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s, Ohio State University, 231 West 18th Avenue,Columbus, OH 43210, USAz Institut f�ur Mathematik I, Freie Universit�at Berlin, Arnimallee 2-6, 14195 Berlin,GermanyAbstra
t. We investigate the stability of pulses that are 
reated at T-points inrea
tion-di�usion systems on the real line. The pulses are formed by gluing unstablefronts and ba
ks together. We demonstrate that the bifur
ating pulses 
an neverthelessbe stable, and establish ne
essary and suÆ
ient 
onditions that involve only the frontand the ba
k for the stability of the bifur
ating pulses.AMS 
lassi�
ation s
heme numbers: 34L05, 35B35, 37L151. Introdu
tionWe 
onsider travelling waves of rea
tion-di�usion equations posed on the entire realline. Suppose that the ordinary di�erential equation (ODE) that des
ribes travellingwaves admits a hetero
lini
 
y
le so that the �rst 
onne
tion is transversely 
onstru
tedwhile the other 
onne
tion is of 
odimension two; see �gure 1. This situation is often
alled a T-point [10℄. The interpretation for the partial di�erential equation (PDE) isas follows. There are two homogeneous rest states so that one of them, say p0, is stablewhile the other one, p1, is unstable. There is also a front that 
onne
ts p0 to p1, and aba
k that 
onne
ts p1 to p0. Furthermore, the front and ba
k have the same wave speed.It is known [3, 12℄ that, for 
ertain nearby parameter values, the PDE exhibits pulsesthat 
onne
t the stable rest state p0 to itself; see �gure 2. These pulses are 
reated bygluing the front and the ba
k together near p1. The bifur
ating pulses are 
hara
terizeduniquely by the length 2L of the plateau where the pulse is 
lose to the unstable reststate p1; see again �gure 2. An interesting issue is the stability of these pulses. Sin
e thepulses resemble 
on
atenated 
opies of the front and the ba
k, one might expe
t thatthe spe
trum of the pulses is 
lose to the union of the spe
tra of the front and the ba
k.Thus, the pulses should then always be unstable as the front and the ba
k are bothunstable sin
e they 
onne
t to an unstable rest state. Nevertheless, in dire
t numeri
alsimulations, stable bifur
ating pulses have sometimes been observed, see [23, 25℄. It isthe goal of this arti
le to shed some light on this phenomenon.
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on�guration of stable and unstable manifolds at a T-point.Hen
e, we shall investigate the spe
trum of the bifur
ating pulses. Re
all thatthe pulses are parametrized by the 
hara
teristi
 length L where the limit L ! 1
orresponds to the bifur
ation point. The idea is to 
onsider the limiting spe
tral setthat is obtained as the limit (so it exists) of the spe
tra about the pulses as L tendsto in�nity. If this limiting set exists, then the spe
trum of the pulses is 
lose to it forall suÆ
iently large L. We demonstrate that the limiting spe
tral set indeed exists, atleast typi
ally, and that it is the union of the following three sets: the spe
trum �0ess ofthe stable rest state p0, the absolute spe
trum �1abs of the unstable rest state p1, and a�nite number of uniformly isolated eigenvalues. The spe
tral sets �0ess and �1abs 
onsistof 
urve segments and 
an be 
al
ulated using only information about the asymptoti
rest states. In fa
t, the spe
trum of the pulse 
ontains the essential spe
trum �0ess aboutthe stable rest state. Ea
h point in the absolute spe
trum, however, is approa
hed byin�nitely many di�erent dis
rete eigenvalues in the spe
trum of the pulse as L ! 1.In other words, more and more eigenvalues of the pulse a

umulate onto the limitingabsolute spe
trum. We emphasize that the absolute spe
trum of the unstable rest statedi�ers, in general, from the rest state's essential spe
trum; in fa
t, the absolute spe
trum�1abs is to the left of the essential spe
trum �0ess. In parti
ular, the bifur
ating pulses
an be stable. We remark that the part of the absolute spe
trum �1abs of p1 that liesto the right of the essential spe
trum �0ess of p0 does not depend upon p0. We 
all itthe absolute spe
trum as it is related to absolute instabilities that are visible on theentire domain (in 
ontrast to 
onve
tive instabilities); we refer to [21℄ for referen
es.p0 p1 hb(x)hf (x) hL(x)2LFigure 2. A s
hemati
 pi
ture of the front hf (x), the ba
k hb(x), and the bifur
atingpulses hL(x).
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Figure 3. A s
hemati
 pi
ture of the spe
trum of the front hf(x) or the ba
k hb(x)in (a) and the spe
trum of the pulse hL(x) in (b). Note that the pulse has a singleeigenvalue near � = 0. Additional eigenvalues of the pulse, indi
ated by 
ir
les in (b),may arise inside the spe
trum of the front or ba
k. The absolute spe
trum breaks upinto a large number of eigenvalues as indi
ated in (b). Observe that the spe
tra ofboth the front and the ba
k in (a) 
ontain open subsets of the 
omplex plane.The part of the absolute spe
trum �1abs that lies to the left of the essential spe
trum�0ess will depend on p0; with an abuse of notation we still refer to it as the absolutespe
trum of p1; see se
tion 3 for more details. Finally, the remaining �nitely manyeigenvalues are isolated uniformly in L. They are 
reated by eigenvalues of the frontand the ba
k, 
omputed in an exponentially weighted norm. In other words, they ariseas zeros of the Evans fun
tions of the front and the ba
k, 
omputed for the linearizationin a fun
tion spa
e with exponential weights. Su
h eigenvalues are often referred to asresonan
e poles; they do not ne
essarily 
orrespond to eigenvalues of the front or theba
k on the original C0 or L2 spa
e sin
e the asso
iated eigenfun
tions may in
reaseexponentially. Our results demonstrate in parti
ular that the pulses have generi
allyonly one eigenvalue near the origin, namely � = 0. This is in sharp 
ontrast to pulsesthat are 
onstru
ted from fronts and ba
ks that 
onne
t two stable rest states: in thissituation, it is known that the pulses have two eigenvalues near the origin; see [1℄. Werefer to �gure 3 for an illustration of the spe
tra of the front (or the ba
k) and the pulse.To prove the aforementioned results, we employ the ideas and methods that weused in [21℄ where we proved that the spe
trum of PDE operators on large boundedintervals is a perturbation not of the essential spe
trum 
omputed on the real line butof the operator's absolute spe
trum. In parti
ular, we use exponential di
hotomies forthe linearization in 
ertain exponentially weighted spa
es. Exponential weights havebeen used, for the �rst time, by Sattinger [22℄. Sin
e then, they have been applied to avariety of di�erent problems; see, for instan
e, [16, 5, 6℄ for appli
ations.Mat
hing or gluing the pulses from fronts and ba
ks is similar to imposing aboundary 
ondition in the middle of the domain. Thus, given the results in [21℄, weexpe
ted that the stability properties of the pulse are not determined by the essentialspe
trum of the unstable rest state but rather by its absolute spe
trum whi
h 
an bestable even though the essential spe
trum is unstable.
