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Dedicated to Klaus Kirchgässner on the occasion of his seventieth birthday with our deep

gratitude for his encouragement, mentorship and support.

For a pattern-forming system with two unbounded spatial directions that is near the onset to

instability, we prove the existence of modulated fronts that connect (i) stable hexagons with the

unstable trivial pattern, (ii) stable hexagons with unstable roll solutions, (iii) stable hexagons

with unstable hexagons, and (iv) stable roll solutions with unstable hexagons. Our approach

is based on spatial dynamics, bifurcation theory, and geometric singular perturbation theory.

1 Introduction

Over the past few decades, the spontaneous formation of patterns in spatially extended

systems has attracted much attention. Many beautiful patterns such as spatially periodic

rolls, hexagonal cell structures, and spiral waves have been observed in experiments [4, 11].

Among the experiments where these patterns occur are the Rayleigh–Bénard convection

[1] and chemical reactions such as the chlorite-iodide-malonic acid reaction (CIMA)

[2, 35]. Different patterns may compete in a spatial region, leading to the formation of

interfaces that may or may not propagate. See elsewhere [4, 1, 2, 13] for details and

further references.

Mathematically, the existence of spatially periodic patterns such as rolls or hexagons

can be predicted from a linear stability analysis of the homogeneous background solution

that corresponds to the pure conduction state in the Rayleigh–Bénard convection and

to a homogeneous mixture of chemicals in the CIMA reaction. If the physical system is

isotropic, homogeneous, and essentially two-dimensional, then any reasonable model will

be invariant under the Euclidean symmetry group of the plane. Slightly beyond the onset

to instability, each mode with a wavenumber k on an annulus |k| ∼ kc is amplified for

some critical wavenumber kc > 0. Fixing a lattice subgroup of the Euclidean symmetry

group and restricting the model to those unstable modes that respect the fixed lattice

gives spatially-periodic patterns that live on that lattice.
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In experiments and numerical simulations, stable spatially-periodic patterns typically

arise through small, localized perturbations of the underlying unstable background state.

These perturbations grow in amplitude until nonlinear saturation takes over while, at

the same time, invading the unstable background state. Whereas the spatially uniform

growth into a pattern can be described within the context of amplitude equations for a

finite number of modes, any explanation of propagation and spatial competition requires

a description of the problem by a Partial Differential Equation (PDE) that incorporates

spatial long-wavelength modulations of the amplitude.

Our goal in this paper is to investigate some of the interfaces between competing

spatially-periodic patterns. We are interested in interfaces that can be modelled as modu-

lated fronts, i.e. as waves that are time-periodic in an appropriate co-moving coordinate

frame. Both speed and shape of these interfaces therefore vary periodically in time. We

emphasize that propagating fronts that connect spatially-periodic patterns cannot possibly

translate rigidly since the asymptotic spatially-periodic patterns become time-periodic in

a co-moving frame. We focus on proving the existence of modulated fronts that connect

stable with unstable patterns. Our analysis will also lead to conjectures on the average

speed of these fronts and on the existence of modulated fronts that connect different

stable patterns.

Instead of considering the full Rayleigh–Bénard problem or general reaction-diffusion

systems, we focus on a modified Swift–Hohenberg equation,

∂tu = −(1 + ∆)2u+ µu− β|∇u|2 − u3, (1.1)

as a phenomenological model for pattern-forming systems near the onset of instability.

In the above equation, we take u(x, t) ∈ �, x = (x1, x2) ∈ �2 and t � 0. The parameters

µ, β ∈ � are both real. We write ∇u = (∂x1
u, ∂x2

u) for the gradient and ∆ = ∂2
x1

+ ∂2
x2

for

the Laplace operator. Note that we recover the usual Swift–Hohenberg equation if we set

β = 0. The additional term β|∇u|2, reminiscent of the Kuramoto-Sivashinsky equation,

breaks the symmetry u �→ −u. It is needed to obtain stable hexagonal patterns (see § 2).

For appropriate parameter values, (1.1) exhibits stripes and hexagonal patterns. The

purpose of this paper is to prove the existence of modulated fronts which describe (see

Figure 1 for an illustration)

(i) stable hexagons that invade the unstable rest state at u = 0,

(ii) stable hexagons that invade unstable roll solutions,

(iii) stable hexagons that invade unstable hexagons, and lastly,

(iv) stable roll solutions that invade unstable hexagons.

Our analysis is based on spatial dynamics, bifurcation theory, and geometric singular

perturbation theory. The main idea behind our approach has already been exploited

[8, 16] for equations with only one unbounded space direction. The analysis there shows the

existence of modulated fronts that describe stable roll solutions which invade the unstable

homogeneous rest state. As in Collet & Eckmann [8] and Eckmann & Wayne [16], the

main ingredient in our analysis is a center-manifold reduction for the spatial dynamics. On

the center manifold, we derive amplitude equations for the travelling-wave problem. We

refer to Haragus & Schneider [21] for a related analysis of the Taylor–Couette problem.
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(i) (ii)

(iii) (iv)

Figure 1. Modulated fronts connecting (i) stable hexagons to the unstable trivial pattern, (ii) stable

hexagons to unstable roll solutions, (iii) stable hexagons to unstable hexagons, and (iv) stable roll

solutions to unstable hexagons.

We expect that a similar reduction theorem can be proved for the Rayleigh–Bénard

problem and that the resulting amplitude equations on the center manifold coincide with

those derived here for the modified Swift–Hohenberg equation. In fact, as mentioned

above, the modified Swift–Hohenberg equation (1.1) is a phenomenological model for

Bénard’s problem. In Bénard’s problem, β = 0 corresponds to a fixed boundary at the

top, while β� 0 corresponds to a free boundary at the top, thus breaking the midplane-

reflection symmetry. We refer to Lin et al. [32] for a discussion about the validity of the

Swift–Hohenberg model for the Rayleigh–Bénard problem.

2 Existence of rolls and hexagons

In this section, we recall the existence and stability analysis of the spatially-periodic stripe

and hexagon patterns for (1.1). An extensive analysis of the general type of bifurcation

that arises here can be found in Golubitsky et al. [19] and the literature cited therein. In

particular, we do not claim any originality for the results presented in this section. As

mentioned above, the approach pursued here consists of analysing the bifurcations of the

homogeneous rest state restricted to the space of functions with hexagonal symmetry. On

this space, we can apply classical reduction methods of bifurcation theory such as the

Lyapunov–Schmidt method [7] or the center-manifold theorem [24] to find bifurcating

spatially-periodic patterns. For β = 0, this analysis shows that the bifurcating hexagons

are generically unstable [19]. Thus, stable hexagons of small amplitude can only be found

for β� 0.
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We begin by linearizing (1.1) about the homogeneous rest state u = 0, which gives

∂tv = −(1 + ∆)2v + µv. (2.1)

The linearized equation admits solutions of the form

v(x, t) = eλt+ik1x1+ik2x2

for temporal growth rates λ and spatial wave numbers k = (k1, k2) that are related via the

dispersion relation

λ = λ(k1, k2) = −
(
1 − k2

1 − k2
2

)2
+ µ.

In particular, the rest state u = 0 is exponentially attracting for µ < 0. For µ > 0, all

spatial Fourier modes associated with spatial wave numbers k = (k1, k2) in the annulus

|k2
1 + k2

2 − 1| < √
µ have positive temporal growth rates λ.

Next, we restrict the modified Swift–Hohenberg equation to functions that have

hexagonal symmetry. Restricted to this function space, the annulus of unstable eigen-

modes breaks up into finitely many discrete eigenvalues. To be precise, consider locally

square-integrable functions u ∈ L2
loc(�

2) of the form

u(x1, x2) = u

(
x1, x2 +

4π√
3

)
= u

(
x1 + 2π, x2 +

2π√
3

)
. (2.2)

Any such function can be represented by a convergent Fourier series

u(x1, x2) =
∑

(�1 ,�2)∈�2

û�1 ,�2
ei�1x1+i�2(x1+

√
3x2)/2

with complex coefficients û�1 ,�2
∈ �. Note that the initial-value problem associated with

(1.1) is well-posed on the space

X =

{
u ∈ H4

loc(�
2,�); u(x1, x2) = u

(
x1, x2 +

4π√
3

)
= u

(
x1 + 2π, x2 +

2π√
3

)
,

‖u‖2
X =

∑
(�1 ,�2)∈�2

|û�1 ,�2
|2
(
1 + �2

1 + �2
2

)4
< ∞

}
.

