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Abstract. We consider two equivariant equations admitting structurally stable heteroclinic
cycles. These equations stem from mode equations for the Rayleigh-Bénard convection and
a model for turbulent layers in wall regions with riblets. Breaking the symmetry canses several
different bifurcations to occur which can be explained by bifurcations of codimension two
of homoclinic orbits for nom-symmetric systems. In particular, stable periodic solutions of
different symmetry type, other complicated heteroclinic cycles or geometric Lorenz attractors
may emanate. Moreover, we delevop stability criteria for the bifurcating periodic solutions. In
general, their stability type differs from the stability properties of the original heteroclinic cycle.

AMS cla-ssiﬁca:ion scheme numbers: 58F14, 34C37, 34C23

1. Introduction

During the last ten years many attempts have been made to explain various kinds of
intermittent behaviour in dynamical processes with the help of heteroclinic cycles. In
differential equations which are invariant under the action of certain symmetry groups,
heteroclinic cycles may appear for open ranges of parameter values. In other words, cycles
can be structurally stable (codimension 0) within the class of invariant differential equations,
whereas in generic, non-symmetric equations, one has to adjust at least one parameter
(codimension 1) in order to observe homoclinic orbits or heteroclinic cycles to equilibria.
Of course, the heteroclinic cycles found in equivariant systems are, in contrast to hyperbolic
equilibria or periodic orbits, not robust under small symmetry breaking perturbations.

Orbits close to heteroclinic cycles will spent long time periods near the stationary states
of the cycle and will spontaneously, in a bursting-like event, leave the stationary state and
approach another one where they will again remain for long time periods. However, if
‘the cycle is asympitotically stable, this intermittent behaviour will become slower; the time
spent near the stationary states will approach infinity.

In the present work we try to capture some of the main features of symmetry breaking
effects on heteroclinic cycles. We will, most of the time, restrict ourselves to two examples
which are at the heart of many other cycles. The first example is a heteroclinic cycle with
tetrahedral symmetry which was discovered by Busse and Clever [BC79] in a model for
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intermittent behaviour of convection rolls in rotational invariant Rayleigh—Bénard convec-
tion. The importance of studying symmetry breaking effects in this model when considering
deviations from the Boussinesq approximation was already pointed out by [SwiB4]

The other example arises in an ((2)-mode interaction, studied by Armbruster er ai
[AGHS8] and Proctor and Jones [PT88]. Some attempts to study the influence of symmetry
breaking were made by Campbell and Holmes [CH92]. In these two examples we discover
several phenomena which can be attributed to homoclinic bifurcations in generic non-
symmetric vector fields. However, these bifurcations appear with codimension zero in our
examples while they are of codimension two and higher in the non-symmetric context.
Nevertheless we need two parameters to unfold these bifurcations even in equivariant
equations. We show that asymptotic stability of bifurcating periodic orbits is not equivalent
to stability of the cycle! As far as possible we tried to give lists of stability properties
of the bifurcating periodic orbits. In many cases shift dynamics occur for open ranges of
parameter values. The bifurcating orbits are intermittent in the sense that they spend long
time intervals near equilibria. Moreover, intermittency is sustained (it does not slow down
as for asymptotically stable cycles) by the imperfection of the symmetry.

Let us briefly explain how this paper is organized. We first collect some basic aspects
of heteroclinic cycles in equivariant differential equations. In section 3 we present the
setting of our two major examples. In particular we will analyse the existence and stability
of heteroclinic cycles. In section 4, we state our main results on symmetry breaking
bifurcations, which will be proved in section 6. Before going to the proofs, we give a
short summary of results on bifurcations from generic, non-symmetric, homoclinic orbits,
which we will use in our proofs. In section 7 we show how symmetry breaking may
also lead to chaotic behaviour of Lorenz-like attractors. Shift dynamics are encoded by
itineraries in the cycle—in contrast to the encading by return times in the previous sections.
We will conclude with a discussion of some solved and unsclved problems in the theory
around symmetric hetercclinic cycles.

2. Equivariance, heteroclinic cycles and symmetry breaking

2.1, Equivariant ODE’s

We study differential equations
c%u(t) = f{u() uelR" ‘ (2.1)

with smooth f & C!(R™), [ sufficiently large. The vector field f is supposed to be
equivariant with respect to a finite subgroup I" of O(n), the group of orthogonal n X n-
matrices, which rmeans that for any ¥ € I' we have

Flyuy=vfu) for all u € R".
Due to the equivariance, for any solution «(z} of (2.1), yu(t) is also a solution. The isotropy
subgroup of a point p € R* will be denoted by

Gp={rel|yp=rp}.
Note that points on a time orbit of (2.1) all have the same isotropy group whereas the

isotropy groups of points on a group orbit {yp | ¥ € I'} = I'p are conjugated

Gy =yGpy™. .

Given an isotropy subgroup G, the linear subspace ‘
Fix(G)={pecR" |yp=pforal y € G}
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is called the fixed point subspace of G As time preserves isotropy, fixed point subspaces
are flow invariant.

2.2. Structurally stable heteroclinic cycles

Suppose that pp and p; are equilibria of (2.1) and that there exists a heteroclinic orbit g(z)
that connects po to p1. If py = apg for some o € I, we call the set Fg(t)UT po a homoclinic
cycle [MCG89, definition 2.1.], in fact, as ' is finite, the sequence (o*g())ocren—1 will
form a closed cycle joining the equilibria o* py, where N is such that o¥ py = py. On
the other hand, in the quotient space R"/T, the cycle is just a homoclinic orbit to the
equilibrium [pg]. In generic dynamical systems, homoclinic orbits are a codimension-one
phenomenon as the intersection of stable and unstable manifold is of codimension one at
least. In the class of equivariant dynamical systems, homoclinic cycles may be structurally
stable. The intersection of stable and unstable manifolds might be transverse in a fixed point
subspace. We call the cycle structurally stable, if there exists ¥ = Fix{G)} such thatg(f) €
and (W (po)NZ) intersects {W*(p;)NZ) transversely in . In proposition 4.1, we will find
another way to express this property. In the literature many examples of homoclinic cycles
have been found in local steady-state bifurcations with various symmetries. Asymptonc
stability conditions have also been derived [KM91].