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e stable pulses 4Simultaneously and independently, Nii [15℄ obtained results that are related tothose presented here. He proved that the bifur
ating pulses are unstable whenever thedispersion relation of the unstable rest state has a double root in the right half-plane.His result is a 
onsequen
e of ours as the absolute spe
trum of the unstable rest state isto the right of the imaginary axis whenever its dispersion relation has a double root thatlies in the right half-plane (but not vi
e versa). Again simultaneously and independently,Jones and Romeo [11℄ 
onstru
ted an expli
it example where the bifur
ating pulses areindeed stable.This paper is organized as follows. We begin in se
tion 2 by reviewing the ne
essaryexisten
e theory near T-points. The essential and absolute spe
tra of the homogeneousrest states are studied in se
tion 3. In se
tion 4, we 
onsider the PDE linearizationabout the front and the ba
k, while se
tion 5 
ontains the set-up for the linearizationabout the pulse. The main results are theorems 2 and 3 in se
tions 6 and 7 where we
ompute isolated and non-isolated eigenvalues, respe
tively. In se
tion 8, we apply ourresults to a rea
tion-di�usion model of FitzHugh-Nagumo type.2. T-points arising in rea
tion-di�usion equationsConsider the rea
tion-di�usion systemUt = DUxx + F (U; �) U 2 Rm x 2 R (2.1)where � 2 R is a parameter and D = diag(dj) is a diagonal di�usion matrix withnon-negative 
oeÆ
ients dj � 0. We order the 
omponents of U so that dj > 0 forj = 1; : : : ; k and dj = 0 for j = k + 1; : : : ;m. We are interested in travelling-wavesolutions to (2.1) that satisfy U(x; t) = U�(x� 
t) for some non-zero wave speed 
. It isthen 
onvenient to introdu
e the moving-frame 
oordinate � = x� 
t. We obtainUt = DU�� + 
U� + F (U; �) U 2 Rm � 2 Ror, upon repla
ing � by x,Ut = DUxx + 
Ux + F (U; �) U 2 Rm x 2 R: (2.2)Travelling waves with wave speed 
 satisfy the ODEDUxx + 
Ux + F (U; �) = 0whi
h, for non-zero speeds 
, 
an be rewritten as the �rst-order systemu0 = f(u; �; 
) u 2 Rn (2.3)where u = (U1; : : : ; Uk; �xU1; : : : ; �xUk; Uk+1; : : : ; Um) so that n = m + k, whilefj(u; �; 
) = uk+j and fk+j(u; �; 
) = �(
uk+j + Fj(U; �))=dj for j = 1; : : : ; k andfk+j(u; �; 
) = �Fj(U; �)=
 for j = k + 1; : : : ;m.We begin by dis
ussing (2.3). We assume that there are parameter values (��; 
�)with 
� 6= 0 su
h that (2.3) has two hyperboli
 equilibria p0 and p1 withdimW u(p0) = dimW u(p1) + 1; (2.4)
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an produ
e stable pulses 5in other words, the equilibria have di�erent Morse (or saddle) indi
es. We also assumethat there are hetero
lini
 
onne
tions hf(x) and hb(x) su
h thathf(x) 2 W u(p0) \W s(p1) hb(x) 2 W u(p1) \W s(p0) (2.5)at (��; 
�); see �gure 1. Note that we typi
ally need two parameters to obtain these
onne
tions. Using (2.4), we expe
t that the �rst interse
tion in (2.5) is transverse.On the other hand, we see that the dimensions of the manifolds W u(p1) and W s(p0)in the se
ond interse
tion add up to n � 1 so that we need two parameters to makethem interse
t along a 
urve. We assume that the interse
tions appearing in (2.5) areas transverse as possible.Hypothesis 1 We assume thatspanfh0f(0)g = Thf(0)W u(p0) t Thf(0)W s(p1)spanfh0b(0)g = Thb(0)W u(p1) \ Thb(0)W s(p0):The front that 
onne
ts p0 with p1 is then transversely 
onstru
ted. We assumethat the two parameters (�; 
) unfold the ba
k in a generi
 fashion.Hypothesis 2 The 
enter-unstable and 
enter-stable manifolds W 
u(p1; ��; 
�) andW 
s(p0; ��; 
�) of the equation (u; �; 
)0 = (f(u; �; 
); 0; 0) interse
t transversely along theba
k (hb(x); ��; 
�), i.e.T(hb(0);0;0)W 
u(p1; ��; 
�) t T(hb(0);0;0)W 
s(p0; ��; 
�):Sin
e the equilibria p0 and p1 are hyperboli
, they persist upon varying (�; 
) near(��; 
�). Possibly after 
hanging the 
oordinates, we 
an assume that p0 and p1 do notdepend upon (��; 
�). We then have the following theorem.Theorem 1 ([3, 12, 13℄) Assume that the hypotheses 1 and 2 are met. There are thenpositive 
onstants C, � and L� so that (2.3) has a pulse hL(x) with limjxj!1 hL(x) = p0for parameter values (�L; 
L) andj�� � �Lj+ j
� � 
Lj+ sup�1<x�0 jhf(x+ L)� hL(x)j+ sup0�x<1 jhb(x� L)� hL(x)j � Ce��L (2.6)uniformly in L � L�. Besides these pulses, there are no other pulses to the equilibriump0 for parameters (�; 
) 
lose to (��; 
�).Proof. The theorem has been proved in [3, 12℄. In these referen
es, additionalassumptions on the eigenvalues were imposed to make the dependen
e of (�L; 
L) onL more expli
it. It is a 
onsequen
e of the results in [13, 24℄ that these assumptions arenot needed for the statement of the theorem as we have formulated it. The exponentialestimates are also a 
onsequen
e of [13℄. �In other words, the pulses hL are glued together from the front hf and the ba
k hbso that hL(x) is 
lose to p1 for x in an interval of length approximately equal to 2L.
