
Gluing unstable fronts and baks together anprodue stable pulsesBj�orn Sandstedey and Arnd Sheelzy Department of Mathematis, Ohio State University, 231 West 18th Avenue,Columbus, OH 43210, USAz Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2-6, 14195 Berlin,GermanyAbstrat. We investigate the stability of pulses that are reated at T-points inreation-di�usion systems on the real line. The pulses are formed by gluing unstablefronts and baks together. We demonstrate that the bifurating pulses an neverthelessbe stable, and establish neessary and suÆient onditions that involve only the frontand the bak for the stability of the bifurating pulses.AMS lassi�ation sheme numbers: 34L05, 35B35, 37L151. IntrodutionWe onsider travelling waves of reation-di�usion equations posed on the entire realline. Suppose that the ordinary di�erential equation (ODE) that desribes travellingwaves admits a heterolini yle so that the �rst onnetion is transversely onstrutedwhile the other onnetion is of odimension two; see �gure 1. This situation is oftenalled a T-point [10℄. The interpretation for the partial di�erential equation (PDE) isas follows. There are two homogeneous rest states so that one of them, say p0, is stablewhile the other one, p1, is unstable. There is also a front that onnets p0 to p1, and abak that onnets p1 to p0. Furthermore, the front and bak have the same wave speed.It is known [3, 12℄ that, for ertain nearby parameter values, the PDE exhibits pulsesthat onnet the stable rest state p0 to itself; see �gure 2. These pulses are reated bygluing the front and the bak together near p1. The bifurating pulses are haraterizeduniquely by the length 2L of the plateau where the pulse is lose to the unstable reststate p1; see again �gure 2. An interesting issue is the stability of these pulses. Sine thepulses resemble onatenated opies of the front and the bak, one might expet thatthe spetrum of the pulses is lose to the union of the spetra of the front and the bak.Thus, the pulses should then always be unstable as the front and the bak are bothunstable sine they onnet to an unstable rest state. Nevertheless, in diret numerialsimulations, stable bifurating pulses have sometimes been observed, see [23, 25℄. It isthe goal of this artile to shed some light on this phenomenon.



Gluing unstable fronts and baks together an produe stable pulses 2p0 p1hb(x)hf(x) W s(p1)W u(p0)Figure 1. The geometri on�guration of stable and unstable manifolds at a T-point.Hene, we shall investigate the spetrum of the bifurating pulses. Reall thatthe pulses are parametrized by the harateristi length L where the limit L ! 1orresponds to the bifuration point. The idea is to onsider the limiting spetral setthat is obtained as the limit (so it exists) of the spetra about the pulses as L tendsto in�nity. If this limiting set exists, then the spetrum of the pulses is lose to it forall suÆiently large L. We demonstrate that the limiting spetral set indeed exists, atleast typially, and that it is the union of the following three sets: the spetrum �0ess ofthe stable rest state p0, the absolute spetrum �1abs of the unstable rest state p1, and a�nite number of uniformly isolated eigenvalues. The spetral sets �0ess and �1abs onsistof urve segments and an be alulated using only information about the asymptotirest states. In fat, the spetrum of the pulse ontains the essential spetrum �0ess aboutthe stable rest state. Eah point in the absolute spetrum, however, is approahed byin�nitely many di�erent disrete eigenvalues in the spetrum of the pulse as L ! 1.In other words, more and more eigenvalues of the pulse aumulate onto the limitingabsolute spetrum. We emphasize that the absolute spetrum of the unstable rest statedi�ers, in general, from the rest state's essential spetrum; in fat, the absolute spetrum�1abs is to the left of the essential spetrum �0ess. In partiular, the bifurating pulsesan be stable. We remark that the part of the absolute spetrum �1abs of p1 that liesto the right of the essential spetrum �0ess of p0 does not depend upon p0. We all itthe absolute spetrum as it is related to absolute instabilities that are visible on theentire domain (in ontrast to onvetive instabilities); we refer to [21℄ for referenes.p0 p1 hb(x)hf (x) hL(x)2LFigure 2. A shemati piture of the front hf (x), the bak hb(x), and the bifuratingpulses hL(x).



Gluing unstable fronts and baks together an produe stable pulses 3(a) (b)�0ess �1abs�0ess�1ess
Figure 3. A shemati piture of the spetrum of the front hf(x) or the bak hb(x)in (a) and the spetrum of the pulse hL(x) in (b). Note that the pulse has a singleeigenvalue near � = 0. Additional eigenvalues of the pulse, indiated by irles in (b),may arise inside the spetrum of the front or bak. The absolute spetrum breaks upinto a large number of eigenvalues as indiated in (b). Observe that the spetra ofboth the front and the bak in (a) ontain open subsets of the omplex plane.The part of the absolute spetrum �1abs that lies to the left of the essential spetrum�0ess will depend on p0; with an abuse of notation we still refer to it as the absolutespetrum of p1; see setion 3 for more details. Finally, the remaining �nitely manyeigenvalues are isolated uniformly in L. They are reated by eigenvalues of the frontand the bak, omputed in an exponentially weighted norm. In other words, they ariseas zeros of the Evans funtions of the front and the bak, omputed for the linearizationin a funtion spae with exponential weights. Suh eigenvalues are often referred to asresonane poles; they do not neessarily orrespond to eigenvalues of the front or thebak on the original C0 or L2 spae sine the assoiated eigenfuntions may inreaseexponentially. Our results demonstrate in partiular that the pulses have generiallyonly one eigenvalue near the origin, namely � = 0. This is in sharp ontrast to pulsesthat are onstruted from fronts and baks that onnet two stable rest states: in thissituation, it is known that the pulses have two eigenvalues near the origin; see [1℄. Werefer to �gure 3 for an illustration of the spetra of the front (or the bak) and the pulse.To prove the aforementioned results, we employ the ideas and methods that weused in [21℄ where we proved that the spetrum of PDE operators on large boundedintervals is a perturbation not of the essential spetrum omputed on the real line butof the operator's absolute spetrum. In partiular, we use exponential dihotomies forthe linearization in ertain exponentially weighted spaes. Exponential weights havebeen used, for the �rst time, by Sattinger [22℄. Sine then, they have been applied to avariety of di�erent problems; see, for instane, [16, 5, 6℄ for appliations.Mathing or gluing the pulses from fronts and baks is similar to imposing aboundary ondition in the middle of the domain. Thus, given the results in [21℄, weexpeted that the stability properties of the pulse are not determined by the essentialspetrum of the unstable rest state but rather by its absolute spetrum whih an bestable even though the essential spetrum is unstable.