- 2.3, Symmetry breaking

We are particularly interested in situations where a dynamical system is close to a symmetric
one. Let us therefore assume that the vector field f depends on a parameter f = f(g,u), € €
R* and that f(0, -) is equivariant with respect to I, but f (g, -} only with respect to some
subgroup H < T for ¢ 5= 0. A lot of issues of local bifurcations which appear for & = O will
persist for £ 5 0, such as hyperbolic equitibria or periodic orbits. Perturbations of hetero-
clinic cycles have recently been studied in the context of symmetry breaking. The perturbed,
H-equivariant flow (g % 0) might not possess invariant fixed-point subspaces which ensure
structural stability of the cycle. Up to now we have tried to show persistence of some kind
of recurrent dynamics [Mel89] or existence of periodic orbits [Cho92], [CF92], [Swi84],
[Sch91]. Unicity of periodic orbits is rarely known. We will try to give a more detailed
description of the dynamics in the neighbourhood of the homoclinic cycle. To this aim, we
reduce the bifurcations of the symmetric homoclinic cycle to the investigation of homoclinic
orbits in generic systems defined on the space of group orbits. The interesting issue that
comes up is that the non-symmetric generic bifurcations we have to study are of codimension
two, therefore the easiest symmetry breaking unfolding of the homoclinic cycle in an equi-
variant generic codimension zero situation already requires two or even more parameters.

3. Two examples

3.1. Tetrahedral symmetry

Here we consider the irreducible representation of the group T @ Z» on R3. It is generated
by a refection '

-1
K= 0
A0

= ™
— O o
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In particular, coordinate planes and axes are invariant under the flow of a T@Zz~equiva:iant
vector field. An instability of the zero solution of such a dynamical system is descnbed by
the foIlowmg third-order polynomial vector ﬁeld

% = ix +x(ax? + by? +c:z %y
7 = Ay +yay* +bz* + ex?) (3.1)
i=iztz@l+ht + o).

and a rotation

On the coordinate axes, the equilibrium pp = ( ——2-,0, 0) bifurcates from the origin,

' togethei‘ with its group orbit for % < 0. Existence of homoclinic cycles is guaranteed by
_the following lemma:

Lemma 3.1. Consider equation (3.1} witha < Qand . > Q. Then if and onlyifb<a<c

or'c < a < b, there exists a heteroclinic orbit, connecting pg to opy = (0, 0, —%) or

o éPo = (0,,/—2%,0), respectively.
The cycle is asymprotically stable zf and only if 2a > b +c.

Proof. Suppose b < a < ¢ (otherwise mterchange ¥ and z). The elgenvalues of the
linearization around pg are

he=—2h 1y =x(1—f) p,z=x(1—f). (32)
a a

The equilibrium pp is a saddle in the directions transverse to the x-axis under the
condition b < a < ¢. Its unstable manifold is included in the xz-plane, where o pq is stable.
1t is therefore sufficient to show that orbits remain bounded and that no mixed modes exist
in the xz-plane. Rescaling time and (x, y, z), we can arrange to have a = —1.

As b <0, itis easily seen that 0 € x < /A is forward invariant in the xz-plane. This
implies also that 2 < z(x — z2 + max(b, 0) - A) and that therefore z 2lso stays bounded.

Looking for mixed modes, we have to solve '

A—x?+ez?=0 A= 4bx=0

but the unique solution {x2, z%) of this linear system is not positive when b < —1 < c.

In case the assumptions of the lemma are not satisfied, pp will be stable (or unstable)
in the y- and z-directions and therefore no cycle can occur.

Asymptotic stability conditions follow from [KM91, theorem 4.1]. They show that one
can neglect the stable radial eigenvalue u, and p; < —uy is equivalent to 2a > b +4-¢. [J

This system of equations was first considered by Busse and Clever [BC79] as a
model for a planar rotationally invariant Rayleigh—Bénard problem, where x,y and z
model the amplitudes of the three dominating convection roifls which can be obtained
by a rotation of 27/3 from each other. Later, Guckenheimer and Holmes [GHS88]
showed the existence of structurally stable and asymptotically stable homoclinic cycles
in these equations. First attempts to study symmetry breaking phenomena were made by
Swift [Swi84] who considered a non-Boussinesq approximation to the Rayleigh-Bénard
problemn which involved symmetry breaking from T @ Z, to T.
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Figure 1. A homoclinic cycle with T @ Zz-symmetry in R,

We also study the slightly generalized problem where two T-modes are coupled: in a
fourth space-dimension £ the clement « is supposed to act as —id, ¢ should act trivially.
The unfolding of the zero solution is then a codimension two problem, governed by the
system of four differential equations

% =Ax+x{ax?+ by2 + ez?) +dEyz
¥ =2y + ylay* + b2® + cx?) + dxz
z = Az + z{az® + bx* + cy?) + dExy
E=vE+exyr—&°.

(3.3)

Note that the dynamics in the coordinate planes, where the homoclinic cycle lies, remain
unchanged. Asymptotic stability of the cycle is guaranteed by the addmonal assumption
v < 0 (in the terminology of [KM91], £ is a ‘transverse’ direction).

