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Abstract

We study quadratic systems of viscous conservation laws which arise as long-wavelength

modulation equations near planar, modulated traveling waves. In [3], we showed that

the conservation law is either elliptic or hyperbolic in a full neighborhood of the origin.

Moreover, in parameter space the ill-posed, elliptic inviscid limit coincides with the robust

occurrence of localized degenerate viscous shocks that correspond to localized spikes in the

profile of the traveling wave. We refer to these localized degenerate shock waves as holes.

In this paper, we study a special case, where the effective viscosity in the conservation

law is a scalar. Although the ellipticity of the underlying inviscid conservation law creates

an instability of the linearized transport equation at every single point of the degenerate

shock wave, which moreover is absolute in a region near the shock location, holes and

accompanying overcompressive shocks turn out to be asymptotically stable. We conclude

with an example of a reaction-diffusion system with a planar modulated wave where our

results predict the existence of families of stable holes in the planar front.
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1 Introduction

Traveling-wave solutions are particular solutions to translation-invariant systems, which can

often be studied analytically, or at modest numerical expense, but yet provide insight in the

dynamics of spatially extended systems. Traveling waves also serve as building blocks for

more complicated spatio-temporal patterns. In recent work [3, 4, 5], we studied traveling

waves in planar reaction diffusion systems: assuming existence and certain stability properties

of a planar traveling wave, that is, a wave which does not depend on one of the coordinates,

U(x1, x2, t) = U∗(x1 − ct), say, we found a plethora of traveling waves, which resemble the

primary front along each line x2 = const, but shifted by a phase U ∼ U∗(x1 − ct − ξ(x2)).

Of particular interest are corners in interfaces, where ξ ′(x2) = η(x2) → η± as x2 → ±∞.

We found exterior corners, η− < η+, interior corners, η− > η+, and steps, η− = η+ 6= 0.

The situation is much richer when the traveling wave propagates in an oscillatory fashion,

U(x1, x2, t) = Umtw(x1 − ct, ωt) = Umtw(x1 − ct, ωt + 2π). Then in addition to corners, we

found asymptotically flat shapes ξ(x2) with ξ′(x2) ∼ 1/|x2| as x2 → ±∞. We refer to these

interfaces as holes since they typically cause a localized depression in the (almost planar) level

set of the traveling wave. Figure 1.1 illustrates the different kinds of corners in a numerical

simulation. Plotted is the value of one of the chemical species; the planar wave trains are

generated at the boundary and travel upwards. In the left-hand and in the middle picture,

the planar interface of the wave trains is perturbed by a vertical line inhomogeneity along

which exterior corners and holes form, respectively. Also visible in the left-hand picture are

interior corners to the left- and right-hand sides of the exterior corners, forming the corner

between the horizontal wave fronts in the far field and the outward propagating wave fronts

emanating from the exterior corner. In the right-hand picture, the line inhomogeneity travels

with a constant speed to the right in a frame moving upwards with the interface and the

interface forms a step across the inhomogeneity. See [5, Section 7] for more details.

Figure 1.1: Snapshots of numerical simulations of traveling waves in an oscillatory medium

with a line inhomogeneity; see the text for further details.

A related view on the dynamics of traveling waves focusses on large-scale modulations of the

position ξ(x2). An Ansatz U = U∗(x1 − ct+ ξ(εx2, ε
2t)) + O(ε2) yields an Eikonal equation

ξT = dξXX − g(ξX), T = ε2t, X = εx2,

as a compatibility condition in a formal expansion of the system in terms of ε. Here, the
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constant d is an effective viscosity, and the flux g is quadratic, determined by geometry. For

modulated waves, the Ansatz can be adapted to

U = Umtw(x1 − ct+ ξ(εx2, ε
2t), ωt+ θ(εx2, ε

2t)) + O(ε2),

and gives a system of equations

(
ξT
θT

)
= d

(
ξXX

θXX

)
−
(
g1(ξX , θX)

g2(ξX , θX)

)
.

Here, d is a 2 × 2-matrix, the effective viscosity, and the fluxes gj are quadratic. With

variables η = ξX and ρ = θX , this system becomes a quadratic viscous conservation law.