Gluing unstable fronts and baks together an produe stable pulses 4Simultaneously and independently, Nii [15℄ obtained results that are related tothose presented here. He proved that the bifurating pulses are unstable whenever thedispersion relation of the unstable rest state has a double root in the right half-plane.His result is a onsequene of ours as the absolute spetrum of the unstable rest state isto the right of the imaginary axis whenever its dispersion relation has a double root thatlies in the right half-plane (but not vie versa). Again simultaneously and independently,Jones and Romeo [11℄ onstruted an expliit example where the bifurating pulses areindeed stable.This paper is organized as follows. We begin in setion 2 by reviewing the neessaryexistene theory near T-points. The essential and absolute spetra of the homogeneousrest states are studied in setion 3. In setion 4, we onsider the PDE linearizationabout the front and the bak, while setion 5 ontains the set-up for the linearizationabout the pulse. The main results are theorems 2 and 3 in setions 6 and 7 where weompute isolated and non-isolated eigenvalues, respetively. In setion 8, we apply ourresults to a reation-di�usion model of FitzHugh-Nagumo type.2. T-points arising in reation-di�usion equationsConsider the reation-di�usion systemUt = DUxx + F (U; �) U 2 Rm x 2 R (2.1)where � 2 R is a parameter and D = diag(dj) is a diagonal di�usion matrix withnon-negative oeÆients dj � 0. We order the omponents of U so that dj > 0 forj = 1; : : : ; k and dj = 0 for j = k + 1; : : : ;m. We are interested in travelling-wavesolutions to (2.1) that satisfy U(x; t) = U�(x� t) for some non-zero wave speed . It isthen onvenient to introdue the moving-frame oordinate � = x� t. We obtainUt = DU�� + U� + F (U; �) U 2 Rm � 2 Ror, upon replaing � by x,Ut = DUxx + Ux + F (U; �) U 2 Rm x 2 R: (2.2)Travelling waves with wave speed  satisfy the ODEDUxx + Ux + F (U; �) = 0whih, for non-zero speeds , an be rewritten as the �rst-order systemu0 = f(u; �; ) u 2 Rn (2.3)where u = (U1; : : : ; Uk; �xU1; : : : ; �xUk; Uk+1; : : : ; Um) so that n = m + k, whilefj(u; �; ) = uk+j and fk+j(u; �; ) = �(uk+j + Fj(U; �))=dj for j = 1; : : : ; k andfk+j(u; �; ) = �Fj(U; �)= for j = k + 1; : : : ;m.We begin by disussing (2.3). We assume that there are parameter values (��; �)with � 6= 0 suh that (2.3) has two hyperboli equilibria p0 and p1 withdimW u(p0) = dimW u(p1) + 1; (2.4)



Gluing unstable fronts and baks together an produe stable pulses 5in other words, the equilibria have di�erent Morse (or saddle) indies. We also assumethat there are heterolini onnetions hf(x) and hb(x) suh thathf(x) 2 W u(p0) \W s(p1) hb(x) 2 W u(p1) \W s(p0) (2.5)at (��; �); see �gure 1. Note that we typially need two parameters to obtain theseonnetions. Using (2.4), we expet that the �rst intersetion in (2.5) is transverse.On the other hand, we see that the dimensions of the manifolds W u(p1) and W s(p0)in the seond intersetion add up to n � 1 so that we need two parameters to makethem interset along a urve. We assume that the intersetions appearing in (2.5) areas transverse as possible.Hypothesis 1 We assume thatspanfh0f(0)g = Thf(0)W u(p0) t Thf(0)W s(p1)spanfh0b(0)g = Thb(0)W u(p1) \ Thb(0)W s(p0):The front that onnets p0 with p1 is then transversely onstruted. We assumethat the two parameters (�; ) unfold the bak in a generi fashion.Hypothesis 2 The enter-unstable and enter-stable manifolds W u(p1; ��; �) andW s(p0; ��; �) of the equation (u; �; )0 = (f(u; �; ); 0; 0) interset transversely along thebak (hb(x); ��; �), i.e.T(hb(0);0;0)W u(p1; ��; �) t T(hb(0);0;0)W s(p0; ��; �):Sine the equilibria p0 and p1 are hyperboli, they persist upon varying (�; ) near(��; �). Possibly after hanging the oordinates, we an assume that p0 and p1 do notdepend upon (��; �). We then have the following theorem.Theorem 1 ([3, 12, 13℄) Assume that the hypotheses 1 and 2 are met. There are thenpositive onstants C, � and L� so that (2.3) has a pulse hL(x) with limjxj!1 hL(x) = p0for parameter values (�L; L) andj�� � �Lj+ j� � Lj+ sup�1<x�0 jhf(x+ L)� hL(x)j+ sup0�x<1 jhb(x� L)� hL(x)j � Ce��L (2.6)uniformly in L � L�. Besides these pulses, there are no other pulses to the equilibriump0 for parameters (�; ) lose to (��; �).Proof. The theorem has been proved in [3, 12℄. In these referenes, additionalassumptions on the eigenvalues were imposed to make the dependene of (�L; L) onL more expliit. It is a onsequene of the results in [13, 24℄ that these assumptions arenot needed for the statement of the theorem as we have formulated it. The exponentialestimates are also a onsequene of [13℄. �In other words, the pulses hL are glued together from the front hf and the bak hbso that hL(x) is lose to p1 for x in an interval of length approximately equal to 2L.



