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Abstract. We consider two equivariant equations admitting s v u c t d l y  stable heteroclinic 
cycles. These equations stem from mode equations for the Rayleigh-Benard convection and 
a model for turbulent layen in wall rrgions with riblets. Breaking’the symmetry causes several 
different bifurcations to occur which a n  be explained by bifurcations of codimension two 
of homoclinic orbits for non-symmetric syitems. In particular, stable periodic solutions of 
different symmetry type. other complicated heteroclinic cycles or geometric Lorenr amactors 
may emanate. Moreover, we delevop stability criteria for the bifurcating periodic solutions. In 
genenl, their stability type differs from the stability properties of the original heteraclinic cycle. 

AMS classification scheme numbers: 58F14, 34C37, 34C23 

1. Introduction 

During the last ten years many, attempts have been made to explain various kinds of 
intermittent behaviour in dynamical processes with the help of heteroclinic cycles. In 
differential equations which are invariant under the action of certain symmetry goups, 
heteroclinic cycles may appear for open ranges of parameter values. In other words, cycles 
can be structurally stable (codimension 0) within the class of invariant differential equations, 
whereas in generic, non-symmetric equations, one has to adjust at least one parameter 
(codimension 1) in order to observe homoclinic orbits or heteroclinic cycles to equilibria. 
Of course, the heteroclinic cycles found in equivariant systems are, in contrast to hyperbolic 
equilibria or periodic orbits, not robust under small symmetry breaking perturbations. 

Orbits close to heteroclinic cycles will spent long time periods near the stationary states 
of the cycle and will spontaneously, in a bursting-like event, leave the stationary state and 
approach another one where they will again remain for long time periods. However, if 
the cycle is asymptotically stable, this intermittent behaviour will become slower; the time 
spent near the stationary states will approach infinity. 

In the present work we try to capture some of the main features of symmetry breaking 
effects on heteroclinic cycles. We will, most of the time, restrict ourselves to two examples 
which are at the heart of many other cycles. The first example is a heteroclinic cycle with 
tetrahedral symmetry which was discovered by Busse and Clever [ B u g ]  in a model for 
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intermittent behaviour of convection rolls in rotational invariant Rayleigh-B6nard convec- 
tion. The importance of studying symmetry breaking effects in this model when considering 
deviations from the Boussinesq approximation was already pointed out by [Swi84]. 

The other example arises in  an 6(2)-mode interaction, studied by Armbruster et a1 
[AGH88] and Proctor and Jones [PJ88]. Some attempts to study the influence of symmetry 
breaking were made by Campbell and Holmes [CH92]. In these two examples we discover 
several phenomena which can be attributed to homoclinic bifurcations in generic non- 
symmetric vector fields. However, these bifurcations appear with codimension zero in our 
examples while they are of codimension two and higher in the non-symmetric context. 
Nevertheless we need two parameters to unfold these bifurcations even in equivariant 
equations. We show that asymptotic stability of bifurcating periodic orbits is not equivalent 
to stability of the cycle! As far as possible we tried to give lists of stability properties 
of the bifurcating periodic orbits. In many cases shift dynamics occur for open ranges of 
parameter values. The bifurcating orbits are intermittent in the sense that they spend long 
time intervals near equilibria. Moreover, intermittency is sustained (it does not slow down 
as for asymptotically stable cycles) by the imperfection of the symmetry. 

Let us briefly explain how this paper is organized. We first collect some basic aspects 
of heteroclinic cycles in equivariant differential equations. In section 3 we present the 
setting of our two major examples. In particular we will analyse the existence and stability 
of heteroclinic cycles. In section 4, we state our main results on symmetry breaking 
bifurcations, which will be proved in section 6. Before going to the proofs, we give a 
short summary of results on bifurcations from generic, non-symmetric, homoclinic orbits, 
which we will use in our proofs. In section 7 we show how symmetry breaking may 
also lead to chaotic behaviour of Lorenz-like attractors. Shift dynamics are encoded by 
itineraries in the cycle-in contrast to the encoding by return times in the previous sections. 
We will conclude with a discussion of some solved and unsolved problems in the theory 
around symmetric heteroclinic cycles. 

2. Eqnivariance, heteroclinic cycles and symmetry breaking 

2.1. Equivariant ODES 

We study differential equations 
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' 

d 
-U@) = f ( u ( 1 ) )  dt 

U E R" 

with smooth f E Cf(R"), 1 sufficiently large. The vector field f is supposed to be 
equivariant with respect to a finite subgroup r of 6 ( n ) ,  the group of orthogonal n x n- 
matrices, which means that for any y E r we have 

for all u E R" . 
Due to the equivariance, for any solution u( t )  of (Z.l), vu@) is also a solution. The isotropy 
subgroup of a point p E R" will be denoted by 

Note that points on a time orbit of (2.1) all have the same isotropy group whereas the 
isotropy groups of points on a group orbit ( y p  I y E I') = rp are conjugated 

f ( Y u )  = y f ( u )  

G , = I Y E ~ I Y P = P ) .  

G y p  = y G p y - ' .  
Given an isotropy subgroup G, the linear subspace 

Fix(G) = ( p  E R" I y p  = p for all y E C )  
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is called the fixed point subspace of G. As time preserves isotropy, fixed point subspaces 
are flow invariant. 

2.2. Structurally stable heteroclinic cycles 

Suppose that po and p I  are equilibria of (2.1) and that there exists a heteroclinic orbit q(t)  
that connects po to P I .  If p ,  = up0 for some U E r, we call the set r q ( t ) U r p o  a homoclinic 
cycle l?lCG89, definition 2.1.1, in fact, as r is finite, the sequence (uXq(t))ohrcN-l will 
form a closed cycle joining the equilibria u*po,  where N is such that u N p o  = PO. On 
the other band, in the quotient space E“ / r ,  the cycle is just a homoclinic orbit to the 
equilibrium [pol. In generic dynamical systems, homoclinic orbits are a codimension-one 
phenomenon as the intersection of stable and unstable manifold is of codimension one at 
least. In the class of equivariant dynamical systems, homoclinic cycles may be structurally 
stable. The intersection of stable and unstable manifolds might be transverse in a fixed point 
subspace. We call the cycle structurally stable, if there exists C = Fix(G) such that q(t)  E C 
and ( W ” ( p 0 ) n C )  intersects ( W s ( p l ) n C )  transversely in C. In proposition4.1, we will find 
another way to express this property. In  the literature many examples of homoclinic cycles 
have been found in local steady-state bifurcations with various symmetries. Asymptotic 
stability conditions have also been derived [KM91]. 

2.3. Symmetry breaking 

We are particularly interested in situations where a dynamical system, is close to a symmetric 
one. Let us therefore assume that the vector field f depends on a parameter f = f ( ~ ,  U ) ,  E E 
E‘ and that f(0, .) is equivariant with respect to r, but f ( & ,  .) only with respect to some 
subgroup H < r for E # 0. A lot of issues of local bifurcations which appear for E = 0 will 
persist for E # 0, such as hyperbolic equilibria or periodic orbits. Perturbations of hetero- 
clinic cycles have recently been studied in the context of symmetly breaking. The perturbed, 
H-equivariant flow (E # 0) might not possess invariant fixed-point subspaces which ensure 
structural stability of the cycle. Up to now we have tried to show persistence of some kind 
of recurrent dynamics [Me1891 or existence of periodic orbits [Cho92], [CF92], [SwiS4], 
[Sch91]. Unicity of periodic orbits is farely known. We will try to give a more detailed 
description of the dynamics in the neighbourhood of the homoclinic cycle. To this aim, we 
reduce the bifurcations of the symmetric homoclinic cycle to the investigation of homoclinic 
orbits in generic systems defined on the space of group orbits. The interesting issue that 
comes up is that the non-symmetric generic bifurcations we have to study are of codimension 
two, therefore the easiest symmetry breaking unfolding of the homoclinic cycle in an equi- 
variant generic codimension zero situation already requires two or even more parameters. 

3. Two examples 

3.1. Tetrahedral symmetry 

Here we consider the irreducible representation of the group T fB Zz on E3. It is generated 
by a reflection 

K = ( i  8 8) 
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and a rotation 
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a=(. 0 1 0  0 1 ) .  

1 0 0  

In particular, coordinate planes and axes are invariant under the flow of a T@&-equivariant 
vector field. An instability of the zero solution of such a dynamical system is described by 
the following third-order polynomial vector field: 

i = Ax + x(ax2 + by2 + cz2) 

3 = Ay + y(ay’ + bz2 + cx2)  

i = hr + z(az2 + 6x2 t cy’). 