Corners as described above correspond to viscous shocks, and slopes ξX = η and θX = ρ,

determine characteristic speeds at infinity. In this regard, holes are of particular interest

as they correspond to degenerate but robust viscous shocks. Since slopes ξX and frequency

θX vanish asymptotically, both asymptotic characteristic speeds are glancing modes, moving

parallel to the shock location. These shocks occur in two-parameter families, parameterized

by position and amplitude, for an open set of fluxes gj .

It turns out that holes (or degenerate shocks) exist precisely when the system of conservation

laws for η and ρ is elliptic in the inviscid limit d = 0, which amounts to certain conditions on

the quadratic fluxes. One might therefore conjecture that these robust degenerate shocks are

unstable since the inviscid limit is highly unstable, ill-posed as an initial-value problem. In

this article we investigate shocks in the viscous conservation laws with elliptic inviscid limit,

under the assumption that the effective viscosity is a scalar, d = d0 id. Our main result shows

that degenerate shocks (and hence holes) are asymptotically stable.

Traveling waves arise in a number of physical systems, often as fronts U∗(x1 − ct) → u±
for x1 → ±∞ or pulses U∗(x1 − ct) → 0 for x → ±∞, or as spatially periodic wave trains

U∗(x1 − ct) = U∗(x1 − ct + L). Modulated waves arise via Hopf bifurcation from fronts in

combustion problems, or from wave trains in convection experiments [9]. As an application of

our results, we construct an explicit example of a front undergoing a Hopf bifurcation, such

that the bifurcating modulated front gives rise to a system of conservation laws with scalar

effective viscosity, and an ill-posed elliptic inviscid limit.

The remainder of this article is organized as follows. We review the derivation of the system

of conservation laws and gather properties of the fluxes in Section 2. We then briefly review

stability properties of the constant solutions to the viscous elliptic conservation law in Section

3, and the existence of holes in Section 4. In particular, we show that the linearization at every

point of a hole is unstable, and this instability is absolute for the points near the top of the

hole. We then show that holes can be stable: in the simplest case of scalar effective viscosity,

d = d0id, holes are spectrally stable under L2-perturbations (Section 5) and nonlinearly stable

for perturbations with zero mass (Section 6). We conclude with a brief summary of other

possible shocks (Section 7), an explicit construction of an example (Section 8), and a short

discussion (Section 9).
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2 From traveling waves to conservation laws

Consider a modulated planar traveling-wave solution Umtw(x1−c∗t, ω∗t) = Umtw(x1−c∗t, ω∗t+

2π) in an isotropic reaction-diffusion system

Ut = D4U + f(U), U ∈ R
N , x = (x1, x2) ∈ R

2,

with smooth kinetics f ∈ C∞ and positive diffusion matrix D = D∗ > 0. We can think of a

modulated wave train Umtw(ζ, τ) = Umtw(ζ + L, τ), or a pulsating front Umtw(ζ, τ) → U± for

ζ → ±∞. In the following, we concentrate on the case of a pulsating front, the case of a wave

train being similar.

Substituting the Ansatz

U(x1, x2, t) = Umtw(x1 − ct+ ξ(εx2, ε
2t), ωt+ θ(εx2, ε

2t)) + ε2V (x1 − ct, ωt, εx2, ε
2t),

into the reaction-diffusion system, leads to a viscous conservation law

uT = duXX + (A(u, u))X , T = ε2t, X = εx2, (2.1)

where u = (η, ρ) = (ξX , θX), d is a 2 × 2-matrix, and A a bilinear form. While we do not

attempt a rigorous derivation and justification of this modulation equation, we refer to [3,

Appendix 2] for a formal derivation in the present context and to [2] for a justification on

large time scales for a somewhat simpler, one-dimensional problem with a reduced scalar

conservation law. However, the derivation of the underlying steady system

duX +A(u, u) = C, (2.2)

is completely justified by a center manifold reduction [3, Section 5]. In the following, we will

interpret coefficients in this system of conservation laws and derive properties of the flux A.

First, the matrix d relates to stability properties of the modulated wave. In the space of

x2-independent functions, both time and space derivatives of the modulated wave contribute

to the kernel of the linearization. In two space dimensions, Fourier transform in x2 allows to

continue this neutral eigenspace with a Lyapunov-Schmidt-reduced linearization −dk2+O(k4),

where d is a two-dimensional effective diffusion matrix and k the Fourier variable; see [3,

Section 5] for more precise assumptions. Of course, the reflection symmetry of the underlying

equation together with the isotropy of the modulated wave enforce the reduced linearization

to be an even function of k. We are interested in linearly stable waves, where Re spec d > 0.