Gluing unstable fronts and baks together an produe stable pulses 63. PDE-spetra of the homogeneous rest statesWe return to the PDE (2.2) and begin by disussing the stability of the rest state P0 thatorrespond to the equilibrium p0 to (2.3). The stability properties of the homogeneousrest state P0 to (2.2) are determined as follows. Upon linearizing (2.2) about P0,Vt = DVxx + Vx + �UF (P0; �)V;we see that V (x; t) = e�t+ikxV0 satis�es the linearized equation if, and only if,det[�k2D + ik+ �UF (P0; �)� �℄ = 0: (3.1)This is equivalent to solvingdet[�uf(p0; �; ) + �B � ik℄ = 0;where the matrix B is given in blok struture with three bloks of size k, k and m� k,respetively, byB = 0B� 0 0 0D�1k 0 00 0 �1 1CAwhere Dk = diagj=1;:::;k(dj). In other words, the PDE spetrum of the homogeneousstate P0 an be omputed by loating those values of � for whih the matrix�uf(p0; �; ) + �Bhas a purely imaginary spatial eigenvalue � = ik. We assume that the homogeneousrest state p0 is stable.Hypothesis 3 The spetrum�0ess = f� 2 C ; (3.1) has a solution k for some k 2 Rgof the rest state P0 at (��; �) is ontained in f� 2 C ; Re� < �2Æg for some Æ > 0.De�ne A0(�) := �uf(p0; ��; �) + �B A1(�) := �uf(p1; ��; �) + �B:It is a onsequene of hypothesis 3 that the number of unstable eigenvalues of thematrix A0(�) does not depend upon � for � in a �xed onneted omponent of C n�0ess.Furthermore, the matrix A0(�) is hyperboli for � 2 C n �0ess.Thus, we hoose, and �x, an open, bounded and onneted subset 
 � C n �0ess.Throughout the remainder of this artile, we onsider � 2 
.As shown above, the matrixA0(�) is hyperboli for � 2 
. We denote its stable andunstable eigenspaes by Es;u0 (�). De�ne the Morse index i
 = dimEu0 (�) so that A0(�)has i
 eigenvalues with positive real part and (n � i
) eigenvalues with negative realpart, ounted with multipliity. Note that i
 is independent of � 2 
. We emphasizethat i
 may hange one we hoose a di�erent onneted omponent 
 of C n �0ess.



Gluing unstable fronts and baks together an produe stable pulses 7(a) � =2 �0ess (b) � =2 �1;
abs () � 2 �1;
absi
 = 2Figure 4. We �x � =2 �0ess. The eigenvalues of the matrix A0(�) are plotted in theleftmost piture while the two pitures to the right ontain two possible eigenvalueon�gurations of A1(�). We have � 2 �1;
abs if, and only if, the spetrum of A1(�)annot be divided by a line Re � = �� so that i
 eigenvalues are to the right of thisline and (n� i
) eigenvalues to the left of it.Next, we onsider the matrix A1(�). We order its eigenvalues �j(�), repeated withtheir algebrai multipliity, aording to their real part so thatRe �1(�) � Re �2(�) � : : : � Re�n�1(�) � Re �n(�):We then de�ne the absolute spetrum of p1 in 
 by�1;
abs := f� 2 
; Re �i
(�) = Re �i
+1(�)g; (3.2)see also �gure 4. Hene, � 2 
 is in the absolute spetrum of p1 if we annot �nd aline Re � = � so that A1(�) has exatly i
 eigenvalues stritly to the right of this lineand (n� i
) eigenvalues stritly to the left of it. Note that the absolute spetrum of p1depends ruially on the Morse index i
 that is obtained from the rest state p0. Withsome abuse of notation, we nevertheless refer to �1;
abs as the absolute spetrum of p1and omit its dependene on p0. We emphasize that the Morse index i
1 that belongsto the onneted omponent 
1 of the resolvent set that ontains the positive real axisdepends only on the PDE but not on p0. Thus, the part of the absolute spetrum thatlies to the right of the essential spetrum �0ess of p0 depends only on p1 and not on p0.Observe that we have Re �i
(�) > Re �i
+1(�) for � =2 �1;
abs; we then de�ne thesubspaes ~Es1(�) and ~Eu1 (�) as the generalized eigenspaes of A1(�) assoiated witheigenvalues � with Re � � Re �i
+1(�) and with Re� � Re �i
(�), respetively. Notethat dim ~Eu1 (�) = i
 for � =2 �1;
abs.4. The PDE linearizations about front and bakReall that 
 is a �xed open, bounded and onneted subset of C n �0ess.4.1. Exponential dihotomies for front and bakFirst, let � 2 
 be arbitrary. De�neAf(x;�) := �uf(hf(x); ��; �) + �B:The PDE eigenvalue problem about the front an be written asv0 = Af(x;�)v v 2 Rn: (4.1)