On the coordinate axes, the equilibrium PO = (,/z.O,O) bifurcates from the origin, 
together with its group orbit for $ < 0. Existence of homoclinic cycles is guaranteed by 
the following l e m a :  

Lemma 3.1. Consider equation (3.1) with a < 0 and h > 0. Then ifand onIy i f b  < a < c 

or c < a < b, there exists a heteroclinic orbit, connecting po to up0 = (0, 0, e) or 

a’po = (0, e, o), respectively. 

Proof. Suppose b a < c (otherwise interchange y and 2). The eigenvalues of the 
linearization around po are 

The cycle is asymptotically stable ifand only ifk > b + c. 

The equilibrium po is a saddle in the directions transverse to the x-axis under the 
condition b i a < c. Its unstable manifold is included in the xz-plane, where up0 is stable. 
It is therefore sufficient to show that orbits remain bounded and that no mixed modes exist 
in the xz-plane. Rescaling time and ( x ,  y. z), we can mange to have a = -1. 

is forward invariant in the xz-plane. This 
implies also that z Q z(h - z’ + max(b, 0) . A) and that therefore z also stays bounded. 

As b < 0, it is easily seen that 0 < x < 
Looking for mixed modes, we have to solve 

A - x 2  + cz2 = 0 A -z2 + bx2 = 0 

but the unique solution (x2. z’) of this linear system is not positive when b < - 1 < c. 
In case the assumptions of the lemma are not satisfied, po will be stable (or unstable) 

in the y- and z-directions and therefore no cycle can occur. 
Asymptotic stability conditions follow from [KM91, theorem 4.11. They show that one 

can neglect the stable radial eigenvalue f ix and pLZ < -py is equivalent to 2a > b + c. 0 

This system of equations was first considered by Busse and Clever [BC79] as a 
model for a planar rotationally invariant Rayleigh-Bbnard problem, where x , y  and z 
model the amplitudes of the three dominating convection rolls which can be obtained 
by a rotation of %/3 from each other. Later, Guckenheimer and Holmes [GH88] 
showed the existence of structurally stable and asymptotically stable homoclinic cycles 
in these equations. First attempts to study symmetry breaking phenomena were made by 
Swift [Swi84] who considered a non-Boussinesq approximation to the Rayleigh-Binard 
problem which involved symmetry breaking from T @ Z2 to T. 
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Figure 1. A homoclinic cycle with T b &-symmetry in W3. 

We also study the slightly generalized problem where two T-modes are coupled: in a 
fourth space dimension 5 the element K is supposed to act as -id, U should act trivially. 
The unfolding of the zero solution is then a codimension two problem, governed by the 
system of four differential equations 

x = Ax + x(ax2 + by2 + cz2) + d t y z  

y = Ay + y(ay2 + bz2 + cx2) + d t x z  

i = AZ + z(az2 + bx2 f cy2)  + d t x y  

4 = v { + e  x y z -  t3 .  

(3.3) 

Note that the dynamics in the coordinate planes, where the homoclinic cycle lies, remain 
unchanged. Asymptotic stability of the cycle is guaranteed by the additional assumption 
v < 0 (in the terminology of [KM91], ( is a 'transverse' direction). 

Our main results describe the dynamics of systems of differential equations which are 
dose to these three- (or four-) dimensional equations but do only possess less symmetry H ,  
namely H = T, H = 2 3  generated by U or H = 4, generated by KU. Besides motivation 
by Swift's work on the non-Boussinesq case, one can see that these subgroups will reveal the 
most interesting phenomena-by breaking the cycle.-but, nevertheless, permit a detailed 
study. As the different equilibria of the cycle lie on one group orbit of X = 'IT, the unfolding 
of the cycle can be described by a minimal number of parameters. 

3.2. D4-symmetry 

Our second example is concerned with homoclinic cycles which bifurcate from the origin 
in D4-equivariant systems of differential equations. Two reducible representations of D4 
are considered 

(i) 0 4  acting on P3 as 0," Q O(3) (the twisted subgroup of 0 4  fB 2 2 ,  cf [CSSSS] for 
notation) with generators 
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-1 0 0 0 1  0 

0 0 - 1  
and U = ( '  0 0 )  

(ii) 0 4  acting on R4 as a subgroup of O(2) which acts via its ( I  = 1, I = 2) representation 
[CH92], [AGH88] with generators 

- 1 0 0  0 0 1  0 

0 0 1  0 
0 0 0 - 1  0 0  0 - 1  

[ 0 1 0 0  ) and U=(' 0 0 -1 i). 
K =  

Note that in (ii), a generic steady-state bifurcation from the origin is already of 
codimension three. It is motivated by bursting phenomena in boundary layers of fluids, 
where a spanwise translational invariance of the problem is broken by introducing small 
riblets in the wall region. Equidistance in the partition of the riblets corresponds to a 
Z k  < U(2) symmetry, a reflection_al symmetry with respect to the centre line produces 
Dk-symmetry in the equations. The choice k = 4 corresponds to the experimental setting 
[CH92], [ALHgO]. We are particularly interested in the dynamical phenomena which might 
occur when reflectional symmetry is broken, for example, because the riblets are not well 
centred. 

The importance of the 3d-model is that it is the core of both, U(2) and &mode 
couplings. Besides the T @ Z2 symmetric cycle, it is the only homoclinic cycle which 
can be forced to exist by symmetry in R3 [Schgl]. Many dynamical questions are already 
exhibited when considering this 3d-model. The codimension-two steady-state bifurcation is 
determined by the third-order truncated system 

X =Ax + dxz +x(ax2+ byz + czZ) 
j = AY - dyz + Y(UY' + bx2 + CZ') 

i = uz + y(x2 - y2) + z((Yz2 + pyx2 + y2)). 
(3.4) 

Note that the z-axis and the xz-coordinate plane are flow invariant. In  the xi-plane, we 
have a reflection symmetry x + -x. The yz-plane is conjugate to the xi-plane via U. 

By a suitable rescaling we can supposed = 1, (Y = -1 and IyI = 1. For y 0, no cycle 
can exist [AGH88] and we may set y = -1. On the z-axis, the equilibrium p+ = (0.0, 
bifurcates from the origin, together with its symmetric p- = (0.0, -fi) = up'. For some 
values of A and u there are four other equilibria, called mixed modes (MM), which lie in 
the coordinate planes x = 0 and y = 0, all on the same group orbit. We are interested in 

Figure 2. A homoclinic cycle with D,d-symmetry in R3. 



Forced symmetry breaking of homoclinic cycles 

I 

P- L 
i 

2) h E ( 4 ' 2  t c v , hap,) 

L 
339 

F ~ p r e  3. Bifurcation scenario with D,d.symmetry in the plane Fix(&). 

heteroclinic orbits, connecting p' to p- in the invariant planes. The linearization around 
p+ yields the eigenvalues 

i & = h f f i - c . U  
jLs = h - f i - c .  U 
&Lz = -2v. 

X = A x + x z - ~ ( a x  2 2  + c z )  
2 = uz -2- z(z2+Bx2) 

Lemma 3.2. The planar system 

possesses a mixed mode solution, bifurcating from the origin as A ,  U' - 0, v > 0,  iff 
A >  f i + c . u o r O  z h > - f i + c . v .  A t h  = f i + c . v ,  itbijimatesfromp- = (0, -& 
via a supercritical pitchfork bifurcation. At A = 0, it is created by a subcritical pitchfork 
bifurcation on the origin and disappears at h = -fi + c . U in a supercritical pitchfork 
bifurcation. At h ~ ~ ~ f  = -'fi+ O(v) it undergoes a supercritical Hopf bifurcation. The 
periodic orbit disappears in a heteroclinic loop bifurcafion p' + 0 --t p+ which is created 

For all A E ( h h e t ( U ) ; f i +  c .v), there exists a heteroclinic orbit, connecting p+ to p-. 
In this region of existence there is another curve hsip = O(u) where the heteroclinic orbit is 
contained in the strong stable manifold of p-. 

& 

U t  Aher = -;&~+ o(V). 
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Figure 4. Existence of homoclinic cycles, periodic orbits and mixed modes in the D,d-symmetric 
bifurcation. 

As these bifurcation scenarios are not directly connected to our main results, we postpone 
the proof until the appendix. 

In the 4d-mode1, the same invariant planes exist and exhibit the same bifurcation 
behaviour. The important difference lies in the existence of a fourth dimension. The 
linearization in this fourth direction (eigenvalue f i t )  is essentially independent of the other 
three directions. 