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tra of the homogeneous rest statesWe return to the PDE (2.2) and begin by dis
ussing the stability of the rest state P0 that
orrespond to the equilibrium p0 to (2.3). The stability properties of the homogeneousrest state P0 to (2.2) are determined as follows. Upon linearizing (2.2) about P0,Vt = DVxx + 
Vx + �UF (P0; �)V;we see that V (x; t) = e�t+ikxV0 satis�es the linearized equation if, and only if,det[�k2D + ik
+ �UF (P0; �)� �℄ = 0: (3.1)This is equivalent to solvingdet[�uf(p0; �; 
) + �B � ik℄ = 0;where the matrix B is given in blo
k stru
ture with three blo
ks of size k, k and m� k,respe
tively, byB = 0B� 0 0 0D�1k 0 00 0 
�1 1CAwhere Dk = diagj=1;:::;k(dj). In other words, the PDE spe
trum of the homogeneousstate P0 
an be 
omputed by lo
ating those values of � for whi
h the matrix�uf(p0; �; 
) + �Bhas a purely imaginary spatial eigenvalue � = ik. We assume that the homogeneousrest state p0 is stable.Hypothesis 3 The spe
trum�0ess = f� 2 C ; (3.1) has a solution k for some k 2 Rgof the rest state P0 at (��; 
�) is 
ontained in f� 2 C ; Re� < �2Æg for some Æ > 0.De�ne A0(�) := �uf(p0; ��; 
�) + �B A1(�) := �uf(p1; ��; 
�) + �B:It is a 
onsequen
e of hypothesis 3 that the number of unstable eigenvalues of thematrix A0(�) does not depend upon � for � in a �xed 
onne
ted 
omponent of C n�0ess.Furthermore, the matrix A0(�) is hyperboli
 for � 2 C n �0ess.Thus, we 
hoose, and �x, an open, bounded and 
onne
ted subset 
 � C n �0ess.Throughout the remainder of this arti
le, we 
onsider � 2 
.As shown above, the matrixA0(�) is hyperboli
 for � 2 
. We denote its stable andunstable eigenspa
es by Es;u0 (�). De�ne the Morse index i
 = dimEu0 (�) so that A0(�)has i
 eigenvalues with positive real part and (n � i
) eigenvalues with negative realpart, 
ounted with multipli
ity. Note that i
 is independent of � 2 
. We emphasizethat i
 may 
hange on
e we 
hoose a di�erent 
onne
ted 
omponent 
 of C n �0ess.



Gluing unstable fronts and ba
ks together 
an produ
e stable pulses 7(a) � =2 �0ess (b) � =2 �1;
abs (
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absi
 = 2Figure 4. We �x � =2 �0ess. The eigenvalues of the matrix A0(�) are plotted in theleftmost pi
ture while the two pi
tures to the right 
ontain two possible eigenvalue
on�gurations of A1(�). We have � 2 �1;
abs if, and only if, the spe
trum of A1(�)
annot be divided by a line Re � = �� so that i
 eigenvalues are to the right of thisline and (n� i
) eigenvalues to the left of it.Next, we 
onsider the matrix A1(�). We order its eigenvalues �j(�), repeated withtheir algebrai
 multipli
ity, a

ording to their real part so thatRe �1(�) � Re �2(�) � : : : � Re�n�1(�) � Re �n(�):We then de�ne the absolute spe
trum of p1 in 
 by�1;
abs := f� 2 
; Re �i
(�) = Re �i
+1(�)g; (3.2)see also �gure 4. Hen
e, � 2 
 is in the absolute spe
trum of p1 if we 
annot �nd aline Re � = � so that A1(�) has exa
tly i
 eigenvalues stri
tly to the right of this lineand (n� i
) eigenvalues stri
tly to the left of it. Note that the absolute spe
trum of p1depends 
ru
ially on the Morse index i
 that is obtained from the rest state p0. Withsome abuse of notation, we nevertheless refer to �1;
abs as the absolute spe
trum of p1and omit its dependen
e on p0. We emphasize that the Morse index i
1 that belongsto the 
onne
ted 
omponent 
1 of the resolvent set that 
ontains the positive real axisdepends only on the PDE but not on p0. Thus, the part of the absolute spe
trum thatlies to the right of the essential spe
trum �0ess of p0 depends only on p1 and not on p0.Observe that we have Re �i
(�) > Re �i
+1(�) for � =2 �1;
abs; we then de�ne thesubspa
es ~Es1(�) and ~Eu1 (�) as the generalized eigenspa
es of A1(�) asso
iated witheigenvalues � with Re � � Re �i
+1(�) and with Re� � Re �i
(�), respe
tively. Notethat dim ~Eu1 (�) = i
 for � =2 �1;
abs.4. The PDE linearizations about front and ba
kRe
all that 
 is a �xed open, bounded and 
onne
ted subset of C n �0ess.4.1. Exponential di
hotomies for front and ba
kFirst, let � 2 
 be arbitrary. De�neAf(x;�) := �uf(hf(x); ��; 
�) + �B:The PDE eigenvalue problem about the front 
an be written asv0 = Af(x;�)v v 2 Rn: (4.1)
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e stable pulses 8We denote by Euf (x;�) the subspa
e of those initial 
onditions for whi
h the asso
iatedsolutions de
ay exponentially as x ! �1. Note that Euf (x;�) 
onverges to Eu0 (�) asx!�1.Next, we restri
t to � 2 
n�1;
abs and 
onsider (4.1) for x � 0. Sin
e � =2 �1;
abs, thereare numbers � and �s;u, whi
h possibly depend on �, su
h thatRe �i
+1(�) < �s < �� < �u < Re �i
(�):Hen
e, if the number of unstable eigenvalues of A0(�) is equal to i
, then the �rst i
eigenvalues of A1(�) have larger real part than the remaining (n� i
) eigenvalues of A1;see �gure 4(b) in se
tion 3. The evolution 'f(x; y;�) of (4.1) 
an then be written as'f(x; y;�) = 'sf(x; y;�) + 'uf (x; y;�) x; y � 0so that 'sf(x; x;�) is a proje
tion andj'sf(x; y;�)j � Ce�sjx�yj x � y � 0j'uf (x; y;�)j � Ce��ujx�yj y � x � 0:To prove this 