Gluing unstable fronts and baks together an produe stable pulses 8We denote by Euf (x;�) the subspae of those initial onditions for whih the assoiatedsolutions deay exponentially as x ! �1. Note that Euf (x;�) onverges to Eu0 (�) asx!�1.Next, we restrit to � 2 
n�1;
abs and onsider (4.1) for x � 0. Sine � =2 �1;
abs, thereare numbers � and �s;u, whih possibly depend on �, suh thatRe �i
+1(�) < �s < �� < �u < Re �i
(�):Hene, if the number of unstable eigenvalues of A0(�) is equal to i
, then the �rst i
eigenvalues of A1(�) have larger real part than the remaining (n� i
) eigenvalues of A1;see �gure 4(b) in setion 3. The evolution 'f(x; y;�) of (4.1) an then be written as'f(x; y;�) = 'sf(x; y;�) + 'uf (x; y;�) x; y � 0so that 'sf(x; x;�) is a projetion andj'sf(x; y;�)j � Ce�sjx�yj x � y � 0j'uf (x; y;�)j � Ce��ujx�yj y � x � 0:To prove this laim, we argue as follows. Consider the equationw0 = (Af(x;�) + �)w (4.2)and observe that solutions to (4.1) and (4.2) are related viav(x) = e��xw(x):Note that the asymptoti matrix A1(�) + � of (4.2) is hyperboli and has preisely i
unstable eigenvalues due to our hoie of �. Thus, (4.2) has an exponential dihotomyon R+, see [7, 17℄, whih proves the laim. We de�ne~Es;uf (x;�) := R('s;uf (x; x;�))for x � 0.Finally, we apply the same arguments to the linearizationv0 = Ab(x;�)v (4.3)about the bak whereAb(x;�) := �uf(hb(x); ��; �) + �B:For � 2 
, we denote by Esb(x;�) the stable subspae of (4.3) for x � 0. These subspaesonverge to the stable subspae Es0(�) as x ! 1. In addition, for � 2 
 n �1;
abs, wede�ne the stable and unstable subspaes ~Es;ub (x;�) of (4.3) for x � 0.4.2. The Evans funtions of the front and the bakLet E�(�) be two subspaes of C n that depend analytially on � suh that n�+n+ = nwhere n� := dimE�(�) is independent of �. Choose vetors v�1 (�); : : : ; v�n�(�) suh thatE�(�) = spanfv�1 (�); : : : ; v�n�(�)g



Gluing unstable fronts and baks together an produe stable pulses 9and v�j (�) is analyti in � for all j. We then de�neE�(�) ^ E+(�) := det[v�1 (�); : : : ; v�n�(�); v+1 (�); : : : ; v+n+(�)℄ 2 C :Note that this funtion is analyti in �. In addition, the order of any of its zeros doesnot depend on the hoie of the bases; in fat, any two suh funtions di�er by a produtwith a non-zero analyti omplex-valued funtion.We de�ne the Evans funtions Df(�) and Db(�) of the front and the bak,respetively, byDf(�) = Euf (0;�) ^ ~Esf (0;�) Db(�) = ~Eub(0;�) ^ Esb(0;�): (4.4)These funtions are de�ned and analyti for � 2 
 n�1;
abs. The front generates a zero ofDf if the linearization about the front onnets the i
-dimensional unstable eigenspae ofA0 at �1 with the eigenspae of A1 at +1 that is generated by the (n�i
) eigenvaluesof A1 that have the smallest real part. Similarly, the bak generates a zero of Db if itonnets the eigenspae assoiated with the i
 eigenvalues of A1 with largest real partat �1 with the (n�i
)-dimensional stable subspae of A0 at +1. Note that the stableand unstable eigenspaes of A1 might not be of dimension i
 and (n� i
), respetively.Therefore, the aforementioned onnetions may not be related at all to eigenvalues ofthe front or the bak. In fat, the funtions Df and Db ount eigenvalues of the frontand the bak, respetively, preisely when Re �i
(�) > 0 > Re�i
+1(�); otherwise, theyount resonane poles, i.e. eigenvalues of the PDE operator ast in an exponentiallyweighted funtion spae.5. The PDE linearization about the pulseWe are interested in the eigenvalue problemv0 = (�uf(hL(x); aL; L) + �B)vabout the pulse hL(x). The spetrum � of the linearization about the pulse hL is thedisjoint union of the essential spetrum and the point spetrum� = �ess [ �ptwhere the point spetrum onsists of all isolated eigenvalues with �nite multipliity, andthe essential spetrum is the omplement in � of the point spetrum. Sine hL(x)! p0as jxj ! 1, the essential spetrum of the pulse is bounded by the essential spetrumof the rest state p0 at the parameter values (�L; L). Due to the estimate (2.6) and thehypothesis 3, the essential spetrum is therefore to the left of the line Re� = �Æ for allL suÆiently large. It remains to investigate isolated eigenvalues.5.1. Exponential dihotomies for the pulseWe shall ompare the evolution operators of the front with the evolution operator forthe linearization about the pulse. Reall that the pulse satis�es the estimate (2.6)j�� � �Lj+ j� � Lj+ sup�1<x�L jhf(x)� hL(x� L)j



