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Abstract. We investigate the stability of pulses that are created at T-points in
reaction-diffusion systems on the real line. The pulses are formed by gluing unstable
fronts and backs together. We demonstrate that the bifurcating pulses can nevertheless
be stable, and establish necessary and sufficient conditions that involve only the front
and the back for the stability of the bifurcating pulses.
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1. Introduction

We consider travelling waves of reaction-diffusion equations posed on the entire real
line. Suppose that the ordinary differential equation (ODE) that describes travelling
waves admits a heteroclinic cycle so that the first connection is transversely constructed
while the other connection is of codimension two; see figure 1. This situation is often
called a T-point [10]. The interpretation for the partial differential equation (PDE) is
as follows. There are two homogeneous rest states so that one of them, say py, is stable
while the other one, py, is unstable. There is also a front that connects pg to p;, and a
back that connects p; to pg. Furthermore, the front and back have the same wave speed.
It is known [3, 12] that, for certain nearby parameter values, the PDE exhibits pulses
that connect the stable rest state py to itself; see figure 2. These pulses are created by
gluing the front and the back together near p;. The bifurcating pulses are characterized
uniquely by the length 2 of the plateau where the pulse is close to the unstable rest
state py; see again figure 2. An interesting issue is the stability of these pulses. Since the
pulses resemble concatenated copies of the front and the back, one might expect that
the spectrum of the pulses is close to the union of the spectra of the front and the back.
Thus, the pulses should then always be unstable as the front and the back are both
unstable since they connect to an unstable rest state. Nevertheless, in direct numerical
simulations, stable bifurcating pulses have sometimes been observed, see [23, 25]. It is

the goal of this article to shed some light on this phenomenon.
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Figure 1. The geometric configuration of stable and unstable manifolds at a T-point.

Hence, we shall investigate the spectrum of the bifurcating pulses. Recall that
the pulses are parametrized by the characteristic length [ where the limit . — oo
corresponds to the bifurcation point. The idea is to consider the limiting spectral set
that is obtained as the limit (so it exists) of the spectra about the pulses as L tends
to infinity. If this limiting set exists, then the spectrum of the pulses is close to it for
all sufficiently large L. We demonstrate that the limiting spectral set indeed exists, at
least typically, and that it is the union of the following three sets: the spectrum X2  of

the stable rest state pg, the absolute spectrum X1, = of the unstable rest state p;, and a

0
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finite number of uniformly isolated eigenvalues. The spectral sets X

of curve segments and can be calculated using only information about the asymptotic
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rest states. In fact, the spectrum of the pulse contains the essential spectrum X
the stable rest state. Each point in the absolute spectrum, however, is approached by
infinitely many different discrete eigenvalues in the spectrum of the pulse as L. — oo.
In other words, more and more eigenvalues of the pulse accumulate onto the limiting
absolute spectrum. We emphasize that the absolute spectrum of the unstable rest state

differs, in general, from the rest state’s essential spectrum; in fact, the absolute spectrum
0

ess”®

Y1 is to the left of the essential spectrum X In particular, the bifurcating pulses

can be stable. We remark that the part of the absolute spectrum X1, = of p; that lies

0
ess

to the right of the essential spectrum X of py does not depend upon py. We call it

the absolute spectrum as it is related to absolute instabilities that are visible on the

entire domain (in contrast to convective instabilities); we refer to [21] for references.
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Figure 2. A schematic picture of the front hs(x), the back Ay (), and the bifurcating
pulses hr(z).
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Figure 3. A schematic picture of the spectrum of the front h¢(z) or the back hy(x)
in (a) and the spectrum of the pulse hr(z) in (b). Note that the pulse has a single
eigenvalue near A = 0. Additional eigenvalues of the pulse, indicated by circles in (b),
may arise inside the spectrum of the front or back. The absolute spectrum breaks up
into a large number of eigenvalues as indicated in (b). Observe that the spectra of
both the front and the back in (a) contain open subsets of the complex plane.

The part of the absolute spectrum X!, that lies to the left of the essential spectrum
30 will depend on pg; with an abuse of notation we still refer to it as the absolute
spectrum of p;; see section 3 for more details. Finally, the remaining finitely many
eigenvalues are isolated uniformly in L. They are created by eigenvalues of the front
and the back, computed in an exponentially weighted norm. In other words, they arise
as zeros of the Evans functions of the front and the back, computed for the linearization
in a function space with exponential weights. Such eigenvalues are often referred to as
resonance poles; they do not necessarily correspond to eigenvalues of the front or the
back on the original C° or L? space since the associated eigenfunctions may increase
exponentially. Our results demonstrate in particular that the pulses have generically
only one eigenvalue near the origin, namely A = 0. This is in sharp contrast to pulses
that are constructed from fronts and backs that connect two stable rest states: in this
situation, it is known that the pulses have two eigenvalues near the origin; see [1]. We
refer to figure 3 for an illustration of the spectra of the front (or the back) and the pulse.

To prove the aforementioned results, we employ the ideas and methods that we
used in [21] where we proved that the spectrum of PDE operators on large bounded
intervals is a perturbation not of the essential spectrum computed on the real line but
of the operator’s absolute spectrum. In particular, we use exponential dichotomies for
the linearization in certain exponentially weighted spaces. Exponential weights have
been used, for the first time, by Sattinger [22]. Since then, they have been applied to a
variety of different problems; see, for instance, [16, 5, 6] for applications.