laim, we argue as follows. Consider the equationw0 = (Af(x;�) + �)w (4.2)and observe that solutions to (4.1) and (4.2) are related viav(x) = e��xw(x):Note that the asymptoti
 matrix A1(�) + � of (4.2) is hyperboli
 and has pre
isely i
unstable eigenvalues due to our 
hoi
e of �. Thus, (4.2) has an exponential di
hotomyon R+, see [7, 17℄, whi
h proves the 
laim. We de�ne~Es;uf (x;�) := R('s;uf (x; x;�))for x � 0.Finally, we apply the same arguments to the linearizationv0 = Ab(x;�)v (4.3)about the ba
k whereAb(x;�) := �uf(hb(x); ��; 
�) + �B:For � 2 
, we denote by Esb(x;�) the stable subspa
e of (4.3) for x � 0. These subspa
es
onverge to the stable subspa
e Es0(�) as x ! 1. In addition, for � 2 
 n �1;
abs, wede�ne the stable and unstable subspa
es ~Es;ub (x;�) of (4.3) for x � 0.4.2. The Evans fun
tions of the front and the ba
kLet E�(�) be two subspa
es of C n that depend analyti
ally on � su
h that n�+n+ = nwhere n� := dimE�(�) is independent of �. Choose ve
tors v�1 (�); : : : ; v�n�(�) su
h thatE�(�) = spanfv�1 (�); : : : ; v�n�(�)g
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e stable pulses 9and v�j (�) is analyti
 in � for all j. We then de�neE�(�) ^ E+(�) := det[v�1 (�); : : : ; v�n�(�); v+1 (�); : : : ; v+n+(�)℄ 2 C :Note that this fun
tion is analyti
 in �. In addition, the order of any of its zeros doesnot depend on the 
hoi
e of the bases; in fa
t, any two su
h fun
tions di�er by a produ
twith a non-zero analyti
 
omplex-valued fun
tion.We de�ne the Evans fun
tions Df(�) and Db(�) of the front and the ba
k,respe
tively, byDf(�) = Euf (0;�) ^ ~Esf (0;�) Db(�) = ~Eub(0;�) ^ Esb(0;�): (4.4)These fun
tions are de�ned and analyti
 for � 2 
 n�1;
abs. The front generates a zero ofDf if the linearization about the front 
onne
ts the i
-dimensional unstable eigenspa
e ofA0 at �1 with the eigenspa
e of A1 at +1 that is generated by the (n�i
) eigenvaluesof A1 that have the smallest real part. Similarly, the ba
k generates a zero of Db if it
onne
ts the eigenspa
e asso
iated with the i
 eigenvalues of A1 with largest real partat �1 with the (n�i
)-dimensional stable subspa
e of A0 at +1. Note that the stableand unstable eigenspa
es of A1 might not be of dimension i
 and (n� i
), respe
tively.Therefore, the aforementioned 
onne
tions may not be related at all to eigenvalues ofthe front or the ba
k. In fa
t, the fun
tions Df and Db 
ount eigenvalues of the frontand the ba
k, respe
tively, pre
isely when Re �i
(�) > 0 > Re�i
+1(�); otherwise, they
ount resonan
e poles, i.e. eigenvalues of the PDE operator 
ast in an exponentiallyweighted fun
tion spa
e.5. The PDE linearization about the pulseWe are interested in the eigenvalue problemv0 = (�uf(hL(x); aL; 
L) + �B)vabout the pulse hL(x). The spe
trum � of the linearization about the pulse hL is thedisjoint union of the essential spe
trum and the point spe
trum� = �ess [ �ptwhere the point spe
trum 
onsists of all isolated eigenvalues with �nite multipli
ity, andthe essential spe
trum is the 
omplement in � of the point spe
trum. Sin
e hL(x)! p0as jxj ! 1, the essential spe
trum of the pulse is bounded by the essential spe
trumof the rest state p0 at the parameter values (�L; 
L). Due to the estimate (2.6) and thehypothesis 3, the essential spe
trum is therefore to the left of the line Re� = �Æ for allL suÆ
iently large. It remains to investigate isolated eigenvalues.5.1. Exponential di
hotomies for the pulseWe shall 
ompare the evolution operators of the front with the evolution operator forthe linearization about the pulse. Re
all that the pulse satis�es the estimate (2.6)j�� � �Lj+ j
� � 
Lj+ sup�1<x�L jhf(x)� hL(x� L)j



Gluing unstable fronts and ba
ks together 
an produ
e stable pulses 10+ sup�L�x<1 jhb(x)� hL(x+ L)j � Ce��L:In other words, the 
oeÆ
ients of the linearizationv0 = (�uf(hL(x� L); �L; 
L) + �B)v (5.1)about the pulse are e��L-
lose to the 
oeÆ
ients of the linearizationv0 = (�uf(hf(x); ��; 
�) + �B)vabout the front, uniformly in x for �1 < x � L. We denote the evolution operator of(5.1) on the interval (�1; L℄ by 'f ;L(x; y;�).Lemma 1 For � 2 
, the spa
e Euf ;L(0;�) of initial 
onditions at x = 0 that 
orrespondto solutions of (5.1) that de
ay exponentially as x!�1 is e��L-
lose to Euf (0;�). For� 2 
 n �1;
abs, there exist evolution matri
es 's;uf ;L(x; y;�) de�ned for x; y 2 [0; L℄ su
hthat 'f ;L(x; y;�) = 'sf ;L(x; y;�) + 'uf ;L(x; y;�) x; y 2 [0; L℄;so that 's;uf ;L(x; x;�) are 
omplementary proje
tions andj'sf(x; y;�)� 'sf ;L(x; y;�)j � Ce��L e�sjx�yj x � y � 0j'uf (x; y;�)� 'uf ;L(x; y;�)j � Ce��L e��ujx�yj y � x � 0for some 
onstant C that does not depend upon L.Proof. The statement of the lemma is a 
onsequen
e of the estimate (2.6) and theroughness theorem for exponential di
hotomies [18, 17℄. �We de�ne~Es;uf ;L(0;�) := R('s;uf ;L(x; x;�))to be the range of the proje
tion 's;uf ;L(x; x;�). Lemma 1 is also true for the equationv0 = (�uf(hL(x+ L); �L; 
L) + �B)v (5.2)and the linearizationv0 = (�uf(hb(x); ��; 
�) + �B)vabout the ba
k, both 
onsidered on the interval [�L;1). For � 2 