Gluing unstable fronts and baks together an produe stable pulses 10+ sup�L�x<1 jhb(x)� hL(x+ L)j � Ce��L:In other words, the oeÆients of the linearizationv0 = (�uf(hL(x� L); �L; L) + �B)v (5.1)about the pulse are e��L-lose to the oeÆients of the linearizationv0 = (�uf(hf(x); ��; �) + �B)vabout the front, uniformly in x for �1 < x � L. We denote the evolution operator of(5.1) on the interval (�1; L℄ by 'f ;L(x; y;�).Lemma 1 For � 2 
, the spae Euf ;L(0;�) of initial onditions at x = 0 that orrespondto solutions of (5.1) that deay exponentially as x!�1 is e��L-lose to Euf (0;�). For� 2 
 n �1;
abs, there exist evolution matries 's;uf ;L(x; y;�) de�ned for x; y 2 [0; L℄ suhthat 'f ;L(x; y;�) = 'sf ;L(x; y;�) + 'uf ;L(x; y;�) x; y 2 [0; L℄;so that 's;uf ;L(x; x;�) are omplementary projetions andj'sf(x; y;�)� 'sf ;L(x; y;�)j � Ce��L e�sjx�yj x � y � 0j'uf (x; y;�)� 'uf ;L(x; y;�)j � Ce��L e��ujx�yj y � x � 0for some onstant C that does not depend upon L.Proof. The statement of the lemma is a onsequene of the estimate (2.6) and theroughness theorem for exponential dihotomies [18, 17℄. �We de�ne~Es;uf ;L(0;�) := R('s;uf ;L(x; x;�))to be the range of the projetion 's;uf ;L(x; x;�). Lemma 1 is also true for the equationv0 = (�uf(hL(x+ L); �L; L) + �B)v (5.2)and the linearizationv0 = (�uf(hb(x); ��; �) + �B)vabout the bak, both onsidered on the interval [�L;1). For � 2 
, we denote byEsb;L(0;�) the spae of initial onditions at x = 0 that lead to solutions of (5.2) whihdeay exponentially as x ! 1. This spae is exponentially lose to the stable spaeEsb(0;�) assoiated with the bak. Furthermore, for � 2 
 n �1;
abs, we denote by'b;L(x; y;�) = 'sb;L(x; y;�) + 'ub;L(x; y;�) x; y 2 [�L; 0℄the evolution operators of (5.2) that are then exponentially lose, uniformly in L, to theevolution operators 's;ub (x; y;�) of the bak. As before, we de�ne~Es;ub;L(0;�) := R('s;ub;L(x; x;�)):



Gluing unstable fronts and baks together an produe stable pulses 115.2. The Evans funtion of the pulseFor � 2 
, we de�neDL(�) = 'f ;L(L; 0;�)Euf ;L(0;�) ^ 'b;L(�L; 0;�)Esb;L(0;�);see setion 4.2. This is the ordinary Evans funtion for the pulse. In partiular, zerosof DL(�), ounted with their order, are in one-to-one orrespondene with eigenvaluesof the PDE linearization about the pulse, ounted with their algebrai multipliity; see[1, 9℄. It therefore suÆes to seek zeros of DL(�).For any analyti funtion D(�), we denote by ord(��;D) the order of �� as a zeroof D(�). If the order is �nite, then it is equal to the winding number of D(�) about anysuÆiently small irle in C that is entered at ��.6. Persistene of eigenvaluesIn this setion, we onsider exlusively �� 2 
 n �1;
abs. We shall demonstrate that DLhas ` zeros near �� whenever the ombined order of �� as a zero of Df and Db is equalto `. In other words, zeros of Df and Db persist with their ombined order as zeros ofDL. In partiular, if neither Df nor Db vanish at � = ��, then � is not in the spetrumof the pulse for any � lose to �� uniformly in L � L� for some L�.Lemma 2 Let �� 2 
 with �� =2 �1;
abs so that Df(��) 6= 0 and ord(��;Db) = `. Forevery small Æ > 0, there is then an L� > 0 so that DL has preisely ` eigenvalues(ounted with multipliity) in UÆ(��) for every L � L�.Proof. Sine Df(��) is not equal to zero, we haveEuf (0;��)� ~Esf (0;��) = C n :Therefore, lemma 1 implies thatEuf ;L(0;�) � ~Esf ;L(0;�) = C nfor all � lose to �� and all L � L� for some L� > 0. Hene, solving forward in x, weonlude that 'f ;L(L; 0;�)Euf ;L(0;�) is e��L-lose to ~Eu1 (�), uniformly in � and L, where� = minf�; �u � �sg; see [21℄. Continuing to solve forward in x, and again employinglemma 1, we obtain that'b;L(0;�L;�)'f ;L(L; 0;�)Euf ;L(0;�)is e��L-lose to ~Eub(0;�), uniformly in � and L. Therefore,DL(�) = 1det'b;L(0;�L;�)�['b;L(0;�L;�)'f ;L(L; 0;�)Euf ;L(0;�)℄ ^ Esb;L(0;�)�= 1det'b;L(0;�L;�) (Db(�) + O(e��L))is exponentially lose to the Evans funtion Db(�) of the front up to the non-zero fatordet'b;L(�L; 0;�). This proves the statement of the lemma; we refer to [21℄ for similararguments. �



Gluing unstable fronts and baks together an produe stable pulses 12Remark 1 Obviously, the onlusion of lemma 2 remains true if �� 2 
 n�1;
abs so thatord(��;Df) = ` and Db(��) 6= 0.Before we disuss the general ase when both Evans funtions vanish, we ommenton the situation near � = 0.Lemma 3 If � = 0 is not ontained in �1;
abs, then generially we have Df(0) 6= 0 andord(0;Db) = 1.In partiular, if 0 =2 �1;
abs, and under further generi onditions that are spei�edexpliitly in the proof below, the linearization about the pulse has a simple eigenvalue at� = 0, and there are positive numbers L� and Æ suh that � = 0 is the only eigenvalue inUÆ(0) for L � L�. This is in ontrast to the situation for pulses that bifurate from frontsand baks that onnet stable rest states: suh pulses always have two eigenvalues near� = 0, see [1℄, and it requires some further analysis to trak the non-trivial eigenvalue;see [14, 19, 20℄.Proof. Reall that we assumed thatdimW u(p0) = dimW u(p1) + 1;see (2.4). In addition, we have dimW u(p0) = i
. Combined with the assumption that� = 0 is not ontained in �1;
abs, this givesRe �i(0) > 0 > Re �i
(0) > Re�j(0) (6.1)for i < i
 < j; see setion 3. In partiular, we onlude that ~Es1(0) is equal to the tangentspae of the strong stable manifold W ss(p1) of the equilibrium p1. In hypothesis 1, weassumed that spanfh0f(0)g = Euf (0; 0) \ Thf(0)W s(p1):Thus, if hf(0) is not ontained in the strong stable manifold of p1,hf(0) =2 W ss(p1); (6.2)then we have that Euf (0; 0) \ ~Es1(0; 0) = f0g, and therefore Df(0) 6= 0.Next, we onsider the bak. Denote by W uext(p1) the invariant i
-dimensionalextended unstable manifold of p1 that has as its tangent spae at p1 the eigenspaeassoiated with eigenvalues � that satisfy Re � � Re �i
(0); see (6.1). While thismanifold itself is not unique, its tangent spae along hb(x) is unique. If we assumethat spanfh0b(0)g = Thb(0)W uext(p1) \ Thb(0)W s(p0) (6.3)and that the intersetion between W uext(p1) and W s(p0) along hb(x) unfolds generiallyas  is varied near �, then it is straightforward to see that ord(0;Db) = 1.Finally, we observe that the onditions (6.2) and (6.3) as well as the transversalunfolding mentioned right above are satis�ed for generi two-parameter families. �It remains to onsider the ase when both Evans funtions vanish.



Gluing unstable fronts and baks together an produe stable pulses 13Theorem 2 Let �� 2 
 with �� =2 �1;
abs so that ord(��;Df) = `1 and ord(��;Db) = `2.For every small Æ > 0, there is then an L� > 0 suh that DL has preisely `1 + `2eigenvalues (ounted with multipliity) in UÆ(��) for every L � L�.Proof. Save for notation, the proof is idential to the proof of Theorem 2 in [21℄, andwe shall omit it. The idea is to use that the Evans funtions are analyti in �. Wean therefore slightly perturb the equation for � near �� without missing, or gaining,any eigenvalues. In partiular, if we hange the linearized equation only along the frontin an appropriate fashion, we an arrange that �� is no longer a zero of Df ; of ourse,as mentioned above, Df still has `1 eigenvalues arbitrarily lose to ��. The perturbedequation satis�es the assumptions of lemma 2 and remark 1 for any � near ��, and thestatement of the theorem follows. �In summary, zeros of Df and Db in 
 n �1;
abs persist with their multipliity aseigenvalues of the pulse. In partiular, if �1;
abs is ontained in the open left half-plane, ifDf has no zeros in the losed right half-plane, and if Db has no zeros in the losed righthalf-plane exept a simple zero at � = 0, then the pulse has no eigenvalues in 
 thatare in the losed right half-plane exept a simple eigenvalue at zero.7. Eigenvalues that aumulate near the absolute spetrumIt remains to investigate the spetrum of the pulse near the absolute spetrum �1;
abs ofthe equilibrium p1. We shall demonstrate that the number of eigenvalues of the pulsehL near eah �xed element in �1;
abs is not bounded uniformly in L. Roughly speaking,as L inreases, an unbounded number of eigenvalues of the pulse aumulate at eahelement of the absolute spetrum �1;
abs.Reall that the open set 
 � C has been hosen suh that �0ess \ 
 = ;.De�nition 1 We say that �� 2 
 is regular if there is an open neighborhood U(��)of �� in 
, an integer `� and a positive number L� suh that DL has at most `� zerosin U(��) for all L � L�. Reall that zeros are always ounted with their multipliity.Furthermore, we de�ne the extrapolated (essential) spetral set�e;
ext = f� 2 
; � is not regularg:Hene, the extrapolated spetral set �e;
ext onsists of those points where in�nitelymany eigenvalues of the linearization about the pulse hL aumulate as L !1. Notethat �e;
ext is losed sine its omplement is open by de�nition.The next hypothesis exludes the situation that Df or Db vanish identially in aonneted omponent of 
 n �1;
abs. In other words, we exlude the situation that theentire open onneted omponent onsists of eigenvalues.Hypothesis 4 Neither Df nor Db vanish identially on any onneted omponent of
 n �1;
abs.



Gluing unstable fronts and baks together an produe stable pulses 14This hypothesis is met for reation-di�usion equations if 
 is ontained in theonneted omponent of C n�0ess that ontains the positive real axis.Lemma 4 If hypothesis 4 is met, then �e;
ext � �1;
abs.Proof. This is an immediate onsequene of theorem 2 and the de�nition of �e;
ext . �In fat, as we shall see below, the extrapolated spetral set is atually equal to theabsolute spetrum of p1 provided the following assumption is met.Hypothesis 5 (Reduible absolute spetrum) The subset S1;
abs , de�ned below, ofthe absolute spetrum �1;
abs is dense in �1;
abs. Here, �� 2 S1;
abs if Df(��) 6= 0, Db(��) 6= 0and, in addition,Re �i
�1(��) > Re �i
(��) = Re �i
+1(��) > Re �i
+2(��)with �i
(��) 6= �i
+1(��) and dd�(�i
 � �i
+1)j�� 6= 0.Note that the set S1;
abs onsists of urve segments.Theorem 3 If hypotheses 4 and 5 are met, then �e;
ext = �1;
abs.Proof. The proof is similar to the proof of [21, theorem 5℄.Sine �e;
ext is losed, and due to lemma 4 and hypothesis 5, it suÆes to show that�� 2 �e;
ext whenever �� 2 S1;
abs . Thus, we �x �� 2 S1;
abs and onsider � lose to ��.Throughout the proof, let Êu1 (�), Ê1(�) and Ês1(�) be the generalized eigenspaesof A1(�) assoiated with the spetral sets f�j(�)gj=1;:::;i
�1, f�i
(�); �i
+1(�)g andf�j(�)gj=i
+2;:::;n, respetively. In other words, we single out the two eigenvalues �i
and �i
+1 that prevent the spetral separation at � = ��. Due to hypothesis 5, thesethree spetral sets are separated by gaps between the real part of their elements.First, onsider the spae Euf ;L(L;�). We laim thatEuf ;L(L;�) = spanfuf ;L(L;�)g � (Ês1(�) + O(e��L)) (7.1)for L � L� and some � > 0 that does not depend upon L, whereuf ;L(x;�) = afi
(�)e�1(�)x + afi
+1(�)e�1+1(�)x +O(e��x) x � 0 (7.2)for some non-zero vetors afi
(�) and afi
+1(�) that are ontained in Ê1(�). Otherwise,we reah a ontradition to hypothesis 5; see [21, proof of theorem 5℄ for details.By the same token, we obtain thatEsb;L(�L;�) = spanfub;L(�L;�)g � (Êu1 (�) + O(e��L)) (7.3)for L � L�, whereub;L(x;�) = abi
(�)e�1(�)x + abi
+1(�)e�1+1(�)x +O(e�x) x � 0 (7.4)for some non-zero vetors abi
(�) and abi
+1(�) that are ontained in Ê1(�).Eigenvalues of the pulse hL are given as intersetions of Euf ;L(L;�) and Esb;L(�L;�).The idea is to apply Lyapunov-Shmidt redution using the haraterizations (7.1) and