In particular, for any u0 ∈ X, there exists a unique solution u = u(t) ∈ X to (1.1) with

u|t=0 = u0. This solution depends smoothly on t > 0 and on u0 ∈ X. Furthermore, the

solution exists globally in time, i.e. u ∈ C0([0,∞),X) (see Mielke & Schneider [34] for the

one-dimensional case).

For µ= 0, the linearization (2.1) restricted to X has λ= 0 as an eigenvalue with geometric

and algebraic multiplicity equal to six. The associated six eigenfunctions span the center

subspace

Xc = span
{
eix1 , ei(− 1

2 x1+
√

3
2 x2), ei(− 1

2 x1−
√

3
2 x2), c.c.

}
.

All other eigenvalues are strictly bounded away from the imaginary axis, and the associated

eigenfunctions define the complementary stable subspace Xh so that X = Xc ⊕Xh. Center-

manifold theory [24, 45] shows that there exists a six-dimensional, locally invariant
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manifold for (1.1) that is tangential to the linear center eigenspace Xc at u = 0 for µ = 0.

This manifold can be constructed in such a fashion that it is invariant under the symmetries

of the hexagonal lattice, generated by the rotation (x1, x2) �→ ((x1−
√

3x2)/2, (
√

3x1+x2)/2),

the reflection x2 �→ −x2, and the translations x �→ x + a for arbitrary a ∈ �2. Note

that the center manifold is the graph of a smooth function h : U → Xh that maps a

small neighborhood U ⊂ Xc × � of (u, µ) = 0 in Xc × � into Xh with ‖h(uc, µ)‖X �
C(|µ| + ‖uc‖X)‖uc‖X for a constant C that is independent of (uc, µ) ∈ U.

Since all stationary patterns with hexagonal symmetry lie on the center manifold, it

suffices to investigate the PDE restricted to the center manifold. To compute the reduced

vector field, note that any element u on the center manifold can be written in a unique

way as

u(x) = A1e
ix1 + A2e

i(− 1
2 x1+

√
3

2 x2) + A3e
i(− 1

2 x1−
√

3
2 x2) + c.c.+ h̃(A,A, µ)

where the amplitudes A = (A1, A2, A3) ∈ �3 are complex and the function h̃, defined by

h̃(A1, A2, A3, A1, A2, A3, µ) = h(A1e
ix1 + A2e

i(− 1
2 x1+

√
3

2 x2) + A3e
i(− 1

2 x1−
√

3
2 x2) + c.c., µ),

satisfies the estimate

‖h̃(A,A, µ)‖X � C(|µ| + |A| + |A|)(|A| + |A|).

Recall that stable hexagons of small amplitude can be found only for β� 0. To make the

task of computing the reduced vector field on the center manifold easier, we assume that

β is small. The flow on the center manifold can now be found by evaluating the PDE on

elements of the center manifold and projecting the resulting expression orthogonally back

onto the center eigenspace. Proceeding in this fashion, we obtain the reduced system

∂tA1 = µA1 + α1A2A3 + α2A1|A1|2 + α3A1(|A2|2 + |A3|2) + r1(A1, A2, A3)

∂tA2 = µA2 + α1A3A1 + α2A2|A2|2 + α3A2(|A3|2 + |A1|2) + r2(A1, A2, A3) (2.3)

∂tA3 = µA3 + α1A1A2 + α2A3|A3|2 + α3A3(|A1|2 + |A2|2) + r3(A1, A2, A3)

(plus the complex-conjugate equations) of six Ordinary Differential Equations (ODEs) for

the amplitudes that describe the flow on the center manifold. The coefficients in the above

equation are real and given by

α1 = −β + O(|β µ|), α2 = −3 + O(|µ| + |β|), α3 = −6 + O(|µ| + |β|). (2.4)

These coefficients have already been computed earlier [20, (A9)] via a multi-scale expan-

sion. The remainder terms are of higher order: |rj(A)| � C|A|4. Note that the Euclidean

symmetry of the original system (1.1) with respect to rotations, reflections, and translations

manifests itself in the equivariance of the reduced system with respect to

σ : (A1, A2, A3) �→ (A2, A3, A1), κ : (A1, A2, A3) �→ (A1, A3, A2),

τa : (A1, A2, A3) �→
(
eia1A1, e

i(−a1+
√

3a2)/2A2, e
i(−a1−

√
3a2)/2A3

)
,

respectively. The remainder terms rj also respect these symmetries. Note that, if all
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rest state

rolls

rolls

hexagons

hexagons

false hexagons

π-hexagons

mixed modes

A1

µ

Figure 2. The bifurcation diagram for the modified Swift–Hohenberg equation for β < 0 fixed

and close to zero. Solid lines correspond to stable patterns, while broken lines correspond to

unstable ones. The saddle-node bifurcation of hexagons occurs for µsn = − β2/60, the pitchfork

bifurcation of mixed-mode solutions from rolls at µpf = β2/3, and the transcritical bifurcation of

mixed-modes/false hexagons and hexagons at µtc = 4β2/3.

terms on the right-hand side of (2.3) are equally important, then A and β should scale

with
√
µ. This is indeed the scaling that we exploit later in (3.7). We remark that

σ2: (A1, A2, A3) �→ (A3, A1, A2) and σ3:A �→ A.

We do not attempt to give a complete description of the dynamics of (2.3), but focus

instead on the existence and stability of roll solutions and hexagonal patterns. Both

patterns are stationary and therefore equilibria of (2.3). Roll patterns lie in the invariant

subspace A1 real and A2 = A3 = 0, i.e. in the intersection of the fixed-point spaces of σ3

and τ(0,a2), and correspond therefore to non-trivial stationary solutions of the ODE

∂tA1 = µA1 + α2A
3
1 + O(|A1|4)

which exist precisely for µ = (3 + O(|β| + |A1|))A2
1. Hexagonal patterns lie in the invariant

subspace A1 = A2 = A3 real, i.e. in the intersection of the fixed-point spaces of σ2 and σ3,

and can therefore be found as equilibria of the ODE

∂tA1 = µA1 + α1A
2
1 + (α2 + 2α3)A

3
1 + O(|A1|4).

Using (2.4), we see that hexagons exist for

µ = βA1 + (15 + O(|β| + |A1|))A2
1. (2.5)

To determine the stability properties of rolls and hexagons with respect to perturbations

that have hexagonal symmetry, it suffices to consider the linearization of (2.3) about the

rolls and hexagons. We omit the relevant calculations and refer instead to Figure 2 for the

complete bifurcation diagram and to § 4.1 and Buzano & Golubitsky [5] and Golubitsky

et al. [19] for further details.
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3 Modulated front solutions

3.1 Spatial dynamics

We are particularly interested in stable hexagons that invade a region occupied by either

rolls or the unstable homogeneous rest state. We seek interfaces u(x1, x2, t) that are

modulated fronts and therefore make the ansatz

u(x1, x2, t) = v(x1 − ct, x1, x2), (3.1)

where the function v shares the periodicity properties of the hexagons in its last two

variables, i.e.

v(ξ, p1, p2) = v

(
ξ, p1, p2 +

4π√
3

)
= v

(
ξ, p1 + 2π, p2 +

2π√
3

)
∀ (ξ, p1, p2). (3.2)

Note that v also depends upon the travelling-wave variable ξ ∈ �. In this formulation,

modulated fronts that connect hexagons uhex to rolls urolls or to the trivial state u = 0 are

given by functions v that satisfy

lim
ξ→−∞

v(ξ, p1, p2) = uhex(p1, p2), lim
ξ→∞

v(ξ, p1, p2) = uright(p1, p2)

uniformly in the periodic variables (p1, p2), where uright is given by either u = urolls or u = 0.

To find modulated fronts, we substitute the ansatz (3.1) into (1.1), and obtain the

equation

−c∂ξv = −
[
1 + (∂ξ + ∂p1

)2 + ∂2
p2

]2
v + µv − β[((∂ξ + ∂p1

)v)2 + (∂p2
v)2] − v3. (3.3)

In contrast to the usual travelling-wave ODE that describes rigidly-translating fronts,

equation (3.3) for modulated fronts is a pseudo-elliptic PDE.

It was Kirchgässner’s [29] idea to write equations of the type (3.3) as first-order

differential equations in a certain function space with ξ being the new time-like variable.

Even though the resulting dynamical system in ξ is typically ill-posed, it is nevertheless

often possible to reduce the resulting infinite-dimensional system to a finite-dimensional

one, which can then be analysed using bifurcation theory. For instance, if the linearization

about the trivial rest state has only finitely many neutral eigenvalues on the imaginary

axis, then (3.3) can be reduced, via center-manifold theory, to an ODE. Just as in the case

of rigidly-propagating fronts, we can then find modulated fronts as heteroclinic orbits,

for the spatial dynamics on the center manifold, that connect two different equilibria

representing hexagons and either rolls or the background state.