Matching or gluing the pulses from fronts and backs is similar to imposing a
boundary condition in the middle of the domain. Thus, given the results in [21], we
expected that the stability properties of the pulse are not determined by the essential
spectrum of the unstable rest state but rather by its absolute spectrum which can be

stable even though the essential spectrum is unstable.
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Simultaneously and independently, Nii [15] obtained results that are related to
those presented here. He proved that the bifurcating pulses are unstable whenever the
dispersion relation of the unstable rest state has a double root in the right half-plane.
His result is a consequence of ours as the absolute spectrum of the unstable rest state is
to the right of the imaginary axis whenever its dispersion relation has a double root that
lies in the right half-plane (but not vice versa). Again simultaneously and independently,
Jones and Romeo [11] constructed an explicit example where the bifurcating pulses are
indeed stable.

This paper is organized as follows. We begin in section 2 by reviewing the necessary
existence theory near T-points. The essential and absolute spectra of the homogeneous
rest states are studied in section 3. In section 4, we consider the PDE linearization
about the front and the back, while section 5 contains the set-up for the linearization
about the pulse. The main results are theorems 2 and 3 in sections 6 and 7 where we
compute isolated and non-isolated eigenvalues, respectively. In section 8, we apply our

results to a reaction-diffusion model of FitzHugh-Nagumo type.

2. T-points arising in reaction-diffusion equations

Consider the reaction-diffusion system
U= DU, + F(U,€) UeR™ reR (2.1)

where ¢ € R is a parameter and D = diag(d;) is a diagonal diffusion matrix with
non-negative coefficients d; > 0. We order the components of U so that d; > 0 for
jg=1....,kand d; = 0for y = k+1,...,m. We are interested in travelling-wave
solutions to (2.1) that satisfy U(x,t) = U.(x — ct) for some non-zero wave speed c. It is

then convenient to introduce the moving-frame coordinate ¢ =« — ¢t. We obtain

Ui = DUg¢ + cUe + F (U, ¢) UeR™ EeR
or, upon replacing & by x,

U = DUpy + Uy + F(U, ¢) UeR™ r € R. (2.2)
Travelling waves with wave speed ¢ satisfy the ODE

DU,y + cU, + F(U,e) =0

which, for non-zero speeds ¢, can be rewritten as the first-order system

u' = f(u,e,c) ueR"” (2.3)
where v = (Uy,..., Uy, 0:Uy,...,0,Ux,Ups1,...,Uy) so that n = m + k, while
filu.e,¢) = upy; and fryj(u,e,¢) = —(cupy; + Fi(U,€))/d; for j = 1,....k and

frevi(u,e,¢) = =F;j(Uye)fefor j =k +1,...,m.
We begin by discussing (2.3). We assume that there are parameter values (e, c)
with ¢, # 0 such that (2.3) has two hyperbolic equilibria py and p; with

dimW"(po) = dim W"(py) + 1; (2.4)
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in other words, the equilibria have different Morse (or saddle) indices. We also assume

that there are heteroclinic connections h¢(x) and hp(x) such that
he(z) € W(po) N W3(p1) hp(x) € WY(p1) N W3(po) (2.5)

at (€., ci); see figure 1. Note that we typically need two parameters to obtain these
connections. Using (2.4), we expect that the first intersection in (2.5) is transverse.
On the other hand, we see that the dimensions of the manifolds W"(p;) and W3(po)
in the second intersection add up to n — 1 so that we need two parameters to make
them intersect along a curve. We assume that the intersections appearing in (2.5) are

as transverse as possible.

Hypothesis 1 We assume that

span{h{(0)} = Ty )W (po) M Th0)W*(p1)
span{f,(0)} = Th, W"(p1) N Thy o)W (po)-

The front that connects py with p; is then transversely constructed. We assume

that the two parameters (¢, c¢) unfold the back in a generic fashion.

Hypothesis 2 The center-unstable and center-stable manifolds W (py, €, c.) and
W (po, €, i) of the equation (u,e,c) = (f(u,€,¢),0,0) intersect transversely along the
back (hy(x), €., cs), i€,

T(hb(o),o,o)Wcu(}h s Exy C*) E T(hb(o),o,o)WCS(po, (S C*)-

Since the equilibria pg and p; are hyperbolic, they persist upon varying (e, c¢) near
€x, Cx). Possibly after changing the coordinates, we can assume that py and p; do not
) y gimeg ) P P

depend upon (e, c.). We then have the following theorem.

Theorem 1 ([3, 12, 13]) Assume that the hypotheses 1 and 2 are met. There are then
positive constants C, 0 and L, so that (2.3) has a pulse hr(x) with limy, e hr(x) = po
for parameter values (e, cr) and
lex —€en| 4 |ex —cp| + sup  |he(x + L) — hp(x)]

—oo<z<0

+ sup |hp(z — L) — hy(z)| < Ce (2.6)

0<z <0
uniformly in L > L,. Besides these pulses, there are no other pulses to the equilibrium

po for parameters (€, ¢) close to (e, c.).

Proof. The theorem has been proved in [3, 12]. In these references, additional
assumptions on the eigenvalues were imposed to make the dependence of (er,cr) on
L more explicit. It is a consequence of the results in [13, 24] that these assumptions are
not needed for the statement of the theorem as we have formulated it. The exponential

estimates are also a consequence of [13]. O

In other words, the pulses iy are glued together from the front h¢ and the back Ay,

so that hp(x) is close to p; for x in an interval of length approximately equal to 2L.
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3. PDE-spectra of the homogeneous rest states

We return to the PDE (2.2) and begin by discussing the stability of the rest state Py that
correspond to the equilibrium py to (2.3). The stability properties of the homogeneous
rest state Py to (2.2) are determined as follows. Upon linearizing (2.2) about P,

Vi=DVyp + eV, 4+ O F(Po, €)V,
we see that V(z,t) = e’ 1} satisfies the linearized equation if, and only if,
det[—k*D + ike+ Oy I (Py,¢) — A] = 0. (3.1)
This is equivalent to solving
det[0, f(po,€,¢) + AB —ik] =0,

where the matrix B is given in block structure with three blocks of size k, k and m — k,

respectively, by

0 0 0
B = D;l 0 0
0 0 ¢t

where D) = diag;_; ,(d;). In other words, the PDE spectrum of the homogeneous

veey

state Py can be computed by locating those values of A for which the matrix
auf(pm 2 C) + \B

has a purely imaginary spatial eigenvalue v = ik. We assume that the homogeneous

rest state pg is stable.