Qur main results describe the dynamics of systems of differential equations which are
close to these three- (or four-) dimensional equations but do only possess less symmetry H,
namely I =T, H = Z; generated by ¢ or H = Zg, generated by « . Besides motivation
by Swift’s work cn the non-Boussinesq case, one can see that these subgroups will reveal the
most interesting phenomena—by breaking the cycle—but, nevertheless, permit a detailed
study. As the different equilibria 'of the cycle lie on one group orbit of A = T, the unfolding
of the cycle can be described by a minimal number of parameters.

3.2. Dy-symmetry

Our second example is concerned with homoclinic cycles which bifurcate from the origin
in Dy-equivariant systems of differential equations. Two reducible representations of Dy
are considered

(i) Dy acting on R® as ‘D"r £ OQ3) (the twisted subgroup of Dy @ Z;, cf [GSS88] for
notation) with generators
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-1 0 0 01 0O
K= o 1 0 and c=|1 0 0 .
0 01 00 -1

(ii) D4 acting on B* as a subgroup of O(2) which acts via its (/ =1,/ = 2) representation
[CH92), [AGHS88] with generators

-1 00 0 01 0 o0
| o100 od ol 1O 0 0
=l 0o o1 o0 “loo -1 o

0 00 —i 00 0 ~1

Note that in (ii), a generic steady-state bifurcation from the origin is already of
codimension three. It is motivated by bursting phenomena in boundary layers of fluids,
where a spanwise translational invariance of the problem is broken by introducing small
riblets in the wall region. Equidistance in the partition of the riblets corresponds to a
Zy € O(2) symmetry, a reflectional symmetry with respect to the centre line produces
Dy-symmetry in the equations. The choice & = 4 corresponds to the experimental setting
[CH92], [ALH90]. We are particularly interested in the dynamical phenomena which might
occur when reflectional symmetry is broken, for example, because the riblets are not well
centred.

The importance of the 3d-model is that it is the core of both, @(2) and Ds;-mode
couplings. Besides the T ® Z; symmetric cycle, it is the only homoclinic cycle which
can be forced to exist by symmetry in R? [Sch91]. Many dynamical questions are already
exhibited when considering this 3d-model. The codimension-two steady-state bifurcation is
determined by the third-order truncated system

i =Ax +dxz + x(ax® + by* + cz%)
§ = Ay —dyz + ylay* + bx? + cz?) , , (3.4)
;= vz + p(x? — ¥2) + z{ez? + B(x2 + ¥).

Note that the z-axis and the xz-coordinate plane are flow invariant. In the xz-plane, we
have a reflection symmetry x — —x. The yz-plane is conjugate to the xz-plane via o.

By a suitable rescaling we can suppose d = 1, @ = —land |y| = 1. Fory > 0, nocycle
can exist [AGH88] and we may set y = —1. On the z-axis, the equilibrium p* = (0, 0, ./7)
bifurcates from the origin, together with its symmetric p~ = (0, 0, —/v) = op*. For some
values of A and v there are four other equilibria, called mixed modes (MM), which lie in
the coordinate planes x = 0 and y = 0, all on the same group orbit. We are interested in

P pt

\qu(t)\/ P

Figure 2. A homoclinic cycle with Df-symmetry in 3.



Forced symmetry breaking of homoclinic cycles 339

Y h 4
Pre |
A J:*‘\
[
" i X
A 4 h 4
p g "
h, A
]]l(—‘l”z'i-CV Z)lE (—\'1"2+Cvs l]—lgpf) - 3)15 (;I‘Hopfvlﬂet)
Y
A
B h=Rer o ke (g D) By he (0,vi2+evy) T AsvlZi ey

Figure 3. Bifurcation scenario with D}f -symmetry in the plane Fix(Z,).

heteroclinic orbits, connecting p* to p~ in the invariant planes. The linearization around
Pt yields the eigenvalues

Uy =A+Jv—c-v

py=r—=JSv—c-v

=2y

Lemma 3.2. The planar system

% = Ax + xz — x(ax? + ¢z%)

z=vz—x?—z(z2 + Bx%)
possesses a mixed mode solution, bifurcating from the origin as A, v ~ 0,v > 0, iff
A SVtcvar0s> A > —V+cv At = Ju+c-v, it bifurcates from p~ = (0, —/v)
via a supercritical pitchfork bifurcation. At . = O, it is created by a subcritical pitchfork
bifurcation on the origin and disappears at ). = —./v + ¢ - v in a supercritical pitchfork
bifurcation. At Apgpr = — f + O(v) it undergoes a supercrmca[ Hopf bifurcation. The
periodic orbit disappears in a heteroclinic loop bifurcation p* — 0 — p* which is created
at hper = —3/V+ O(V),

For all JL € (Aper(V), AV +C - V), there exists a heteroclinic orbit, connecting p™ to p~.

In this region af existence.there is another curve hgip = O(v) where the heteroclinic orbit is
contained in the strong stable manifold of p~.
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' Figure 4. Existence of homoclinic cycles, periodic orbits and mixed modes in the Df{-syrnmetric
bifurcation. .

As these bifurcation scenarios are not directly connected to our main results, we postpone
the proof until the appendix.

In the 4d-model, the same invariant planes exist and exhibit the same bifurcation
behaviour. The important difference lies in the existence of a fourth dimension. The
linearization in this fourth direction (eigenvalue ) is essentially independent of the other
three directions. ' : '

4. Results

In the following, we will list some statements on forced symmetry breaking bifurcations
which appear in the neighbourbood of homoclinic cycles. We first determine—speaking
in terms of section 2—which subgroups H < I' will preserve the cycle and which will
generically break it. To single out the important direction of the perturbation, we consider
the linear variational equation

v(t) = Df{q(z)) - v(t) NG
and its adjoint

w(ty = —Df(gN* - w(r}. : (4.2)
The next assumption is a non-degeneracy condition.
{ND) Equation (4.1) possesses an up to scalar multiplication unique bounded solution g(r).