4. Results 

In the following, we will list some statements on forced symmetry breaking bifurcations 
which appear in the neighbourhood of homoclinic cycles. We first determine-speaking 
in terms of section 2-which subgroups H < r will preserve the cycle and which will 
generically break it. To single out the important direction of the perturbation, we consider 
the linear variational equation 

(4.1) 

(4.2) 

W )  = D f ( q ( t ) )  . W 

w ( t )  = -Df (q ( t ) )*  . w ( t ) .  

and its adjoint 

The next assumption is a non-degeneracy condition. 

(ND) Equation (4.1) possesses an up to scalar multiplication unique bounded solution q ( t ) .  

Note that this is always fulfilled in our three-dimensional examples. Moreover, it is 
satisfied in the four-dimensional tetrahedral example due to the decoupling of the fourth 
equation in the variational equation. Therefore, (ND) is only needed in proposition 4.1 and 
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theorem 4.5 as an assumption. The hypothesis (ND) implies that (4.2) also possesses a 
unique bounded solution $ ( t )  which is in fact,orthogonal to the sum of the tangent spaces 
to stable and unstable manifolds: 

W )  1 (T,(t)WU(P0) + Tq(')ws(P1)). 

Proposition 4.1. Assume hypothesis (NO). Then a homoclinic cycle is structurally stable 
within the class of r-equivariunt vectorfreldr if and only ifthere exists K E G,(,) < r such 
that K $ ( t )  = - $ ( t )  or, equivalently, ifW&)(po) iii" W;(,)(upo) with 

Proof. 

'e' In Fix (Gq(& the heteroclinic orbit is transverse and therefore persists under r- 
e q u i v ~ a n t  pefiurbations. To see this just observe that + I Fix (G4( t ) )  and therefore 

'j' If no K acts as -id in the direction of $, then Gq(,)l<*) = id, because $ is unique. 
Then we can continue the perturbation Eg(q(t),E) = E . $(t) r-equivariantly in a 
neighbourhood of the cycle and of course the cycle will break for E #'O because the 
Melnikov integral is non zero 

= Fix Gq(i). 

TW"(po) + T W S ( p d  2 Fix ( G d .  

W )  . D d f  + cg)(q(t))dt # 0. O 

This proposition enables us to single out the subgroups of r which produce interesting 
bifurcation phenomena. Indeed, for r = T fB ZZ and r = D4 the subgroups H = T, Z3, Z6 
and H = Dz, Zz, 2%- respectively, are the only subgroups which allow for breaking the 
cycle but do, on the other hand, preserve the homoclinic stmcture, that is, the equilibria po 
and p1 are conjugated in H. Comparing with the proposition, we see that for these cycles, 
$(t)  is always orthogonal to the invariant planes and the element K is just the reflection 
with respect to this plane. 

We will now give precise statements on possible bifurcation scenarios in the 
neighbourhood of homoclinic cycles with T fB Z2 or D4-symmetry. 

4.1. T fB Z2-symmefry 

In section 3, we described the unfolding of a T fB Z2-symmetric vector field near the origin 
with the formation of a homoclinic cycle. Vector fields which are close to this equation can 
formally be described by 

U f A ( U , & )  h E E E Rk (4.3) 

where f~(., 0) is T fB Zz-equivariant, fA( . ,  E) is H-equivariant and D, fo(O, 0) = 0. The 
Taylor jet of ~ A ( u ,  0) in the origin was given in (3.1) up to the third order. The dynamics 
near the homoclinic cycle in the penurbed vector field (E # 0) depend on 

the eigenvalues of the linearization around PO, which are 

(see equation (3.2)) and 
the parameter E of the perturbation. 

In the case fiz i ~r,, the strong stable manifold of po does not lie on the x-axis and 
we will require the following assumption in theorems 4.2 and 4.3. 
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1-homoclinic orbit 

2-period orbit 2-homoclinic orbit 

Figure 5. Definition of N-homoclinic and N-periodic orbits. 

(Wl) The heteroclinic orbit joining po to GPO is not included in the strong stable manifold 

This hypothesis is generic in the symmetric system and can be numerically tested. In 
the neighbourhood of the homoclinic cycle we will find for E # 0 the following types of 
solutions: . N-periodic solutions (N-per): these are solutions which pass N-times i n  the 

neighbourhood of the equilibrium in the quotient space R3 f H  during one period. 
N-homoclinic solutions (N-hom): these are homoclinic orbits in the quotient space 
which pass N - 1 times in a neighbourhood of the equilibrium before closing up, The 
homoclinic cycle for E = 0 is 1-homoclinic. 
shift-dynamics: these are encoded-as in Shilnikov’s homoclinic chaos-by the return 
time to a transverse cross section. 
In real phase space R3, N-periodic solutions will explore scm ( O ( G ) , N )  equilibria 

during one period, where O(u) is the order of G in H/G, , , ;  in the T fB &-symmetry, 
we have O(u) E {3,6] and in D4-symmetry O(o) E {2,4}. The interpretation of N- 
homoclinics is similar. Only k . O(u)-homoclinics for some k are homoclinic in R3, the 
others are heteroclinic cycles! 
Theorem 4.2 (T @ 4 + T symmetry breaking). Consider the T-equivariant steadystate 
bifurcation described by (3.1) and (4.3) and assume that, fa(u, 0) satisfies (Wl) .  Assume 
that - in the notation of section 3, a e 0,  b < a < c and A > 0, such that a homoclinic 
cycle bifurcates from the origin for E = 0. Denote by px, pg and fii the eigenvalues of 
the equilibria bifurcating on the x-axis (for an expression of the eigenvalues in terms of the 
coefficients, see equation (3.2)). The~regions with qualitatively different bifurcation behaviour 
for E # 0 are described infgure 6. 

of upo. 

Then for a generic unfolding in the parameter E, we have in region 
SI, SII, U: a one-parameter unfolding in E, which produces’ unique I-periodic solutions 

which are either stable (SI, SII) or have one unstable Floquet multiplier (U); see figure 
‘trivial’. 

KKO: a two-parameter unfolding with I -  and 2-periodic and -homoclinic solutions, compare 
figure ‘doubling’; the stability of the bifurcating periodic solutions is given in the table 
below. 
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Figure 6. Regions with qualitatively different unfolding of a T@Z~-cycle under forced symmetry 
breaking. 

I 11 III IV V 

I-per I stable I stable I stable I unstable - 
I unstable 

2-per - - I unstable - - 

San: a two-parameter unfolding with homoclinic doubling, homoclinic cascades and shift 
Here stable as well as unstable periodic solutions dynamics, see figure ‘cascade’. 

bi@-cate. 

All bifurcating periodic orbits are o-s)’mmetric. Rejecting the diagram with respect to 
HKK: a three-parameter unfolding with horseshoes in open regions of parameter space. 

F = 0 yields KuK-symmetric solutions. 

Remarks. 
(i) The names of the regions ‘HKK, ‘KKO’, . . . , are explained in the next section. 
(ii) Stability. In regions ‘U’, ‘SI’ and ‘ S I ’ ,  stability properties of the homoclinic cycle 

and the bifurcating periodic orbits correspond. In region ‘KKO’ the cycle is stable but 
there are stable and unstable periodic orbits bifurcating. In region ‘San’ there are stable 
periodic orbits if trace c 0, that is, if fi l  + py + px < 0, generated by the period 
doubling, though the cycle is unstable; near the ’shift’-region, we also expect stable 
periodic orbits due to the Newhouse phenomenon if trace < 0. 

(iii) If a > 0, we can reverse time and discover the same bifurcation phenomena for A c 0, 
of course, stability properties also are reversed. 

(iv) Note that the shift dynamics are encoded by the return times. The sequence of equilibria, 
explored by chaotic trajectories, is ju s t  u i p o  or KU‘PO and is not chaotic at all. 

(v) For the other symmetry groups H = Z, or H = Zg, the bifurcation diagrams are the 
same, The bifurcating periodic orbits possess Z,- or Zg-symmetry. In the Zg-case, 
they explore all equilibria of the cycle! However, reflecting the diagram with respect 
to E = 0 is meaningless in  these two cases. 
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(vi) The genericity conditions needed for the €-unfolding are implicitly given in lemmata 5.2 
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and 6.4. 

Theorem 4.3 (T 6B Z2 + T symmetry breaking in W4). I f  under the assumptions of 
theorem 4.2, there is a fourth critical direction with eigenvalue v in which the reflection 
K E TfB& acts as (-id) and the rotation a acts trivially, a generic T-symmetric perturbation 
of the T6B &-symmetric system (3.3) exhibits the following bifurcation phenomena when the 
perturbation parameter E varies around 0: 

( i )  in region SI, we have 
(a)  a unique periodic orbit if-v > pLr or v 2 pLr with 0 or 1 unstable Floquet multipliers 

(b) a two-parameter homoclinic doubling if U E ( - p v ,  0) where stability is determined 

(c) a homoclinic cascade (cffigure ‘cascade’) i f u  E (0. pS); 

(a)  a unique periodic orbit if -U > -pz or U > -pz with 1 or 2 unstable Floquet 

(b)  homoclinic doubling i f v  E (0, -wZ) and 
(c) homoclinic cascades i f v  E (pz,  0). 

respectively (cffigure ‘trivial’); 

as in theorem 4.2 (cffigure ‘doubling’); 

(ii) in region U, we have 

multipliers; 

Figure 8. The doubling bifurcation. 
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Figure 9. The cascade bifurcation. 