Gluing unstable fronts and baks together an produe stable pulses 15(7.3) of the stable and unstable subspaes Euf ;L(L;�) and Esb;L(�L;�). The reduedequation then lives on the enter spae Ê1(�); it is given byuf ;L(L;�) = ub;L(�L;�) + O(e��L): (7.5)Upon substituting the expressions (7.2) and (7.4), and exploiting that Re �i
(��) =Re �i
+1(��) and dd�(�i
 � �i
+1)j�� 6= 0 by hypothesis 5, it is then not diÆult to provethat the redued equation (7.5) has O(L) di�erent solutions for � lose to �� so that�� 2 �e;
ext. The details of the aforementioned arguments are idential to those given in[21, proof of theorem 5℄; thus, we omit them. �As an example, onsider a travelling-wave ODE in three spae dimensions withi
1 = 2: a number � is then in the absolute spetrum if, and only if, the two eigenvaluesof A1(�) with smallest real part have, in fat, the same real part; see �gure 4(). Inpartiular, in the situation shown in �gure 1, � = 0 is ertainly in the absolute spetrumof p1 if the two stable eigenvalues at p1 orrespond to two omplex onjugate eigenvalues,i.e. if p1 is a saddle-fous rather than a saddle. Thus, it is neessary for stability of thepulses that the equilibrium p1 is a saddle and not a saddle-fous. If the rest state p1is a saddle-fous, then the pulses experiene in�nitely many saddle-nodes as L ! 1whih are aused by eigenvalues that ross the imaginary axis from left to right andaumulate onto the unstable absolute spetrum.8. The FitzHugh-Nagumo equationAs an appliation, we onsider a modi�ed FitzHugh-Nagumo equation that partlymotivated this artile. Zimmermann et al [25℄ found a T-point in this equation andobserved that the bifurating pulses appear to be stable. In a moving oordinate frame,the modi�ed FitzHugh-Nagumo equation is given byut = uxx � ux � 1� u(u� 1)(u� w + ba ) (8.1)wt = � wx + f(u)� wwhere the nonlinearity f(u) is de�ned byf(u) = 8><>: 0 0 � u � 131� 6:75u(u� 1)2 13 � u � 11 1 � uand the parameters a and b are given bya = 0:84 b = 0:07:The FitzHugh-Nagumo equation (8.1) desribes CO oxidation on a Pt(110) surfae; see[25℄ and the referenes therein for more details. The travelling-wave ODE assoiatedwith (8.1) is ux = v vx = v + 1�u(u� 1)(u� w + ba ) wx = 1 (f(u)� w)
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2-3-2-10123 -1.6 -1.2 -0.8 -0.4 0 -3-2-10123-2 -1.5 -1 -0.5 0 0.5 1Figure 5. (a) We plotted the essential spetrum �0ess of p0 (bold lines) and theextended spetrum �eext (thin line); theorem 3 implies that the union of these twosets is the spetrum of the bifurating pulses with the exeption of uniformly isolatedeigenvalues. (b) We plotted the essential spetrum of p0 (bold lines), the essentialspetrum of p1 (dotted line) and the absolute spetrum of p1 (thin lines); note thatthe line Re� = �1 is ontained in �0ess and in �1ess. The sets 
j for j = 1; 2; 3;1denote the four onneted omponents of C n�0ess.where we assumed that the wave speed  is non-zero. Two hyperboli equilibria aregiven by p0 = (0; 0; 0) p1 = � ba; 0; 0�:Using homont [4℄ within auto97 [8℄, we reovered the homolini pulses found in [25℄that terminate onto a heterolini yle formed by a front that onnets p0 to p1 and abak that onnets p1 to p0. The orresponding parameter values are  = 1:73144 and� = 0:10744. We do not attempt to prove the existene of a front or a bak rigorously.Note, however, that hypothesis 1 is automatially met in three spae dimensions onethe front and the bak exist.We shall alulate the essential spetra of p0 and p1 as well as the absolute spetrumof p1, and ompare our �ndings with numerial simulations. Linearizing the PDE (8.1)about p0 and p1, and writing the assoiated eigenvalue problems as �rst-order ODEs,we obtain the onstant-oeÆient matries A0 and A1, respetively, that are given byA0(�) =0B� 0 1 0�+ ba�  00 0 �1 (�+ 1) 1CA A1(�) =0B� 0 1 0�� ba�(1� ba)  ba2�(1 � ba)0 0 �1 (�+ 1) 1CA :Thus, the essential spetra �0ess and �1ess of p0 and p1, respetively, are given by�0ess = fRe� = �1g [ n� = �� 2 � ba� + i� ; � 2 Ro (8.2)�1ess = fRe� = �1g [ n� = �� 2 + ba�(1 � ba) + i� ; � 2 Ro:In partiular, p0 is stable while p1 is unstable, and hypothesis 3 is met. We plotted theessential spetrum of p0 in �gure 5(a).Next, we ompute the absolute spetrum �1abs of p1. Note that C n �0ess has fourdisjoint onneted omponents whih we denote by 
j with j = 1; 2; 3;1 as indiated



