) by bounded continuous functions hε

u with

hε
u ≥ −C ′. The solutions yε are bounded uniformly in ε and therefore give a uniform

upper bound on the limit y(t); see also [40]. This proves Lemma 3.1.

Lemma 3.2. The sets Am,ϑ are bounded in the space H1,2
a , uniformly with respect to

m ≥ m0 and ϑ ∈ [0, 1].

Proof. Let ϕ(·) ∈ C∞
0 (R) be a cut-off function satisfying ϕ(t) = 1 for t ∈ [T, T + 1]

and ϕ(t) = 0 for t /∈ [T − 1, T + 2]. Note that the cut–off functions ϕ(t) = ϕT (t)

can be chosen such that |ϕ′′(t)| + |ϕ(t)| ≤ C, uniformly with respect to T ∈ R. We

multiply (3.1) with ϕ(t) and integrate over t ∈ R. Then

∫R ϕ(t)hu(t) dt =

∫R ϕ(t)[y′′(t) − αy(t)] dt

=

∫R[ϕ′′(t) − αϕ(t)]y(t) dt ≤ C||um||2Ha
. (3.4)
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Inequalities (3.3) and (3.4) imply that

∫R ϕ(t)[||∂tum(t, ·), Ω||20,2 + ||∇xum(t, ·), Ω||20,2] dt ≤ C(1 + ||um||2Ha
),

uniformly with respect to T ∈ R. Hence

||∂tum||2Ha
+ ||∇xum||2Ha

≤ C(1 + ||um||2Ha
),

which proves Lemma 3.2.

Proof of Proposition 2.2. Again, we multiply (2.6) by the cut-off function ϕ(t)

defined in the previous lemma, and we rewrite the equation in the following form

∂2
t (ϕum) + ∆x(ϕum) = ϕ′′um + 2ϕ′∂tum − ϑϕ[γ∂tum + Pmf(um)] =: ĥ

It follows from L2-regularity theory of the Laplacian that

||ϕum, Q||2,2 ≤ C||ĥ, Q||0,2 ≤ C ′(1 + ||um||H1,2
a

+ ||ϕf(um), Q||0,2) (3.5)

Due to the growth conditions (1.3),

||ϕf(um), Q||20,2 ≤ C

(
1 +

∫

Q

ϕ|um|2p dxdt

)
(3.6)

Hence, it is sufficient to estimate the integral in inequality (3.6).

We first consider the simpler case when 2p ≤ p1 = 2(n + 1)/(n − 1), n > 1, or when

n = 1. We then have the embedding H1,2(QT1,T2
) ⊂ L2p(QT1,T2

) for T2 > T1, with

QT1,T2
= [T1, T2] × Ω. Hence

∫

Q

ϕ|um|2p dxdt ≤ C

∫

QT−1,T+2

|um|2p dxdt ≤ C2||um, QT−1,T+2||2p
1,2 ≤ C3(||um||H1,2

a
)2p

Therefore, if 2p ≤ p1, the assertion of the Proposition 2.2 follows from (3.5), (3.6),

and Lemma 3.2.

Next, we consider the case 2p > p1 and n > 3, the case n ≤ 3 being simpler. Let p2 =

2(n+1)/(n− 3) be the Sobolev embedding exponent such that H2,2(QT ) ⊂ Lp2
(QT ).
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To prepare for an application of Hölder’s inequality, we now seek solutions α, β, l

and k of the following system of equations




α + β = 2p; 1
l
+ 1

k
= 1;

αl = p1; βk = p2.
(3.7)

A computation shows that

β = p(n − 1) − (n + 1) < (1 +
4

n − 1
)(n − 1) − (n + 1) = 2. (3.8)

Here we have used the constraint on the growth exponent p in the growth condi-

tion (1.3). Since we supposed 2p > p1, we obtain 0 < β < 2. Now we check that all

numbers α, β, k and l in (3.7)are positive. Indeed from the last equation of (3.7) we

obtain k = p2/β > 2/2 = 1, so l > 1 as well. The positivity of α follows immediately

from the first equation of (3.7) and inequality (3.8).

Using Hölder’s inequality and (3.7), we can now estimate
∫

Q

ϕ|um|2p dxdt =

∫

Q

(ϕ1−β|um|α)(ϕβ|um|β) dxdt

≤
(∫

Q

ϕl(1−β)|um|lα dxdt

)1/l (∫

Q

ϕkβ|um|kβ dxdt

)1/k

≤
(∫

Q

ϕl(1−β)|um|p1 dxdt

)α/p1
(∫

Q

ϕp2|um|p2 dxdt

)β/p2

≤ C
(
||um||H1,2

a

)α
(||ϕum, Q||2,2)

β (3.9)

Putting together the estimates (3.5), (3.6), and (3.9), we obtain

||ϕum, Q||2,2 ≤ C(1 + ||um||H1,2
a

) + C ′
(
||um||H1,2

a

)α/2
(||ϕum, Q||2,2)

β/2

By (3.8), β < 2 and we conclude that

||ϕum, Q||2,2 ≤ C
(
1 +

(
||um||H1,2

a

)M
)

for some positive constant M = M(p). This inequality is valid uniformly with respect

to T ∈ R and therefore

||um||H2
a

= sup
T∈R ||um, QT ||2,2 ≤ C sup

T∈R ||ϕTum, Q||2,2 ≤ C ′
(
1 +

(
||um||H1,2

a

)M
)

.

In view of Lemma 3.2, this proves Proposition 2.2.
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Remark 3.3. It follows from the estimates of Proposition 2.2 and Leray–Schauder

degree theory that all sets A, Am, Am,ϑ are non-empty because the corresponding

equations have nonempty sets of equilibria; see [40].

Proof of Proposition 2.1 and Theorem 3. Uniform estimates for the H2
a norms

of elements of Am are obtained in the above proof of Proposition 2.2. The estimate

for the H2
a norms of elements of A can be obtained almost verbatim in the same

way. It remains to prove compactness and upper semicontinuity under Galerkin

approximation (2.5) in the topology of H2
loc. Here we only prove upper semicontinuity,

the proof of compactness being analogous but simpler.

Since H2
loc is metrizable, it is sufficient to prove the following: from every sequence

of solutions um ∈ Am we can extract an H2
loc-converging subsequence

umk
→ u in H2

loc and u ∈ A. (3.10)

We fix an arbitrary T ∈ R and rewrite the equations for um in the following form

∂2
t (ϕum) + ∆x(ϕum) = ϕ′′um + 2ϕ′∂tum − ϕ[γ∂tum + Pmf(um)] =: ĥm

where the cut–of function ϕ is the same as in the proof of Lemma 3.2.

Due to the m-uniform estimates in Lemmata 3.1, 3.2, and in the proof of Propo-

sition 2.2, the sequence {um} is bounded in H2(QT−1,T+2). Hence, there exists a

function uT ∈ H2(QT−1,T+2) and a subsequence umk
— which, for simplicity, we

denote again by um — such that

um ⇁ uT weakly in H2(QT−1,T+2).