Remarks. 

(i) In the other regions a three- or four-parameter unfolding describes the dynamics for 
small ranges of U. There are always values of v which allow complicated dynamics in 
the &-unfolding. 

(ii) Interpretation of the bifurcation diagrams is the same as before. A detailed stability 
analysis in the cases ‘doubling’ and ‘cascade’ is similar in spirit as for the 3-dimensional 
bifurcations. Again, for weakly stable and unstable cycles, there are stable and unstable 
periodic orbits bifurcating (cf remark (ii) after theorem 4.2). 

(iii) The genericity conditions of the perturbation are implicitly given in lemmata 5.1 
and 6.4. In addition, the explicit perturbation 

E ,  (0,O. 0, x 2  + yz  + 22)’ + E Z ( Y 2 ,  zx, xy.  0)‘ 

fulfills these conditions and is in fact the polynomial of lowest order satisfying it. This 
is proved in section 6.3. 

4.2. D4-symmerv 

In our second example, we discuss a codimension-two steady-state bifurcation close to 
Da-symmetry, described by 

U = fA.”(U, &) A ,  v E R  & E @  U E R 3  (4.4) 

where fA,”(., 0) is Dj-equivariant, fA.”(., E )  is H-equivariant and D,fO.o(O, 0) = 0. The 
Taylor jet of f A , & ,  0) in the origin was given in (3.4) up to the third order. The eigenvalues 
in the linearization around the equilibria bifurcating on the z-axis are 

@ , = A + f i - c . v  

p, = -2v .  
pJ = A - f i -  c .  v 

Similar to (WI), we need the next hypothesis in theorem 4.4. 

(WZ) The parameter (A, U) does not lie on the curve A =).flip with asymptotics A = O(u), 
where :he heteroclinic orbit is included in the strong stable manifold (see lemma 3.2). 
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Theorem 4.4 (0,“ + Z; symmetry breaking). Consider the ZT-equivariant steady-state 
bifurcation described by equation (4.4) with H = ZT and E close to zero. Assume that in 
the third-order jet (3.4) for e = 0 in the origin, we have a! < 0 and (W2) is satisfied. 

Then for a generic unfolding in E # 0, we have the following different bifurcation 
behaviours with an interpretation similar to the T-symmetric bifurcation: 

Region Existence Bifurcation Eigenvalues 

B Saiuistede and A Scheel 

stability diagram 

U ’+ ‘trivial’ -Py .= -Pz < Px 
Unstable’ 

Unstable 

Unstable Horseshoes 

Stable 

Stable 

Stable 

San + ‘Cascade’ -pz c -pJ < min(&, -2pJ 

HKK + -2Pz c -PJ < Px 

+/ - occur - 2 k  < PX < -!+ 
KKO - ‘Doubling’ - f i I  < wx c min(-2fi,, -pg) 

SII - ‘Trivial’ P x  <. -Pz < -I+ 

Then there are open regions in a generic three parameter unfolding where horseshoes 
occur. All orbits are Ku-symmetric. Reflecting the diagram at e = 0 yields (Ku)-’-symmetric 
orbits. 

Remarks. 
(i) Asymptotic stability again follows from [KM91]. For asymptotic stability we require 

fix < -pS. Note that this condition is weaker than the one in [AGH88] which only 
applies in region SII where the cycle does not exist near A, v = O! The other eigenvalue 
conditions can be easily veriEed by the reader. 

(ii) Periodic orbits in regions ‘U’ and ‘San’ are unstable. In region HKK we expect 
Newbouse sinks when the horseshoe disappears, if only trace < 0, that is A < (c+ 1)v. 

(iii) Again, symmetry breakings to Zz or DZ symmetry are similar. In the Dz-cae, we 
can reflect the bifurcation diagrams at E = 0 and obtain KuK-symmetric orbits from 
u-symmetric ones. 

(iv) The case 01 > 0 follows by time-reversal. For existence of homoclinic cycles we then 
have to require y = +l(!) and reflect the (A, u)-diagram in the origin. The cycle 
will then be unstable in aU regions of existence. However, in region ‘San’ there are 
stable periodic orbits bifurcating (trace is now positive and there are folds and period 
doublings!). 

(v) The genericity conditions needed for the perturbation are implicitly given in lemmata 5.2 
and 6.4. 
Motivated by the work of [CH!32], we will now discuss the case of &-symmetry in 

R4, which is close to D4 and to O(Z)-symmetry where we consider the 1 = 1, 1 = 2 
representation of O(2) on R4 (see [CH92], [AGHSS]). It turns out that symmetry breaking 
from O(2) to 0 4  yields a situation similar to the action of T 6B Zz-symmetry in R4, where 
the direction orthogonal to the invariant subspaces is the direction of the broken O(2)-group 
orbit. As the equations in the invariant subspaces are the same as for D,d-symmetry in R3, 
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we can refer to the same linear stability analysis and the conditions for existence as in the 
previous theorem, just adding a fourth weaker eigenvalue in the direction of the 0(2)-group 
orbit. A precise description of the possible bifurcation phenomena after having broken the 
reflection symmetry is only possible in region ‘U’. 

Theorem 4.5 ( 0 4  + Z4 symmetry breaking in R4). Consider a Z4-symmetric bi@rcation 
in R4, which is close to a bifurcation in which 0(2)-symmetry with the 1 = 1, 1 = 2 
representation is broken into D4-symmetry in a generic way. Suppose that in one pair of 
invariant planes, there exists a homoclinic cycle (U > 0, (Y < 0) and that the eigenvalue at 
the equilibrium of the cycle in the direction of the broken 0(2)-group orbit is the smallest one 
in modulus (small symmetry breaking!). Ifthis eigenvalue is positive, assume in addition the 
generic hypothesis (ND). Moreover, suppose that the unfolding in E describing the symmetry 
breakingfrom 0 4  to Z4 is generic. 

Then, refering to figure 10, we have in region ‘U’ the following possible bifurcation 
scenarios: 

‘doubling’: when the eigenvalue in the direction of the broken group-orbit is positive 
and 
‘cascade’: when it is negative. 

h 

Figure 10. Regions with qualitatively different unfolding of a D4-cycle under forced symmetry 
breaking. 
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Re”hs. 
(i) Again all periodic orbits are unstable. However, for OL > 0, we have trace c 0 in region 

U and although the cycle is unstable (the radial eigenvalue is positive!), for both signs 
of the eigenvalue in the direction of the broken U(Z)-group orbit, stable periodic orbits 
do bifurcate! 

(ii) Unfortunately, in all other regions of (A, v)-parameter space, at least three parameters 
are necessary in order to describe the unfolding. Bifurcation diagrams are not known; 
we expect shifi-dynamics to occur in most cases. 

(iii) The Z4-symmetric N-periodic orbits and the N-homoclinic solutions (alias heteroclinic 
cycles) will explore all four heteroclinic orbits of the homoclinic cycle during one 
period or before closing up, respectively. In particular, the phase of the 1 = 1-mode 
(x-y coordinates in (3.4)) varies over the whole circle [O, 2r) and the phase of the 
1 = 2-mode oscillates between 0 and r. Now the two-periodic solutions will prefer 
one of the equilibria, when they approach the 2-homoclinics, that is, they will, while 
remaining intermittent, stay much longer time periods close to one of them. 

(iv) The genericity condition of the perturbation is implicitly given in lemmata 5.1 and 6.4. 

4.3. Making explicit the parameters E ,  and EZ 

In order to localize the regions described in the &-bifurcation diagrams ‘generic’, ‘doubling’ 
and ‘cascade’ in actual Z; or T-symmetric bifurcations, one has to express E in terms of the 
leading symmetry-breaking polynomials of the Taylor jet. The perturbation can in general 
be written as 

B S d t e d e  and A Scheel 

f(% E )  = f ( u ,  0) f E1 gl (U, E )  f E2 E ) .  

The perturbation g2 should just cause a separation of stable and unstable manifolds, that is, 
the Melnikov integal JJz l/r(t)gz(g(t))dt should he non-zero. Lowest-order terms of gz 
are in the three-dimensional example 

g z ( x . y , z )  = ( y z . x z , x y )  
g z k  Y .  z )  = (Y.  --x, 0) 

for T-symmetry and 
for Zh-symmetry . 