Next, the conservation form of the system generates a two-parameter family of equilibria with

A(u, u) = (c′, ω′)T . The constants c′ and ω′ are corrections to speed and frequency of the

modulated waves,

c′ = c∗ − c, ω′ = ω − ω∗,

and act as free parameters [3, Section 5]. In the reaction-diffusion system, this family is

generated as follows. First, since the medium is isotropic, any rotated wave Umtw(x·n−c∗t, ω∗t)

with n = (cosϕ, sinϕ) is a solution. Second, the solution is accompanied by solutions with
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periodic modulations in the transverse direction, U ∼ Umtw(x1 − ct, ωt− kx2), with ω = ω(k)

and c = c(k) for k small. Indeed, the periodic modulations satisfy

ωUτ −Dk2Uττ = DUζζ + f(U) + cUζ , τ = ωt− kx2, ζ = x1 − ct,

which can be rewritten as an O(k2)-perturbation of the equation for the planar modulated

wave

ωUτ − (DUζζ + f(U) + cUζ) −
((

id −D
k2

ω
∂τ

)−1
− id

)
(DUζζ + f(U) + cUζ)

= ωUτ − (DUζζ + f(U) + cUζ) + O(k2),

so that we can solve near the planar wave for ω and c as functions of k2.

We showed in [3] that the flux possesses the particular form

A(u, u) = c∗

(
−1

2η
2 + α1ρ

2

−ηρ+ α2ρ
2

)
, α1, α2 ∈ R. (2.3)

We argue here that this particular form can be deduced from the action of the Euclidean

group, only. The general form of a quadratic flux is

A(u, u) =

(
a1η

2 + a2ηρ+ a3ρ
2

b1η
2 + b2ηρ+ b3ρ

2

)
.

Our claim is that a1 = b2/2 = −c∗/2 and a2 = b1 = 0, solely because of the rotational

symmetry. Indeed, we may consider the rotated profile η = η∗, ρ = 0. In rotated coordinates,

the linearization would be symmetric, with vanishing linear flux. When we transform back to

the original coordinates, we generate a flux in the direction x2 along the interface, given by a

scalar, proportional to the angle. Indeed, transport in the rotated coordinates is by reflection

symmetry only in the normal direction to the interface, with normal speed of propagation c∗ (or

cg in case of a wave train). The direction normal to the interface in the rotated coordinates

decomposes into a changed normal speed of propagation and transport along the interface

proportional to the angle η∗. Therefore, the linearization of A(u, u) in a point u∗ = (η∗, 0) is

given by

d

du
A(u∗, u∗)ũ = 2A(ũ, u∗) =

(
−c∗η∗η̃
−c∗η∗ρ̃

)
.

Comparing with the general form of A now proves the claim.

Finally, notice that after a scaling in η and ρ, we have

A(u, u) =

(
−1

2η
2 + α1ρ

2

−ηρ+ α2ρ
2

)
, α1, α2 ∈ R.

In addition, the shear transformation η̃ = η − α2ρ succeeded by a scaling ρ̃ =
√
|2α1 − α2

2|ρ
gives the simplified flux

A(u, u) =

(
−1

2η
2 ± 1

2ρ
2

−ηρ

)
, (2.4)
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where the sign ± corresponds to the sign of 2α1 − α2
2. Also notice that the special case of

scalar effective viscosity, d = d0id, reduces to the case of trivial diffusion d = id after a scaling

in T and X.

3 Elliptic conservation laws and absolute instability of fre-

quency modulations

Stability and well-posedness in conservation laws crucially depends on the characteristic

speeds. A short computation of the eigenvalues of A(u, ·) shows that in the zero-viscosity

limit the system (2.1) with particular quadratic form A as in (2.3) is

• hyperbolic, real characteristic speeds, if 2α1 < α2
2;

• elliptic, complex characteristic speeds, if 2α1 > α2
2.