We next prove that

ĥm → ĥT := ϕ′′uT + 2ϕ′∂tuT − ϕ[γ∂tuT + f(uT )] in L2(Q) (3.11)

By Sobolev’s embedding and our restrictions on the growth exponent p, we have

um → uT in L2p(QT−1,T+2) ∩ H1,2(QT−1,T+2) and therefore

||ϕPmf(um) − ϕf(uT ), QT−1,T+2||0,2

≤ ||ϕPm(f(um) − f(uT )), QT−1,T+2||0,2 + ||(1 − Pm)ϕf(uT ), QT−1,T+2||0,2

≤ C||f(um) − f(uT ), QT−1,T+2||0,2 + ||(1 − Pm)ϕf(uT ), QT−1,T+2||0,2. (3.12)
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The right hand side tends to zero for m → ∞. Indeed, the first term in the right hand

side of (3.12) tends to zero by Krasnoselskii theorem and the second by Parseval’s

equality. This proves (3.11). From L2-regularity theory of the Laplacian we obtain

that ϕum → ϕuT in H2(Q). Consequently

um → uT in H2(QT )

and the function uT satisfies the equation (1.1) in QT . Taking T ∈ Z and applying

Cantor’s diagonalization procedure we can now construct a function u ∈ A and a

subsequence umk
of um satisfying (3.10). This proves upper semicontinuity.

4 Conley Index

There are several excellent surveys of Conley index theory, both in finite and infinite

dimensional dynamical systems. See for example [10], [31], [32], [37]. Here, we only

collect some facts relevant to our proofs of Theorems 1 and 2. We note that Conley

index theory does not apply, directly and computationally, in our elliptic context.

Although our global attractor A is compact, by Theorem 3, uniqueness of solutions

may not hold. Even where uniqueness does hold, it may not be clear, how to compute

Conley indices directly within A, in specific cases.

Therefore we use finite-dimensional Galerkin approximations. Accordingly, we con-

sider Conley index for a finite-dimensional flow. Let

(t, u) → u · t (4.1)

denote a finite-dimensional continuous flow on u ∈ Rq; here u itself indicates the

initial condition. Without loss of generality, we consider flows which are defined for

all real t. In fact, any local flow can be extended to a global flow, possibly modifying

the flow outside a large ball.

We call S ⊆ Rq (flow) invariant, if

S · R ⊆ S,

in the sense of (4.1). Note that invariance is required to hold for both positive and

negative times. Any union of invariant sets is invariant. A bounded open subset

16



N ⊆ Rq is called isolating neighborhood, if N contains the maximal invariant subset

S of N := closN . The set S is then compact, and is called isolated invariant set; it

is isolated by N and by any open subset of N which contains S.

An index pair (N 1,N 0) of an isolated invariant set S is defined to consist of two open

bounded sets N1 ⊇ N0 such that

(i) N1 \ N 0 is an isolating neighborhood of S;

(ii) N 0 is positively invariant in N 1; and

(iii) N 0 is an exit set for N 1.

Here positive invariance, (ii), means that u ∈ N 0, u·[0, t] ⊂ N 1 implies u·[0, t] ⊆ N 0,

for t ≥ 0. The exit set property (iii) means that u ∈ N 1, u · t1 6∈ N 1 for some t1 > 0

imply existence of some t0 ∈ [0, t1) with u · [0, t0] ⊆ N 1 and u · t0 ∈ N 0. Isolated

invariant sets do possess index pairs; see [10].

The Conley index C(S) of an isolated invariant set S is the homotopy type of the

pointed space

C(S) = (N 1/N 0, [N 0]),

where (N 1,N 0) is an index pair for S. We obtain the homotopy type of the pointed

space (N 1/N 0, [N 0]) from N 1 by collapsing N 0 to a single, distinguished point. It

turns out that the Conley index is independent of the particular choice of an index

pair for S; see again [10].

For example

C({0}) = Σl (4.2)

is the l-dimensional sphere Σl with a distinguished point, if u = 0 is a hyperbolic

equilibrium of unstable dimension l. In a variational context, where u · t is a gradient

flow, l would be called the Morse index of the critical point u = 0.

In Section 6, we compute

C(Am) = ΣmN

for the set Am of bounded trajectories of the Galerkin flow (2.2) in R2mN . Note that

Am need not, in general, consist of just a single hyperbolic equilibrium of unstable

dimension mN .
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As a third example, consider an isolated invariant set S which decomposes into two

disjoint isolated invariant sets S1 and S2. Then

C(S) = C(S1) ∨ C(S2), (4.3)

where ∨ is the wedge product: the two distinguished points of C(S1) and C(S2) are

identified.

Homotopy invariance is one of the most powerful properties of Conley index, from

a computational point of view. We only need a rather simple version, which we

formulate next.

Proposition 4.1. Consider a family of flows on Rq depending continuously on a

parameter ϑ ∈ [0, 1]. Let N ⊂ Rq be an isolating neighborhood, for all ϑ, with

isolated invariant set (S(ϑ), ϑ). Here S(ϑ) ⊆ Rq denotes the set itself, and the second

component ϑ indicates the flow parameter used.

Then the Conley index does not depend on the flow parameter ϑ ∈ [0, 1]:

C(S(0), 0) = C(S(ϑ), ϑ) = C(S(1), 1).

For a proof, we refer to [10].

5 Hyperbolic Equilibria

The main objective of this section is to show that hyperbolic equilibria in the sense

of (1.9) are isolated as bounded solutions of (1.1), (1.2) in H2
a . In Section 6, this

allows us to show that hyperbolic equilibria behave like isolated invariant sets for the

Galerkin approximation.

Proposition 5.1. Suppose w is a hyperbolic equilibrium of (1.1), (1.2). Then w is

isolated in H2
a as a solution of (1.1), (1.2). That is, there exists a neighborhood U of

w in H2
a such that

A ∩ U = {w} (5.1)

The proof requires a thorough analysis of the linearization

Lu = ∂2
t u + γ∂tu + [∆x + f ′(w(x))]u (5.2)
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and is prepared with several lemmata.

We first prove in Lemma 5.2 that the “time” t Fourier transform

L̂(λ) : (H2(Ω) ∩ H1
0 (Ω))N → L2(Ω)N

û(·) 7→
(
−λ2 + iλγ + [∆x + f ′(w)]

)
û(·)

is invertible for all λ in a narrow strip |Im λ| ≤ δ0, by hyperbolicity assumption (1.9).

As a second step, we invert L on L2(Q)N , in Lemma 5.3. With the exponential decay

estimates of Lemma 5.4 for |t| → ∞, we then prove surjectivity of L : H2
a → Ha in

Lemma 5.5. For injectivity, Lemma 5.6, we make use of the formal adjoint

L∗u = ∂2
t u − γ∗∂tu + [∆x + f ′(w(x))∗]u, (5.3)

and its Fourier transform

(L̂)∗(λ) = −λ2 − iλγ∗ + [∆x + f ′(w(x))∗].

Note that L∗ is hyperbolic in the sense of (1.9) if, and only if, L itself is hyperbolic.

Indeed, (L̂)∗(λ) is the adjoint operator to L̂(λ) in L2(Ω)N and both operators are

Fredholm of index zero from H2(Ω)N∩H1
0 (Ω)N into L2(Ω)N as compact perturbations

of ∆x.

In consequence, Lemmata 5.2 – 5.5 also hold with L being replaced by L∗. Finally,

Lemma 5.5 for the adjoint L∗ is used in Lemma 5.6 to show injectivity of L : H2
a → Ha.

An application of the inverse function theorem, based on the invertibility of the

linearization L then completes the proof of Proposition 5.1.