, we denote byEsb;L(0;�) the spa
e of initial 
onditions at x = 0 that lead to solutions of (5.2) whi
hde
ay exponentially as x ! 1. This spa
e is exponentially 
lose to the stable spa
eEsb(0;�) asso
iated with the ba
k. Furthermore, for � 2 
 n �1;
abs, we denote by'b;L(x; y;�) = 'sb;L(x; y;�) + 'ub;L(x; y;�) x; y 2 [�L; 0℄the evolution operators of (5.2) that are then exponentially 
lose, uniformly in L, to theevolution operators 's;ub (x; y;�) of the ba
k. As before, we de�ne~Es;ub;L(0;�) := R('s;ub;L(x; x;�)):
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an produ
e stable pulses 115.2. The Evans fun
tion of the pulseFor � 2 
, we de�neDL(�) = 'f ;L(L; 0;�)Euf ;L(0;�) ^ 'b;L(�L; 0;�)Esb;L(0;�);see se
tion 4.2. This is the ordinary Evans fun
tion for the pulse. In parti
ular, zerosof DL(�), 
ounted with their order, are in one-to-one 
orresponden
e with eigenvaluesof the PDE linearization about the pulse, 
ounted with their algebrai
 multipli
ity; see[1, 9℄. It therefore suÆ
es to seek zeros of DL(�).For any analyti
 fun
tion D(�), we denote by ord(��;D) the order of �� as a zeroof D(�). If the order is �nite, then it is equal to the winding number of D(�) about anysuÆ
iently small 
ir
le in C that is 
entered at ��.6. Persisten
e of eigenvaluesIn this se
tion, we 
onsider ex
lusively �� 2 
 n �1;
abs. We shall demonstrate that DLhas ` zeros near �� whenever the 
ombined order of �� as a zero of Df and Db is equalto `. In other words, zeros of Df and Db persist with their 
ombined order as zeros ofDL. In parti
ular, if neither Df nor Db vanish at � = ��, then � is not in the spe
trumof the pulse for any � 
lose to �� uniformly in L � L� for some L�.Lemma 2 Let �� 2 
 with �� =2 �1;
abs so that Df(��) 6= 0 and ord(��;Db) = `. Forevery small Æ > 0, there is then an L� > 0 so that DL has pre
isely ` eigenvalues(
ounted with multipli
ity) in UÆ(��) for every L � L�.Proof. Sin
e Df(��) is not equal to zero, we haveEuf (0;��)� ~Esf (0;��) = C n :Therefore, lemma 1 implies thatEuf ;L(0;�) � ~Esf ;L(0;�) = C nfor all � 
lose to �� and all L � L� for some L� > 0. Hen
e, solving forward in x, we
on
lude that 'f ;L(L; 0;�)Euf ;L(0;�) is e��L-
lose to ~Eu1 (�), uniformly in � and L, where� = minf�; �u � �sg; see [21℄. Continuing to solve forward in x, and again employinglemma 1, we obtain that'b;L(0;�L;�)'f ;L(L; 0;�)Euf ;L(0;�)is e��L-
lose to ~Eub(0;�), uniformly in � and L. Therefore,DL(�) = 1det'b;L(0;�L;�)�['b;L(0;�L;�)'f ;L(L; 0;�)Euf ;L(0;�)℄ ^ Esb;L(0;�)�= 1det'b;L(0;�L;�) (Db(�) + O(e��L))is exponentially 
lose to the Evans fun
tion Db(�) of the front up to the non-zero fa
tordet'b;L(�L; 0;�). This proves the statement of the lemma; we refer to [21℄ for similararguments. �
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e stable pulses 12Remark 1 Obviously, the 
on
lusion of lemma 2 remains true if �� 2 
 n�1;
abs so thatord(��;Df) = ` and Db(��) 6= 0.Before we dis
uss the general 
ase when both Evans fun
tions vanish, we 
ommenton the situation near � = 0.Lemma 3 If � = 0 is not 
ontained in �1;
abs, then generi
ally we have Df(0) 6= 0 andord(0;Db) = 1.In parti
ular, if 0 =2 �1;
abs, and under further generi
 
onditions that are spe
i�edexpli
itly in the proof below, the linearization about the pulse has a simple eigenvalue at� = 0, and there are positive numbers L� and Æ su
h that � = 0 is the only eigenvalue inUÆ(0) for L � L�. This is in 
ontrast to the situation for pulses that bifur
ate from frontsand ba
ks that 
onne
t stable rest states: su
h pulses always have two eigenvalues near� = 0, see [1℄, and it requires some further analysis to tra
k the non-trivial eigenvalue;see [14, 19, 20℄.Proof. Re
all that we assumed thatdimW u(p0) = dimW u(p1) + 1;see (2.4). In addition, we have dimW u(p0) = i
. Combined with the assumption that� = 0 is not 
ontained in �1;
abs, this givesRe �i(0) > 0 > Re �i
(0) > Re�j(0) (6.1)for i < i
 < j; see se
tion 3. In parti
ular, we 
on
lude that ~Es1(0) is equal to the tangentspa
e of the strong stable manifold W ss(p1) of the equilibrium p1. In hypothesis 1, weassumed that spanfh0f(0)g = Euf (0; 0) \ Thf(0)W s(p1):Thus, if hf(0) is not 
ontained in the strong stable manifold of p1,hf(0) =2 W ss(p1); (6.2)then we have that Euf (0; 0) \ ~Es1(0; 0) = f0g, and therefore Df(0) 6= 0.Next, we 
onsider the ba
k. Denote by W uext(p1) the invariant i
-dimensionalextended unstable manifold of p1 that has as its tangent spa
e at p1 the eigenspa
easso
iated with eigenvalues � that satisfy Re � � Re �i
(0); see (6.1). While thismanifold itself is not unique, its tangent spa
e along hb(x) is unique. If we assumethat spanfh0b(0)g = Thb(0)W uext(p1) \ Thb(0)W s(p0) (6.3)and that the interse
tion between W uext(p1) and W s(p0) along hb(x) unfolds generi
allyas 
 is varied near 
�, then it is straightforward to see that ord(0;Db) = 1.Finally, we observe that the 
onditions (6.2) and (6.3) as well as the transversalunfolding mentioned right above are satis�ed for generi
 two-parameter families. �It remains to 
onsider the 
ase when both Evans fun
tions vanish.