In the hyperbolic case, 2α1 < α2
2, we may diagonalize the simplified flux (2.4) with v1 = η+ ρ

and v2 = η − ρ, and then find two real viscous Burgers’ equations,

vjt =
∑

k=1,2

d̃jkvkxx − vjvjx, j = 1, 2; (3.1)

(here, and in the remainder of the paper, we use the notation x instead of X). On the other

hand, when 2α1 > α2
2, we set Z = η + iρ, and obtain

Zt = d̃1Zxx + d̃2Z̄xx − ZZx. (3.2)

In the special case d = id, (3.1) and (3.2) simplify to two uncoupled Burgers’ equations

vjt = vjxx − vjvjx, j = 1, 2, (3.3)

and the complex continuation of Burgers’ equation

Zt = Zxx − ZZx, (3.4)

respectively.

While (3.1) and (3.3) give hyperbolic conservation laws in the inviscid limit, (3.2) and (3.4)

possess complex characteristics with speed Z complex for Z 6∈ R, that is, for nonzero frequency

modulations ρ 6= 0. In particular, the linearization at any state u ≡ const is stable in the

hyperbolic case and unstable in the elliptic case provided ρ 6= 0. In addition, the instability

of the linearized equation

Zt = Zxx − Z∗Zx. (3.5)

is in fact absolute [1, 10] when ReZ2
∗ < 0, that is, when |ReZ∗| < | ImZ∗|. To see this,

note that the dispersion relation λ = ν2 − Z∗ν of the linearization possesses a double root at

λ = −Z2
∗/4: after transforming Z = Y eZ∗x/2, we find the heat equation with linear growth

Yt = Yxx − Z2
∗

4
Y.
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It is not difficult to see that even for general diffusion matrices, there always exists a conical

region of absolute instability.

Quadratic hyperbolic conservation laws have been studied in great generality [12]. It is also

known that non-Lax shocks can occur and be stable [7]. For elliptic conservation laws, abso-

lute instability has been shown in a general setup, including constants in the above complex

continuation of the Burgers’ equation [6]. We focus here on stability of shocks in the elliptic

conservation law (3.4). Notice that this complex continuation of Burgers’ equation is different

from the complex Burgers’ equation in [7], which is hyperbolic in the inviscid limit.

4 Localized viscous shock profiles

We showed in [3, Section 5] that holes exist as two-parameter families for the full reaction-

diffusion system whenever the inviscid conservation law falls into the elliptic regime. In the

viscous conservation law (2.1), hole solutions correspond to localized waves which satisfy the

quadratic ODE

ux = −d−1A(u, u). (4.1)

Quadratic ODEs in the plane have been studied in great generality [8]. For our system the

results in [3, Section 5] show that localized waves exist precisely in the elliptic regime α2
2 < 2α1.

Such solutions always approach zero along ray solutions,

u(x) =
u∗
x
,

in which u∗ ∈ R
2 is a fixed point of d−1A,

u∗ = d−1A(u∗, u∗).

In particular, they decay algebraically as |x| → ∞. Figure 4.1 shows four typical phase

portraits for the quadratic ODE in the elliptic case, α2
2 < 2α1, and hyperbolic case, α2

2 > 2α1.

In both cases, the ODE has either one or three ray solutions, since A is a quadratic form.

(a) (b) (c) (d)

Figure 4.1: Typical phase portraits of (4.1) in the elliptic case (a-b), and hyperbolic case (c-d).

The black lines represent the ray solutions.
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From now on we restrict to the case of a scalar effective viscosity, d = d0id, when the system

is equivalent to the Burgers equation (3.4). Then holes satisfy the complex-valued ODE

Zx =
1

2
Z2, (4.2)

and are given explicitly by the two-parameter family

Z∗(x) = − 2

x+ ia+ b
, a ∈ R

∗, b ∈ R.

The limit a = 0 corresponds to the unique (up to translations in x) ray solution which is

unbounded and has a pole at the origin. According to Section 3 values close to the top of

the wave lie in the region of absolute instability, while asymptotic values lie in the region of

absolute stability; see Figure 4.2. Nevertheless, we prove in the next two sections that these

waves are stable.

Figure 4.2: Phase portrait of (4.2) and the region of absolute instability (shaded).