Hypothesis 3 The spectrum
Y. ={NeC; (3.1) has a solution k for some k € R}

ess

of the rest state Py at (€., c.) is contained in {\ € C; Re XA < =240} for some § > 0.

Define
Ao(A) := 0uf(po, €y ) + AB A1(A) = 0uf(p1, €y 00) + AB.

It is a consequence of hypothesis 3 that the number of unstable eigenvalues of the
0

ess”®

matrix Ag(A) does not depend upon A for A in a fixed connected component of C\ ¥
Furthermore, the matrix Ag(\) is hyperbolic for A € C\ X2

ess”
0

ess”®

Thus, we choose, and fix, an open, bounded and connected subset Q@ C C\ X
Throughout the remainder of this article, we consider A € (.

As shown above, the matrix Ag(A) is hyperbolic for A € Q. We denote its stable and
unstable eigenspaces by Eg"(A). Define the Morse index ig = dim E§(A) so that Ag(A\)
has ig eigenvalues with positive real part and (n — ig) eigenvalues with negative real

part, counted with multiplicity. Note that ig is independent of A € 2. We emphasize
0

ess”

that ig may change once we choose a different connected component  of C\ ¥
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Figure 4. We fix A ¢ X2 . The eigenvalues of the matrix Ag(\) are plotted in the

€88 °
leftmost picture while the two pictures to the right contain two possible eigenvalue

configurations of A;(A). We have A € v if and only if, the spectrum of Ar1(A)

abs
cannot be divided by a line Rev = —» so that ig eigenvalues are to the right of this

line and (n — ig) eigenvalues to the left of it.

Next, we consider the matrix A;(A). We order its eigenvalues v;(), repeated with

their algebraic multiplicity, according to their real part so that
Revi(A) > Rera(A) > ... > Revu_i(N) > Revn(N).
We then define the absolute spectrum of p; in Q by
Sihe i={A € O Reviy (A) = Revig (M)} (3.2)

see also figure 4. Hence, A € € is in the absolute spectrum of p; if we cannot find a
line Rev = 1 so that A;(\) has exactly iq eigenvalues strictly to the right of this line
and (n —1q) eigenvalues strictly to the left of it. Note that the absolute spectrum of p;
depends crucially on the Morse index i that is obtained from the rest state pg. With
some abuse of notation, we nevertheless refer to Z;éj as the absolute spectrum of p;
and omit its dependence on py. We emphasize that the Morse index ig_ that belongs
to the connected component €2, of the resolvent set that contains the positive real axis
depends only on the PDE but not on pg. Thus, the part of the absolute spectrum that

lies to the right of the essential spectrum Y2 of py depends only on p; and not on po.

Observe that we have Rer, (A) > Rev; 41(A) for A ¢ Y we then define the

abs?

subspaces E3(\) and E¥()\) as the generalized eigenspaces of Aj()) associated with
eigenvalues v with Rer < Rewv; 41(A) and with Rer > Rew; (), respectively. Note
that dim E2()\) = iq for A ¢ ©1¢

abs*

4. The PDE linearizations about front and back

Recall that Q is a fixed open, bounded and connected subset of C\ X

ess”®

4.1. Exponential dichotomies for front and back

First, let A €  be arbitrary. Define
Ag(x; X)) := Ouf(he(), €y i) + AB.
The PDE eigenvalue problem about the front can be written as

o' = Ap(x; Mo veR™ (4.1)
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We denote by E'(x; M) the subspace of those initial conditions for which the associated
solutions decay exponentially as @ — —oo. Note that Ef'(x; ) converges to E{()A) as
r — —oo.

Next, we restrict to A € Q\ 15 and consider (4.1) for > 0. Since A ¢ 1% there
are numbers n and *", which possibly depend on A, such that

Revig41(A) < w° < —np < &" < Reri, (N).

Hence, if the number of unstable eigenvalues of Ag()) is equal to ig, then the first ig
eigenvalues of A;(\) have larger real part than the remaining (n —ig) eigenvalues of Ay;

see figure 4(b) in section 3. The evolution p¢(x, y; A) of (4.1) can then be written as
pi@,y;A) = wi(@, g A) +of (@, 030) 2y 20
so that ¢f(x,x; A) is a projection and
[pf(2, 53 )| < Cele] r2y>0
ot (z, ;M) < Ce™™ vl y >0 >0,
To prove this claim, we argue as follows. Consider the equation
! = (Adle: 2) + s (12)
and observe that solutions to (4.1) and (4.2) are related via
—ne

v(x) = e Mw(x).

Note that the asymptotic matrix A;(A) + n of (4.2) is hyperbolic and has precisely iq
unstable eigenvalues due to our choice of . Thus, (4.2) has an exponential dichotomy
on R*, see [7, 17], which proves the claim. We define

Ept (s A) == R(g" (w, ;M)
for = > 0.
Finally, we apply the same arguments to the linearization
o = Ap(; o (4.3)
about the back where
Ap(@ A) = O f(hy (@), ens ) + AB.

For A € Q, we denote by Ef(x; \) the stable subspace of (4.3) for © > 0. These subspaces
converge to the stable subspace E§(A) as @ — oo. In addition, for A € Q\ Ziéz, we
define the stable and unstable subspaces EE’“(:I;; A) of (4.3) for « < 0.