Note that this is always fulfilled in our three-dimensional examples. Moreover, it is
satisfied in the four-dimensional tetrahedral example due to the decoupling of the fourth
equation in the variational equation. Therefore, (IND) is only needed in proposition 4.1 and
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theorem 4.5 as an assumption. The hypothesis (ND) implies that (4.2) also possesses a
umique bounded solution 4/(#} which is in fact orthogonal to the sum of the tangent spaces
to stable and unstable manifolds: -

V@) L Ty W (po) + Ty W p)).

Proposition 4.1. Assume hypothesis (ND). Then a homoclinic cycle is structuraily stable
within the class of I-equivariant vector fields if and only if there exists & € Gy < T such
that m,b(t) = —¥{t} or, equivalently, if W (:}( Po) ik W;(r) (opo) with T = Fix Gy,

Proof.

‘="In Fix (G4p), the heteroclinic orbit is transverse and therefore persists under I'-
equivariant perturbations. To see this just observe that 3 L Fix (Gq(,)) and therefore
TW*(po) + TW*(py) 2 Fix (Gyqn).

‘=" If no « acts as ~id in the direction of ¥, then Gyl = id, because ¥ is unique.
Then we can continue the perturbation £g{g{t),&) = & - ¥ (r) I-equivariantly in a
neighbourhcod of the cycle and of course the cycle wﬂl break for & # O because the
Melnikov mtetrral is non zero

jﬂ; W) - Do(f +2g)(g(t)dr £ 0. | 0

This ‘proposition enables us to single out the subgroups of I' which produce interesting
bifurcation phenomena. Indeed, for I' = T& Z, and I' = D, the subgroups H =T, Z3, Zs
and H = D,, Z;, Za, respectively, are the only subgroups which allow for breaking the
cycle but do, on the other hand, preserve the homoclinic structure, that is, the equilibria pg
and p; are conjugated in H. Comparing with the proposition, we see that for these cycles,
Y (¢} is always orthogonal to the invariant planes and the element x is just the reflection
with respect to this plane.

We will now give precise statements on possible bifurcation scenarios in the
neighbourhood of homoclinic cycles with T 8 Z» or Dy-symmetry. '

4] T® Zn-symmetry

In section 3, we described the unfolding of a T @ Z,-symmetric vector field near the origin
with the formation of a homoclinic cycle. Vector helds which are close to this equation can
formally be described by

i = filu, &) A e R s e R , (4.3)

where fi.(-, 0) is T & Zg-equivariant, f,(-, ) is H-equivariant and D, f(0,0) = 0. The
Taylor jet of f(«, Q) In the origin was given in (3.1) up to the third order. The dynamics
near the homoclinic cycle in the perturbed vector field (e 3 0} depend on

e the eigenvalues of the linearization around pg, which are

sy = —24 #}:).(1'—3) p,,,=1(1—2)
a a

(see equation (3.2)) and
e the parameter & of the perturbation.

In the case g, < fiy, the strong stable mamfold of po does not lie on the x-axis and
we will require the following assumption in theorems 4.2 and 4.3.
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1-homoclinic orbit

2-homoclinic orbit 2-period orbit

Figure 5. Definition of N-homoclinic and N-periodic orbits.

(W1) The heteroclinic orbit joining pp to ¢ pp is not included in the stroﬁg stable manifold
of apy. ,
This hypothesis is generic in the symmetric system and can be numerically tested. In
the neighbourhood of the homoclinic cycle we will find for £ £ O the following types of
solutions:

¢ N-periodic solutions (N-per): these are solutions which pass N-times in the
neighbourhood of the equilibrium in the quotient space B*/H during one period.

e N-homoclinic solutions (NV-hom): these are homoclinic orbits in the quotient space
which pass N — 1 times in a neighbourhood of the equilibrium before closing up. The
homoclinic cycle for ¢ = 0 is 1-homoclinic. ‘

"o shift-dynamics: these are encaded—as in Shilnikov’s homoclinic chaos—by the return
time to a transverse cross section.

In real phase space R3, MN-periodic solutions will explore secm (O(c), N) equilibria
_ during one period, where O(¢) is the order of o in H/Gy(y; in the T @ Zy-symmetry,
we have O{g) € {3,6} and in Dy-symmetry O{z) € {2,4}. The interpretation of N-
homoclinics is similar, Only k - O(o)-homoclinics for some % are homoclinic in R?, the
others are heteroclinic cycles!

Theorem 4.2 (T & Z; — T symmetry breaking). Consider the T-equivariant steady-state
bifurcation described by (3.1) and (4.3} and assume that, f(u, Q) satisfies (WI). Assume
that — in the notation of section 3, a < 0, b < a < ¢ and A > 0, such that a homoclinic
cycle bifurcates from the origin for ¢ = 0. Denote by [y, Uy and p., the eigenvalues of
the equilibria bifurcating on the x-axis (for an expression of the eigenvalues in terms of the
coefficients, see equation (3.2)). The regions with qualitatively different bifurcation behaviour
for & # 0 are described in figure 6.,

Then for a generic unfolding in the parameter &, we have in region

SI, SIL, U: a one-parameter unfolding in &, which produces unique I-periodic solutions
which are either stable (SI, SII) or have one unstable Floguet multiplier (U); see figure
‘trivial’.

KKO: a two-parameter unfolding with I- and 2-periodic and -homoclinic solutions, compare
figure ‘doubling’; the stability of the bifurcating perwdzc solutions is given in the table
below.
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Figure 6. Regions with qualitatively different unfolding of a TéepZ,-cycle under forced symmetry
breaking.