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e stable pulses 13Theorem 2 Let �� 2 
 with �� =2 �1;
abs so that ord(��;Df) = `1 and ord(��;Db) = `2.For every small Æ > 0, there is then an L� > 0 su
h that DL has pre
isely `1 + `2eigenvalues (
ounted with multipli
ity) in UÆ(��) for every L � L�.Proof. Save for notation, the proof is identi
al to the proof of Theorem 2 in [21℄, andwe shall omit it. The idea is to use that the Evans fun
tions are analyti
 in �. We
an therefore slightly perturb the equation for � near �� without missing, or gaining,any eigenvalues. In parti
ular, if we 
hange the linearized equation only along the frontin an appropriate fashion, we 
an arrange that �� is no longer a zero of Df ; of 
ourse,as mentioned above, Df still has `1 eigenvalues arbitrarily 
lose to ��. The perturbedequation satis�es the assumptions of lemma 2 and remark 1 for any � near ��, and thestatement of the theorem follows. �In summary, zeros of Df and Db in 
 n �1;
abs persist with their multipli
ity aseigenvalues of the pulse. In parti
ular, if �1;
abs is 
ontained in the open left half-plane, ifDf has no zeros in the 
losed right half-plane, and if Db has no zeros in the 
losed righthalf-plane ex
ept a simple zero at � = 0, then the pulse has no eigenvalues in 
 thatare in the 
losed right half-plane ex
ept a simple eigenvalue at zero.7. Eigenvalues that a

umulate near the absolute spe
trumIt remains to investigate the spe
trum of the pulse near the absolute spe
trum �1;
abs ofthe equilibrium p1. We shall demonstrate that the number of eigenvalues of the pulsehL near ea
h �xed element in �1;
abs is not bounded uniformly in L. Roughly speaking,as L in
reases, an unbounded number of eigenvalues of the pulse a

umulate at ea
helement of the absolute spe
trum �1;
abs.Re
all that the open set 
 � C has been 
hosen su
h that �0ess \ 
 = ;.De�nition 1 We say that �� 2 
 is regular if there is an open neighborhood U(��)of �� in 
, an integer `� and a positive number L� su
h that DL has at most `� zerosin U(��) for all L � L�. Re
all that zeros are always 
ounted with their multipli
ity.Furthermore, we de�ne the extrapolated (essential) spe
tral set�e;
ext = f� 2 
; � is not regularg:Hen
e, the extrapolated spe
tral set �e;
ext 
onsists of those points where in�nitelymany eigenvalues of the linearization about the pulse hL a

umulate as L !1. Notethat �e;
ext is 
losed sin
e its 
omplement is open by de�nition.The next hypothesis ex
ludes the situation that Df or Db vanish identi
ally in a
onne
ted 
omponent of 
 n �1;
abs. In other words, we ex
lude the situation that theentire open 
onne
ted 
omponent 
onsists of eigenvalues.Hypothesis 4 Neither Df nor Db vanish identi
ally on any 
onne
ted 
omponent of
 n �1;
abs.
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an produ
e stable pulses 14This hypothesis is met for rea
tion-di�usion equations if 
 is 
ontained in the
onne
ted 
omponent of C n�0ess that 
ontains the positive real axis.Lemma 4 If hypothesis 4 is met, then �e;
ext � �1;
abs.Proof. This is an immediate 
onsequen
e of theorem 2 and the de�nition of �e;
ext . �In fa
t, as we shall see below, the extrapolated spe
tral set is a
tually equal to theabsolute spe
trum of p1 provided the following assumption is met.Hypothesis 5 (Redu
ible absolute spe
trum) The subset S1;
abs , de�ned below, ofthe absolute spe
trum �1;
abs is dense in �1;
abs. Here, �� 2 S1;
abs if Df(��) 6= 0, Db(��) 6= 0and, in addition,Re �i
�1(��) > Re �i
(��) = Re �i
+1(��) > Re �i
+2(��)with �i
(��) 6= �i
+1(��) and dd�(�i
 � �i
+1)j�� 6= 0.Note that the set S1;
abs 
onsists of 
urve segments.Theorem 3 If hypotheses 4 and 5 are met, then �e;
ext = �1;
abs.Proof. The proof is similar to the proof of [21, theorem 5℄.Sin
e �e;
ext is 
losed, and due to lemma 4 and hypothesis 5, it suÆ
es to show that�� 2 �e;
ext whenever �� 2 S1;
abs . Thus, we �x �� 2 S1;
abs and 
onsider � 
lose to ��.Throughout the proof, let Êu1 (�), Ê
1(�) and Ês1(�) be the generalized eigenspa
esof A1(�) asso
iated with the spe
tral sets f�j(�)gj=1;:::;i
�1, f�i
(�); �i
+1(�)g andf�j(�)gj=i
+2;:::;n, respe
tively. In other words, we single out the two eigenvalues �i
and �i
+1 that prevent the spe
tral separation at � = ��. Due to hypothesis 5, thesethree spe
tral sets are separated by gaps between the real part of their elements.First, 
onsider the spa
e Euf ;L(L;�). We 
laim thatEuf ;L(L;�) = spanfu
f ;L(L;�)g � (Ês1(�) + O(e��L)) (7.1)for L � L� and some � > 0 that does not depend upon L, whereu
f ;L(x;�) = afi
(�)e�1(�)x + afi
+1(�)e�1+1(�)x +O(e��x) x � 0 (7.2)for some non-zero ve
tors afi
(�) and afi
+1(�) that are 
ontained in Ê
1(�). Otherwise,we rea
h a 
ontradi
tion to hypothesis 5; see [21, proof of theorem 5℄ for details.By the same token, we obtain thatEsb;L(�L;�) = spanfu
b;L(�L;�)g � (Êu1 (�) + O(e��L)) (7.3)for L � L�, whereu
b;L(x;�) = abi
(�)e�1(�)x + abi
+1(�)e�1+1(�)x +O(e�x) x � 0 (7.4)for some non-zero ve
tors abi
(�) and abi
+1(�) that are 
ontained in Ê
1(�).Eigenvalues of the pulse hL are given as interse