Lemma 5.2. Assume L is hyperbolic in the sense of (1.9). Then there exist constants

M, δ0 > 0 such that for all λ in the strip |Im λ| ≤ δ0 we have

|λ2−ℓL̂(λ)−1|L(L2(Ω)N ,Hℓ(Ω)N ) ≤ M, ℓ = 0, 1, 2, (5.4)

and L̂(λ)−1 is analytic as a function of λ in the strip |Im λ| ≤ δ0 with values in

L(L2(Ω)N , Hℓ(Ω)N ).

Setting ℓ = 2, we note that L̂(λ) is invertible for all λ in the strip with uniform

bounds.
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Proof. As already mentioned, the elliptic operator L̂(λ) is Fredholm of index zero

from H2(Ω)N∩H1
0 (Ω)N into L2(Ω)N , for any fixed λ. By our hyperbolicity assumption,

the kernel is trivial and L̂(λ)−1 : L2(Ω)N → H2(Ω)N ∩H1
0 (Ω)N exists and is bounded,

for all real λ. To show analyticity of L̂(λ)−1, we use the factorization

L̂(λ + η) =
(
id +

(
L̂(λ + η) − L̂(λ)

)
L̂(λ)−1

)
L̂(λ),

with L̂(λ + η) − L̂(λ) = η(iγ − 2λ − η). For η ∈ C close to zero and λ ∈ R, the first

factor is close to identity, and we obtain a Neumann series for L̂(λ+η)−1. In particular

L̂(λ)−1 exists for λ in an open neighborhood of the real axis. This proves (5.4) in any

rectangle |Re λ| ≤ R < ∞, |Im λ| ≤ δ′0(R), with a constant M = M ′(R).

For large |Re λ| we compare L̂(λ)−1 with the resolvent (∆x − λ2)−1 of the Laplacian

∆x with Dirichlet boundary conditions. In fact, elliptic regularity theory implies that

||λ2−ℓ(∆x − λ2)−1||L(L2(Ω)N ,Hℓ(Ω)N ) ≤ M̃ (5.5)

for ℓ = 0, 1, 2 and |Imλ| ≤ δ′′0 . This proves the required estimate (5.4) for (∆x−λ2)−1.

In the strip |Imλ| ≤ δ′′0 , we factorize

L̂(λ) =
(
id +

(
L̂(λ) + λ2 − ∆x

)
(∆x − λ2)−1

)
(∆x − λ2),

with L̂(λ) + λ2 −∆x = iλγ + f ′(w(x)). The first factor is uniformly close to identity

in L(L2(Ω)N). For |Reλ| ≥ R0 and |Imλ| ≤ δ′′0 the estimate (5.4) for L̂(λ)−1 now

follows from the corresponding estimate (5.5), again by Neumann series, putting

δ0 = min{δ′0(R0), δ
′′
0} . This proves the Lemma.

Lemma 5.3. The hyperbolic linearization L defined in (5.2) is a bounded linear

isomorphism from H2(Q)N ∩ H1
0(Q)N to L2(Q)N .

Proof. We solve Lu = ϕ, ϕ ∈ L2(Q)N , via Fourier transform. Let

ϕ̂(λ, x) =
1√
2π

∫R eiλtϕ(t, x)dt ∈ L2(Q)N (5.6)

and define û(λ) = L̂(λ)−1ϕ̂(λ)

By Lemma 5.2,

||λ2−lû(λ, x)||L2(R,Hl(Ω)N ) ≤ M ||ϕ||L2(Q)N .

Inverse Fourier transform now proves the Lemma.
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Lemma 5.4. Consider hyperbolic L and compactly supported ϕ ∈ L2(Q)N such that

ϕ = 0 for t 6∈ [0, 1]. Then there exist constants M1, δ0 > 0 such that u = L−1ϕ satisfies

an exponential decay estimate

|| cosh(δ0t)u||H2(Q)N ≤ M1||ϕ||L2(Q)N

Proof. The Fourier transform ϕ̂(λ), defined in (5.6), is globally analytic in λ ∈ C

because ϕ has compact support in t. Moreover

||ϕ̂||L2(R+iδ,L2(Ω)N ) ≤ e|δ|||ϕ||L2(Q)N

for any fixed δ ∈ R. By Lemma 5.2, L̂−1(λ) is analytic for λ ∈ R + iδ, |δ| ≤ δ0.

Moreover, û = L̂−1ϕ̂ satisfies an estimate

||λ2−ℓû||L2(R+i δ,Hℓ(Ω)N ) ≤ Me|δ|||ϕ||L2(Q)N (5.7)

for |δ| ≤ δ0, ℓ = 0, 1, 2.

Now define the Fourier inversion with shifted integration paths

ũ(t, x) =





1√
2π

∫R−iδ0

e−iλt û(λ, x)dλ for t ≥ 0

1√
2π

∫R+iδ0

e−iλt û(λ, x)dλ for t < 0.

By the estimates (5.7) on û in the strip |Imλ| ≤ δ0 we have

|| cosh(δ0t)ũ(t, x)||H2(Q)N ≤ M ′
1||ϕ||L2(Q)N .

It remains to show that ũ = u is indeed the desired solution of Lu = ϕ. We first fix

t ≥ 0; the case t < 0 is similar. Define

ũR(t, x) =
1√
2π

∫ R−iδ0

−R−iδ0

e−iλt û(λ, x)dλ

uR(t, x) =
1√
2π

∫ R

−R

e−iλt û(λ, x)dλ

Clearly ũR(t) → ũ(t) and uR(t) → u(t) in L2(Ω)N , for R → ∞.
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By Lemma 5.2, the integrand is holomorphic in the rectangle |Reλ| ≤ R, −δ0 ≤
Imλ ≤ 0. Cauchy’s integral formula therefore implies that

uR(t) − ũR(t) =
1√
2π

(

∫ R

R−iδ0

+

∫ −R−iδ0

−R

)e−iλtû(λ)dλ. (5.8)

We show that both integrals converge to zero in L2(Ω)N , for R → +∞. Indeed we

recall that

ϕ̂(λ) =
1√
2π

∫ 1

0

eiλtϕ(t)dt

is bounded, uniformly for λ in the strip |Imλ| ≤ δ0, with values in L2(Ω)N . By (5.7),

l = 0, the same holds for λ2û(λ).

Therefore
∥∥∥∥
∫ R

R−iδ0

e−iλtû(λ)dλ

∥∥∥∥
L2(Ω)N

≤ sup ||λ2û(λ)||L2(Ω)N

∫ δ0

0

eλ′tdλ′ · 1

R2
.

A similar bound on the other integral in (5.8) proves that

||ũR(t) − uR(t)||L2(Ω)N → 0 for R → ∞.

This proves ũ(t) = u(t) in L2(Ω)N , and the proof of Lemma 5.4 is complete.

In the next two Lemmata 5.5 – 5.6, we prove bounded invertibility of L in the t-

uniform spaces H2
a , Ha.

Lemma 5.5. The hyperbolic operator L is surjective from H2
a to Ha. Specifically,

there is a bounded linear right inverse L−1
0 : Ha → H2

a , such that LL−1
0 = id on Ha.