I i m v Vv
I-per 1 stable 1 stable I stable 1 unstable -
1 unstable
2-per — - 1 unstable — -

San: a two-parameter unfolding with homoclinic doubling, homoclinic cascades and shift
dynamics, see figure ‘cascade’. Here stable as well as unstable periodic solutions
bifurcate.

HKK: a three-parameter unfolding with horseshoes in open regions of parameter space.

All bifurcating periodic orbits are o-symmetric. Reflecting the diagram with respect to
& = 0 ylelds ko k-symmetric solutions.

Remarks.

(i) The names of the regions ‘HKK’, ‘KKQ’, ..., are explained in the next section.

(ii) Stability. In regions ‘U’, ‘SI’ and ‘SII’, stability properties of the homoclinic cycle
and the bifurcating periodic orbits correspond. In region ‘KKO’ the cycle is stable but
there aré stable and unstable periodic orbits bifurcating. In region ‘San’ there are stable
periodic orbits if trace < 0, that is, if u, + ¢y -+ @y < 0, generated by the period
doubling, though the cycle is unstable; near the ‘shift’-region, we also expect stable
periodic orbits due to the Newhouse phenomenon if trace < 0.

(iii} If a > 0, we can reverse time and discover the same bifurcation phenomena for A < 0,
of course, stability properties also are reversed.

(iv) Note that the shift dynamics are encoded by the return times. The sequence of equilibria,
explored by chaotic trajectories, is just o py or ko' pp and is not chaotic at all.

(v) For the other symmetry groups H = Z3 or H = Zg, the bifurcation diagrams are the
same, The bifurcating periodic orbits possess Zz- ot Zg-symmetry. In the Zg-case,
they explore all equilibria of the cycle! However, reflecting the diagram with respect
to £ == 0 ts meaningless in these two cases.
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(vi) The genericity conditions needed for the ¢-unfolding are implicitly given in lemmata 5.2
and 6.4.

Theorem 4.3 (T & Z, — T symmetry breaking in R*). If under the assumptions of
theorem 4.2, there is a fourth critical direction with eigenvalue v in which the reflection
k € T®Z; acts as (—id) and the rotation & acts trivially, a generic T-symmetric perturbation
of the T ® Z,-symmetric system (3.3) exhibits the following bifurcation phenomena when the
perturbation parameter £ varies around 0:

(i) in region SI, we have
(a) aunique periodic orbitif —v > p, orv > p, with 0 or 1 unstable Floquet multipliers
respectively (cf figure ‘trivial’);
(b) a two-parameter homoclinic doubling if v € (—u,, 0) where stability is determined
as in theorem 4.2 (¢f figure ‘doubling’);
(c) a homoclinic cascade (cf figure 'cascade’) if v € (0, pty);
(ii} in region U, we have
(a) a unique periodic orbit if —v > —u, or v > —u, with 1 or 2 unstable Floquet
multipliers;
(b) homoclinic doubling if v € (0, —u,) and
(¢) homoclinic cascades if v € (u,, 0).

€

1-hom

Figure 7. The trivial bifurcation.

f
a per-fold g

e

per-doubling

2-per

Figure 8, The doubling bifurcation.
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per-fold per-doubling
. | shift~dynamics

Figure 9. The cascade bifurcation,

Remarks.

(1) In the other regions a three- or four-parameter unfolding describes the dynamics for
small ranges of v. There are always values of v which allow complicated dynamics in
the e-unfolding.

(i1} Interpretation of the bifurcation diagrams is the same as before. A detailed stability
analysis in the cases ‘doubling’ and ‘cascade’ is similar in spirit as for the 3-dimensional
bifurcations. Again, for weakly stable and unstable cycles, there are stable and unstable
periodic orbits bifurcating (cf remark (ii) after theorem 4.2).

(iii) The genericity conditions of the perturbation are implicitly given in lemmata S.]
and 6.4. In addition, the explicit perturbation

£1(0,0, 0, x2 + y2 + 2% + e2(yz, zx, xy, O)

fulfills these conditions and is in fact the polynomial of lowest order satisfying it. This
is proved in section 6.3.

4.2. Dy-symmetry

In our second example, we discuss a codimension-two steady-state bifurcation close to
Dy4-symmetry, described by

= fi,(u, e AveR g e RF ucR? 4.4)

where f; (-, 0) is Df,‘-equivan'ant, frn(, &) is H-equivariant and D, f50(0,0) = 0. The
Taylor jet of f; ,(u, 0) in the origin was given in (3.4) up to the third order. The eigenvalues
in the linearization around the equilibria bifurcating on the z-axis are

e=A+ SV —c v
m.:)x—ﬁ-—c-v
Py = —2v.

Similar to (W1), we need the next hypothesis in theorem 4.4.

(W2) The parameter (A, v) does not lic on the curve A = Ag;, with asymptotics A = O(v),
where the heteroclinic orbit is included in the strong stable manifold (see lemma 3.2),
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Theorem 4.4 (D¢ - Z7 symmetry breaking). Consider the Z; -equivariant steady-state
bifurcation described by equation (4.4) with H = Z; and ¢ close to zero. Assume that in
the third-order jet (3.4} for & = 0 in the origin, we have « < 0 and (W2) is satisfied.

Then for a generic unfolding in ¢ 7 0, we have the following differenr bifurcation
behaviours with an interpretation similar to the T-symmetric bifurcation:

Region Existence Bifurcation  Eigenvalues
stability  diagram ‘

U -+ ‘trivial’ —fy < —fh; < [y
Unstable’ R _ :
San + ‘Cascade’ —~fhy < —fby < min(ity, —24L;)
Unstable :
HKK + =2y < —phy < My
Unstable  Horseshoes
+/— oceur =2y < fy < —Hy
Stable .
KEO - ‘Doubling’  —ji; < px < mMin(—2pz, —piy)
Stable
Si - “Trivial’ Uy < —fh; < —fhy
Stable

Then there are open regions in a generic three parameter unfolding where horseshoes
occur. All orbits are ko -symmetric. Reflecting the diagram at £ = Q yields (ko) -symmetric
orbits.