4.2. The Evans functions of the front and the back

Let E4(A) be two subspaces of C* that depend analytically on A such that n_+ny =n
where ny := dim F+()) is independent of \. Choose vectors vi¥(A), ..., vE (A) such that

EL(\) = span{vE(\),...,vE (V)}

777‘:{:
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and U;t()\) is analytic in A for all j. We then define
E_(M)ANEL(N) :=det[o] (N), ..., v (A),vf(N),...,vf (V)] eC.

Y U n_— Y n4
Note that this function is analytic in A. In addition, the order of any of its zeros does
not depend on the choice of the bases; in fact, any two such functions differ by a product
with a non-zero analytic complex-valued function.

We define the Evans functions Df(A) and Dy(A) of the front and the back,
respectively, by

Di(A\) = EF(0; M) A ES(0;0)  Du(\) = EP(0;0) A EL(0; )). (4.4)

These functions are defined and analytic for A € '\ Z;ﬁ. The front generates a zero of
Dy if the linearization about the front connects the ¢g-dimensional unstable eigenspace of
Ap at —oo with the eigenspace of Ay at +oo that is generated by the (n —ig) eigenvalues
of A; that have the smallest real part. Similarly, the back generates a zero of Dy, if it
connects the eigenspace associated with the i eigenvalues of A; with largest real part
at —oo with the (n —ig)-dimensional stable subspace of Ay at +00. Note that the stable
and unstable eigenspaces of A; might not be of dimension i and (n —ig), respectively.
Therefore, the aforementioned connections may not be related at all to eigenvalues of
the front or the back. In fact, the functions Dy and D), count eigenvalues of the front
and the back, respectively, precisely when Rev;,(A) > 0 > Rerv; 11()); otherwise, they
count resonance poles, i.e. eigenvalues of the PDE operator cast in an exponentially

weighted function space.

5. The PDE linearization about the pulse

We are interested in the eigenvalue problem
v = (0uf(ho(x),ap,cp) + AB)v
about the pulse hy(x). The spectrum ¥ of the linearization about the pulse hy, is the

disjoint union of the essential spectrum and the point spectrum
Y = Yess U Xt

where the point spectrum consists of all isolated eigenvalues with finite multiplicity, and
the essential spectrum is the complement in ¥ of the point spectrum. Since hp(z) — po
as || = oo, the essential spectrum of the pulse is bounded by the essential spectrum
of the rest state py at the parameter values (e, cr). Due to the estimate (2.6) and the
hypothesis 3, the essential spectrum is therefore to the left of the line Re A = —4 for all

L sufficiently large. It remains to investigate isolated eigenvalues.

5.1. Exponential dichotomies for the pulse

We shall compare the evolution operators of the front with the evolution operator for

the linearization about the pulse. Recall that the pulse satisfies the estimate (2.6)
lex —ep| + |ex —en| +  sup . |he(x) — hp(x — L)

—oo<z<
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+ sup |hp(x) —hp(z+ L) < Ce %,

—L<e<

In other words, the coefficients of the linearization

o' = (0uf(hp(x — L), er,cp) + AB)v (5.1)
about the pulse are e™"“~close to the coefficients of the linearization

o' = (0uf(he(2), €4y ) + AB)v
about the front, uniformly in = for —oco < & < L. We denote the evolution operator of

(5.1) on the interval (—oo, L] by ¢r (@, y; A).

Lemma 1 For A € ), the space Eg;(0; A) of initial conditions at x = 0 that correspond
to solutions of (5.1) that decay exponentially as x — —oo is e "L-close to E(0;\). For
A€ Q) Ziéz, there exist evolution matrices @y} (x,y; A) defined for x,y € [0, L] such
that

ero(z,y; A) = @ p(@,y3 A) For (e, ysA) 2,y €0, L],
so that c,o?z(:z;,x; A) are complementary projections and
|Ph(a,y5 A) = pE (e, y3 M) < Ce e e r>y>0
i (2 ys A) = e,y ) < CemPemleml oy > e >0

for some constant C' that does not depend upon L.

Proof. The statement of the lemma is a consequence of the estimate (2.6) and the

roughness theorem for exponential dichotomies [18, 17]. O

We define
Efp(0;2) == R(gpp (e, 23 0)
to be the range of the projection 99?2(:1;, x;A). Lemma 1 is also true for the equation
o' = (O f(hr(z+ L), e, c) + AB)v (5.2)
and the linearization
o' = (Ouf(hn(2), €x, ) + AB)

about the back, both considered on the interval [—L,00). For A € Q, we denote by
B} 1(0; A) the space of initial conditions at z = 0 that lead to solutions of (5.2) which

decay exponentially as © — oo. This space is exponentially close to the stable space
E3(0; X) associated with the back. Furthermore, for A € Q \ 12 we denote by

abs?
bz, y; A) = @} (@, A) + op p(T, ¥ A) z,y € [-L,0]

the evolution operators of (5.2) that are then exponentially close, uniformly in L, to the

evolution operators ¢;"(z, y; A) of the back. As before, we define

ERp(0:4) := Rlgy (e, 23 4)).
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5.2. The Fvans function of the pulse

For A € Q, we define
Dr(A) = @r,0(L, 05 M) EF [ (0; ) A onn(—L, 03 M) E5 (05 A);

see section 4.2. This is the ordinary Evans function for the pulse. In particular, zeros
of Dp(A), counted with their order, are in one-to-one correspondence with eigenvalues
of the PDE linearization about the pulse, counted with their algebraic multiplicity; see
[1, 9]. It therefore suffices to seek zeros of D ()).

For any analytic function D(A), we denote by ord(A., D) the order of A, as a zero
of D(A). If the order is finite, then it is equal to the winding number of D()) about any

sufficiently small circle in C that is centered at ..

6. Persistence of eigenvalues

In this section, we consider exclusively A, € Q\ Z;ﬁ. We shall demonstrate that Dy
has ¢ zeros near A, whenever the combined order of A, as a zero of Dy and Dy, is equal
to £. In other words, zeros of D¢ and Dy, persist with their combined order as zeros of
Dy, In particular, if neither D¢ nor Dy, vanish at A = A,, then A is not in the spectrum

of the pulse for any A close to A, uniformly in L > L, for some L,.