Proof. Let ϕ ∈ Ha be given. We have to find u such that Lu = ϕ. We decompose

ϕ =
∑
j∈Zϕj with ϕj = ϕ · χ[j,j+1](t). Here the indicator function χ[j,j+1](t) = 1 for

t ∈ [j, j + 1], and 0 otherwise. Let uj := L−1ϕj. Note that L−1ϕj is well defined, by

Lemma 5.3. From translation invariance of L and of the norms in H2
a and Ha with

respect to t, together with exponential decay from Lemma 5.4, we conclude that

||uj cosh(δ0(t − j))||H2(Q)N ≤ M1||ϕj||Ha
≤ M1||ϕ||Ha

.
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Here, again Qk = [k, k + 1]×Ω. In particular, there is a constant M2 independent of

j, k such that

||uj||H2(Qk)N ≤ M2e
−δ0|j−k|||ϕ||Ha

Therefore the sum u =
∑

uj converges in H2(Qk)
N , for any k ∈ Z, and

Lu = L
∑

j

uj =
∑

j

Luj =
∑

j

ϕj = ϕ.

Moreover we have obtained a bound for the solution u := L−1
0 ϕ constructed above:

||u||H2
a
≤ M ′

2||ϕ||Ha
.

Lemma 5.6. Assume L is hyperbolic. If u ∈ H2
a and Lu = 0, then u = 0.

Proof. Consider the unbounded formal adjoint operator L∗ of L on L2(Q)N , de-

fined in (5.3). Recall that L∗ is hyperbolic because L is hyperbolic. In particular,

Lemma 5.3 implies that L∗ is invertible on L2(Q)N . Decomposing uj = u · χ[j,j+1](t)

for j ∈ Z, as in the proof of Lemma 5.5, we consider vj := (L∗)−1uj ∈ H2(Q)N .

By Lemma 5.4, applied to L∗, the vj satisfy exponential estimates

|| cosh(δ0(t − j))vj ||H2(Q)N ≤ M∗
1 ||u||Ha

Now, Lu = 0 and integration by parts yields

0 =

∫R ∫

Ω

vj · Lu =

∫R ∫

Ω

u · L∗vj =

∫R ∫

Ω

u · uj =

∫ j+1

j

∫

Ω

|uj|2,

for all j ∈ Z. Note that boundary terms of the partial integration with respect to t

vanish. Indeed vj(t) and ∂tvj(t) decay exponentially with e−δ0|t| in L2(Ω)N and u(t)

and ∂tu(t) are bounded in L2(Ω)N , by the Sobolev trace formula

∂tvj ∈ H1(Q) →֒ L2(Ω)N ∋ ∂tvj(t).

This proves the lemma.

Corollary 5.7. The hyperbolic operator L is an isomorphism from H2
a to Ha.
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Proof. By injectivity, Lemma 5.6, the bounded right inverse L−1
0 constructed in

Lemma 5.5 is indeed the inverse of L.

Remark 5.8. We emphasize that there is a dynamical interpretation for the set

spec L̂(·) := {λ ∈ C| L̂(λ) possesses non-trivial kernel},

usually called the spectrum of the operator pencil L̂(·). Writing the linearized equation

Lu = 0 formally as a first-order differential equation in t,

∂tu = v, ∂tv = −γv − [∆x + f ′(w(x))]u, (5.9)

we can associate to each λ ∈ spec L̂(·) a solution (u, v)(t, x) = exp(iλt)(u0(x), iλu0(x))

of (5.9). In other words, i · spec L̂(·) = spec L, where L is the operator on the right

sides of (5.9),

L :
(
H2(Ω)N ∩ H1

0 (Ω)N
)
× H1

0 (Ω)N → H1
0 (Ω)N × L2(Ω)N

(u, v) 7→ (v,−γv − [∆x + f ′(w(x))]u).

In this setting, γv and f ′(w(x))u can be considered as a relatively compact pertur-

bation of the Laplace equation ∂2
t u + ∆xu = 0, with spectrum ±√

µk, k ∈ N, where

again 0 < µ1 < µ2 ≤ . . . stand for the eigenvalues of the Laplacian. In particular,

we recover the ill-posedness of the initial-value problem in the sense that the spectrum

spec L has unbounded positive and negative real parts. For more general results on

operator pencils we refer to [20] and [28, 29].

We now return to the nonlinear equation (1.1), (1.2) in a neighborhood of the equi-

librium w.

Lemma 5.9. The Nemitskii operator f̃ : H2
a → Ha, f̃(u)(t, x) := f(u(t, x)) is of

class C1. The derivative Df̃(u) ∈ L(H2
a , Ha) is uniformly continuous on bounded

subsets of H2
a .

Proof. The corresponding Nemitskii operator f̃ from L2p(Q0)
N to L2(Q0)

N is contin-

uously differentiable by the growth assumption (1.3) and the Krasnoselskii lemma [2].

By Sobolev embedding, f̃ is also continuous as a map from H2(Q0)
N to L2(Q0)

N .
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By compactness of the embedding, it is uniformly continuous on bounded subsets of

H2(Q0)
N . For R > 0, let ωR(·) denote the modulus of continuity of f̃ on the ball of

radius R centered at the origin in H2(Q0)
N .

Let again Ts denote the shift of functions by s along the axis of the cylinder; see (2.1).

For ||u||H2
a
≤ R and h → 0 in H2

a we estimate

||f̃(u + h) − f̃(u)||Ha
= sup

s∈R ||f(Ts(u + h)) − f(Tsu), Q0||0,2 ≤

≤ sup
s∈R ω2R(||Tsh, Q0||2,2) ≤ ω2R(||h||H2

a
). (5.10)

Following the same type of reasoning for the derivative f ′, we see that derivatives on

H2
a exist and are uniformly continuous on bounded subsets of H2

a . This proves the

lemma.

Proof of Proposition 5.1. We have to show that any hyperbolic equilibrium w

of (1.1), (1.2) is isolated, as a solution in H2
a . Suppose u = w + ũ ∈ A ⊂ H2

a , with ũ

small in H2
a . Then

Lũ = −(f̃(w + ũ) − f̃(w) − Df̃(w)ũ) =: R(ũ)

holds for the linearization L at w defined in (5.2). By Lemma 5.8, R ∈ C1(H2
a , Ha)

and DR(0) = 0. On the other hand, L ∈ GL(H2
a , Ha) is boundedly invertible. By

the inverse function theorem, the solution ũ = 0, alias u = w, is therefore unique in

a neighborhood U of w in H2
a .

We finish this chapter by extending the above result ’continuously’ to the Galerkin

approximation (2.2).

Proposition 5.10. Let w be a hyperbolic equilibrium of (1.1), (1.2). Then there

exists m0 ∈ N and a neighborhood U(w) ⊂ H2
a of w such that for all m ≥ m0 the

following holds:

(i) U(w) ∩ Am = {wm} ⊂ H2
a ;

(ii) wm are equilibria of the Galerkin approximation (2.2). Moreover wm → w in

H2
a , for m → ∞;
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(iii) The linearization Lm of (2.2) at wm is invertible with m-uniform bounds, as

a map from H2
a to Ha.

Proof. We consider the left hand sides of (1.1) and (2.2) as nonlinear operators from

H2
a to Ha. By Lemma 5.8, these operators are of class C1. We show that they depend

continuously on m. We then complete the proof by invoking an implicit function

theorem with respect to the ”parameter” m.