Gluing unstable fronts and baks together an produe stable pulses 17in �gure 5(b). It is straightforward to alulate thati
1 = 1 i
1 = i
3 = 2 i
2 = 3;reall that these integers are equal to the number of unstable eigenvalues of A0(�) for �in the relevant onneted omponent 
. The eigenvalues of A1(�) are given by2 � �24 + �� ba�(1 � ba)� 12 and � 1 (� + 1):Ordering these eigenvalues with dereasing real part so thatRe �1(�) � Re �2(�) � Re �3(�)and heking the de�nition�1;
abs := f� 2 
; Re �i
(�) = Re �i
+1(�)g;we see that�1;
1abs = h� ba�;�24 + ba�(1� ba)i �1;
1abs = �1;
2abs = ;�1;
3abs = 
3 \ n� = � � 1 � 22 � 2i�h(� � 2)2 + 1 + ba�(1� ba)i12 ; � � 0o:In partiular, at the bifuration point, we have�1;
1abs = [�0:77564;�0:03847℄so that the bifurating pulses are stable as far as the absolute spetrum of p1 is onerned.In the last two setions, we have proved that the spetrum of the bifurating pulsesis the union of the essential spetrum of p0, the extended spetral set �eext and alluniformly isolated eigenvalues. Theorem 3 states that, in eah onneted omponent
 of C n �0ess, the extended spetral set �e;
ext is equal to the absolute spetrum �1;
abs ofp1 provided hypotheses 4 and 5 are met. In the region 
1, hypotheses 4 and 5 are
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-0.4-0.3-0.2-0.10 10 20 30 40� Lrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbr r r rrrrrrrrrrr rrr rrr rrr rrrr rrr rrr rrr rrr r r r r r r r 0510152025 10 20 30 40j��� �j�1 2 Lrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbr r r rrrrrrrrrrr r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r rFigure 7. We ontinued three di�erent eigenvalues of the linearization about the pulsehL(x) in the bifuration parameter L. In the left piture, we plotted � over L; thehorizontal line is equal to the edge �� = �0:038471 of the absolute spetrum. Theright piture is a plot of pj�� ��j�1 over L.indeed both satis�ed, and theorem 3 applies. Therefore, we have �1;
1abs = �e;
1ext . Inthe region 
3, however, hypothesis 4 is violated as Db(�) vanishes identially in thetriangular-shaped region that is bounded by Re� = �1, �0ess and �1;
3abs ; see �gure 5(b).The reason is that the u-omponent along the bak is less than 1=3 everywhere. Inpartiular, we have f(u) = 0 along the bak, and the equation for w deouples. It isthen a onsequene of the eigenvalue struture that, in the triangular-shaped region,the Evans funtion along the bak vanishes as the w-omponent does not play any rolethere. Inspeting the proof of theorem 3, it follows that one of the oeÆients abi
(�)and abi
+1(�) that appear in (7.4) vanishes identially; as a result, it an be shown thatthe pulses should not exhibit any spetrum inside the region 
3.In summary, the spetrum about the bifurating pulses is given by the union ofthe essential spetrum of p0, the absolute spetrum of p1 in the region 
1 and a �nitenumber of uniformly isolated eigenvalues; see �gure 5(a).Next, we ompare these alulations with numerial simulations. We trunate thereal line to an interval of length 400 and impose periodi boundary onditions. Theresults in [21℄ imply that the entire spetrum, inluding the essential spetrum, of theoperator on the unbounded real line is then well approximated; note that this is nolonger true if we use separated boundary onditions [21℄. Figure 6 ontains a plot of thePDE spetrum about the bifurating pulse. The absolute spetrum �1;
1abs is resolved.To on�rm that the edge of the absolute spetrum is indeed loated to the left of theimaginary spetrum, we omputed the �rst three eigenvalues on the real axis that are tothe left of the trivial eigenvalue at � = 0, and ontinued these three eigenvalues in thebifuration parameter L that is the equal to half the length of the plateau where hL(x) islose to p1. The results are shown in �gure 7. The indiations are that the eigenvaluesindeed stop at the edge �� = �0:038471 of �1;
1abs . In addition, these omputationson�rm that there is only one eigenvalue lose to the origin uniformly in L as predited



Gluing unstable fronts and baks together an produe stable pulses 19by lemma 3.We remark that the spetra of the front and the bak annot be omputednumerially by trunating the domain to a bounded interval and imposing boundaryonditions. Indeed, we annot use periodi boundary onditions for fronts or baks. Onthe other hand, as shown in [21℄, separated boundary onditions will not reover thespetrum on the unbounded domain.If we ontinue front and bak to larger values of b, then the bifurating pulsesare eventually unstable. The reason is that the two unstable eigenvalues of the matrixA1(0) assoiated with the equilibriump1 merge and beome non-real omplex onjugatedeigenvalues. Thus, � = 0 is in the absolute spetrum �1;
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