Lemma 2 Let A\, € Q with A\, ¢ Z;éj so that D¢(A.) # 0 and ord(A., Dy) = (. For
every small 6 > 0, there is then an L. > 0 so that Dy has precisely { eigenvalues
(counted with multiplicity) in Us(\.) for every L > L.

Proof. Since D¢(\.) is not equal to zero, we have
EF(0;0.) & E7(0; M) = C".
Therefore, lemma 1 implies that
Efp(0;0) @ Ef 1 (0;A) = C"

for all A close to A and all L > L, for some L. > 0. Hence, solving forward in z, we
conclude that o (L, 0; A)Ef (05 A) is e~*I-close to E¥()), uniformly in A and L, where
a = min{f, k" — £°}; see [21]. Continuing to solve forward in z, and again employing

lemma 1, we obtain that
@b,0(0, —L; A)pr,.(L, 03 A) B¢ (05 A)
is e *F_close to EE(O; A), uniformly in A and L. Therefore,
1
= 0, —L; Mg (L 0 V) B (03 )] A B3 (050))
oo 0T (a0~ B b (L 0 B (0 V] A B 1 (0:0)

B 1
~ det o (0, —L; \)

is exponentially close to the Evans function Dy() of the front up to the non-zero factor

Dr(N)

(Dp(A) +O(e™"))

det ¢, (= L,0; X). This proves the statement of the lemma; we refer to [21] for similar

arguments. U
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Remark 1 Obviously, the conclusion of lemma 2 remains true if A, € '\ Z;éj so that

ord(A., Dg) = € and Dy(A) #0.

Before we discuss the general case when both Evans functions vanish, we comment

on the situation near A = 0.

Lemma 3 If A = 0 is not contained in Ziéz, then generically we have D¢(0) # 0 and
ord(0, Dy) = 1.

In particular, if 0 ¢ Ziéz, and under further generic conditions that are specified
explicitly in the proof below, the linearization about the pulse has a simple eigenvalue at
A = 0, and there are positive numbers L, and § such that A = 0 is the only eigenvalue in
Us(0) for L > L. This is in contrast to the situation for pulses that bifurcate from fronts
and backs that connect stable rest states: such pulses always have two eigenvalues near
A =0, see [1], and it requires some further analysis to track the non-trivial eigenvalue;

see [14, 19, 20].
Proof. Recall that we assumed that
dimW"(po) = dim W"(p1) + 1;
see (2.4). In addition, we have dim W"(py) = iq. Combined with the assumption that

A =0 is not contained in Ziéz, this gives
Rev;(0) > 0 > Rer;,(0) > Rer;(0) (6.1)

for 1 < 1g < j; see section 3. In particular, we conclude that ET(O) is equal to the tangent
space of the strong stable manifold W*(p;) of the equilibrium p;. In hypothesis 1, we

assumed that
span{hp(0)} = £'(0;0) N Tho)W*(p1)-
Thus, if ~¢(0) is not contained in the strong stable manifold of py,

he(0) & W*(py), (6.2)

then we have that Ef(0;0) N £3(0;0) = {0}, and therefore D;(0) # 0.
Next, we consider the back. Denote by W

. (p1) the invariant ig-dimensional

extended unstable manifold of p; that has as its tangent space at p; the eigenspace
associated with eigenvalues v that satisfy Rer > Rewr;,(0); see (6.1). While this
manifold itself is not unique, its tangent space along hyp(x) is unique. If we assume
that

span{hy(0)} = Thy ) Weyi(P1) N Thy o)W (po) (6.3)

and that the intersection between W2,

(p1) and W3(pg) along hy(x) unfolds generically
as ¢ is varied near c., then it is straightforward to see that ord(0, D) = 1.
Finally, we observe that the conditions (6.2) and (6.3) as well as the transversal

unfolding mentioned right above are satisfied for generic two-parameter families. O

It remains to consider the case when both Evans functions vanish.
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Theorem 2 Let \. € Q with \. ¢ XL s0 that ord(\., Dy) = {4 and ord(\., Dy) = (.
For every small & > 0, there is then an L. > 0 such that Dy has precisely {1 + {5
eigenvalues (counted with multiplicity) in Us(A.) for every L > L.

Proof. Save for notation, the proof is identical to the proof of Theorem 2 in [21], and
we shall omit it. The idea is to use that the Evans functions are analytic in A\. We
can therefore slightly perturb the equation for A near A\, without missing, or gaining,
any eigenvalues. In particular, if we change the linearized equation only along the front
in an appropriate fashion, we can arrange that A, is no longer a zero of Df; of course,
as mentioned above, Dy still has /| eigenvalues arbitrarily close to A.. The perturbed
equation satisfies the assumptions of lemma 2 and remark 1 for any A near A,, and the

statement of the theorem follows. O

In summary, zeros of D¢ and Dy in Q \ Z;éj persist with their multiplicity as
eigenvalues of the pulse. In particular, if Z;éj is contained in the open left half-plane, if
D¢ has no zeros in the closed right half-plane, and if D}, has no zeros in the closed right
half-plane except a simple zero at A = 0, then the pulse has no eigenvalues in ) that

are in the closed right half-plane except a simple eigenvalue at zero.

7. Eigenvalues that accumulate near the absolute spectrum

It remains to investigate the spectrum of the pulse near the absolute spectrum Z;éj of
the equilibrium p;. We shall demonstrate that the number of eigenvalues of the pulse
hy, near each fixed element in Z;éj is not bounded uniformly in L. Roughly speaking,
as L increases, an unbounded number of eigenvalues of the pulse accumulate at each
element of the absolute spectrum Ziéz.