We first claim that the difference (1−Pm)f̃ : H2
a → Ha converges to zero with respect

to uniform C1-convergence on bounded subsets of H2
a . Let us prove convergence in

C0 first. We argue by contradiction. Suppose

||(1 − Pm)f̃(um)||Ha
≥ ε > 0

for some bounded sequence um ∈ H2
a . Possibly shifting the um in t, by t′m, we may

then assume

||(1 − Pm)f̃(um), Q0||0,2 ≥ ε/2 > 0

By compactness of the embedding H2(Q0)
N →֒ L2p(Q0)

N we may assume um → u in

L2p(Q0)
N , possibly for a subsequence. Therefore

||(1 − Pm)f̃(u), Q0||0,2 ≥ ε/2 − ||f̃(um) − f̃(u), Q0||0,2 ≥ ε/4

for m large, by continuity of the Nemitskii operator f̃loc : L2p(Q0)
N → L2(Q0)

N . This

clearly contradicts the strong convergence (1 −Pm)f̃(u) → 0 in L2(Q0)
N for m → ∞.

For the derivative (1 − Pm)Df̃ : H2
a → Ha, the arguments are similar and we omit

the details.

We now consider the Galerkin approximation (2.2) together with the limit (1.1) as

a family of equations with ”parameter” m. To equation (1.1) we naturally associate

the parameter value m = ∞. The parameter space then becomes a metric space

with discrete metric for finite m and distance d(m,∞) = 1
m

. Having established

continuous dependence on the parameter m in this sense, we invoke the implicit

function theorem; see for example [36, Ch.III,Thm.25]. This yields a locally unique

family of solutions wm ∈ H2
a of the Galerkin approximation (2.2) such that wm → w

in H2
a for m → ∞. This proves (i). By uniqueness, wm is translation invariant and
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thereby an equilibrium. This proves (ii). The last assertion, (iii), follows simply from

convergence of the equilibria wm in H2
a and of the derivatives (1 − Pm)Df̃(wm) in

L(H2
a , Ha). This proves the proposition.

6 Existence of Non-Equilibrium Solutions

As a first step towards Theorem 1 we prove the following crucial proposition:

Proposition 6.1. Suppose w1 and w2 are two equilibria of (1.1), (1.2), both hyper-

bolic in the sense of (1.9). Then at least one of these two equilibria is not isolated in

A ⊂ H2
loc.

From this result it is easy to conclude the existence of a non-equilibrium solution

by the following central argument. For equilibrium solutions, convergence in the

space H2
loc coincides with convergence in the t-uniform space H2

a . By the above

Proposition 6.1, at least one of the two equilibria, say w1, is not isolated in A — with

respect to the topology of H2
loc. By hyperbolicity, Proposition 5.1, on the other hand,

w1 is isolated in A — with respect to the t-uniform topology of H2
a . In particular,

w1 is isolated within the set of equilibria, even with respect to the topology of H2
loc.

Therefore w1, not being H2
loc-isolated in A, must be an accumulation point, in H2

loc,

of non-equilibrium solutions in A. As we will see in the next section, these non-

equilibrium solutions can in fact be chosen to belong to a single non-equilibrium

trajectory in A.

We outline our proof of Proposition 6.1. The proof is based on Conley index theory

for the Galerkin approximation (2.6) with homotopy parameter 0 ≤ ϑ ≤ 1. Recall

that bounded solutions of the Galerkin approximation lie in the finite-dimensional

subspace range Pm for m ≥ m0 and any fixed t ∈ R; see (2.4). Therefore, instead

of (2.6), we may consider the following system of ordinary differential equations

du

dt
= v

dv

dt
= −∆xu − ϑ(γv + Pmf(u)). (6.1)
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Here the pair ξ = (u, v) belongs to the phase space

Vm := PmL2(Ω)N × PmL2(Ω)N ∼= R
2mN .

See Lemma 6.2 for this reduction to an ordinary differential equation. The right–

hand side of (6.1) is of class C1, because f is of class C1. Hence (6.1) defines a local

C1-flow on Vm. We write

ξ0 · t := ξ(t) (6.2)

where ξ(t) = (u(t), v(t))T is a solution of (6.1) and ξ(0) = ξ0 ∈ Vm.

Let A′
m,ϑ ⊂ Vm denote the initial values of global orbits which are bounded in Vm

for all positive and negative times. We abbreviate A′
m := A′

m,1. Note that A′
m is an

isolated invariant set in the sense of Section 4. It is invariant under the flow of (6.2)

and, by boundedness and maximality, it is isolated in any sufficiently large ball. Our

strategy of proof for Proposition 6.1 is as follows. We compute the Conley index of

A′
m using the homotopy parameter ϑ. For ϑ = 0, the differential equation is linear

and the Conley index that of a hyperbolic equilibrium. Using the a priori estimates

from Propositions 2.1 and 2.2, and the continuation property of Proposition 4.1, we

have thus calculated the Conley index of A′
m = A′

m,1; see Lemma 6.3.

The proof of Proposition 6.1 is then completed indirectly, as follows. We suppose the

two equilibria w1 and w2 were isolated. We could then write A′
m as a disjoint union of

two hyperbolic equilibria, and a compact complement. Using the wedge formula (4.3)

for Conley index we then reach a contradiction to the assumption of w1 and w2 being

hyperbolic.

As a first step, we relate the dynamics on Am,ϑ ⊂ H2
loc and A′

m,ϑ ⊂ Vm. Recall

that the dynamics on Am,ϑ ⊂ H2
loc is defined by the shift Ts of bounded solutions;

see (2.1). The dynamics on A′
m,ϑ, on the other hand, is induced by the ordinary

differential equation (6.1). Time orbits in Am,ϑ or A′
m,ϑ are always understood as

trajectories with respect to the so-defined dynamics.

Lemma 6.2. Assume m ≥ m0. Then there is a homeomorphism Π0 = Π0(m, ϑ) :

Am,ϑ → A′
m,ϑ, such that

ξ · s := Π0 Ts Π0
−1 ξ, for all ξ ∈ A′

m,ϑ and all s ∈ R. (6.3)
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In particular, all A′
m,ϑ are compact and bounded in Vm, uniformly with respect to

0 ≤ ϑ ≤ 1.

Proof. We define Π0 as the trace operator

Π0 : H2
loc → L2(Ω)N × L2(Ω)N

u 7→ Π0u := {u
∣∣
t=0

, ∂tu
∣∣
t=0

}. (6.4)

We claim

A′
m,ϑ = Π0Am,ϑ (6.5)

Indeed let u ∈ Am,ϑ. Then due to (2.4), u coincides with its Galerkin projection Pmu,

and ξ(t) ∈ Vm for all t ∈ R. By definition of Am,ϑ, the function ξ(t) = Π0(Ttu) solves

the system of ordinary differential equations (6.1). But since u ∈ H2
a , ξ(t) is bounded

by continuity of the trace embedding. Therefore, ξ(0) = Π0u ∈ A′
m,ϑ.

Conversely, let ξ0 ∈ A′
m,ϑ and ξ(t) = (u(t), v(t)) be the corresponding bounded

solution of (6.1). From the second equation in (6.1), we obtain that ∂2
t u(t) = ∂tv(t)

is also bounded. From (2.4) and from the smoothness of eigenfunctions ei(x) of the

Laplace operator we conclude that u ∈ Am,ϑ with ξ0 = Π0u, by definition. This

proves equation (6.5).