In both cases, all other symmetry breaking terms are of higher order. In R4, we have 
other second-order T-equivariant polynomials, namely $ . (x ,  y ,  z )  and (O,O,O,t’) which, 
however, do not break the cycle, and (O,O, 0, x2 + y 2  + z2). Note that if the second 
polynomial is of higher order, the ( ~ 1 ,  s2)-bifurcation diagram has to be deformed and 
‘most’ of the parameter space will only exhibit bifurcation phenomena in a cusp region 
around the line in the ( ~ 1 ,  Ez)-diagram, determined by the leading polynomial. 

In general, the second degeneracy condition is also given by integrals, which are 
nevertheless quite hard to evaluate. We declined at this stage of the work to give explicit 
expressions for the Taylor jet. 

5. Generic bifurcations of codimension two 

In rhis section we give a short review on two bifurcations of homoclinic orbits of 
codimension two for generic vector fields, namely the so-called orbit- and inclination-flip 
bifurcation. These results will be used to prove our theorems in the next sections. We will 
not give these results in full generality but will restrict ourselves to the situation needed for 
our proofs. Hence consider 

U =g(u ,E)  ( u , E )  E wn x R2. (5.1) 
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Here g is not assumed to be equivariant. We assume g(0, E )  = 0 and D,g(O, 0) has spectrum 
consisting of simple eigenvalues p. =- 0 > -pLs > -pSr and the remainder part of the 
spectrum has real part strictly less than -psr. Furthermore, let q ~ ( t )  be a homoclinic orbit 
converging to zero for t tending to i.00 for E = 0. Then there exists a unique bounded (up 
to scalar multiples) solution &,(t) of the adjoint variational equation 

W = -D,g(qo(t), O)*W 0 . 2 )  

see section 4. As mentioned there, $!ro(f)J-(Tqop~ Ws(0)+Tq,(,) W'(0)) for all t E R. Indeed, 
($o(t) ,  U@)) is independent of time for any solution u ( t )  of 

r j  = &?(qo(t), 0 ) u .  (5.3) 

We will denote by @ ( t , s )  the solution operator of equation (5.3). In theorem 5.1 and 5.2 
we assume the following Melnikov condition. 

(MI ./-zWo(O, D A q o ( t ) ,  O))df # 0. 

It is well known that under this assumption there exists a unique branch E = E*(r) in 
parameter space and corresponding homoclinic solutions q r ( f )  of (5.1) for E = E * ( T )  such 
that ~ ' ( 0 )  = 0. We formulate now further assumptions for both bifurcations separately. 

5.1. The orbit-& bifurcation 

In this section we formulate the hypotheses which are needed in theorem 5.1 on the orbit-flip 
bifurcation stated in section 5.3. Firstly, we assume 

(OFl) (i) limf+m e**'qo(t) = 0, 
(ii) limt.,me"~Jqo(t) # 0, 
(iii) limr.,-m e-"~'$&) # 0. 

This hypothesis implies that qo(t) E WK(0)  is contained in the strong stable manifold of 0. 
Next we state an assumption about the dependence of g on the parameters. 

Define v'(T) := limt+m e**("(r)l'q,(t). Here -pS(&) denotes the eigenvalue of 
D,g(O, E )  continuing -pLs. We remark that ~ " ( 0 )  = 0 due to (OFl)(i). We will assume 

(OF3 Dru7(~)Ir=o # 0. 

This assumption has the following geometric interpretation. The homoclinic solution 
q,(t) switches from one side of W"(0) to the other while r moves through 0, see figure 11. 

T < O  T = O  T > O  

Figure 11. The orbit-flip unfolding. 
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Lemma 5.1. The hypotheses (M) and (OF2) together are equivalent to linear independence 
of the vectors 

B Sandstede and A Scheel 

J-:($o(t), &g(qo(r), 0)) dt 
J-", Q i  (0) NX 0 D,g(qo(t), 0) dt 

in parameter space. Here Ql(0) projects onto a complement of Tqo<o) W s s ( p ~ )  in Tq0(o) W s  (O), 
which will be identified with R, along R$o(O). 

Proof. See [San93]. 0 

(NU h-,m($o(-t), qo(t))ezflsx' # 0. 

The next assumption is needed in theorem 5.1. 

5.2. The inclination-flp bifurcation 

In this section we introduce the assumptions used in theorem 5.2 on the inclination-flip 
bifurcation in the next section. We request the following relations to hold. 

(El) (i) limt-,m eflx'qo(t) # 0 
(ii) limt+-me-~~r@o(t) = 0 
(iii) limr+-m e-fl='@O(t) # 0. 

This assumption is equivalent to the fact that there does not exist a strong stable foliation 
along the homoclinic orbit qo(r), see figure 12. Now for each orbit q,(r) existing for 
E = E*(r) there is a corresponding bounded solution &(t) of the equation 

6 = -D,g*(ql(f),E*(r))w. 
We define ws(s)  = Iim,-,- e-flr(e*(r))'$r(r) and assume 

&w'(r) L o #  0. 
Geometrically, the strong stable foliation changes the topological type, see figure 12. 

Lemma 5.2. The hypotheses (M) and (IFZ) together are equivalent to linear independence 
of the vectors 

m 
l m ( $ o ( t ) .  D&o(O, O W t  
m 

(@oO(t), (D,D,g(qo(t), 0) + D&o(t), O)tv(t ) ,  .I)@(t, O)Qz(0))dt. 

7<0 7 = 0  7 > 0  

Figure 12. The inclination-Rip unfolding. 
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Here 

and P"(i)  projects onto Tqoct) Wu(0) ,  P"(r)  onto Tqo(,) Ws(0) .  The projections of the 
exponential dichotomies P'(t) and P"(t)  are defined for (5.3), see [San93]. Moreover, 
Qz(0) projects onto a complement of TqO(o) W'(O), i.e. the invariant m i f o l d  tangential 
to the eigenspace corresponding to the remainder part of ihe spectrum of D,,g(O, 0), in 
Tqo(o) Wss(0 )  along R@o(O). Again this one-dimensional complemeni is identified with R 

Proof. See [DK091] or [San93]. 0 

There exists an invariant not necessarily unique manifold Wg(O), which is tangent at 0 
to the eigenspace corresponding to the eigenvalues pu and -pLs. Moreover, Wsu(0) contains 
qo(t). By (Fl) Wsu(0) is tangent to W'(0) at q&), see figure 13. 

In theorem 5.2 the following assumption occurs. 

W2) Wsu(0)  and W"(O) have a quadratic tangency at @(t)  

5.3. The bij%rcaiion diagrams 

Depending on further conditions on the eigenvalues -ps and -pss there are three 
different types of bifurcation phenomena occuring in the orbit-flip and inclination-flip 
bifurcation. As in section 4, we define N-homoclinics (and N-periodic) solutions as 
homoclinic (periodic) orbits, which wind N-times in a small neighbourhood of qo(t). 

The following results have been obtained so far for both of the bifurcations mentioned 
above. 

% 

Figure 13. Quadmtic tangency of Wsu(0) and W'(0). 
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Theorem 5.1. Orbit-flip bifurcation. Assume (M), (OFl), (OF2). 

B Sandrtede and A. Scheel 

Further Eigenvalue Diagram 
assumptions conditions 

See [San931 for the proof: 

Theorem 5.2. InclinationIpip bifurcation. Assume (M), (IFI),  (In). 
Further Eigenvalue Diagram Reference 
assumptions conditions 

Pu < PLr Trivial [KKO93] 
pr < pw e min(2ps, psr) Doubling [KKO93] 

0") .us e 2,ur e min(,usr, pu) Cascade [HKK93] 
(NI) ps e psr < min(2ps, pu) Cascade [San931 

See figures 7-9 for the corresponding bifurcation diagrams. The results on stability are 
proved in [San94]. 

Remark. The results on the orbit-flip bifurcation are still valid in the case of higher- 
dimensional unstable manifolds. Then we have to assume that D,g(O,O) has simple 
eigenvalues pu > 0 > -ps -pss and the remaining eigenvalues have real part strictly 
less than -prr or strictly larger than pL.. In addition, the hypotheses (ND) and 

(OF3) (i) lim,-,-we-&"rqo(t) # 0, 
(ii) limr-,weP=r$o(r) ic: 0 

have to be fulfilled. The conclusions of theorem 5.1 and lemma 5.1 still hold under 
these additional assumptions. For a proof see again [San93]. 

6. The proofs 

The idea for proving the theorems is the following. We factor out the remaining symmetry by 
identifying Poincark sections at the different heteroclinic connections using the symmetry U .  