Remarks.

(i) Asymptotic stability again follows from [KM91]. For asymptotic stability we require
fx < —py. Note that this condition is weaker than the one in {AGHS88] which only
applies in region SIT where the cycle does not exist near A, v = 0! The other eigenvalue
conditions can be easily verified by the reader.

(ii) Periodic orbits in regions ‘U’ and ‘San’ are unstable. In region HKK we expect
Newhouse sinks when the horseshoe disappears, if only trace < 0, thatis A < (¢ + 1)v.

(iif) Again, symmetry breakings to Z, or D, symmetry are similar. In the Dj;-case, we
can reflect the bifurcation diagrams at ¢ = 0 and obtain «o«-symmetric orbits from
o-symmeltric ones. '

(iv) The case a > 0 follows by time-reversal. For existence of homoclinic cycles we then
have to require ¥y = +1(!) and reflect the (A, v)—diagram in the origin. The cycle
will then be unstable in all regions of existence. However, in region ‘San’ there are
stable periodic orbits bifurcating (trace is now positive and there are folds and period
doublings!).

(v) The genericity conditions needed for the perturbation are implicitly given in lemmata 5.2
and 6.4.

Motivated by the work of [CH92], we will now discuss. the case of Z;—symmetry in
R*, which is close to Dy and to O(2)-symmetry where we consider the I = 1, [ = 2
representation of O(2) on R* (see [CHO92], [AGHSS]). It turns out that symmetry breaking
from ¢(2) to Dy yields a situation similar to the action of T @ Z-symmetry in R*, where
the direction orthogonal to the invariant subspaces is the direction of the broken O(2)-group
orbit. As the equations in the invariant subspaces are the same as for DZ-symmetry in R?,
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we can refer to the same linear stability analysis and the conditions for existence as in the
previous theorem, just adding a fourth weaker eigenvalue in the direction of the O(2)-group
orbit. A precise descnptmn of the possible bifurcation phenomena after havmo broken the
reflection symmetry is only possible in region ‘U’

Theorem 4.5 (D4 — Z, symmetry breaking in R*). Consider a Z4-symmetric bifurcation
in R*, which is close to a bifurcation in which O(2)-symmetry with the | = 1, | =2
representation is broken into Dy-symmetry in a generic way. Suppose that in one pair of
invariant planes, there exists a homoclinic cycle (v > 0, & < 0) and that the eigenvalue at
the equilibrium of the cycle in the direction of the broken O(2)-group orbit is the smallest one
in modulus (small symmetry breaking!). If this eigenvalue is positive, assume in addition the
generic hypothesis (ND). Moreover, suppose that the unfolding in & describing the symmetry
breaking from Dy to Z4 is generic.

Then, refering to figure IO we have in regzan 'U ' the following possible bifurcation
scenarios: - .

‘doubling’: when the eigenvailue in the direction of the broken group-orbit is positive
and
‘cascade’: when it is negative.

A=v1Zigv
— A=vl24(c-2)v

=
B — A=vlZ+i(c-d)y

g-_- A"':l'l-!upi
~ A=l (cHdly

ERIESENE

~ A=-vl24(ce2)v

A=vliZigv

Figure 10. Regions with qualitatively different unfolding of a M4-cycle under forced symmetry
breaking.
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Remarks.

(i) Again all periodic orbits are unstable. However, for @ > 0, we have trace < 0 in region
U and although the cycle is unstable (the radial eigenvalue is positive!), for both signs
of the eigenvalue in the direction of the broken O(2)-group orbit, stable periodic orbits
do bifurcate! _

(it) Unfortunately, in all other regions of (A, v)-parameter space, at least three parameters
are necessary in order to describe the unfolding. Bifurcation diagrams are not known;
we expect shift-dynamics to occur in most cases.

(iii) The Zs-symmetric N-periodic orbiis and the N-homoclinic solutions (alias heteroclinic
cycles) will explore all four heteroclinic orbits of the homoclinic cycle during one
period or before closing up, respectively. In particular, the phase of the I = 1-mode
(x—y coordinates in (3.4)) varies over the whole circle [0, 2m) and the phase of the
{ = 2-mode oscillates between 0 and x. Now the two-periodic solutions will prefer
one of the equilibria, when they approach the 2-homoclinics, that is, they will, while
remaining intermiitent, stay much longer time periods close to one of them.

(iv) The genericity condition of the perturbation #s implicitly given in lemmata 5.1 and 6.4.

4.3. Making explicit the parameters g1 and &,

In order to localize the regions described in the g-bifurcation diagrams ‘generic’, ‘doubling’
and ‘cascade’ in actual Z, or T-symmetric bifurcations, one has to express & in terms of the
leading symmetry-breaking polynomials of the Taylor jet. The perturbation can in general
be written as

Su,e)=Ff(u, 0+ g1(u, &) + &2 galu, ).
The perturbation g» should Just cause a separation of stable and unsiable manifolds, that is,

the Melnikov integral f ¥ (2)ga(g(2))dr should be non-zero. Lowest-order terms of g3
ate in the three-dimensional example

&(x, ¥, 2) = (yz, x2, xy) for 'IF-symmetry and
g2, ¥, 2) == (v; —x,0) for Zy—symmetry .

In both cases, all other symmetry breaking terms are of higher order. In R*, we have
other second-order T-equivariant polynomials, namely £ - (x, y,z) and (0,0, 0, §%) which,
however, do not break the cycle, and (0,0,0, x> + y% + z%). Note that if the second
polynomial is of higher order, the (&1, &;)-bifiwcation diagram has to be deformed and
‘most’ of the parameter space will only exhibit bifurcation phenomena in a cusp region
around the line in the (£, ¢;)-diagram, determined by the leading polynomial.