By Proposition 2.2 the set Am,ϑ is compact in H2
loc. By continuity of the trace

operator Π0, A′
m,ϑ is also compact. Since the initial value problem for the system of

ordinary differential equations (6.1) possesses a unique solution, the trace operator

Π0 is injective and therefore defines a continuous bijection between Am,ϑ and A′
m,ϑ.

But a continuous bijection between compact sets is in fact a homeomorphism. This

proves that Am,ϑ and A′
m,ϑ are homeomorphic.

The remaining assertions of the lemma now follow easily. The conjugacy (6.3)

of the flows is an immediate consequence of the explicit expression (6.4) for Π0.

Compactness and uniform boundedness of the sets A′
m,ϑ follow immediately from

Proposition 2.2. This proves Lemma 6.2.

Lemma 6.3. Let m ≥ m0 be sufficiently large. The “global attractor” A′
m,ϑ is an

isolated invariant set of the ordinary differential equation (6.1) in the sense of Section
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4. Its Conley index is independent of ϑ ∈ [0, 1], and is given by

C(A′
m,ϑ) = ΣmN

Proof. The attractors Am,ϑ are bounded, uniformly for m ≥ m0, ϑ ∈ [0, 1]; see

Proposition 2.2. Likewise the “attractors” A′
m,ϑ are uniformly bounded in Vm

∼=
R2mN ; see Lemma 6.2. Any sufficiently large ball in Vm is therefore an isolating

neighborhood for all A′
m,ϑ. Indeed, all the A′

m,ϑ, ϑ ∈ [0, 1], are invariant sets, con-

tained in a fixed, chosen large ball. They are the maximal invariant sets in this

ball because any orbit outside A′
m,ϑ is unbounded, by definition of A′

m,ϑ. In partic-

ular, all A′
m,ϑ are isolated invariant sets. By homotopy invariance of Conley index,

Proposition 4.1, the Conley index C(Am,ϑ) does not depend on ϑ.

It remains to compute C(Am,ϑ=0) for the flow of (6.1) on Vm, with ϑ = 0. The

flow is linear with eigenvalues ±√
µl, 1 ≤ l ≤ m, each of multiplicity N . Here

0 < µ1 < µ2 ≤ . . . ≤ µm denote the first m eigenvalues of −∆x on Ω with Dirichlet

boundary conditions. We conclude that the origin is a hyperbolic equilibrium with

mN -dimensional unstable eigenspace.

Therefore

C(A′
m,0) = C({0}, ϑ = 0) = ΣmN

where ΣmN denotes the mN -dimensional pointed sphere; see (4.2). This proves the

lemma.

From the above lemma, we see that the set A′
m,ϑ is a hyperbolic set of increasing un-

stable dimension, rather than an attractor, if we consider arbitrary initial conditions

for the dynamical system in Vm.

Proof of Proposition 6.1. We argue by contradiction. Suppose the hyperbolic

equilibria w1, w2 are isolated in A ⊂ H2
loc. Then the attractor A decomposes disjointly

into two equilibria w1, w2 and their (possibly empty) H2
loc-closed complement

A = {w1}∪̇{w2}∪̇Ac ⊂⊂ H2
loc

Upper semicontinuity under Galerkin approximations yields corresponding decompo-

sitions

Am = (Am ∩ Uε(w1))∪̇(Am ∩ Uε(w2))∪̇Ac
m ⊂ H2

loc
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into compact disjoint sets, for all m sufficiently large; see Proposition 2.1. Here,

Uε(w) denotes the ε-neighborhood of w in H2
loc. Increasing m0 we may choose ε > 0

arbitrarily small.

By hyperbolicity, Proposition 5.10 (i),(ii), for any ε > 0 small enough we can fix m

sufficiently large such that

Am ∩ Uε(wi) = {wi,m}, i = 1, 2,

are unique hyperbolic equilibria of (2.6). We have thus obtained a decomposition

Am = {w1,m}∪̇{w2,m}∪̇Ac
m ⊂⊂ H2

loc (6.6)

of Am into disjoint compact subsets, for some large m. By the flow equivalence of

Lemma 6.2, the decomposition (6.6) yields an analogous decomposition

A′
m = {w1,m}∪̇{w2,m}∪̇Ac′

m ⊂⊂ Vm (6.7)

into compact isolated invariant sets.

By flow invariance of A′
m, the isolated points wj,m = (wj,m, 0) ∈ Vm of A′

m are

equilibria of the ordinary differential equation (6.1), for ϑ = 1. By Proposition 5.10

these equilibria are in fact hyperbolic in the sense that the linearization of (6.1) at

wj,m does not possess eigenvalues on the imaginary axis (for sufficiently large fixed

m).

The Conley index of wj,m is, in consequence, a pointed sphere of dimension lj . Using

the wedge product formula (4.3) for the index and the decomposition (6.7), we obtain

C(A′
m) = C({w′

1,m}) ∨ C({w′
2,m}) ∨ C(Ac′

m) = Σl1 ∨ Σl2 ∨ C(Ac′

m).

This contradicts the previous calculation from Lemma 6.2, where we have shown that

C(A′
m) = ΣmN .

Indeed let us compute the total dimensions of homology groups in both cases:

dim H∗(Σ
mN ) = 1

but

dim H∗(Σ
l1 ∨ Σl2 ∨ C(Ac′

m)) ≥ dim H∗(Σ
l1) + dim H∗(Σ

l2) = 2.
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By homotopy invariance, the two dimensions have to coincide. This contradiction

proves that w1 and w2 are not both isolated in A, in the H2
loc-topology.

Remark 6.4. It can be checked that both l1 and l2, are non-zero for large m and,

in fact, lj → ∞, j = 1, 2, for m → ∞; see also Remark 5.8 and the discussion in

Section 8.

7 Convergent Non-Equilibrium Solutions

We complete the proof of Theorem 1 and we prove Theorem 2 in this section. In

addition to Proposition 6.1 on non-isolated, but hyperbolic equilibria, the following

lemma is the main ingredient.

Lemma 7.1. Suppose the equilibrium w is hyperbolic in the sense of (1.9), and not

isolated in A ⊂ H2
loc. Then there exists a non-equilibrium solution u ∈ A \ {w} such

that the shifted solution Ttu converges to w,

Ttu → w in H2
loc,

for t → +∞ or for t → −∞.

Proof. We first construct a solution u ∈ A whose time orbit stays in a small H2
a-

neighborhood Uε(w) of the hyperbolic equilibrium w, say, for all negative times. We

then argue that this solution must converge to w for t → −∞. Proceeding indirectly,

we show that otherwise we could construct a solution ū in the attractor A, different

from w, which remains close to w for all times t ∈ R. However, by Proposition 5.1,

the hyperbolic equilibrium w is isolated in the global attractor A with respect to the

t-uniform H2
a-topology, and we have reached a contradiction.