This induces a new dynamical system now possessing one homoclinic orbit instead of a 
homoclinic cycle. No symmetry will be left after the identification. 

The next step consists of determining whether the assumptions of the theorems in 
section 5 are satisfied for a nonlinearity coming from a generic equivariant vector field 
for the original system. Then we just need to apply these results in order to obtain the 
theorems. In fact, symmetry will help us a lot in verifying the assumptions, though in one 
case symmetry will prevent one hypothesis from being fulfilled. 

6.1. Reduction to the orbit space 

In OUT examples equilibria and heteroclinic orbits have different isotropy groups. Thus 
the flow on the orbit space, which is a manifold, possesses a degenerate stationary point. 
Therefore instead of looking at the flow (or one of its extensions) on the orbit space we 
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construct an equivalent system directly from the equivariant equations. Choose a heteroclinic 
connection qo as well as a section CO at qO(0) transverse to the flow. Next take any cyclic 
group Z k  with generator U in the remaining symmetry group H and define Ej := U' . EO 
and qj = ai . qo for j E 0, .  . . , k - 1. Now we identify the section CO and En-, by an-'. 
Thus we obtain a vector field possessing a homoclinic solution consisting of pieces of qo 
and q,,-l to the equilibrium PO. We consider the resulting equations only locally near the 
new homoclinic orbit forgetting about the other heteroclinic connections. Any solution of 
the new vector field corresponds to a solution of the original equation, which follow the 
homoclinic cycle 40, . . . , qn-, . Due to the fact that we identify two sections it is sufficient to 
verify the assumptions of the theorems in section 4 for one heteroclinic orbit in the original 
equation. By passing to the reduced equation it is clear that the resulting homoclinic orbit 
will fulfil these conditions, too. 

6.2. The inclination-flip 

In this'section we consider the three-dimensional versions of our examples, i.e. equations 
(3.1) and (3.4) with a particular perturbation c ~ h l ( x ,  y ,  z) + Ezhz(x, y .  2 ) .  

We assume that these equations are equivariant with respect to H = T resp. H = Zd for 
E # 0. In order to verify the assumptions of theorem 5.2 we fix the heteroclinic connection 
qo(t) C R x (0) x R in the xz-plane, i.e. q&) = (U] (t), 0, ~ 3 ( t ) ) ,  for both (3.1) and (3.4). 
We now have to check the assumptions (IFl), (IFZ), (M) and (NI), @2). 

Let us first verify the assumptions concerning the equations for E = 0. 

Lemma 6.1. (IFI) is satisfied in regions Sll, KKO, San and HKK. 

Proof. The condition (IFlj (i), i.e. lim,,,e'~zqo(rj # 0, is fulfilled by assumptions 
(w1) and (WZ) of theorems 4.2 and 4.4. The bounded solution rl.o(t) of the adjoint 
variational equation is perpendicular to Tq(t) W', which coincides with the invariant xz-plane. 
Now the radial stable eigenvalue pz has modulus less than the other stable eigenvalue 
p, by assumption. Thus the asymptotic one-dimensional equation, which is fulfilled by 
+ ~ ( t )  = ( w l ( t ) ,  wz(f), w 3 ( f ) )  for t + -W. is given by 

w2 = psrwz = -pzw2. 

Hence (IFI) (ii) and (iii) are satisfied. 0 

Levus consider hypothesis (Nl) next. In fact, as we will see, this assumption is forced 
to hold by symmetry. The main observation is the following. By symmetry the z-axis 
is invariant in both cases and the heteroclinic connection qo(tj is not contained therein. 
Moreover, 

(@o(-tL qo(t))  = ((w1(-t), 0,O). b l ( t ) ,  0, U 3 ( f ) ) )  = wI(-f) . u1(t). 

,Hence it is sufficient to prove Iimt-,, ePrJul ( t )  f 0. This is the content of the following 
lemma applied to qo(r) near p1. 

Lemma 6.2. Consider rhe equation 

x = p s s x + x  ' f I ( X , Z )  i = ! 4 z +  f z ( x , z )  

in R2, which sarisfis 0 < bs < pss and f1 = O(lx1 + lzl), fz = O(lxlz-i- 1 ~ 1 ~ ) .  Take an 
initial point (xo, 20) sufjiciently close fo zero such that xo # 0. Then 

lim ewss'x(r) # 0.  
I-m 



which proves the lemma. 0 

Remark The hypothesis (N2) can never be satisfied in our cases. Indeed, the manifold 
W'"(p0) is a neighbourhood of po in the xz-space, while W s ( p l )  is a neighbourhood of pi 
in the same plane. Hence these manifolds coincide preventing a quadratic tangency. By 
including a third parameter it is possible to get a curve of inclination-flip points in a three- 
dimensional parameter space, all of which except for E = 0 satisfy (NZ), see lemma 6.3 
below. 0 

Before we verify the assumptions about the unfolding of the flip, we state a lemma 
about equivariant extensions of small perturbations of the vector field near the heteroclinic 
orbit qo(t). 

Lemma 6.3. 

(i) Any small perturbation of the vecrorfelds (3.1) or (3.4) inside the xz-plane near qo(0) 
can be extended equivariantly in R3. 

(ii) Any small parameter dependentperturbation of the form E .  h(u, E )  of (3.1) or (3.4) with 
support close to qo(0) can be extended equivariantly with respect to the subgroups H, 
mentioned below proposition 4.1, in R3. 
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Proof. 
(i) Here points inside the xz-plane close to qo(0) possess isotropy E2 for E = 0, while points 

close to qo(0) but not contained in the coordinate plane have trivial isotropy. Hence 
we can extend the perturbation to a neighbourhood of qo(0) by using a 222-equivariant 
cutoff-function. By applying the (discrete) symmetry group the perturbation extends 
equivariantly to R3. 

(ii) is proved similarly. 0 

By lemma 6.3 (i) and due to invariance of the xz-plane it is clear that assumption 
(IFI)(i), i.e. qo(t) Wf,S,(pl), is generically fulfilled. Otherwise change the vector field in 
that plane a little bit and extend this perturbation. We consider (M) and (F2) next. 

Lemma 6.4. The assumptions (M) and (IF2) are @(filled for generic H-equivariant 
perturbations for H = T or E4, respectively. 

Proof. By lemma 5.2 we have to show that for generic H-equivariant perturbations the 
following two vectors are linearly independent in parameter space 

m 
Ji = L m W o ( O .  h(qo(r), 0)) dl 

Jz  = Lm(@oo(t) ,  (W(qoW.0)  + o;f(qo@), O ) [ W ,  .I)@@, O)Q2(01) dt 

P ” ( t ) @ ( t ,  s)h(qo(s). W s  + Sr (1  - P”(r)@(t,  s)h(qo(s), 0) ds 

m 

with 

-m 

for t  > O .  
Moreover, Qz(0) projects onto TpO(o) W ” ( p l )  in TqO(o) Ws(pl) along WI)o(O). The image 

of @(t, O ) Q z ( O )  is a line transverse to span qo(0) in the invariant xz-plane. We prove the 
genericity by claiming that the set 

M = (h(u, E )  I 51 and JZ are linearly independent] 
is open and dense in the space of H-equivariant C’-vector fields. Clearly, M is open, 
because J I  and JZ are linear continuous functionals on C’.~ In order to prove our claim it 
is therefore sufficient to’show the existence of two arbitrarily small H-equivariant vector 

(i) The first vector field makes J1 non-zero but may change J2, too. 
(ii) The second vector field changes 52 arbitrarily without changing J1. 

Moreover, due to lemma 6.3 (ii), it is sufficient to construct these vector fields near qo(0). 
The first property (i) is easily obtained by choosing h(u,  0) = @0(0) for U close to qo(0) 
and multiplication with a cut-off function. For (ii) we choose h(u,  0) in such a way that it 
vanishes at the heteroclinic orbit, i.e. 

fields with the following properties: . 

h(qo(t), 0) = 0 Vt . 
Hence Jj = 0 and 

m 

JZ = lm(I)o( t ) ,  D,h(qo(t), O)4(r, 0)QdO)) dr 
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because v ( t )  vanishes, too. The remaining integral can be changed arbitrarily by taking 
D,h(qo(t),O) as a small rotation with axis qo(t). Indeed, @&) is perpendicular to the 
xz-plane, whereas the range of @ ( I ,  0)QdO) is transverse to q ( t )  in the x-coordinate plane. 

B Sandstede and A Scheel 

This proves the lemma 0 

Lemma 6.5. J I  is non-zero (and therefore (M) is satkjied) for the lowest-orderpolynomials, 
which break the symmetry G to H .  These polynomials are given by 

G = TfBG, H = T : h(u, 0) = (YZ,ZX, xy )  

G = Dq, H = & : h(u,  0) = (y,  -x, 0). 