The approach outlined above is often referred to as spatial dynamics. Since the original

work of Kirchgässner, the idea of ill-posed spatial dynamics has been exploited in

numerous problems. It has been adapted [16] to study small-amplitude modulated fronts

in one spatial dimension, and has been further generalized [21] to the Taylor–Couette

problem. Spatial dynamics has also been utilized [37, 38] to investigate bifurcations of

modulated fronts with large amplitude.
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Thus, we shall write (3.3) as a first-order system in the spatial variable ξ. We set

V = (V1,V2,V3,V4) = (v, (∂ξ + ∂p1
)v, (∂ξ + ∂p1

)2v, (∂ξ + ∂p1
)3v), (3.4)

and see that (3.3) is equivalent to the system

∂ξV1 = −∂p1
V1 + V2,

∂ξV2 = −∂p1
V2 + V3, (3.5)

∂ξV3 = −∂p1
V3 + V4,

∂ξV4 = −∂p1
V4 + c(−∂p1

V1 + V2) +
(

−1 + µ− 2∂2
p2

− ∂4
p2

)
V1 − 2

(
1 + ∂2

p2

)
V3

−β
(
V2

2 + (∂p2
V1)

2
)

− V3
1.

Here, V(ξ, p1, p2) lies, for each fixed ξ, in the phase-space of functions that depend on the

variables (p1, p2) and satisfy the periodicity property (2.2) in (p1, p2). In abstract form, the

above equation can be written as

∂ξV = MV + N(V),

where the operator M = M(∂p1
, ∂p2

) represents the linear part of the equation, and the

nonlinear function N is given by

N(V) =
(
0, 0, 0,−β

(
V2

2 + (∂p2
V1)

2
)

− V3
1

)
.

We then see that the unbounded operator

M : H3 ×H2 ×H1 × L2 �−→ H3 ×H2 ×H1 × L2

is closed with domain D(M) = H4 × H3 × H2 × H1, where each of the above Sobolev

spaces consists of functions in (p1, p2) that satisfy

v(p1, p2) = v(p1, p2 + 4π/
√

3) = v(p1 + 2π, p2 + 2π/
√

3).

The nonlinearity N is smooth when considered on the above spaces. To analyse the linear

part ∂ξV = MV, we use the Fourier decomposition

V(p1, p2) =
∑

(�1 ,�2)∈�2

V�1 ,�2
ei�1p1+i�2(p1+

√
3p2)/2.

In the V�1 ,�2
coordinates, the operator M takes block-diagonal form with 4 × 4-matrix

blocks M�1 ,�2
on the diagonal. The matrices M�1 ,�2

are given by

M�1 ,�2
=




−i
(
�1 + �2

2

)
1 0 0

0 −i
(
�1 + �2

2

)
1 0

0 0 −i
(
�1 + �2

2

)
1

−ic
(
�1 + �2

2

)
− 1 + µ+

3�2
2

2
− 9�4

2

16
c −2 +

3�2
2

2
−i

(
�1 + �2

2

)


, (3.6)
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and the eigenvalue problem for each of these blocks is

(M�1 ,�2
− ν)V�1 ,�2

= 0,

where we denote the spatial eigenvalues by ν.

3.2 Spectra and parameter scalings

As mentioned above, we want to apply center-manifold theory to reduce (3.5) to a finite-

dimensional system. Thus, we begin by discussing the spectrum of M for µ close to the

threshold µ = 0. Depending on the magnitude of the wave speed c, the spectrum of M
decomposes differently.

If c is bounded away from zero, there are six center eigenvalues, counted with multi-

plicity, and the rest of the spectrum is bounded away from the imaginary axis uniformly

in c � c0. In addition, the spectral projections onto the center subspace exist and are

uniformly bounded for c � c0 (see, for instance, Ioos & Mielke [26]). Hence, in this regime,

we can apply the center-manifold theorem as stated in Vanderbauwhede & Iooss [45] and

arrive at a reduced six-dimensional ODE that captures all small modulated fronts. The

analysis that leads to the reduced ODE in this regime is very similar to the analysis of

the more complicated singular case that we shall describe below. We therefore omit the

reduction analysis for the case c � c0 and refer instead to the subsequent analysis.

The remaining second regime occurs when the wave speed c converges to zero with the

parameter µ. In fact, this regime is the more important one since interfaces often select

a modulated front that propagates with a wave speed that scales with
√
µ. Indeed, we

can find the preferred wave speed heuristically by analysing the linear dispersion relation

associated with the background state u = 0 in a frame that moves with speed c relative

to the laboratory frame [46]. This dispersion relation is given by

λ(k; µ, c) = −(1 − k2)2 + µ+ ikc.

Note that k= ±1 is a double root of the dispersion relation λ(k; 0, 0), i.e. we have

λ(±1; 0, 0) = dλ
dk

(±1; 0, 0) = 0. This double root persists for (µ, c) � 0 and is, to leading

order, given by kdb(µ, c) = ±1 + ic/8. The background state is convectively unstable1,

i.e. solutions of the linearized equation with spatially localized initial conditions decay

pointwise, precisely when λ(kdb; µ, c) lies in the left half-plane. To leading order, we

have Re λ(kdb; µ, c) = µ− c2/16, so that the background state is convectively unstable for

c > 4
√
µ. The threshold value c∗ = 4

√
µ is the speed of propagation for solutions of the

linear equation with spatially localized initial conditions. This critical wave speed scales

with
√
µ. We emphasize the formal nature of the above linear marginal stability criterion

which is rigorous only for the linear equation and, as we shall point out in § 6, probably

fails in a number of interesting nonlinear cases [46, 11, 15, 47]. Thus, to capture the

1 Convective instability refers to the situation where the pattern is unstable in the translation-

invariant norm, but perturbations decay pointwise at any fixed point x as t → ∞: perturbations

are therefore transported towards |x| = ∞. Thus, convective instability is actually a weak type of

stability.
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interesting range c∼ √
µ, we scale the parameters µ, c and β according to

µ = ε2µ̃, c = εc̃, β = εβ̃, (3.7)

where ε is small and the new parameters µ̃, c̃, and β̃ are O(1) in ε. The scaling of β

with
√
µ is motivated by the analysis of § 2. Within the scaling (3.7), we expect to find all

interesting modulated-front solutions.

3.3 Spectral gaps

Unfortunately, a major technical difficulty arises in the limit ε = 0. Each of the matrices

M�1 ,1 generates center eigenvalues for (µ, c) = 0, thus yielding an infinite-dimensional

center eigenspace. All these eigenvalues leave the imaginary axis for ε > 0. The key to

resolving this difficulty is that the center eigenvalues leave the imaginary axis with different

speed. In fact, for fixed c̃� 0, it turns out that there are twelve center eigenvalues which

stay within an O(ε)-distance of the imaginary axis, while the real parts of all other center

eigenvalues scale uniformly with
√
ε . The spectral gap between these two spectral sets is of

the order c̃
√
ε. In particular, for ε > 0, the infinite-dimensional center eigenspace splits into

two subspaces, a twelve-dimensional subspace Ec associated with eigenvalues of distance

less than O(ε) to the imaginary axis and a complement associated with eigenvalues with

distance larger than O(
√
ε) from the imaginary axis. The projections P c associated with

this spectral splitting are bounded uniformly in ε.

Proposition 3.1 For each fixed c̃�0 and β̃, µ̃∈ �, there are positive constants d1, d2

and ε0 such that the following is true for any 0<ε� ε0: the matrix M has precisely

twelve eigenvalues, counted with multiplicity, in the strip | Re λ| � d1ε, while the remain-

ing eigenvalues λ satisfy | Re λ| � d2

√
ε. Furthermore, the spectral projection P c onto the

ε-dependent, twelve-dimensional eigenspace Ec associated with the eigenvalues within dis-

tance O(ε) of the imaginary axis is bounded uniformly in ε.

The above claims can be proved as follows. Using the transformation (3.4), we see that

finding eigenvalues ν of the operator M is equivalent to finding values of ν for which the

equation

−cνv = −
[
1 + (ν + ∂p1

)2 + ∂2
p2

]2
v + µv

has a non-trivial solution v that satisfies the periodicity condition (3.2). In Fourier space,

the above equation is

−cνv̂ = −
[
1 +

(
ν + i�1 +

i�2

2

)2

− 3�2
2

4

]2

v̂ + µv̂ (3.8)

where (�1, �2) ∈ �2, and v̂ is the Fourier coefficient of v for the frequencies (�1, �2).