Recall that the open set  C C has been chosen such that X2 N Q = (.

ess

Definition 1 We say that A\ € Q is regular if there is an open neighborhood U(\,)
of A« in Q, an integer {, and a positive number L, such that Dy has at most (. zeros
in U(A.) for all L > L.. Recall that zeros are always counted with their multiplicity.

Furthermore, we define the extrapolated (essential) spectral set

N =\ € Q; X is not regular}.

ext —

Hence, the extrapolated spectral set ZZX&Z consists of those points where infinitely
many eigenvalues of the linearization about the pulse hy accumulate as I — oco. Note
that Y% is closed since its complement is open by definition.

The next hypothesis excludes the situation that Dy or Dy vanish identically in a
connected component of €\ Z;éz. In other words, we exclude the situation that the

entire open connected component consists of eigenvalues.

Hypothesis 4 Neither Dy nor Dy, vanish identically on any connected component of
Q\xl®

abs *
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This hypothesis is met for reaction-diffusion equations if €2 is contained in the

0

oss that contains the positive real axis.

connected component of C\ ¥

Lemma 4 If hypothesis | is met, then X557 C DL

ext

Proof. This is an immediate consequence of theorem 2 and the definition of X&%. O

In fact, as we shall see below, the extrapolated spectral set is actually equal to the

absolute spectrum of p; provided the following assumption is met.

Hypothesis 5 (Reducible absolute spectrum) The subset 8;1’32, defined below, of
the absolute spectrum Z;iog is dense in Z;{fj. Here, A\, € S;{)? if De(Ae) £ 0, Dp(Ae) #0

S

and, in addition,
Revi,-1(As) > Rev, (A) = Revig41(As) > Reviga(As)
with vig (M) # Vg1 (\e) and (v, — vig i), £ 0.

Note that the set S;f)? consists of curve segments.

Theorem 3 If hypotheses | and 5 are met, then Y50 = Ziéj.

ext

Proof. The proof is similar to the proof of [21, theorem 5].

Since ZZX&Z is closed, and due to lemma 4 and hypothesis 5, it suffices to show that
A € ZZX&Z whenever A, € 5;1’)2. Thus, we fix A, € 5;1’)2 and consider A close to ..

Throughout the proof, let Ei‘()\), Ef()\) and Ef()\) be the generalized eigenspaces
of Ai()) associated with the spectral sets {v;(A)}i=1,. iq—1, {Vig(A),vig+1(A)} and
{vj(N)}izig+2....n, respectively. In other words, we single out the two eigenvalues v,
and v;,41 that prevent the spectral separation at A = A,. Due to hypothesis 5, these
three spectral sets are separated by gaps between the real part of their elements.

First, consider the space E};(L; A). We claim that

B (LiA) = span{uf 1 (L; A)} @ (E5(A) + O(e™")) (7.1)
for L > L, and some a > 0 that does not depend upon L, where
503 3) = a (e~ 4 ol (e L 0(e7) 220 (72)

for some non-zero vectors af (A) and af_,,()) that are contained in [5(X). Otherwise,

we reach a contradiction to hypothesis 5; see [21, proof of theorem 5] for details.

By the same token, we obtain that

Ej (L3 A) = span{uf, . (= L; M)} @ (EY(A) + O(e™")) (7.3)
for L > L., where
(2 0) = (e~ 4 a | (e 4 O] g <0 (7.4

for some non-zero vectors af () and a? ,;()) that are contained in ().

Eigenvalues of the pulse iy, are given as intersections of Ey';(L; A) and Ef 1 (—L; A).
The idea is to apply Lyapunov-Schmidt reduction using the characterizations (7.1) and
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(7.3) of the stable and unstable subspaces E};(L;)) and Ej ;(—L;)). The reduced

equation then lives on the center space Ef()\), it is given by
uf (L3 A) = p(—L; A) + Ofe™F). (7.5)

Upon substituting the expressions (7.2) and (7.4), and exploiting that Rev;,(A.) =
Revi,+1(As) and dd_A(Vin — Vig+1)|x, # 0 by hypothesis 5, it is then not difficult to prove
that the reduced equation (7.5) has O(L) different solutions for A close to A. so that

As € ZZX&Z The details of the aforementioned arguments are identical to those given in

[21, proof of theorem 5]; thus, we omit them. O

As an example, consider a travelling-wave ODE in three space dimensions with
10.. = 2: anumber A is then in the absolute spectrum if, and only if, the two eigenvalues
of A1(A) with smallest real part have, in fact, the same real part; see figure 4(c). In
particular, in the situation shown in figure 1, A = 0 is certainly in the absolute spectrum
of p; if the two stable eigenvalues at p; correspond to two complex conjugate eigenvalues,
i.e. if py 1s a saddle-focus rather than a saddle. Thus, it is necessary for stability of the
pulses that the equilibrium p; is a saddle and not a saddle-focus. If the rest state p;
is a saddle-focus, then the pulses experience infinitely many saddle-nodes as L — oo
which are caused by eigenvalues that cross the imaginary axis from left to right and

accumulate onto the unstable absolute spectrum.