Proof. Here @o(t) = (0, wz(t) ,  0) and qo(t) = (u,(t), 0, u3(t)), see lemma 5.1. First 
consider G = T fB &. We obtain the formula 

W m 

(@OW, h(qo@),O)) dr = (@o(t), (YZ ,  Z X ,  x~) lq~( r ) )  dt L L m 

L L W 

= / -~2(0~1( t )%(f )d t .  

This integral is non-zero, because U!@), ua(t) and w ( f )  do not change sign. Next we look 
at G = 0 4  and obtain 

W m 

( @ o O ( ~ ) ,  h(qo(t). O))dt = (@org(t), CV, --x, O)lqo(t))dt 

= -Lmwz(t)ui(t)dt. 

Again ul ( f )  and wz(t)  do not change sign, which implies that J1 is non-zero. It is 
straightforward to show that the given polynomials are of lowest order among the H- 
equivariant ones. 0 

With this series of lemmata the proofs of theorems 4.1 and 4.2 are completed. Indeed, 
the hypothesis (IFI) was proved in lemma 6.1, while (IF2) and (M) are shown in lemma 6.4. 
Moreover, we proved assumption (N1) in lemma 6.2. In the remark following lemma 6.2 
the necessity of a three-parameter unfolding is explained due to the failure of (N2) caused by 
symmetry. The proofs of bifurcation diagrams in the cases SI and U can be done similarly, 

0 using the standard results on homoclinic bifurcation (for references see &in90]). 

6.3. The orbit-fiip 

Let us now consider the four-dimensional systems with tetrahedral symmetry and Dq- 
symmetry wifh H-equivariant perturbations &lhl(x, y, z, e, E )  + e2h2(x, y, z, 5 ,  e). In this 
paragraph we will prove the results (theorem 4.3 and 4.5) conceming the existence of an 
orbit-flip bifurcation for these systems. The proofs follow the same lines as those given for 
the inclination-flip in the previous section. 

We will first consider the equations with tetrahedral symmetry (3.3) in the case where 
the eigenvalue v in the fouah direction is negative. For this equation we are able to 
give an explicit expression for a perturbation which satisfies the genericity conditions (M) 
and (OF2). In fact, this perturbation is the polynomial of lowest possible degree which 
breaks the symmetry. 
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Hence we consider only (3.3) with a ‘I-equivariant perturbation 

g(x. y .  z, E )  = E I ( O , O ,  0, xz + yz + 22)‘ + EZ(Y2, zx, x y ,  0)’ 

from now on. We have to prove that (ND), (M), (OFl), (Om) and (NI) are satisfied. 

(x(t), y ( t ) .  0,O). The variational equation along qo is given by 
We fix the heteroclinic connection q(r) in the xy-coordinate plane, thus qo(t) = 

0 0 

0 0 -V  

X 
- d ( 1 = ( h + b x 2 ( t ) + c y Z ( r )  d x ( r ) y ( t )  ) ( j 1 
dt 

Therefore, the hounded solution @ of the adjoint equation solves 

- A T @ )  0 
0 -(A + b ~ ~ + c y ~ )  

d 

dr 0 -dxy  
- @ =  ( 

and we obtain 
m m 

Mz = Lm(@@), D,g(qo(t), 0)) dt = @3(t)x(Oy(t)dt 
m 1, 

@3(0)e-J; * ( r ) d r x ( r ) y ( r )  d r  # 0 
= Lm 

because x ( f )  and y ( r )  do not change sign. 

the assumptions on the eigenvalues of Df(p0) .  

have to consider 

Nest we consider the assumption (OFI). Again (OF]) (i) and (ii) are fuifilled due to 

We have to show (OF1) (iii). Because -v  is the stable eigenvalue close to zero, we 

lim e-”‘@@) 
*+-m 
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For the second component we obtain 
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m 

= -$3(0)d / e-"'x(r)y(r)el~"")~dz 

# 0. 
-m 

due to d # 0. Hence (OF1) (iii) is fulfilled. 
By lemma 5.1 (Om) is equivalent to linear independence of M and 

m 

N = l, Qi(o)@(O,i)D,g(qo(t).O)dt. 
Here Ql(0) projects onto a complement of Tqo(~)Ws5(po) in Tqo(0)W5(po) along R$(O). In 
particular, [i = $ = 0) c Ker Ql(0) and we are concerned only with the equation 

in order to compute Ql(0) .  The flow of this linear system is given by 

Hence the kernel of Ql(0 )  is given by [$ = 0). Moreover, the kernel is invariant under the 
flow @(O, f) and we can write el@) as 

Q l W  = (0,O. a(t),O)' . ((O,O,O, U', .) 
for some function a(.) Now, D,,g(qo(f),O) c ($ = 0) and therefore Nz = 0. N I  is given 
by 

.. 
m 
@(O, t )  (x2 ( t )  + y'(t)) ( ay)  ) dt 

m 
= I m ( x 2 ( t )  + y2( t ) )  ( 
= ( ) 1: +yz(t))dt . 

) e"* dt 

2-0 
Therefore we finally obtain 

M (*, M2) N ( N I ,  0) 

and N I  # 0, M2 # 0. Hence, M and N are linearly independent, which in turn yields 
(OF2). (NI) follows from the fact that 

eAr$3(t) = eg(A-A(r))dr q 3  (0) 

$3(0) - - e- Ji(bx2(r)+cs2(r)) dr 

which cannot converge to zero, because 

Lm(bx2(r)  + cy'(7)) d r  c CO. 
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U 

In the tetrahedral case, when the fourth eigenvalue v is positive, the unstable and 
stable manifolds of the equilibria are two-dimensional. Hence we have to apply the remark 
following theorem 5.2 to the timereversed system. The hypotheses (OF2) and (M) on the 
unfolding are again satisfied for the explicit polynomial perturbation given above. Checking 
(OFI) and (Nl) for the time-reversed system follows the same lines as for v negative. The 
additional hypothesis (ND) is satisfied for equation (3.3), because the fourth equation of the 
linearization along a heteroclinic orbit decouples. The last assumption (OF3) is fulfilled, 
because the coordinate axes are invariant. As these are the strong stable directions in case 
U, the solutions q ( t )  and $(t)  cannot converge with these strong contraction rates, see 
section 6.2 on the inclination-flip for more details. 

The proofs of the D4-symmetric case are again very similar to the ones for the 
inclination-flip, whence we will not go into details here. Let us just note that (ND) is 
fulfilled by assumption. Moreover, (OFI), (OF3) and (Nl) are fullfilled due to genericity 
of symmeuy breaking from O(2) to Dq. The unfolding conditions are again satisfied for 
generic perturbations breaking symmeay from Dq to Zq. 

This proves theorem 4.3 in the case v < 0. 

7. Existence of strange attractors 

We consider again the three-dimensional equations (3.1) and (3.4), see section 3. In the 
unperturbed case, we know by [KM911 that the cycle is asymptotically stable provided the 
stable non-radial eigenvalue is in modulus larger than the unstable one. Then the stability 
of the heteroclinic cycle ‘persists’ for non-zero E. 

Lemma 7.1. Assume that an asymptotically stable homoclinic cycle exists for (3.1) or (3.4). 
Then for any s m l l  E there exists an attractor A, for the &-perturbed equation, which is 
upper semicontinuous in E.  Moreover, A ,  is the marimal invariunt set in some &-independent 
neighbourhood of the cycle. 

Proof. In order to apply standard results, e.g. [HalSS, theorem 3.5.21, we have to show, 
that there exists a set B near the cycle which attracts points, i.e. 

lim dist(B, U@)) = 0 
,+m 

for any solution of (Th)c or (D& such that 

u(0) E U, = {uldist(u, Q )  < 6 )  

for some small 6 > 0. Here Q = U rqo(t)  denotes the heteroclinic cycle. 
,ER 

Due to the stability of Q, there exists an open neighbourhood V of Q such that V cc Us 
and @o(t)V c V for t 0, see [HalSS, lemma 3.3.11. Here & ( I )  denotes the flow of the 
&-perturbed equation. Due to the compactness of c f  V and the asymptotic stability of r 
there exists a to =- 0 such that 

Now choose an open set W such that 

@&)V cc w cc v 
For the same reasons as above, there exists a t, > 0 such that @o(t,)Us cc W .  
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U qMt)W and claim that B attracts points in U, for 181 < EO We define B = U 
IC1 <ea tel0.tol 

sufficiently small. Firstly, E is contained in US for EO small. Indeed, 
U @o(t)W c U &O(t)V c v cc U,. 