Equation (3.8) has a non-zero solution v̂ if, and only if,

−c̃εν = −
[
1 +

(
ν + i�1 +

i�2

2

)2

− 3�2
2

4

]2

+ µ̃ε2, (3.9)
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where we also used the scaling (3.7). For ε = 0, equation (3.9) reduces to

0 =

[
1 +

(
ν + i�1 +

i�2

2

)2

− 3�2
2

4

]2

(3.10)

which has a solution ν ∈ i� if, and only if, either �2 = 0 and ν = −i�1 ± i for some �1 ∈ �
or else �2 = ±1 and ν = ± i

2
− i�1 − i�2

2
for some �1 ∈ �. In particular, there are infinitely

many center eigenvalues.

We shall see that the term −c̃εν on the left-hand side of (3.9) determines the speed

with which the center eigenvalues move away from the imaginary axis upon perturbing to

ε� 0. In particular, we expect that center eigenvalues at ν = 0 move away from the origin

with a much slower speed. To make this precise, observe that ν = 0 satisfies (3.10) precisely

when (�1, �2) = (±1, 0), (0,±1), (−1, 1) or (1,−1). Switching back to the formulation (3.6)

that uses the matrices M�1 ,�2
, we see that each of the six matrices M±1,0, M0,±1, M−1,1

and M1,−1 actually has a 2 × 2 Jordan block at ν = 0 for ε = 0. A Taylor expansion of

(3.9) near ν = 0 for the above values of (�1, �2) is therefore of the form aν2 + c̃εν+ µ̃ε2 = 0

for some non-zero number a ∈ �. Thus, the associated twelve eigenvalues stay within a

distance O(ε) of the origin in the complex plane. Next, consider the other solutions ν of

(3.10) that have Re ν= 0 and Im ν�0. If we assume that c̃�0, then the term c̃εν in (3.9)

scales with ε since ν�0 for these eigenvalues. Using standard perturbation theory, it is

then not difficult to see that the correction ν̂ defined by ν = ν|ε=0 + ν̂ scales like a
√
ε for

some a� 0. This completes the proof of the above claims.

Finally, we briefly comment again on the case where c� 0. In this case, it is easy to

see that ν = 0 is the only purely imaginary solution of (3.8) for c� 0 and µ = 0. This

occurs for the same values of (�1, �2) that were mentioned in the previous paragraph,

and ν = 0 is in fact a simple zero of (3.8) due to the term −cν. Thus, there are only six

eigenvalues on the imaginary axis. A scaling argument, which we omit, also shows that

the other solutions of (3.8) for c� 0 and µ = 0 are bounded away from the imaginary

axis.

3.4 Existence of a center manifold

We have obtained a spectral splitting into two sets of eigenvalues that move off the

imaginary axis with different speed, maintaining a spectral gap of order
√
ε . We wish

to exploit this gap to find a reduction to a twelve-dimensional center manifold tangent

to the center subspace Ec of the twelve eigenvalues that stay closest to the imaginary

axis. A similar situation, with four rather than twelve eigenvalues, has been studied in

Eckmann & Wayne [16] and Haragus & Schneider [21]. As in these references, we can

indeed construct a locally invariant, twelve-dimensional center manifold that is tangent

to the center eigenspace and has a diameter no less than ε
3
4 +γ for a small positive γ < 1

4
.

To construct this manifold, we apply [16, Theorem A.1] and follow the proof given earlier

[16, Appendix A.1]. The crucial step is to show that the product of the Lipschitz constant

of the nonlinearity, restricted to a ball of radius ε
3
4 +γ centered at the rest state V= 0,

and the inverse of the spectral gap between the center and the hyperbolic part of the

linearization of (3.5) about V= 0 is smaller than one for ε > 0. The spectral gap of the
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matrix M is larger than K1

√
ε for some constant K1 > 0, while the Lipschitz constant

of the nonlinearity, restricted to a ball of radius ε
3
4 +γ , is bounded by K2ε

1
2 +2γ for some

constant K2 > 0. We refer to Eckmann & Wayne [16, Appendix A.1] for further details.

Thus, the product of the Lipschitz constant with the inverse of the spectral gap is of

the order O(ε2γ), and therefore certainly less than one for small ε > 0. An application of

Eckmann & Wayne [16, Theorem A.1] then guarantees the existence of a center manifold

of diameter ε
3
4 +γ . The above arguments are valid for any fixed c̃ � 0 and β̃, µ̃ ∈ �. In

summary, we have the following proposition.

Proposition 3.2 For each fixed c̃� 0, β̃, µ̃ ∈ � and 0 < γ < 1
4
, there is a positive constant

ε0 such that the following is true for any 0 � ε � ε0: there exists a smooth map h : Uc → Eh,

where Uc is the ball of radius ε
3
4 +γ in Ec, centered at zero, and Eh is the null space of the

spectral projection P c, such that h(0) = Dh(0) = 0 and the graph of h is the locally invariant

center manifold.

We note that the spaces Ec and Eh depend on ε. We also emphasize that the modulated

fronts that we shall construct below have amplitudes of order O(ε), just like the rolls and

hexagons, and are therefore certainly contained in the center manifold.

The reduced vector field on the twelve-dimensional center manifold is given by

d

dξ
Vc = MVc + P cN(Vc + h(Vc)), Vc ∈ Uc ⊂ Ec (3.11)

(see Proposition 3.2). To derive an explicit expression for the right-hand side of (3.11), we

follow the strategy in Eckmann & Wayne [16] and Haragus & Schneider [21], and relate

the reduced equation on the center manifold to the Ginzburg–Landau equation [23, 39]

of the underlying PDE (1.1).

3.5 The Ginzburg–Landau equation

We begin with a brief summary of the derivation of the Ginzburg–Landau equation

that describes small bifurcating patterns of the Swift–Hohenberg equation (1.1) near

onset. Consider solutions u = u(x1, x2) of (1.1) that are periodic in x2 so that u(x1, x2) =

u(x1, x2 + 4π/
√

3). In other words, we require periodicity only in x2 but not in x1. The

dispersion relation of the linearized equation (2.1) is then given by

λ(k1, k2) = −
(
1 − k2

1 − k2
2

)2
+ µ

where k1 ∈ �, but k2 ∈
√

3�/2 is restricted to the one-dimensional lattice spanned by√
3/2. As illustrated in Figure 3, each curve of eigenvalues given by k1 �→ λ(k1, k2) with

k2 = 0,±
√

3/2 has exactly two maxima. In this situation, bifurcating solutions are of the

form u = ψ + O(ε2) with

ψ(x, t) = εA1(εx1, ε
2t)eix1 +εA2(εx1, ε

2t)ei(− 1
2 x1+

√
3

2 x2) +εA3(εx1, ε
2t)ei(− 1

2 x1−
√

3
2 x2) +c.c. (3.12)
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−1 − 1
2

1
2 1 k1

λ

Figure 3. The Fourier spectrum of the linearization of (1.1) for µ = 0 with periodic boundary

conditions in the x2-direction.

where the complex amplitudes Aj(X,T ) ∈ � satisfy, to leading order, the system

∂TA1 = 4∂2
XA1 + µ̃A1 − β̃A2A3 − 3A1|A1|2 − 6A1(|A2|2 + |A3|2)

∂TA2 = ∂2
XA2 + µ̃A2 − β̃A3A1 − 3A2|A2|2 − 6A2(|A3|2 + |A1|2) (3.13)

∂TA3 = ∂2
XA3 + µ̃A3 − β̃A1A2 − 3A3|A3|2 − 6A3(|A1|2 + |A2|2)

of coupled Ginzburg–Landau equations [41]. Note that the parameters appearing in (1.1)

and (3.13) are related via (3.7); see also (2.3) and (2.4). The modulated fronts that we

seek correspond to front solutions Aj(X,T ) =Aj(X− c̃T ) of the above Ginzburg–Landau

system which satisfy the ODE

4∂2
ζA1 + c̃∂ζA1 + µ̃A1 − β̃A2A3 − 3A1|A1|2 − 6A1(|A2|2 + |A3|2) = 0

∂2
ζA2 + c̃∂ζA2 + µ̃A2 − β̃A3A1 − 3A2|A2|2 − 6A2(|A3|2 + |A1|2) = 0 (3.14)

∂2
ζA3 + c̃∂ζA3 + µ̃A3 − β̃A1A2 − 3A3|A3|2 − 6A3(|A1|2 + |A2|2) = 0

with Aj(ζ) = Aj(X − c̃T ) and

ζ = X − c̃T = ε(x1 − ct) = εξ. (3.15)

We emphasize that it seems impossible to prove the existence of modulated fronts

directly by using only the Ginzburg–Landau equation (3.14). The reason is that the

approximation of the Swift–Hohenberg equation by the Ginzburg–Landau system (3.13)

is only valid over large but finite intervals in the spatial travelling-wave coordinate ζ (see

Appendix A).