To start, let us fix ε > 0 small such that A ∩ U ε(w) = {w}, by hyperbolicity of w

and Proposition 5.1. Here, Uε denotes the closed ε-ball in H2
a . By assumption, w is

not isolated in A with respect to the H2
loc-topology. Hence there exists a sequence

uℓ ∈ A, uℓ 6= w such that uℓ → w in H2
loc, for ℓ → ∞. By definition of the topology

in H2
loc, this is equivalent to

||uℓ − w, QT ||2,2 → 0 for ℓ → ∞ and every fixed T ∈ R. (7.1)
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We recall the notation QT := [T, T + 1] ×Ω ⊂ Q. Since Uε(w) ∩A = {w} in H2
a , we

have uℓ /∈ Uε(w). Therefore, there exists a sequence Tℓ ∈ R such that

||uℓ − w, QTℓ
||2,2 = ε > 0. (7.2)

For Tℓ, we pick the first positive or negative exit times from the ε-ball in H2 around

w, that is,

||uℓ − w, QT ||2,2 < ε for |T | < |Tℓ|. (7.3)

From (7.1), (7.2) we conclude that |Tℓ| → ∞ for ℓ → ∞. Possibly after passing to

a subsequence, we may therefore assume Tℓ → +∞, or Tℓ → −∞. We henceforth

consider the case Tℓ → +∞, the other case being completely analogous.

Let us consider the shifted sequence ûℓ = TTℓ
uℓ ∈ A. Formulae (7.2) and (7.3) now

are equivalent to

||ûℓ − w, Q0||2,2 = ε and ||ûℓ − w, QT ||2,2 < ε for T ∈ (−2Tℓ, 0) (7.4)

By Theorem 3 of Section 2, A is compact in H2
loc. We may therefore assume without

loss of generality that ûℓ → u ∈ A in H2
loc. Passing to the limit in (7.4) we obtain

||u − w, Q0||2,2 = ε and ||u − w, QT ||2,2 ≤ ε for T ≤ 0

In particular, u 6= w. We claim that

T−ℓu → w for ℓ → ∞ in H2
loc,

revealing u to be the non-equilibrium solution sought for in the lemma. Indeed, let

us consider any H2
loc convergent subsequence

T−ℓk
u → ū in H2

loc for ℓk → ∞

in the precompact set {T−ℓu, ℓ ∈ R+} ⊂ A. From (7.4) we conclude

||T−ℓk
u − w, QT ||2,2 ≤ ε for T < ℓk,

and, passing to the limit, ||ū − w||H2
a
≤ ε. By assumption, A ∩ Uε(w) = {w}, and

therefore ū = w.
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Proof of Theorems 1 and 2, for κ = 1. By Proposition 6.1, at least one of

the two hyberbolic equilibria w1, w2 is not isolated in A with respect to the “local”

H2
loc-topology. Then, by Lemma 7.1, there is a non-equilibrium solution, converging

to this equilibrium for t → +∞ or for t → −∞, just as claimed in Theorem 2.

Proof of Theorems 1 and 2, for κ ≥ 1. By Proposition 6.1, at most one of the

2κ hyberbolic equilibria is isolated in the H2
loc-topology on A. By Lemma 7.1 we

can construct 2κ− 1 non-equilibrium solutions which converge to these equilibria for

t → +∞ or t → −∞. These 2κ−1 solutions can be labeled by the equilibria they are

converging to. Our labeling considers time-shifted solutions as identical. If ever the

same solution carries two different equilibrium labels, it must be heteroclinic between

these two equilibria. Therefore there exist at least κ distinct bounded non-equilibrium

solutions. This completes the proofs of Theorems 1 and 2.

We finish this section with the variational case, f(u) = ∇uF (u) and γ + γ∗ strictly

definite.

Proof of Corollary 1.1. For every u ∈ A we construct the Lyapunov function

Vu(t) :=
(
∂tu(t, ·), ∂tu(t, ·)

)
−

(
∇xu(t, ·),∇xu(t, ·)

)
+ 2

(
F (u(t, ·)), 1

)

Here again (·, ·) denotes the scalar product in the cross section L2(Ω)N and f(u) =

∇uF (u).

Since u ∈ H2
a , we have Vu(·) ∈ C1

b (R) and a calculation shows that

d

dt
Vu(t) = −2(γ∂tu(t, ·), ∂tu(t, ·)) (7.5)

Since γ + γ∗ is strictly definite, the right-hand side of (7.5) is non-zero for all t ∈ R,

along non-equilibrium solutions in the global attractor A. Therefore, the function Vu

is monotone. Because the continuous functional V is bounded on the compact global

attractor A, the limits

limt→±∞ Vu(t) = V± (7.6)

exist. Following the standard definition, we define the ω-limit set ω(u) of the point

u ∈ A ⊂ H2
loc as the set of accumulation points of {Tsu, s ≥ 0} in H2

loc. Since A
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is compact and Ts-invariant, the set ω(u) is a non-empty, compact, and connected

subset of A ⊂ H2
loc. Moreover, for every point ū ∈ ω(u) there is a sequence sl → +∞

such that

ū = liml→∞ Tsl
u in H2

loc. (7.7)

Using the identity VTsu(t) = Vu(t + s), we obtain

Vu(t2 + sl) − Vu(t1 + sl) = −2

∫ t2

t1

(γ∂tTsl
u(t, ·), ∂tTsl

u(t, ·)) dt

for arbitrary but fixed t1, t2 ∈ R. Using (7.6) and (7.7) we obtain

0 =

∫ t2

t1

(γ∂tū(t), ∂tū(t)) dt

in the limit sl → ∞. Hence ∂tū(t) ≡ 0 and ū is an equilibrium solution of the

problem (1.1), (1.2). This proves that the ω-limit set ω(u) consists of equilibria

only. But the ω-limit set ω(u) must be connected, and, by assumption, there are

only finitely many equilibria. Therefore ω(u) consists of a single point {w+} and

Tsu → w+ in H2
loc for s → +∞.

The case s → −∞ can be treated in the same way and, in consequence, Tsu → w− in

H2
loc for s → −∞. It remains to show that w+ 6= w− for the non-equilibrium solution

u ∈ A. Indeed integrating (7.5) and using (7.6) we obtain that

V+ − V− =

∫R(γ∂tu(t), ∂tu(t)) dt 6= 0 (7.8)

for the non-equilibrium solution u. On the other hand, continuity of V implies

Vw±
(t) ≡ V±. Therefore, equation (7.8) shows that w+ 6= w−. This proves Corollary

1.1.

8 Concluding Remarks

Our Theorems 1 and 2 are just small steps towards a more specific investigation of

the global dynamics on the global attractor A of an elliptic system (1.1), (1.2). For

one-dimensional cross-section, dim Ω = 1, of the cylinder Q = R × Ω, and a single

scalar equation, N = 1, much more information is available. We summarize some of
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these results below. As already mentioned in the introduction, the attractor A then

lies inside a finite-dimensional, locally flow-invariant manifold. In particular, A has

finite Hausdorff-dimension.

For γ → +∞, that is, for convection dominated problems, the elliptic dynamics in

the strip limits onto a parabolic semigroup

∂tu = ∂xxu + f(u). (8.1)

The global attractors A for these gradient-like systems are rather well understood.

In particular, information on the hyperbolic equilibrium set alone determines which

equilibria possess a heteroclinic connection, and which do not. See [13], [14] for recent

accounts of this theory, which is based on nodal properties of Sturm oscillation type.

The Morse-Smale property of (8.1), and thereby the structure of the global attractor

A(γ), both persist for large γ ≥ γ0. For explicit bounds on γ0; see [7]. The gradient-

dependent case f = f(x, u, ∂xu) was treated in [34].