tions of Euf ;L(L;�) and Esb;L(�L;�).The idea is to apply Lyapunov-S
hmidt redu
tion using the 
hara
terizations (7.1) and
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e stable pulses 15(7.3) of the stable and unstable subspa
es Euf ;L(L;�) and Esb;L(�L;�). The redu
edequation then lives on the 
enter spa
e Ê
1(�); it is given byu
f ;L(L;�) = u
b;L(�L;�) + O(e��L): (7.5)Upon substituting the expressions (7.2) and (7.4), and exploiting that Re �i
(��) =Re �i
+1(��) and dd�(�i
 � �i
+1)j�� 6= 0 by hypothesis 5, it is then not diÆ
ult to provethat the redu
ed equation (7.5) has O(L) di�erent solutions for � 
lose to �� so that�� 2 �e;
ext. The details of the aforementioned arguments are identi
al to those given in[21, proof of theorem 5℄; thus, we omit them. �As an example, 
onsider a travelling-wave ODE in three spa
e dimensions withi
1 = 2: a number � is then in the absolute spe
trum if, and only if, the two eigenvaluesof A1(�) with smallest real part have, in fa
t, the same real part; see �gure 4(
). Inparti
ular, in the situation shown in �gure 1, � = 0 is 
ertainly in the absolute spe
trumof p1 if the two stable eigenvalues at p1 
orrespond to two 
omplex 
onjugate eigenvalues,i.e. if p1 is a saddle-fo
us rather than a saddle. Thus, it is ne
essary for stability of thepulses that the equilibrium p1 is a saddle and not a saddle-fo
us. If the rest state p1is a saddle-fo
us, then the pulses experien
e in�nitely many saddle-nodes as L ! 1whi
h are 
aused by eigenvalues that 
ross the imaginary axis from left to right anda

umulate onto the unstable absolute spe
trum.8. The FitzHugh-Nagumo equationAs an appli
ation, we 
onsider a modi�ed FitzHugh-Nagumo equation that partlymotivated this arti
le. Zimmermann et al [25℄ found a T-point in this equation andobserved that the bifur
ating pulses appear to be stable. In a moving 
oordinate frame,the modi�ed FitzHugh-Nagumo equation is given byut = uxx � 
ux � 1� u(u� 1)(u� w + ba ) (8.1)wt = � 
wx + f(u)� wwhere the nonlinearity f(u) is de�ned byf(u) = 8><>: 0 0 � u � 131� 6:75u(u� 1)2 13 � u � 11 1 � uand the parameters a and b are given bya = 0:84 b = 0:07:The FitzHugh-Nagumo equation (8.1) des
ribes CO oxidation on a Pt(110) surfa
e; see[25℄ and the referen
es therein for more details. The travelling-wave ODE asso
iatedwith (8.1) is ux = v vx = 
v + 1�u(u� 1)(u� w + ba ) wx = 1
 (f(u)� w)
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1
3
2-3-2-10123 -1.6 -1.2 -0.8 -0.4 0 -3-2-10123-2 -1.5 -1 -0.5 0 0.5 1Figure 5. (a) We plotted the essential spe
trum �0ess of p0 (bold lines) and theextended spe
trum �eext (thin line); theorem 3 implies that the union of these twosets is the spe
trum of the bifur
ating pulses with the ex
eption of uniformly isolatedeigenvalues. (b) We plotted the essential spe
trum of p0 (bold lines), the essentialspe
trum of p1 (dotted line) and the absolute spe
trum of p1 (thin lines); note thatthe line Re� = �1 is 
ontained in �0ess and in �1ess. The sets 
j for j = 1; 2; 3;1denote the four 
onne
ted 
omponents of C n�0ess.where we assumed that the wave speed 
 is non-zero. Two hyperboli
 equilibria aregiven by p0 = (0; 0; 0) p1 = � ba; 0; 0�:Using hom
ont [4℄ within auto97 [8℄, we re
overed the homo
lini
 pulses found in [25℄that terminate onto a hetero
lini
 
y
le formed by a front that 
onne
ts p0 to p1 and aba
k that 
onne
ts p1 to p0. The 
orresponding parameter values are 
 = 1:73144 and� = 0:10744. We do not attempt to prove the existen
e of a front or a ba
k rigorously.Note, however, that hypothesis 1 is automati
ally met in three spa
e dimensions on
ethe front and the ba
k exist.We shall 
al
ulate the essential spe
tra of p0 and p1 as well as the absolute spe
trumof p1, and 
ompare our �ndings with numeri
al simulations. Linearizing the PDE (8.1)about p0 and p1, and writing the asso
iated eigenvalue problems as �rst-order ODEs,we obtain the 
onstant-
oeÆ
ient matri
es A0 and A1, respe
tively, that are given byA0(�) =0B� 0 1 0�+ ba� 
 00 0 �1
 (�+ 1) 1CA A1(�) =0B� 0 1 0�� ba�(1� ba) 
 ba2�(1 � ba)0 0 �1
 (�+ 1) 1CA :Thus, the essential spe
tra �0ess and �1ess of p0 and p1, respe
tively, are given by�0ess = fRe� = �1g [ n� = �� 2 � ba� + i
� ; � 2 Ro (8.2)�1ess = fRe� = �1g [ n� = �� 2 + ba�(1 � ba) + i
� ; � 2 Ro:In parti
ular, p0 is stable while p1 is unstable, and hypothesis 3 is met. We plotted theessential spe
trum of p0 in �gure 5(a).Next, we 
ompute the absolute spe
trum �1abs of p1. Note that C n �0ess has fourdisjoint 
onne
ted 
omponents whi
h we denote by 
j with j = 1; 2; 3;1 as indi
ated
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e stable pulses 17in �gure 5(b). It is straightforward to 
al
ulate thati
1 = 1 i
1 = i
3 = 2 i
2 = 3;re
all that these integers are equal to the number of unstable eigenvalues of A0(�) for �in the relevant 
onne
ted 
omponent 
. The eigenvalues of A1(�) are given by
2 � �
24 + �� ba�(1 � ba)� 12 and � 1
 (� + 1):Ordering these eigenvalues with de
reasing real part so thatRe �1(�) � Re �2(�) � Re �3(�)and 