3.6 Taylor expansion of the reduced vector field

Our goal is to relate the reduced vector field

d

dξ
Vc = MVc + P cN(Vc + h(Vc)), (3.16)

to the travelling-wave ODE (3.14) of the Ginzburg–Landau system (3.13). The idea is to

show that solutions on the center manifold coincide with (3.12), up to order O(ε2), in the

scaling suggested by (3.15). As a result, these solutions satisfy the ODE (3.14).
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Recall that Vc is contained in the ball of radius ε
3
4 +γ centered at the origin in the center

space Ec of the operator M. It is more convenient to use the variable Vc
0 in the twelve-

dimensional generalized null space Ec
0 of M0, where the subscript 0 refers to evaluation

at ε = 0. The map Vc
0 �→ Vc:=P cVc

0 is an isomorphism and gives the coordinate Vc.

We collect various estimates that we shall need below:

h(Vc) = O(|Vc|2), N(V) = O(ε|V|2 + |V|3), P c − P c
0 = O(ε). (3.17)

Note that the last estimate is a consequence of the block-diagonal form of the operator

M in Fourier space. The analysis in § 3.5 suggests to seek solutions of order ε. Thus, if we

restrict to Vc
0 = O(ε), we have

Vc = Vc
0 + O(ε2), h(Vc) = O(ε2), N(Vc + h(Vc)) = N

(
Vc

0

)
+ O(ε4).

Substitution of Vc = P cVc
0 and the above estimates into (3.16) leads to

P c dVc
0

dξ
= P c

[
MVc

0 + N
(
Vc

0

)
+ O(ε4)

]
(3.18)

which is valid for Vc
0 = O(ε).

So far, we have used only abstract theory but not any specific information about

the underlying PDE. In the next step, we exploit the structure of the operator M. We

denote by M0 the operator M for ε = 0. In § 3.3, we established that M0, restricted to

the twelve-dimensional generalized eigenspace Ec
0 associated with the eigenvalue ν = 0,

consists of six Jordan-blocks of length two. The six eigenvectors φj of the relevant matrix

M�1 ,�2
for ε = 0 are given by

φj =

(
1, i

(
�1 +

i�2

2

)
,

[
i

(
�1 +

i�2

2

)]2

,

[
i

(
�1 +

i�2

2

)]3 )
(3.19)

for j = 1, 2, 3 plus the complex conjugates. The associated generalized eigenvectors are

denoted by φ∗
j . We remark that

M�1 ,�2
φj = O(ε2) (3.20)

for ε� 0 which can be seen by applying M�1 ,�2
in (3.6) to the corresponding vector φj in

(3.19). Any element Vc
0 ∈ Ec

0 is then of the form

Vc
0 = Z1φ1e

ip1 + Z2φ2e
i(− 1

2 p1+
√

3
2 p2) + Z3φ3e

i(− 1
2 p1−

√
3

2 p2) + c.c.

+ Z∗
1φ

∗
1e

ip1 + Z∗
2φ

∗
2e

i(− 1
2 p1+

√
3

2 p2) + Z∗
3φ

∗
3e

−i( 1
2 p1+

√
3

2 p2) + c.c. (3.21)

where Z= (Z1,Z2,Z3) ∈ �3 and Z∗= (Z∗
1,Z∗

2,Z∗
3) ∈ �3 are complex-valued amplitudes.

To simplify notation, we use the shortcut

Vc
0 = ZΦ0 + Z∗Φ∗

0

for (3.21). Due to the results in the last section, see in particular (3.15), we are interested
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in Vc
0 = O(ε) and the scaled evolution variable ζ = εξ. Thus, we consider the scaling

Z(ξ) := εB(εξ) = εB(ζ), Z∗(ξ) := ε2B∗(εξ) = ε2B∗(ζ), (3.22)

so that

Vc
0 = εB(εξ)Φ0 + ε2B∗(εξ)Φ

∗
0.

Substitution into (3.18) gives

P c[ε2(B′Φ0 + εB′
∗Φ

∗
0)] = P c[εM(BΦ0 + εB∗Φ

∗
0) + N(BΦ0 + εB∗Φ

∗
0) + O(ε4)],

where d
dζ

= ′. Note that M0Φ0 = O(ε2) which is a consequence of (3.20). Using this fact

as well as (3.17), we get

P c[ε2(B′Φ0 + εB′
∗Φ

∗
0)]

= P c
[
εBP c

0 MΦ0 + ε2B∗Φ0 + ε2B∗(Φ0 − MΦ∗
0) + P c

0 N(BΦ0 + εB∗Φ
∗
0) + O(ε4)

]
.

Comparing coefficients, and using M0Φ0 = O(ε2) as well as Φ0−MΦ∗
0 = O(ε), we therefore

conclude that

B′ = B∗ + O(ε), B′
∗ = G(B,B∗) + O(ε)

that is

B′′ = G(B,B∗) + O(ε) (3.23)

for a unique well-defined function G(B,B∗) that does not depend upon the function

h(V). It remains to determine the function G(B,B∗). Using (3.21) and the results that

we obtained so far, we know that each solution on the center manifold in the spatial

dynamics is given by

V(ξ) = ε
[
B1(ζ)φ1e

ip1 + B2(ζ)φ2e
i(− 1

2 p1+
√

3
2 p2) + B3(ζ)φ3e

i(− 1
2 p1−

√
3

2 p2) + c.c.
]

+ O(ε2).

Substituting the expression for the eigenvectors φj , we see that the first component of

V(ξ) is given by

V1(ξ) = εB1(ζ)e
ix1 + εB2(ζ)e

i(− 1
2 x1+

√
3

2 x2) + εB3(ζ)e
i(− 1

2 x1−
√

3
2 x2) + c.c.+ O(ε2) (3.24)

where ξ and ζ are related via (3.15). Here, we have also used that (p1, p2) = (x1, x2), see

section 3.1. A comparison of (3.12) and (3.24) shows that they are identical up to terms

of order ε2 once we take (3.15) into account. Our analysis in this section shows that

the higher-order terms do not change the nonlinearity G in (3.23). Thus, (3.23) coincides

necessarily with (3.14).

In summary, the amplitudes Bj appearing in (3.21) and (3.22) satisfy the second-order

equation

4∂2
ζB1 + c̃∂ζB1 + µ̃B1 − β̃B2B3 − 3B1|B1|2 − 6B1(|B2|2 + |B3|2) + O(ε) = 0

∂2
ζB2 + c̃∂ζB2 + µ̃B2 − β̃B3B1 − 3B2|B2|2 − 6B2(|B3|2 + |B1|2) + O(ε) = 0 (3.25)

∂2
ζB3 + c̃∂ζB3 + µ̃B3 − β̃B1B2 − 3B3|B3|2 − 6B3(|B1|2 + |B2|2) + O(ε) = 0

as claimed.
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4 Analysis of the reduced system

In this section, we seek heteroclinic orbits to (3.25) that correspond to modulated fronts of

the Swift–Hohenberg equation (1.1). These heteroclinic orbits lie in the four-dimensional

invariant subspace defined by B1 ∈ � and B2 = B3 ∈ � of the ambient twelve-dimensional

phase space. The invariance of the lower-dimensional subspace is enforced by reflection

symmetry.

We note that the terms of order O(ε) represent a regular perturbation of (3.25) with

ε = 0. The heteroclinic orbits that we find below are constructed as transverse intersections

of the stable and unstable manifolds belonging to hyperbolic equilibria. We therefore set

ε = 0 in this section since each connection of the above type found for ε = 0 persists for

ε� 0 due to transversality.

Thus, consider (3.25) restricted to B1 ∈ � and B2 = B3 ∈ �, and with ε = 0:

4∂2
ζB1 + c̃∂ζB1 + µ̃B1 − β̃B2

2 − 3B3
1 − 12B1B

2
2 = 0

(4.1)
∂2
ζB2 + c̃∂ζB2 + µ̃B2 − β̃B1B2 − 9B3

2 − 6B2
1B2 = 0.