Even in the phase plane of dim Ω = 0, N = 1, non-generic saddle-saddle connections

can occur as the wave speed parameter γ decreases through positive γ∗ < γ0; see for

example [10], Example II. 7.3 and also [39]. This observation was the starting point of

Gardner’s result for scalar cubic f , N = 1, and dim Ω = 1 under Dirichlet boundary

conditions. Today his result can be recovered by reduction to inertial manifolds

M(γ) of fixed finite dimension and a direct application of Conley index and transition

matrices [17],[18] within M(γ). Indeed, after finite-dimensional reductions to inertial

manifolds M(γ), γ 6= 0, Conley index theory applies within M(γ), directly. An

additional Galerkin discretization is not necessary — albeit, more elementary — in

those cases.

In the variational case f = ∇F and γ ∈ R \ {0}, an easy computation shows that

C(wm) = Σi(w)+mN

for the Galerkin approximation wm ∈ Am ⊂ R
2mN of a hyperbolic equilibrium w ∈

A; m ≥ m0. Here i(w) is a suitably chosen constant, independent of m. In particular,

the appropiately shifted homology of the Conley index

C̃H∗(wm) := CH∗−mN (wm) (8.2)
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stabilizes, for m → ∞. It is therefore tempting to define

C̃H∗(S) := CH∗−mN(Sm),

as the Conley homology index of an arbitrary isolated invariant set S ⊂ A. Morse

decompositions, connection matrices, and connection graphs seem to stabilize un-

der this Galerkin approximation. In the present paper, we have verified (8.2) for

hyperbolic equilibria and for A itself; see Lemma 6.3 and Remarks 5.8, 6.4.

Definition (8.2) for an elliptic Conley homology index is reminiscent of Floer homol-

ogy. See [1] for a Floer homology construction associated to a strongly indefinite

variational problem describing an elliptic system on a bounded domain. For Floer’s

original construction see [16] and also [24], [33]. The original applications to periodic

solutions of Hamiltonian systems differ from our approach in important technical

details. First, we do not assume a variational structure of our elliptic system in

the cylinder (t, x) ∈ R × Ω. Even where we do, as in Corollary 1.1, our Lyapunov

functional V , given in (1.10), is bounded below on a cross-section, if we set ∂tu = 0.

The strong indefiniteness of V is, in our problem, generated by the unbounded ∂t-

component. Notwithstanding those two differences, our original equation is elliptic —

like the equations for the pseudo-holomorphic curves which constitute the ill-defined

gradient-“flow” to the action functional in the elliptic context. We are therefore cau-

tiously optimistic towards (8.2) becoming a viable, more direct definition of Conley

homology for elliptic systems in cylinder domains.

For wave speed γ = 0, the elliptic system (1.1), (1.2) becomes “time” reversible

under the reflection t 7→ −t. If f(u) = ∇F (u) is a gradient, the system is in addition

formally Hamiltonian with respect to the strongly indefinite energy functional V

defined in (1.10). Reductions to finite-dimensional symplectic manifolds M(γ = 0)

with Hamiltonian flows are available, both locally [25] and – under spectral gap

conditions on ∆ – globally [30]. Families of nontrivial periodic traveling waves u(t)

occur in a Hamiltonian context. For example, a local minimum of the Hamiltonian on

M(γ) is surrounded by families of solutions, which are periodic with respect to t. This

fact is known as the Lyapunov center theorem and requires certain non-degeneracy

conditions.

Although this may not be obvious in the present paper, applications to traveling
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waves in reaction diffusion systems and in semilinear hyperbolic systems are a driving

motivation of our work. In the introduction we have pointed out the relevance of our

results to reaction diffusion systems. A specific example is the Fitz-Hugh-Nagumo

model for propagation of electric impulses in the giant squid axon:





∂τu1 = ∆t,xu1 + g(u1) − u2

∂τu2 = δ∆t,xu2 + au1 − bu2.
(8.3)

Here δ > 0 is small, a, b are positive and g(u1) = −u1(u1 − β)(u1 − 1) is a negative

cubic, 0 < β < 1/2. See [37], [42], for some background. Remarkably, system (8.3)

is gradient-like for δ = 0 and b2 ≥ a on bounded domains; see [11] for an explicit

Lyapunov function. The traveling wave ansatz u = u(t + cτ, x) leads to the elliptic

system 



c∂tu1 = ∆t,xu1 + g(u1) − u2

c∂tu2 = δ∆t,xu2 + au1 − bu2.
(8.4)

Existence of equilibria for this equation has been studied in [11] for the case dim Ω = 1.

We expect hyperbolicity of equilibria to hold for generic lengths of the interval Ω.

The growth conditions (1.3) are satisfied for dimensions of the cross-section n =

dim Ω ≤ 2. Though the dissipation condition is only satisfied with σ = 0, our results

apply. In particular Theorem 3, and Propositions 2.1 and 2.2 remain true for (8.4)

and its Galerkin approximation. Indeed, exploiting the diagonal structure of the

matrix γ = diag (c, c/δ), the proofs of Lemmata 3.1 and 3.2 can be easily adapted.

Damped semilinear hyperbolic systems

−a2∂ττu − D∂τu + ∆t,xu + f(u) = 0 (8.5)

in cylindrical domains x ∈ Ω, t ∈ R are yet another source of inspiration. Here

u ∈ RN , and the damping matrix D is assumed to be strictly positive definite.

The scalar case N = 1 corresponds to models from quantum electrodynamics; see

[27] and the references therein. The Ginzburg-Landau equations for u ∈ C ≃ R2,

with cubic nonlinearity f(u) = u · ϕ(|u|2) arise in nonlinear optics. Traveling waves

u = u(t + c̃τ, x) satisfy

(1 − (ac̃)2)∂2
t u − c̃D∂tu + ∆xu + f(u) = 0, (8.6)
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where ∆ = ∆x acts on the cross section Ω of (t, x) ∈ Q = R × Ω, as before. For

|ac̃| < 1, system (8.6) is elliptic of the form (1.1), (1.2) studied in the present paper.

Rescaling t, the “wave velocity” c discussed in the introduction takes the “relativistic”

form

c = −c̃(1 − (ac̃)2))−1/2

in terms of the wave velocity c̃ of system (8.5).
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[37] J. Smoller. Shock Waves and Reaction-Diffusion Equations. Springer-

Verlag, New York, 1983.

[38] R.Temam. Infinite Dimensional Dynamical Systems in Mechanics and

Physics. Appl.Math. Sci.68, Springer-Verlag, 1988.

[39] D.Terman. Directed graphs and traveling waves. Trans.Amer.Math. Soc.

289 (1985), 809–847.

[40] M.I.Vishik and S.V. Zelik. The trajectory attractor for a nonlinear elliptic

system in a cylindrical domain. Mat. Sb.187 (1996), 21–56.

[41] M.I.Vishik and S.V. Zelik. Attractors of nonlinear elliptic systems in cylin-

drical domains and their approximations. Preprint 1997.

[42] A.I. Volpert, V.A.Volpert, and V.A.Volpert. Traveling Wave Solutions of

Parabolic Systems. Transl.Math.Monogr.140, Amer.Math. Soc., Provi-

dence, 1994.

[43] S.V. Zelik. Boundedness of solutions for nonlinear elliptic systems in cylin-

drical domains. Mat. Zam.61 (1997), 447–450.

42