8. The FitzHugh-Nagumo equation

As an application, we consider a modified FitzHugh-Nagumo equation that partly
motivated this article. Zimmermann et al [25] found a T-point in this equation and
observed that the bifurcating pulses appear to be stable. In a moving coordinate frame,
the modified FitzHugh-Nagumo equation is given by

b
Up = Uy — CUy — —u(u — 1)(u — w
€ a

wy = —cwy + flu) —w

) (8.1)

where the nonlinearity f(u) is defined by

0 0<u<iz
flu)=4¢ 1—-6.75u(u—1)? s <u<l
1 1 <u

and the parameters a and b are given by
a=0.84 b= 0.07.
The FitzHugh-Nagumo equation (8.1) describes CO oxidation on a Pt(110) surface; see

[25] and the references therein for more details. The travelling-wave ODE associated

with (8.1) is

(f(w) = w)

)=

b 1
Uy = ¥ vx:cv—l——u(u—l)(u—w—l_ -
€ a c
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Figure 5. (a) We plotted the essential spectrum X2 of py (bold lines) and the

(5]

¢ (thin line); theorem 3 implies that the union of these two

extended spectrum X
sets is the spectrum of the bifurcating pulses with the exception of uniformly isolated
eigenvalues. (b) We plotted the essential spectrum of py (bold lines), the essential
spectrum of p; (dotted line) and the absolute spectrum of p; (thin lines); note that
the line ReA = —1 is contained in XY and in Xl . The sets Q; for j = 1,2,3, 0

ess ess*
0

denote the four connected components of C\ ¢, .

where we assumed that the wave speed ¢ is non-zero. Two hyperbolic equilibria are

given by

po = (0,0,0) P = <§,0,0>.

Using HOMCONT [4] within AUTO97 [8], we recovered the homoclinic pulses found in [25]
that terminate onto a heteroclinic cycle formed by a front that connects py to p; and a
back that connects p; to py. The corresponding parameter values are ¢ = 1.73144 and
e = 0.10744. We do not attempt to prove the existence of a front or a back rigorously.
Note, however, that hypothesis 1 is automatically met in three space dimensions once
the front and the back exist.

We shall calculate the essential spectra of py and py as well as the absolute spectrum
of py, and compare our findings with numerical simulations. Linearizing the PDE (8.1)
about py and p;, and writing the associated eigenvalue problems as first-order ODEs,

we obtain the constant-coefficient matrices Ay and Aj, respectively, that are given by

0 1 0 0 1 0
A= A+t e 0 A= A==t e -t
0 0 -1+ 0 0 —I(A+1)

0

0 and X! _ of py and py, respectively, are given by

Thus, the essential spectra X

DI :{Re)\:—l}U{)\:—Tz—ﬂ—l—iCT; TER} (8.2)
ac

ess

z. :{Re)‘:_l}u{)\:—72+£(1—é)+icr; TER}.
ac a

ess

In particular, py is stable while p; is unstable, and hypothesis 3 is met. We plotted the
essential spectrum of pg in figure 5(a).
Next, we compute the absolute spectrum X!, of p;. Note that C\ X2 has four

disjoint connected components which we denote by Q; with 7 = 1,2,3, 0o as indicated
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in figure 5(b). It is straightforward to calculate that
iQOO =1 in == iQS =2 iQ2 == 3;

recall that these integers are equal to the number of unstable eigenvalues of Ag(A) for A

in the relevant connected component 2. The eigenvalues of A;(\) are given by

%i(i—z—l—)\—%(l—g)f and —%(AH).
Ordering these eigenvalues with decreasing real part so that
Revi(A) > Rera(A) > Revg())
and checking the definition
S o= {A € O Reviy (A) = Rewiy (M)},

we see that

ZLQOO — - e 1_ - 21791 — 21792 —
abs Cl67 4 + CLE( Cl) abs abs @
1.9 < Ly €2 PENE
S =0sn{A=er 1= Saairr= 9k Lk (- ] 2 0f.

In particular, at the bifurcation point, we have
NLSe — [20.77564, —0.03847]

so that the bifurcating pulses are stable as far as the absolute spectrum of p; is concerned.

In the last two sections, we have proved that the spectrum of the bifurcating pulses
is the union of the essential spectrum of py, the extended spectral set 3¢, and all
uniformly isolated eigenvalues. Theorem 3 states that, in each connected component
Q of C\ X2, the extended spectral set ¥ is equal to the absolute spectrum Z;éj of

p1 provided hypotheses 4 and 5 are met. In the region Q. , hypotheses 4 and 5 are

-3 | | | | | |
-14 -1.2 -1 -0.8 -06 -04 -02 0

Figure 6. The picture shows the spectrum of the linearization about the pulse kg (%)
at L = 15 computed for an overall interval length of 400 with periodic boundary
conditions. We discretized the operator using centered finite differences with 1500
equi-distant mesh points and solved the resulting matrix eigenvalue problem using the
routine DGEEV from the LAPACK package [2].
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0

Figure 7. We continued three different eigenvalues of the linearization about the pulse
hz(z) in the bifurcation parameter L. In the left picture, we plotted A over L; the
horizontal line is equal to the edge A, = —0.038471 of the absolute spectrum. The

right picture is a plot of \/|A — /\*|_1 over L.

17900 _ Zeygoo

abs - ext - In

indeed both satisfied, and theorem 3 applies. Therefore, we have X
the region 3, however, hypothesis 4 is violated as Dy(A) vanishes identically in the
triangular-shaped region that is bounded by Re A = —1, X% _ and Zi{if’; see figure 5(b).
The reason is that the u-component along the back is less than 1/3 everywhere. In
particular, we have f(u) = 0 along the back, and the equation for w decouples. It is
then a consequence of the eigenvalue structure that, in the triangular-shaped region,
the Evans function along the back vanishes as the w-component does not play any role
there. Inspecting the proof of theorem 3, it follows that one of the coefficients a]fﬂ()\)
and a?ﬂ_l_l()\) that appear in (7.4) vanishes identically; as a result, it can be shown that
the pulses should not exhibit any spectrum inside the region {2s.

In summary, the spectrum about the bifurcating pulses is given by the union of
the essential spectrum of pg, the absolute spectrum of p; in the region 1., and a finite
number of uniformly isolated eigenvalues; see figure 5(a).