1sIO.rol t€lO.bl 

For EO small we still have 

&(tl)u, C W and &(~o)W C&(tdV C W .  
Therefore 

is forward invariant. Moreover, 

@&)ut C W C U @&)W C B 
r€[o.lol 

which proves our claim and the lemma. 

corollary. 

0 
By using this lemma together with the theorems 4.1 and 4.2, we obtain the following 

Corollary 7.2. Consider (Th)s and (D& in the regions HKK. Then there exist parameter 
values for which the attractor A, contains horseshoes. 

Of course, we have not shown the existence of dense orbits in this case. But at least for 
equation with tetrahedral symmetry we are able to show the existence of a strange attractor 
for a generic unfolding. 

Theorem 7.3. Consider (3.1) in the parameter region KKO of theorem 4.2 with the 
assumptions of that theorem being fu[filled. Then there exist values of E, such that the 
attractor A, ofthe &-perturbed equation near Q contains a geometric Lorenz attractor as 
an asymptotically stable set. 

Proof. The existence of A, is guaranteed by lemma 7.1. We still show that the equation 
(3.1) fulfils the conditions of [Ryc90, theorem 1.21 together with the simplifications in 
[KK093, section 3c]. Note that in the statement of that theorem the requirement 

@Lr .= pU < min(2fiS, 
, is missing, but occurs in [RycgO, (2.4) and lemma 3.41. 

Firstly we will show that we can reduce (3.1) to a system possessing two homoclinic 
orbits conjugated by a &-symmetry. Thii will again be done by a suitable identification, 
see figure 15. 

We choose two generators of T 
n : ( x , y , z ) -  (Y,Z,X) (Z3) (7.1) 
K : (x .  Y, Z) H (-X7 -Y - Z) (&). (7.2) 

Now we identify qo and q 2  by using K U ,  and q1 and q 3  by U ~ K U ' .  Hence we obtain a 
system with two different homoclinic solutions 40 and 41. The group element U ~ K U  induces 
a &-symmetry on the reduced system, which maps $0 onto $1. Furthermore, it acts like 

U 2 K U :  (X,y,Z)H (X.-y,-Z) 

near PO. 

of Eyc90, theorem 1.21 are fulfilled. This proves the theorem. 
Together with the proof of theorem 4.2, we have therefore proved that the assumptions 

0 
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Lorenz-attractor 

stable 1-per I 
Figure 14. The domain of existence of a Lorenz attractor in parameter space. 

X 

Figure 15. The &symmetric homoclinic orbits 

8. Discussion 

The present work can be understood as a first atteppt to give a detailed description 
of dynamical phenomena created by symmetry breaking effects on homoclinic cycles. 
The principal observations are that the unfolding of a codimension zero situation in the 
equivariant context will require one, two or even more parameters even in simple situations 
with large residual symmetq groups. Unfortunately, there does not seem to be an easy 
connection between the stability properties of the heteroclinic cycles and bifurcating cycles 
and periodic orbits. Another important complication arises when one tries to determine all 
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orbits in a neighbourhood of the cycle. Our method of looking for symmetric orbits then 
fails and the complications involved are not fully explained by our results in the last section 
on Lorenz attractors. We hope to be able to describe the dynamics on the attractor in such 
situations more comprehensively in a forthcoming paper. 

In space dimension four, there is actually another way of forcing an inclination flip 
situation by symmetry. Krupa and Melbourne [KM911 observed that in R4, there are 
basically three different possibilities for a homoclinic cycle, captured by the following three 
examples: 

(i) the group T @ Zz acting as in section 3; 
(ii) the group T @ 232 @ &, where T @ Z2 acts in R3 as usually and the second copy of 

Z2 is a reflection with this copy of R3 as a fixed point space; the cycle is the same as 
in (i); 

(iii) the group 2& . 23; (see [FS91]) generated by a cyclic permutation of the coordinate 
axes and a reflection with respect to R3. There may exist homoclinic cycles lying in 
two-dimensional fixed point spaces of Z:. 

In case (iii), an unfolding will require at least two parameters as can be seen as follows. 
In order to avoid the orbit-flip situation, we assume that in the equilibria with isotropy Z;, 
the radial direction (full isotropy!) is the strongest. The picture in the remaining directions 
then simplifies and is shown in the following diagram: 

We can now easily observe that the strong stable fibres in W’(p1) converge to the 
weakly stable direction in po as f -+ -CO : a non-generic situation occurs which is captured 
precisely by hypothesis (IFI). 

We would also like to point out that the bifurcation diagrams we have obtained are 
robust in the sense that they persist with respect to symmetry breaking with less residual 
symmetry. 

B Sandrtede and A Scheel 

Figure 16. Homoclinic cycle with Zd . Zi symmetry. 
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In the case of equivariance with respect to continous symmetry groups, we would guess 
that our results can be obtained whenever the continuous symmetry is preserved (see also 
[Cho92] and [CF92]). We were not able to describe symmetry breaking bifurcations when 
continuous symmetries are broken. 
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Appendix A. Bifurcation scenario for &symmetry in y = 0 

Let us first determine the mixed modes. For x # 0, the equations for equilibria simplify to 
2 A + z + c z 2  +ax2  = 0 uz - z3 - (1 - ~ Z ) X  = 0. 

In x 2  = z = A = U = 0, the linearization with respect to the variables z and x2 is (A 
and therefore invertible, which yields a unique solution z(A, U) and x2(A,  U): It remains to 
ensure that x2  is positive, which is equivalent to the conditions 

A + z + c z 2 > 0  and u z - z 3 > 0 .  
So the only bifurcation points are at x 2  = 0, z E {&A, 0) and it is now’easy to see the 
pitchfork bifurcations that describe appearing and vanishing of the mixed modes. 

The Hopf curve is determined by trace (of) = 0 on the curve of bifurcating equilibria 

z(A, U) =.-A + U A U  -CA’ + AO((u + lA1)2) 
x z ( A ,  U) = -Au + iO((u + IAI)’). 

The trace condition gives 
2 A +  z + CZ’ + 30.2 = U - 3 ~ ~ 4 - p ~  

or 
U = 3 A Z + A 0 ( l A [ 2 )  

which gives the desired curve. One can easily verify that. the determinant is non-zero. 
The only possibility for the periodic orbit to disappear is a bluesky catastrophy near a 
heteroclinic cycle p+  -+ 0 + p + .  

Therefore the Hopf bifurcation has to be supercritical. The curve for the codimension- 
one global heteroclinic loop bifurcation will now be obtained by a particclar scaling. We 
set 

i = r, = U - t i  
d i d  - = y-i - , 

d r  dt 2 = 

and we obtain the scaled equations 

i’ = r,i +Ti + ul.qai2 + ci2) 

2‘ = -2 + ”ti(& + ,622 + I )  

i’ = (r, + 2): 
where ’ = &. We study this system as a perturbation of the limit in v = 0 

2’ = -x -2 , 
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Dividing by the Euler multiplicator 2, the right-hand side is just a linear vector field, 
turning around (0, -i). The ?-axis consists entirely of ,equilibria. The strong unstable 
manifold of the equilibrium (0.5) with 5 > -i is identical with the strong stable manifold 
of the equilibrium (0, -2: - <). Fixing two equilibria and varying the parameter x, the 
stable and unstable fibres cross transversely in i. The Melnikov function can easily be 
calculated to be non-degenerate. In particular, for = -4, the stable and unstable fibres of 
{ = 1 and 5 = 0 (which correspond to p+  and 0) intersect. As the stable and unstable fibres 
depend smoothly on the parameter v f  (cf [Fen79]), this intersection persists for some nearby 
parameter value i h e t  = -$ +o(vf). For i > i h e t ,  the unstable fibre of the equilibrium 
{ = 1 intersects a stable fibre of a point on the {-axis, which converges to 5 = -1 and 
therefore yields a heteroclinic orbit p+ + p - .  For c i h &  the unstable fibre approaches 
the singular point 5 =--i, where the mixed mode is created for U > 0. In the original 
coordinates this yields a heteroclinic bifurcation at Ahet = -;A+ O(u) and a heteroclinic 
orbit p' + p -  for A > Ahel. The upper bound for the existence of p+ + p -  connections 
can, also from this picture, be seen to be precisely the bifurcation point, when p -  loses 
stability. 

Let us remark that near A = A.R:,, = O(u),  the heteroclinic orbit switches side: it 
approaches the equilibrium p--fiom below for A > Aflip. At A = hap, a symmetry breaking 
unfolding should exhibit phenomena of the orbit-flip bifurcations in the four-dimensional 
examples. Only here this bifurcation is of codimension one already in the symmetric context. 
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