We note that any solution (B1, B2)(ζ) ∈ �2 of (4.1) corresponds to a modulated wave of

the Swift–Hohenberg equation of the form

u(x1, x2, t) = v(x1 − ct, x1, x2)

= 2ε

[
B1(ε(x1 − ct)) cos x1 + 2B2(ε(x1 − ct)) cos

x1

2
cos

√
3x2

2

]
+ O(ε2), (4.2)

where ζ = ε(x1 − ct) = εξ. See (3.1), (3.4) and (3.24).

Throughout the rest of this section, we assume that β̃ < 0, so that stable hexagons are

supported. We will also, for the sake of simplicity and due to the scaling properties of

(4.1), omit the tildes in (4.1). Finally, we use the notation B = (B1, B2).

4.1 Modulated fronts with large wave speeds

We analyse (4.1) in the limit of large wave speeds c � 1 which allows us to study (4.1) as

a singular-perturbation problem. Thus, we define a new independent variable ρ = ζ/c, so

that (4.1) becomes

∂ρB1 = B∗
1 ,

4

c2
∂ρB

∗
1 = −B∗

1 − µB1 + βB2
2 + 3B3

1 + 12B1B
2
2

(4.3)

∂ρB2 = B∗
2 ,

1

c2
∂ρB

∗
2 = −B∗

2 − µB2 + βB1B2 + 9B3
2 + 6B2

1B2

when written as a first-order system. The above system is the slow system in the sense

of geometric singular perturbation theory [28]. The associated fast system is obtained by

rescaling time according to τ = c2ρ which gives

∂τB1 =
1

c2
B∗

1 , 4∂τB
∗
1 = −B∗

1 − µB1 + βB2
2 + 3B3

1 + 12B1B
2
2

(4.4)

∂τB2 =
1

c2
B∗

2 , ∂τB
∗
2 = −B∗

2 − µB2 + βB1B2 + 9B3
2 + 6B2

1B2.
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B

B∗

B∗ = g(B)

Figure 4. The two-dimensional normally-hyperbolic slow manifold of (4.4) for ε = 0.

Setting 1/c2 = 0 in (4.4), we obtain

∂τB1 = 0, 4∂τB
∗
1 = −B∗

1 − µB1 + βB2
2 + 3B3

1 + 12B1B
2
2

∂τB2 = 0, ∂τB
∗
2 = −B∗

2 − µB2 + βB1B2 + 9B3
2 + 6B2

1B2.

This system has a two-dimensional manifold of equilibria, given by

(B∗
1 , B

∗
2) = g(B1, B2) =

(
−µB1 + βB2

2 + 3B3
1 + 12B1B

2
2 ,−µB2 + βB1B2 + 9B3

2 + 6B2
1B2

)
,

which is normally hyperbolic and, in fact, attracting (see Figure 4). The flow on this slow

manifold, computed by using the limit 1/c2 = 0 of the slow system (4.3), is given by

∂ρB1 = −µB1 + βB2
2 + 3B3

1 + 12B1B
2
2

(4.5)
∂ρB2 = −µB2 + βB1B2 + 9B3

2 + 6B2
1B2.

Geometric singular perturbation theory [18, 28] shows that the slow manifold persists for

1/c2�0 as an invariant manifold, and that the flow on the slow manifold is given by

(4.5) up to terms of order O(1/c2). Thus, the terms of higher order on the slow manifold

can again be viewed as regular perturbations that do not destroy transversely constructed

heteroclinic orbits between hyperbolic equilibria.

Therefore, we focus on the planar vector field (4.5). First, note that (4.5) is equivariant

with respect to the �2-symmetry B2 �→ −B2. Consequently, the B1-axis is invariant under

the flow of (4.5). Note that the lines B1 = ±B2 are also invariant. Secondly, we remark

that the function

L(B) = µ

[
B2

1

2
+ B2

2

]
− βB1B

2
2 − 3

4
B4

1 − 6B2
1B

2
2 − 9

2
B4

2

is a Lyapunov functional for (4.5) since we have 〈∇L(B), F(B)〉 = −F1(B)2 − 2F2(B)2

where we denote by F(B) = (F1(B), F2(B)) the right-hand side of (4.5).

We analyse the equilibria of (4.5) next. Thus, we have to solve the equation

−µB1 + βB2
2 + 3B3

1 + 12B1B
2
2 = 0 (4.6)(

−µ+ βB1 + 9B2
2 + 6B2

1

)
B2 = 0. (4.7)

Equation (4.7) is satisfied for B2 = 0 and for 9B2
2 = µ− βB1 − 6B2

1 . In the first case, upon

substituting B2 = 0 into (4.6), we see that (4.6) has the solutions B = 0 corresponding to

the trivial state and Brolls = (±
√
µ/3, 0) corresponding to the rolls. In the second case, we
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substitute the expression 9B2
2 = µ− βB1 − 6B2

1 into (4.6) to get

−µB1 + (β + 12B1)B
2
2 + 3B3

1 = −µB1 +
1

9
(β + 12B1)

(
µ− βB1 − 6B2

1

)
+ 3B3

1

=
1

9
(3B1 + β)

(
µ− βB1 − 15B2

1

)
= 0.

Thus, we recover the hexagons from (2.5) for µ = βB1 + 15B2
1 where in fact B1 = B2. We

also obtain the solutions Bmm = (−β/3,±
√
µ− β2/3/3) which exist for µ � β2/3. Note that

these mixed-mode solutions (which were called wavy rolls in Buzano & Golubitsky [5])

bifurcate from the rolls in a pitchfork bifurcation (breaking the B2 �→ −B2 symmetry) at

µ = β2/3, and cross the branch of hexagons, located on the invariant line B1 = B2, via

a transcritical bifurcation at µ = 4β2/3, where the two components of Bmm coincide. We

refer to Figure 2 for the bifurcation diagram.

The eigenvalue structure of the linearization of (4.5) about the various equilibria is as

follows. The trivial state B = 0 has a double eigenvalue at ν = −µ. The rolls have eigen-

values at ν = 2µ and at ν = µ + β
√
µ/3 with eigenvectors (1, 0) and (0, 1), respectively.

The hexagons have eigenvalues at ν = µ+15B2
1 and at ν = −2µ+24B2

1 with eigenvectors

(1, 1) and (−2, 1), respectively. Lastly, the mixed modes have one strictly positive eigen-

value, while the other eigenvalue is strictly negative for µ< 4β2/3 and strictly positive for

µ > 4β2/3. We omit the explicit expressions of these eigenvalues.

Finally, note that the vector field (4.5), restricted to the line segments {B1 = a, |B2| � a}
and {B2 = a, |B1| � a}, points outwards for a � 1 sufficiently large. Utilizing the resulting

invariant regions and the information collected above, it is then straightforward to verify

that the phase diagrams of (4.5) are as plotted in Figure 5. This also completes the

bifurcation diagram in Figure 2.

Note that the evolution variable in figure 5 is the (scaled) spatial variable ξ, not time t.

Each connecting orbit in figure 5 gives a modulated front of the Swift–Hohenberg equation

with the spatial profile of that orbit. In particular, for µ > 0, the temporally unstable state

u = 0 of the Swift–Hohenberg equation corresponds to the stable equilibrium B = 0 in

the spatial dynamics: u = 0 can be invaded by any other equilibrium, so that connecting

orbits from any other equilibrium to B = 0 should exist.

Inspecting the phase diagrams shown in Figure 5, recalling that the terms of order O(ε)

that we neglected constitute regular perturbations that do not change the phase diagrams,

and also recalling the connection (4.2) between solutions (B1, B2) of (4.1) and modulated

fronts v(ξ, x1, x2) of the Swift–Hohenberg equation, we have proved the following theorem.

Theorem 4.1 Consider the modified Swift–Hohenberg equation (1.1) with µ = µ̃ε2 and β =

β̃ε for some fixed β̃ < 0, and introduce the wave speed c = c̃ε. Then there are positive numbers

ε0 and c̃0 such that the following is true for every ε with 0 < ε < ε0 and every c̃ with c̃ > c̃0.

Equation (1.1) has modulated-front solutions u(x1, x2, t) = v(x1− ct, x1, x2), where v satisfies

v(ξ, p1, p2) = v

(
ξ, p1, p2 +

4π√
3

)
= v

(
ξ, p1 + 2π, p2 +

2π√
3

)
,

that connect
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Figure 5. Plotted are the phase diagrams of (4.5) for fixed β < 0. We have −β2/60 < µ < 0 in (i),

0 < µ < β2/3 in (ii), β2/3 < µ < 4β2/3 in (iii), and lastly 4β2/3 < µ in (iv). The different equilibria

are the trivial rest state (E), hexagons (H), rolls (R), π-hexagons (πH), mixed modes (MM), and

false hexagons (FH). Between (i) and (ii), the rolls bifurcate through a pitchfork and the π-hexagons

through a transcritical bifurcation from B = 0. Between (ii) and (iii), the mixed modes bifurcate

from the rolls in a pitchfork bifurcation. Finally, between (iii) and (iv), the mixed modes become

false hexagons in a transcritical bifurcation at the hexagons. Note that there exist rolls with B1 < 0.