5 Spectral stability of holes

The linearization of (3.4) at a hole Z∗ gives the linear operator

LZ = Zxx − (Z∗(x)Z)x, Z∗(x) = − 2

x+ ia+ b
, a 6= 0,

that we consider here in L2(R). Since Z∗(x) = O(1/|x|) as |x| → ∞, this operator is a

relatively compact perturbation of the Laplacian on L2(R), so that its essential spectrum is

given by specessL = (−∞, 0]. In order to determine the point spectrum, we have to study the

eigenvalue problem,

λZ = Zxx +
2

x+ ia+ b
Zx − 2

(x+ ia+ b)2
Z, (5.1)

which is a Bessel-type equation. Upon setting λ = −γ2, z = γ(x+ ia+ b), and

Z(x) = (x+ ia+ b)−
1

2W (z),
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we find the standard Bessel equation

Wzz +
1

z
Wz +

(
1 − 9

4

1

z2

)
W = 0.

Two linearly independent solutions of this equation are given by the Hankel functions H
(1)
3

2

and H
(2)
3

2

, which are holomorphic in the complex plane cut along the negative real axis, and

have the asymptotic behavior

H
(1)
3

2

∼
√

2√
πz

ei(z−π), H
(2)
3

2

∼
√

2√
πz

e−i(z−π),

as |z| → ∞, | arg z| < π.

For Re λ > 0, we choose γ such that a Im γ < 0. Then the two Hankel functions above

provide us with two linearly independent solutions to (5.1), which are analytic in x, since

γ(x + ia + b) /∈ R−, for any real x. The asymptotic behavior of the Hankel functions then

shows that these two solutions are unbounded, so that (5.1) has no bounded solutions for

Reλ > 0. This proves the absence of point spectrum in the right-half complex plane, and we

may conclude that holes are spectrally stable. More precisely, we have the following result.

Theorem 1 Consider a hole solution Z∗ to (3.4) with a 6= 0. Then the spectrum of the

linearized operator

LZ = Zxx − (Z∗(x)Z)x,

in L2(R) entirely lies in the closed left-half complex plane. Consequently, the hole solution Z∗

is spectrally stable.

6 Hopf-Cole and the dynamics of holes

The dynamics of (3.4) can be studied using the complex extension of the Hopf-Cole transfor-

mation Z = −2(log Ψ)x, which gives the linear heat equation for Ψ,

Ψt = Ψxx. (6.1)

With this transformation the holes Z∗ yield solutions of the heat equation

Ψ∗(x) = x+ ia+ b.

We can now use decay properties of the heat kernel to show nonlinear stability of holes for

different classes of initial data. We illustrate this only in the very simple situation of the

O(1/
√
t)-decay in L∞(R) of solutions to the heat equation with initial data in L1(R).

A convenient way of doing this transformation is by setting Z = Φx and then considering the

complex continuation of the viscous eikonal equation

Φt = Φxx − 1

2
Φ2

x, (6.2)
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to which the holes Z∗ give steady solutions

Φ∗(x) = −2 log(x+ ia+ b).

The following result for (6.2) implies the stability of the holes Z∗ for initial perturbations with

zero mass and algebraic decay o(1/|x|3) as |x| → ∞.

Theorem 2 Consider a solution Φ∗ to (6.2) with a 6= 0. Let Φ be the solution to (6.2) with

initial data

Φ|t=0 = Φ∗ + φ0,

such that

‖(1 + |x|)φ0(x)‖1 <∞, ‖φ0‖∞ <∞.

Then

‖Φ(t, ·) − Φ∗‖∞ ≤ C√
t
, ∀ t > 1,

for some positive constant C (depending upon φ0). Here ‖ · ‖1 and ‖ · ‖∞ represent the usual

norms in L1(R) and L∞(R), respectively.

Proof. We set Φ = Φ∗ + φ, and

Ψ = e−
1

2
Φ = Ψ∗e

−
1

2
φ = Ψ∗ + Ψ∗(e

−
1

2
φ − 1),

where Ψ∗(x) = x+ ia+ b, and Ψ satisfies the heat equation (6.1). The perturbation

ψ = Ψ∗(e
−

1

2
φ − 1),

also satisfies the heat equation, so that

ψ(t, x) =

∫

R

G(t, x− y)Ψ∗(y)(e
−

1

2
φ0(y) − 1)dy,

in which G is the heat kernel. The properties of φ0 imply

Ψ∗(e
−

1

2
φ0 − 1) ∈ L1(R),

so that from the decay properties of the heat kernel we conclude

‖ψ(t, ·)‖∞ ≤ C1√
t
, ∀ t > 0.