Next, we compare these calculations with numerical simulations. We truncate the
real line to an interval of length 400 and impose periodic boundary conditions. The
results in [21] imply that the entire spectrum, including the essential spectrum, of the
operator on the unbounded real line is then well approximated; note that this is no
longer true if we use separated boundary conditions [21]. Figure 6 contains a plot of the
PDE spectrum about the bifurcating pulse. The absolute spectrum Z;lﬁ‘x’ is resolved.
To confirm that the edge of the absolute spectrum is indeed located to the left of the
imaginary spectrum, we computed the first three eigenvalues on the real axis that are to
the left of the trivial eigenvalue at A = 0, and continued these three eigenvalues in the
bifurcation parameter L that is the equal to half the length of the plateau where Ay (x) is
close to p;. The results are shown in figure 7. The indications are that the eigenvalues
indeed stop at the edge A, = —0.038471 of Z;iﬁm- In addition, these computations

confirm that there is only one eigenvalue close to the origin uniformly in L as predicted
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by lemma 3.

We remark that the spectra of the front and the back cannot be computed
numerically by truncating the domain to a bounded interval and imposing boundary
conditions. Indeed, we cannot use periodic boundary conditions for fronts or backs. On
the other hand, as shown in [21], separated boundary conditions will not recover the
spectrum on the unbounded domain.

If we continue front and back to larger values of b, then the bifurcating pulses
are eventually unstable. The reason is that the two unstable eigenvalues of the matrix

A1(0) associated with the equilibrium p; merge and become non-real complex conjugated
eigenvalues. Thus, A = 0 is in the absolute spectrum Z;l’gj“’, and the bifurcating pulses

are unstable.

Acknowledgments

B. Sandstede was partially supported by the NSF under grant DMS-9971703 and by the
Ohio State University through a seed grant. A. Scheel was partially supported by the
Mathematical Research Institute of the Ohio State University.

References

[1] Alexander J C, Gardner R A and C.K.R.T. Jones C K R T 1990 A topological invariant arising
in the stability analysis of travelling waves J. reine angew. Math. 410 167-212

[2] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S,
McKenney A, Ostrouchov S and Sorensen D 1995 Lapack Users’ guide (Philadelphia: STAM)

[3] Bykov V V 1993 The bifurcations of separatrix contours and chaos Physica D 62 290-299

[4] Champneys A R, Kuznetsov Y A and Sandstede B 1996 A numerical toolbox for homoclinic
bifurcation analysis Int. J. Bifurcation Chaos 6 867-887

[6] Chang H-C, Demekhin E A and Kopelevich D T 1996 Local stability theory of solitary pulses in
an active medium Physica D 97 353-375

[6] Chang H-C, Demekhin E A and Kopelevich D T 1998 Generation and suppression of radiation by
solitary pulses STAM J. Appl. Math. 58 1246-1277

[7] Coppel W A Dichotomies in Stability Theory (Lecture Notes in Mathematics 629) (New York:
Springer)

[8] Doedel E J, Champneys A R, Fairgrieve T F, Kuznetsov Y A, Sandstede B and Wang X 1997
AUTO097: Continuation and bifurcation software for ODEs (with HOMCONT) Technical Report
(Montreal: Concordia University)

[9] Gardner R A and Jones C K R T 1990 Traveling waves of a perturbed diffusion equation arising
in a phase field model Indiana Univ. Math. J. 39 1197-1222

[10] Glendinning P and Sparrow C 1986 T-points: a codimension two heteroclinic bifurcation J. Stat.
Phys. 43 479-488

[11] Jones C K R T and Romeo M 2000 Can two unstable waves make a stable pulse? Preprint

[12] Kokubu H 1991 Heteroclinic bifurcations associated with different saddle indices Dynamical
systems and related topics (Adv. Ser. Dyn. Syst. 9) (River Edge: World Sci. Publishing)

[13] Lin X-B 1990 Using Melnikov’s method to solve Shilnikov’s problems Proc. R. Soc. Edinburgh
116A 295-325

[14] Nii S 1997 An extension of the stability index for travelling wave solutions and its application for

bifurcations SIAM J. Math. Anal. 28 402-433



Gluing unstable fronts and backs together can produce stable pulses 20

[15] Nii S 2000 Accumulation of eigenvalues for linear stability problem of traveling pulses bifurcating
from coexisting unstable front and back waves Physica D to appear

[16] Pego R and Weinstein M 1994 Asymptotic stability of solitary waves Comm. Math. Phys. 164
305-349

[17] Peterhof D, Sandstede B and Scheel A 1997 Exponential dichotomies for solitary-wave solutions
of semilinear elliptic equations on infinite cylinders J. Diff. Eqns. 140 266-308

[18] Sandstede B 1993 Verzweigungstheorie homokliner Verdopplungen PhD thesis University of
Stuttgart

[19] Sandstede B 1998 Stability of multiple-pulse solutions Trans. Amer. Math. Soc. 350 429-472

[20] Sandstede B 1998 Stability of N-fronts bifurcating from a twisted heteroclinic loop and an
application to the FitzHugh-Nagumo equation SIAM J. Math. Anal. 29 183-207

[21] Sandstede B and Scheel A 2000 Absolute and convective instabilities of waves on unbounded and
large bounded domains Physica D to appear

[22] Sattinger D H 1976 On the stability of waves of nonlinear parabolic systems Adv. Math. 22 312-355

[23] Sneyd J, LeBeau A and Yule D 1998 Traveling waves of calcium in pancreatic acinar cells: model
construction and bifurcation analysis Preprint

[24] Vanderbauwhede A and Fiedler B 1992 Homoclinic period blow-up in reversible and conservative
systems Z. Angew. Math. Phys. 43 292-318

[25] Zimmermann M G, Firle S O, Natiello M A, Hildebrand M, Eiswirth M, Biar M, Bangia A K and
Kevrekidis I G 1997 Pulse bifurcation and transition to spatiotemporal chaos in an excitable
reaction-diffusion model Physica D 110 92-104