These rolls are unstable in the B2-direction and connect to the π-hexagons for any µ > 0. See also

figure 2 for the bifurcation diagram of the Swift–Hohenberg equation.

(i) stable hexagons uhex to the unstable trivial pattern u = 0 for 0 < µ < 4β2/3,

(ii) stable hexagons uhex to unstable roll solutions urolls for 0 < µ < β2/3,

(iii) stable hexagons uhex to the unstable π-hexagons uπhex for −β2/60 < µ < 4β2/3, and

(iv) stable roll solutions urolls to the unstable hexagons uhex for 4β2/3 < µ.

In the theorem above, we say that the front v(ξ, p1, p2) connects the pattern uleft(p1, p2)

to the pattern uright(p1, p2) if

lim
ξ→−∞

‖v(ξ, ·, ·) − uleft(·, ·)‖H4 = 0, lim
ξ→∞

‖v(ξ, ·, ·) − uright(·, ·)‖H4 = 0.
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Since we assumed that c > 0, the pattern uleft therefore propagates into the region occupied

by uright.

Besides the fronts mentioned in the above theorem, the phase diagrams in Figure 5 give

the existence of additional fronts as well as the non-existence of certain fronts with large

wave speed. For instance, there are fronts connecting false hexagons to hexagons but no

fronts that connect rolls to π-hexagons.

4.2 Modulating fronts connecting stable rolls to the unstable trivial pattern

Modulated fronts that connect rolls to the unstable rest state u = 0 can be found for any

wave speed c > 0. Indeed, consider (4.1) with B2 = 0, which reduces to the second-order

equation

4∂2
ζB1 + c∂ζB1 + µB1 − 3B3

1 = 0. (4.8)

The roll solutions B1 = ±
√
µ/3 exist for any µ > 0. Furthermore, by inspecting the phase

diagram of (4.8), heteroclinic connections between the rolls and B1 = 0 exist for any

c > 0. These fronts are monotone for c � 4
√
µ. They coincide, of course, with the fronts

found in Collet & Eckmann [8] and Eckmann & Wayne [16] for the one-dimensional

Swift–Hohenberg equation.

4.3 Modulated fronts with arbitrary wave speed

Here, we comment on the existence of modulated fronts for finite, and not necessarily

large, wave speeds. The relevant equation that governs the existence of such fronts is (4.1),

which we rewrite as the first-order system

∂ζB1 = B∗
1

4∂ζB
∗
1 = −cB∗

1 − µB1 + βB2
2 + 3B3

1 + 12B1B
2
2

(4.9)
∂ζB2 = B∗

2

∂ζB
∗
2 = −cB∗

2 − µB2 + βB1B2 + 9B3
2 + 6B2

1B2.

This equation admits the Lyapunov functional

L(B,B∗) = 2[B∗
1]

2 + [B∗
2]

2 + µ

[
B2

1

2
+ B2

2

]
− βB1B

2
2 − 3

4
B4

1 − 6B2
1B

2
2 − 9

2
B4

2 ,

since 〈∇L, F〉 = −c([B∗
1]

2 + 2[B∗
2]

2), where we denoted the right-hand side of (4.9) by F .

We note that patterns that are stable with respect to the PDE (1.1) correspond to

equilibria of the spatial dynamical system (4.9) that are hyperbolic with stable and

unstable manifolds each of dimension two (see Figure 6). For positive wave speeds

c > 0, PDE-unstable patterns have a higher-dimensional stable manifold and a lower-

dimensional unstable manifold when considered as equilibria of (4.9). In particular, the

rest state B = 0 has a four-dimensional stable manifold for µ > 0 and c > 0, while rolls

have a three-dimensional stable manifold for 0 < µ < β2/3 and c > 0.

We therefore expect heteroclinic connections of saddle-saddle type, for a unique

wave speed c, between PDE-stable rolls and hexagons for β2< 3µ< 4β2 and between
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(H) c

µ4β2/3

(R) c

µβ2/3

(E) c

µ

c = 4
√
µ

c = 8
√

µ
7

c = 2
√
µ

Figure 6. The (spatial) spectra of the linearization of (4.9) about hexagons (H), rolls (R), and

the origin (E) are plotted in the parameter space (µ, c). For rolls and equilibria, spatial eigenvalues

within the invariant subspace B2 = 0 are indicated by crosses, while the remaining two eigenvalues

are plotted using bullets.
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Figure 7. The plots show the dependence of the speed of propagation of different fronts on the

parameter µ for fixed β = −1. The curves labelled (HE) and (HR) are associated with stable-stable

and orbit-flip fronts that connect hexagons to u = 0 and hexagons to rolls, respectively. These

curves were computed with auto97 [14]. The curves labelled cE = 4
√
µ and cR = 2

√
−µ− β

√
µ/3

belong to those stable-unstable fronts that are selected according to the linear marginal stability

criterion. Note that cE = cR at µ = β2/75.

PDE-stable hexagons and the pure conductive state for −β2< 60µ< 0. The locally unique

wave speed c depends on the parameters µ and β. Using homcont [6] and the boundary-

value solver auto97 [14], we have verified the existence of hexagon-rolls and hexagon-

conductive fronts numerically in the parameter regime where the patterns involved are

stable (see Figure 7 for the computed nonlinear dispersion relation). It appears difficult

to prove the existence of connecting orbits of (4.9) analytically. Conley-index theory,

as outlined in Kokubu et al. [31, section 3], could perhaps be used to accomplish this

task. Note that the sign of the wave speed c can be calculated from the Lyapunov

functional L.

Of particular interest are pinned interfaces, i.e. fronts with vanishing wave speed c = 0,

that correspond to spatially co-existing patterns. The curves in parameter space for which

pinned fronts exist can be predicted by utilizing again the Lyapunov functional. Evaluating

this functional at hexagons, rolls and the trivial rest state, and comparing the resulting

energies gives the following predictions for stationary hexagon-conduction (µh↔0) and
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stationary hexagon-roll (µh↔r) fronts:

µh↔0 = −2β2

135
, µh↔r =

β2(7 + 3
√

6)

30
.

Note that (4.9) with c = 0 is reversible and Hamiltonian with energy L. We remark that,

even though the reduction procedure to a twelve-dimensional center manifold outlined in

§ 2 fails for c = 0, standing interfaces can be found directly by a reduction of (1.1) with

∂tu = 0 to a spatial center manifold. The resulting reduced equations recover the above

twelve-dimensional ODE with c = 0.

We note that we expect the saddle-saddle connection between PDE-stable hexagons

and the stable conductive state to persist into the region where the conductive state has

lost PDE-stability: in the travelling-wave ODE, the saddle-saddle connections persist as

orbit-flip connections between the two-dimensional unstable manifold of the fixed point

corresponding to the hexagons and the two-dimensional strong stable manifold of the

origin (these fronts are also often referred to as non-generic or strongly heteroclinic

fronts). Each such front is singled out as the front with steepest decay, although it is

not the slowest front. We expect that this front is selected when a hexagonal pattern

spreads into a region occupied by the pure conductive state (see § 5 for a more detailed

explanation). In particular, in this regime, the speed of propagation is not given by the

minimal speed that is predicted by the linear dispersion relation (see § 3.2). We refer to

Figure 7 for numerical evidence of the existence of the fronts with steepest decay.

5 Stability of modulated fronts

We briefly outline and discuss the conjectured stability properties of the modulated

fronts that we discussed above. We concentrate on stability with respect to the amplitude

equation (3.13) for real A1, A2 = A3, i.e. with respect to the reaction-diffusion system

∂TA1 = 4∂2
XA1 + µA1 − βA2

2 − 3A3
1 − 12A1A

2
2

∂TA2 = ∂2
XA2 + µA2 − βA1A2 − 9A3

2 − 6A2
1A2.

Using spatial dynamics, it is often possible to lift stability properties for Ginzburg–Landau

equations back to the underlying PDE: we refer to Bridges & Mielke [3] and Mielke [33]

for stability of rolls and to Schneider [43] for stability of modulating fronts (see also

Sandstede & Scheel [37, 38]).