In general, the second degeneracy condition is also given by integrals, which are
nevertheless quite hard to evaluate. We declined at this stage of the work to give explicit
expressions for the Taylor jet.

5. Generic bifurcations of codimension two

In this section we give a short review on two bifurcations of homoclinic orbits of
codimension two for generic vector fields, namely the so-called orbit- and inclination-flip
bifurcation. These results will be used to prove our theorems in the next sections. We will -
not give these results in full generality but will restrict ourselves to the situation needed for
our proofs. Hence consider

= g(u, &) (u,8) e B" x B?. 5.1)
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Here g is not assumed to be equivariant. We assume g{(0, &) = 0 and D, g(0, 0) has spectrum
consisting of simple eigenvalues p, > 0 > —pu; > —u, and the remainder part of the
spectrum has real part strictly less than —pu.;. Furthermore, let go{¢) be a homoclinic orbit
converging to zero for ¢ tending to oo for ¢ = 0. Then there exists a unique bounded {up
to scalar multiples) solution ¥ (t) of the adjoint variational equation

= —D,8(go(t), O w | | (5.2)

see section 4. As mentioned there, ¥o(#)L(Tgy) W (0) + Ty W¥(0)) for all 7 € R. Indeed,
{¥ro(t), v(#)) is independent of time for any solution v{t) of

= D,g{qo(t), 0)v. {5.3)

We will denote by ¢(t, 5) the solution operator of equation (5. 3) In theorem 5.1 and 52
we assume the followmo Melmkov condition.

(V) [0 00(), Deglgol), 0))dr # 0.

It is well known that ander this assumption there exists a unique branch £ = £*(7) in
parameter space and corresponding homoclinic solutions g. (¢} of (5.1) for £¢ = &*(1} such
that £*(0) = 0. We formulate now further assumptions for both bifurcations separately.

5.1. The orbit-fiip bifurcation

In this section we formalate the hypotheses which are needed in theorem 5.1 on the ofbit-ﬁip
bifurcation stated in section 5.3. Firstly, we assume

(OF1) (i) lim,_, o0 e go(t) = 0,
(i1) limy_, 0o e go(t) % 0,
(3ii) Ty —c0 €745 P (1) 7 0.

This hypothesis implies that go(z) € W.(0) is contained in the strong stable manifold of 0.

Next we state an assumption about the dependence of g on the parameters.
Define v°(z) = lim, oo ¥, (2). Here —u,;(e) denotes the eigenvalue of
D, g(0, g} continuing —p;. We remark that v*(0) = 0 due to (OF1)(i). We will assume

(OF2) D v*(z)lr=p # 0.

This assumption has the following geometric interpretation. The homoclinic solution
g:(t} switch\es from one side of W (0) to the other while 7 moves through 0, see figure 11.

>N >

7<( 1=0 >0

Figure 11. The orbit-flip unfolding.
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Lemma 5.1. The hypotheses (M) and (OF2) together are equivalent to linear independence
of the vectors :

JZ2 Gho(®), Deglgo(®), 0)) dt
152, 21(0) 600, ) Deglao(t), 0)de

in parameter spaée. Here 01(0) projects onto a complement of Ty W { po) in Tyyy W (D),
which will be identified with R, along Ryrg(0).

Proof. See [San93). ' c

The next assumption is needed in theorem 5.1.
(N1} i, oo (Yo(—1), go(£))e™#" 5 0.

3.2. The inclination-flip bifurcation

In this section we introduce the assumptions used in theorem 5.2 on the inclination—flip
bifurcation in the next section. We request the following relations to hold.

(XF1) () lim,—y o0 € go(2) # O
(if) lim,_, oo ™'Y (1) =0
(i) Tim;, oo e™#+ Yo () # 0.

This assumption is equivalent to the fact that there does not exist a strong stable foliation
along the homoclinic orbit go(r), see figure 12. Now for each orbit ¢.(t) existing for
£ = g*(r) there is a corresponding bounded solution ¥ (t) of the equation

= —Dypg* (g (1), e (ThHw.
We define wf (1) = lint—, oo e #sE V20 (2) and assume
(IF2) D’ (7) [e=07 0.
Geometrically, the strong stable foliation changes the topological type, see figure 12.

Lemma 5.2. The hypotheses (M) and (IF2) together are equivalent to linear independence
of the vectors

f (Wo(®), Doglaolt), O))dr

—C0

—o0

f (¥o(r), (D:D.g(go®), 0) + Dig(go(®), Bw(r), N (r, 0)Q2(0))ds .

1<0 =0 >0

Figure 12, The inclination-flip unfolding.
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Here
r ! ! i
j; PEYP (2, 5)Deg(go(s), 0) ds +/ (1 — PY)P(t, s)g(gols), 0) ds
u(t) = . : . fort <0
L PP ()d(t, s)D:glgols), 0) ds +f (1 — P*(0e(2, s)glgols), M ds
: = forr =0

and P“(t) projects onto TpumW4(0), P°(t) onto Ty W*(0). The projections of the
exponential dichotomies P*(t) and P“(t) are defined for (5.3), see [San93]. Moreover,
@2(0) projects onto a complement of T,y W' (0), Le. the invariant manifold tangential
to the eigenspace corresponding to the remainder part of the spectrum of D,g(0,0), in
Loy W (0) along Rurg(0). Again this one-dimensional complement is identified with R

Proof. See [DKO91] or [San93]. 0

There exists an invariant not necessarily unique manifold W“(0), which is tangent at 0
to the eigenspace corresponding to the eigenvaiues y, and —u;. Moreover, W¥*(0) contains
go(t). By (IF1) W**(0) is tangent to W*(0) at go(t), see figure 13,

In theorem 5.2 the following assumption occurs.