This inequality and the formula for ψ imply the result in the theorem.
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7 Other shocks

We now briefly discuss the other types of shocks that exist in the case of trivial diffusion

matrix. First notice that we can restrict to the case of vanishing shock speed due to the

Galilei invariance of the quadratic flux. Next, in the hyperbolic case (3.3), all shocks are either

constant in one component or classical Lax shocks. All shocks are stable. Combining two Lax

shocks with equal speed gives stable overcompressive shocks.

In the elliptic case, shocks are solutions to the complex-valued ODE

Zx =
1

2
Z2 − 1

2
α2, α ∈ C

∗, Reα ≥ 0. (7.1)

For Reα = 0 the dynamics of this ODE consists of periodic orbits surrounding the equilibria

Z± = ±α, while for Reα > 0 it consists of source-sink heteroclinics connecting the same

equilibria Z± = ±α; see Figure 7.1. All these shocks are “overcompressive”, with double

Figure 7.1: Phase portraits of (7.1) for α = 1, α = 1 + i, and α = i (from left to right).

characteristic speed 2α, and −2α, respectively. They are explicitly given by the family

Z∗(x) = αZB(α(x+ β)), β ∈ C,

where ZB denotes the classical real Burgers shock

ZB(x) = − tanh
(x

2

)
.

The results in Section 3 show that equilibria Z± = ±α with α ∈ R are stable, and equilibria

with α 6∈ R are unstable with unstable essential spectrum. In addition, for | Imα| > |Reα|,
the absolute spectrum destabilizes so that they are absolutely unstable.

For shocks, the linearized equation

λZ = Zxx − (Z∗Z)x (7.2)

transforms into
λ

α2
Z = Zyy − (ZBZ)y, y = α(x+ β). (7.3)

Then for α ∈ R we can use the stability of the Burgers shock to conclude that shocks with

α ∈ R are stable. Indeed, we have stability of the essential spectrum so that it is sufficient
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to exclude unstable point eigenvalues, which give necessarily exponentially localized solutions

to the linearized equation (7.2). However, solutions to (7.2) are the analytic continuation of

solutions to (7.3) in the complex time y, and exponential decay properties are preserved in the

analytic continuation, so that eigenvalues λ to (7.2) correspond to eigenvalues λ/α2 to (7.3).

Shocks with α 6∈ R are unstable with unstable essential spectrum, due to the essential insta-

bility of the asymptotic states, and this instability is absolute for | Imα| > |Reα| for the same

reason. In the regime of essential but not absolute instability, | Imα| < |Reα|, the analytic

continuation of solutions to (7.3) in α shows that the extended point spectrum [10] is given

by the extended real point spectrum of the Burgers shock, multiplied by 1/α2, thus contained

in the stable half plane: the instability therefore is convective in the sense that perturbations

to the linearized problem decay pointwise while growing in norm.

Remark 7.1 While the localized waves for α = 0 discussed in the previous sections correspond

to holes in the reaction-diffusion system, the shocks in this section typically correspond to

interior or exterior corners. For small α, the existence of these corners in the reaction-diffusion

system is insured by the results in [3, Section 5]. We may compute the asymptotic slopes

η± = ∓
(

Reα+
α2√

2α1 − α2
2

Imα+ O(|α|2)
)
,

when Reα > 0, in which αj are the coefficients in the quadratic form (2.3). The right-hand

side defines a curve

Reα+
α2√

2α1 − α2
2

Imα+ O(|α|2) = 0, (7.4)

in the half-plane Reα > 0, along which the angles at both ±∞ change sign, and interior

corners change into exterior corners. Interior corners exist in the open region bounded by the

curve defined through (7.4) and the imaginary axis, that contains the positive real axis, and

exterior corners exist in the interior of its complement. On the boundary between the two

regions, the front solutions yield interfaces with zero asymptotic slopes. These are reflection

symmetric hole solutions, with an exponential decay of the interface angle at infinity. In

particular, the average position of the interface converges at ±∞ for these holes, whereas it

diverges for the holes that we analyzed in the preceding sections.

8 An example

Consider the coupled Nagumo-Ginzburg-Landau system

ut = 4u+ (u− s|a|2)(1 − u2),

at = 4a+ (κ+ iω∗)a− u2a− (1 + iγ)a|a|2, (8.1)

in two space dimensions x = (x1, x2). Here u and a are real- and complex-valued functions,

respectively, and κ, ω∗, γ, and the coupling coefficient s are real parameters. This system
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possesses a steady planar front

(u, a)(x1) = (u∗(x1), 0), u∗(x1) = tanh

(
x1√

2

)
→ ±1, x1 → ±∞.