We focus on the region 0<µ<β2/3 where fronts connect stable hexagons with unstable

rolls and the trivial rest state. The ‘linear marginal stability’ criterion states that an interface

between a stable and an unstable pattern selects the wave speed at which the unstable state

is marginally stable, i.e. at the transition between convective and absolute instability. As

outlined in § 3.2, the resulting wave speed can be computed from the spatial eigenvalues

at the unstable state. Evaluating this criterion, we see that the selected wave speeds cE
and cR are

cE = 4
√
µ, cR = 2

√
−µ− β

√
µ

3



Propagation of hexagonal patterns near onset 107

for fronts invading u = 0 and rolls, respectively. Fronts invading rolls or the trivial state

with wave speeds larger than cE or cR, respectively, are stable in function spaces with

exponential weights. We refer elsewhere [46, 11, 15, 47] for results and references regarding

the front-selection problem.

As mentioned above, however, the linear marginal stability criterion fails for those

values of µ for which orbit-flip connections are present. Indeed, in a function space with

an appropriate exponential weight, these fronts have λ = 0 as a temporal eigenvalue since

they decay sufficiently fast towards their rest states. For any other stable-unstable front

v, λ = 0 is not a temporal eigenvalue, since they decay slower, and their spatial derivative

v′ does therefore not lie in the exponentially-weighted function space. As a result, at

the orbit-flip front with speed cof , an eigenvalue crosses through the imaginary axis and

destabilizes fronts with either larger or smaller wave speed than cof . In fact, it is the slower

fronts that typically destabilize. We again refer elsewhere [46, 11, 15, 47] for references.

Finally, we note that there is a one-parameter family of fronts, not counting the

translation parameter, that connect hexagons to u= 0 for each fixed c in the region

0< 3µ<β2. While the eventual wave speed c of a propagating interface is selected

according to either c = cof or the linear marginal stability criterion, it is not clear which

front among the one-parameter family belonging to the selected wave speed is chosen.

We refer to Pisman & Nepomnyashchy [36], Csahók & Misbah [12] and Haragus &

Nepomnyashchy [22] for interesting numerical simulations and conjectures.

6 Discussion

The approach outlined in this paper is well suited for planar modulated fronts where the

interface between the two asymptotic patterns is approximately a straight line. In a number

of experiments and numerical simulations, fronts with a radial spatial structure have also

been observed. Localized and pinned, i.e. stationary, droplets of hexagons surrounded by

the homogeneous rest state have been observed experimentally, for instance in the CIMA

reaction [35] and in Rayleigh–Bénard convection [1], and numerically [25, Figure 9(c)] in

the equation

∂tu = −(1 + ∆)2u+ µu+ γu2 − u3,

another variant of the Swift–Hohenberg equation. Such hexagon droplets can also propag-

ate radially. Numerical computations of the Lengyel–Epstein model, a two-component

reaction-diffusion system, reveal a droplet, formed by a large number of stable subcrit-

ical hexagons, that expands radially into the stable background state [27, Figure 10].

Experimentally in the Rayleigh–Bénard convection [1, Figure 22] and numerically in the

Brusselator model [27, Figure 12], droplets formed by a large number of stable super-

critical hexagons have been observed that expand into the unstable homogeneous rest

state. In this case, the expanding droplet is shaped like a large hexagon (comprised of

many small hexagons), and rolls appear as intermediate patterns between the hexagon

droplet and the rest state. The rolls align along the edges of the hexagon droplet. We

refer to De Wit [13] for more details and references. Localized, pinned structures in one

spatial dimension can be explained using symmetry arguments (see, for instance, Coullet

et al. [10]). In higher space dimensions, it is not clear how to explain the appearance
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of the aforementioned localized or radially expanding hexagon droplets rigorously. The

approach used in this paper certainly fails.

Appendix A The Ginzburg–Landau system

The Ginzburg–Landau formalism can be considered as a generalization of the center-

manifold theorem [42]. The properties of Ginzburg–Landau equations that are needed to

make this statement more precise are attractivity [17, 40] and validity of the approximation

[9, 23, 39, 44].

In this appendix, we state these results in the context of the Ginzburg–Landau system

(3.13). The attractivity result shows that solutions evaluated at times of order O(1/ε2) are

spatial modulations of the most unstable Fourier modes. In detail:

Theorem A.1 ([17, 40]) For every C1> 0, there exist positive constants C2, ε0 and T0 such

that the following is true for every ε∈ (0, ε). Let u= u(t) be a solution of (1.1) with

‖u|t=0‖C4
bdd

� C1ε. At time t = T0/ε
2, this solution can then be written as

u(x, T0/ε
2)

= εA1(εx1) eix1 + εA2(εx1) ei(− 1
2 x1+

√
3

2 x2) + εA3(εx1) ei(− 1
2 x1−

√
3

2 x2) + c.c.+ ε2R(x, T0/ε
2)

where ‖A1‖C4
bdd

+ ‖A2‖C4
bdd

+ ‖A3‖C4
bdd

+ ‖R‖C4
bdd

� C2.

Hence, the set of modulated solutions is an attractive set analogous to the center man-

ifold in the case of discrete spectrum. The dynamics on the attractive set is approximated

by the coupled Ginzburg–Landau system (3.13). In detail:

Theorem A.2 Let (A,A) ∈ C([0, T0], C
4
bdd) with A = (A1, A2, A3) and A = (A1, A2, A3) be a

solution of the Ginzburg–Landau system (3.13), and denote by ψ the approximation defined

in (3.12). Under these assumptions, there exist positive constants C0 and ε0 such that for

every ε∈ (0, ε0) there is a solution u∈C([0, T0], C
4
bdd) of the Swift–Hohenberg equation (1.1)

that satisfies

sup
t∈[0,T0/ε2]

‖u(t) − ψ(t)‖C4
bdd

� C0ε
2.

Proof The proof given in Kirrmann et al. [30] applies, since we assumed that the coefficient

in front of the quadratic term is of order O(ε). �

Thus, the error of the approximation, which by the above theorem is of order O(ε2), is

much smaller than the magnitude O(ε) of the solution u and the approximation ψ.

The above two theorems allow us to consider the approach via Ginzburg–Landau

equations in systems with continuous spectrum as a generalization of the center-manifold

theorem. In particular, global existence results transfer from the amplitude equations to

the original system [42], and upper-semicontinuity of attractors holds [34].



Propagation of hexagonal patterns near onset 109

Acknowledgements

This work was supported by the Volkswagenstiftung through the Research in Pairs (RiP)

program at the Mathematisches Forschungsinstitut Oberwolfach. B. Sandstede was also

supported by the NSF under grant DMS-9971703 and by an Alfred P. Sloan Research

Fellowship.

References

[1] Bodenschatz, E., Pesch, W. & Ahlers, G. (2000) Recent developments in Rayleigh–Bénard

convection. Annu. Rev. Fluid Mech. 32, 709–778.

[2] Boissonade, J., Dulos, E. & De Kepper, P. (1995) Turing patterns: from myth to reality. In:

R. Kapral and K. Showalter (eds.), Chemical Waves and Patterns, pp. 221–268. Kluwer.

[3] Bridges, T. & Mielke, A. (1995) A proof of the Benjamin–Feir instability. Arch. Rat. Mech.

Anal. 113, 145–198.

[4] Busse, F. H. & Müller, S. C. (eds.) (1998) Evolution of Spontaneous Structures in Dissipative

Continuous Systems: Lecture Notes in Physics, 55. Springer-Verlag.

[5] Buzano, E. & Golubitsky, M. (1983) Bifurcation on the hexagonal lattice and the planar

Bénard problem. Philos. Trans. Roy. Soc. London A, 308, 617–667.

[6] Champneys, A. R., Kuznetsov, Yu. A. & Sandstede, B. (1996) A numerical toolbox for

homoclinic bifurcation analysis. Int. J. Bifurcation Chaos, 6, 867–887.

[7] Chow, S.-N. & Hale, J. (1982) Methods of bifurcation theory: Grundlehren der Mathematischen

Wissenschaften, 251. Springer-Verlag.

[8] Collet, P. & Eckmann, J.-P. (1986) The existence of dendritic fronts. Comm. Math. Phys. 107,

39–92.

[9] Collet, P. & Eckmann, J.-P. (1990) The time dependent amplitude equation for the Swift–

Hohenberg problem. Comm. Math. Phys. 132, 139–153.

[10] Coullet, P., Riera, C. & Tresser, C. (2000) Stable static localized structures in one dimension.

Phys. Rev. Lett. 84, 3069–3072.

[11] Cross, M. C. & Hohenberg, P. C. (1993) Pattern formation outside of equilibrium. Rev. Mod.

Phys. 65, 851–1090.
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