he
king the de�nition�1;
abs := f� 2 
; Re �i
(�) = Re �i
+1(�)g;we see that�1;
1abs = h� ba�;�
24 + ba�(1� ba)i �1;
1abs = �1;
2abs = ;�1;
3abs = 
3 \ n� = 
� � 1 � 
22 � 2i�h(� � 
2)2 + 1 + ba�(1� ba)i12 ; � � 0o:In parti
ular, at the bifur
ation point, we have�1;
1abs = [�0:77564;�0:03847℄so that the bifur
ating pulses are stable as far as the absolute spe
trum of p1 is 
on
erned.In the last two se
tions, we have proved that the spe
trum of the bifur
ating pulsesis the union of the essential spe
trum of p0, the extended spe
tral set �eext and alluniformly isolated eigenvalues. Theorem 3 states that, in ea
h 
onne
ted 
omponent
 of C n �0ess, the extended spe
tral set �e;
ext is equal to the absolute spe
trum �1;
abs ofp1 provided hypotheses 4 and 5 are met. In the region 
1, hypotheses 4 and 5 are
-3-2-1012
3
-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
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q
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq qqqqqqqqqqqqq qqqqqqqqqq qqqqqqqqq qqqqqqqq qqqqqq qqqq qqqqqqq qqqqqqqqqq qqqqqq qqqqqqqq qqqqqqq qqqqqqqq qqqqqq qqqqqqqq qqqqqqqq qq qqqqqqq qqqqqq qqqqqqqq qqqqqqqqqqqqqqqqqq qqqq qqqqqqqq qq qqqqqqqqqqqqqqqqqqqqq qqqq qqqq qqqqqq qqqq qqqq qqqq qqqqqq qqqq qqqqqqqq qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqFigure 6. The pi
ture shows the spe
trum of the linearization about the pulse hL(x)at L = 15 
omputed for an overall interval length of 400 with periodi
 boundary
onditions. We dis
retized the operator using 
entered �nite di�eren
es with 1500equi-distant mesh points and solved the resulting matrix eigenvalue problem using theroutine dgeev from the lapa
k pa
kage [2℄.
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ontinued three di�erent eigenvalues of the linearization about the pulsehL(x) in the bifur
ation parameter L. In the left pi
ture, we plotted � over L; thehorizontal line is equal to the edge �� = �0:038471 of the absolute spe
trum. Theright pi
ture is a plot of pj�� ��j�1 over L.indeed both satis�ed, and theorem 3 applies. Therefore, we have �1;
1abs = �e;
1ext . Inthe region 
3, however, hypothesis 4 is violated as Db(�) vanishes identi
ally in thetriangular-shaped region that is bounded by Re� = �1, �0ess and �1;
3abs ; see �gure 5(b).The reason is that the u-
omponent along the ba
k is less than 1=3 everywhere. Inparti
ular, we have f(u) = 0 along the ba
k, and the equation for w de
ouples. It isthen a 
onsequen
e of the eigenvalue stru
ture that, in the triangular-shaped region,the Evans fun
tion along the ba
k vanishes as the w-
omponent does not play any rolethere. Inspe
ting the proof of theorem 3, it follows that one of the 
oeÆ
ients abi
(�)and abi
+1(�) that appear in (7.4) vanishes identi
ally; as a result, it 
an be shown thatthe pulses should not exhibit any spe
trum inside the region 
3.In summary, the spe
trum about the bifur
ating pulses is given by the union ofthe essential spe
trum of p0, the absolute spe
trum of p1 in the region 
1 and a �nitenumber of uniformly isolated eigenvalues; see �gure 5(a).Next, we 
ompare these 
al
ulations with numeri
al simulations. We trun
ate thereal line to an interval of length 400 and impose periodi
 boundary 
onditions. Theresults in [21℄ imply that the entire spe
trum, in
luding the essential spe
trum, of theoperator on the unbounded real line is then well approximated; note that this is nolonger true if we use separated boundary 
onditions [21℄. Figure 6 
ontains a plot of thePDE spe
trum about the bifur
ating pulse. The absolute spe
trum �1;
1abs is resolved.To 
on�rm that the edge of the absolute spe
trum is indeed lo
ated to the left of theimaginary spe
trum, we 
omputed the �rst three eigenvalues on the real axis that are tothe left of the trivial eigenvalue at � = 0, and 
ontinued these three eigenvalues in thebifur
ation parameter L that is the equal to half the length of the plateau where hL(x) is
lose to p1. The results are shown in �gure 7. The indi
ations are that the eigenvaluesindeed stop at the edge �� = �0:038471 of �1;
1abs . In addition, these 
omputations
on�rm that there is only one eigenvalue 
lose to the origin uniformly in L as predi
ted
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e stable pulses 19by lemma 3.We remark that the spe
tra of the front and the ba
k 
annot be 
omputednumeri
ally by trun
ating the domain to a bounded interval and imposing boundary
onditions. Indeed, we 
annot use periodi
 boundary 
onditions for fronts or ba
ks. Onthe other hand, as shown in [21℄, separated boundary 
onditions will not re
over thespe
trum on the unbounded domain.If we 
ontinue front and ba
k to larger values of b, then the bifur
ating pulsesare eventually unstable. The reason is that the two unstable eigenvalues of the matrixA1(0) asso
iated with the equilibriump1 merge and be
ome non-real 
omplex 
onjugatedeigenvalues. Thus, � = 0 is in the absolute spe
trum �1;
1abs , and the bifur
ating pulsesare unstable.A
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