The one-dimensional linearization about this front is a diagonal operator L = (Lu, La) with

Lu = ∂x1x1
+ 1 − 3u2

∗, La = ∂x1x1
− u2

∗ + (κ+ iω∗),

and spectra

spec(Lu) = (−∞,−2] ∪ {−3

2
, 0}, spec(La) = (−∞,−1] ∪ {−1

2
} + (κ+ iω∗).

At κ = 1
2 , the front undergoes a Hopf bifurcation, with a simple pair of eigenvalues ±iω∗,

and an additional simple zero eigenvalue, due to translation invariance. We denote by e∗ the

real-valued eigenfunction, normalized to have L2-norm equal to 1, of La associated to the

eigenvalue iω∗, and set κ = 1
2 + µ. The bifurcating solution for µ > 0 is a modulated planar

traveling front

umtw(x1 − ct, ωt) = u∗(x1 − ct) + O(µ),

amtw(x1 − ct, ωt) = reiωte∗(x1 − ct) + O(µ3/2), (8.2)

in which c, ω, and r depend upon µ,

r2 =
1

e3
µ+ O(µ2), ω = ω∗ − γµ+ O(µ2), c =

√
2s

e3
µ+ O(µ2), (8.3)

with e3 = (e∗, e
3
∗), (·, ·) representing the scalar product in L2(R). This solution is accompanied

by solutions with periodic modulations in the transverse direction,

umtw(x1 − ckt, ωkt− kx2) = u∗(x1 − ckt) + O(µ),

amtw(x1 − ckt, ωkt− kx2) = rke
i(ωkt−kx2)e∗(x1 − ckt) + O(µ3/2), (8.4)

with ck, ωk, and rk given by,

r2k = r2 − 1

e3
k2 + O(k4), ωk = ω + γk2 + O(k4), ck = c−

√
2s

e3
k2 + O(k4). (8.5)

With the Ansatz in Section 2 we find the system of viscous conservation laws (2.1) with d = id,

since the diffusion matrix is trivial. We now compute the coefficients α1 and α2 with the help

of the modulated fronts (8.4). These fronts are equilibria of the system of conservation laws

with

η = 0, ρ = −k,

and integration constant

C = (−(ck − c), ωk − ω)T .

Consequently,

cα1k
2 = c− ck, cα2k

2 = ωk − ω,
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and from (8.5), we find

α1 =

√
2s

e3c
, α2 =

γ

c
.

We can now compute

α2
2 − 2α1 =

1

c2

(
γ2 − 2

√
2

e3
sc

)
=

1

c2

(
γ2 − 4

e23
s2µ+ O(µ2)

)
.

Then, the system is hyperbolic, α2
2 > 2α1, for sufficiently small µ, and falls in the elliptic

regime, α2
2 < 2α1, when γ = o(

√
µ).

Remark 8.1 This example illustrates in an explicit way the significance of the coefficients αj

in the transport equation. The quantity ρ stands for the transverse gradient of the phase of the

oscillation, typically denoted by k in this Ginzburg-Landau context. The coefficients αj measure

the leading-order influence of this transverse wavenumber on the speed of propagation and the

frequency of oscillation. The conservation law becomes elliptic, ill-posed in the inviscid limit,

when the off-diagonal term in the flux, given by the influence of the transverse modulation of

the oscillation on the speed of propagation, dominates the diagonal term, given by the nonlinear

dispersion relation in the frequency.

9 Discussion

We showed that inherently unstable elliptic conservation laws may well have islands of stability,

provided by the basins of attraction for coherent structures. However, we do not know in how

far these results are particular to the “integrability” structure, hidden in the transformation to

the linear heat equation. While we have shown that the holes persist for general conservation

laws with leading quadratic terms in the flux given by (2.3) and that holes moreover yield time-

periodic solutions to the reaction-diffusion system where the shape of the interface diverges

logarithmically at infinity [3], stability is a still more subtle issue. The proof of persistence

in [3] relies on a geometric blow-up construction, which could well be suited for the analysis

of the linearized problem; see for example [11] for such a construction. The difficulty stems

from the fact that eigenvalues might pop out of the origin, an edge point of the essential and

absolute spectrum.
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