(N2) W (0) and W¥(0) have a quadratic tangency at gg().

5.3. The bifurcation diagrams

Depending on further conditions on the eigenvalues p,, —p; and —u;, there are three
different types of bifurcation phenomena cccuring in the orbit-flip and inclination-flip
bifurcation. As in section 4, we define N-homoclinics {and N-periodic) solutions as
homoclinic (periodic) orbits, which wind N-times in a small neighbourhood of go(¢).

The following results have been obtained so far for both of the bifurcations mentioned
above.

Figure 13. Quadratic tangency of W¥ (0} and W*{0).
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Theorem 5.1. Orbit-flip bifurcation. Assume (M), (OF]), (OF2).

Further Eigenvalue Diagram
assumptions  conditions
ey < s Trivial
s < hy < fhsy  Doubling
(N1) s < [hss < by Cascade

See [San93] for the proof.
Theorem 5.2. Inclination-flip biﬁtrcaﬁon. Assume (M), (IF1), (IF2).

Further Eigenvalue Diagram  Reference
assumptions  conditions
Ly < fhs Trivial [KK0O93]
s < Uy < min(2ueg, fse)  Doubling  [KKO93]
(N2) M < 2ty < min{peee, i) Cascade  [HKK93]
(NI} My < Hes < min(2ug, ey Cascade  [San93]

See figures 7-9 for the corresponding bifurcation diagrams. The results on stability are
proved in [San94].

Remark. The results on the orbit-flip bifurcation are still valid in the case of higher-
dimensjonal unstable manifolds, Then we have to assume that D,g(0,0) has simple
eigenvalues p, > 0 > —; > —p,, and the remaining eigenvalues have real part strictly
less than — g, or strictly larger than g, In addition, the hypotheses (NDY) and

(OF3) (i) limy, 0 647 go(2) # 0,
(i) i, c0 8/ Yo () 5 O

have to be fulfilled. The conclusions of theorem 5.1 and lemma 5.1 still hold under
these additional assumptlons For a proof see again [San93].

6. The proofs

The idea for proving the theorems is the following. We factor out the remaining symmetry by
identifying Poincaré sections at the different heteroclinic connections using the symmetry o.
This induces a new dynamical system now possessing one homoclinic orbit instead of a
homoclinic cycle. No symmetry will be left after the identification.

The next step consists of determining whether the assumptions of the theorems in
section 5 are satisfied for a nonlinearity coming from a generic equivariant vector field
for the original system. Then we just need to apply these results in order to obtain the
theorems. In fact, symmeiry will help us a lot in verifying the assumptions, though in one
case symmetry will prevent one hypothesis from being fulfilled.

6.1. Reduction to the orbit space

In our examples equilibria and heteroclinic orbits have different isotropy groups. Thus
the flow on the orbit space, which is a manifold, possesses a degenerate stationary point.
Therefore instead of looking at the flow (or one of its extensions) on the orbit space we
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construct an equivalent system directly from the equivariant equations. Choose a heteroclinic
connection go as well ag a section Zg at go(0) transverse to the flow. Next take any cyclic
group Z, with generator ¢ in the remaining symmetry group H and define Z; := ¢/ . g
and g; = ol -goforje0,...,k—1. Now we identify the section g and I,.; by o™ L.
Thus we obtain a vector field possessing a homoclinic solution consisting of pieces of g
and g,—; to the equilibrinm pg. We consider the resulting equations only locally near the
new homoclinic orbit forgetting about the other heteroclinic connections. Any solution of
the new vector field corresponds to a solution of the original equation, which follow the
homaoclinic cycle gy, . .., gy—1. Due to the fact that we identify two sections it is sufficient to
verify the assumptions of the theorems in section 4 for one heteroclinic orbit in the original
equation. By passing to the reduced equation it is clear that the resulting homoclinic orbit
will fulfil these conditions, too.

6.2. The inclination-flip

In this section we consider the three-dimensional versions of our examples, i.e. equations
(3.1) and (3.4) with a particular perturbation g1h1(x, ¥, 2} + &202(x, ¥, 2).

‘We assume that these equations are equivariant with respect to H = T resp. K == Z4 for
£ # 0. In order to verify the assumptions of theorem 5.2 we fix the heteroclinic connection
go(t) C R x {0} x R in the xz-plane, i.e. goft) = (u1(2), 0, u3(2)), for both (3.1) and (3.4).
We now have to check the assumptions (IF1), (IF2), (M} and (N1), (N2),

Let us first verify the assumptions concerning the equations for £ = 0.

Lemma 6.1. (IF1)}is satisﬁed in regions SII, KKO, San and HKK.

Proof. The condition (IF1) (i}, ie. Hmy.o ¥ qo(t) # 0, is fulfilled by assumptions
(W1) and (W2} of theorems 4.2 and 44. The bounded solution yy(t) of the adjoint
variational equation is perpendicular to T, W*, which coincides with the invariant xz-plane.
Now the radial stable eigenvalue u, has modulus less than the other stable eigenvalue
tx by assumption. Thus the asymptotic one-dimensional equation, which is fulfilled by
PYolr) = (w1 (1), wa(?), w3(r)) for t = —oo, is given by
- Wo = gy = —fL W) . . )
Hence (IF1) (ii) and (iii) are satisfied. ' O

Let:us consider hypothesis (N1) next. In fact, as we will see, this assumption is forced
to hold by symmetry. The main observation is the following. By symmetry the z-axis
is invariant in both cases and the heteroclinic connection go(¢) is not contained therein.
Moreover,

- (Yo(—t), go(th) = ((w1(—2), 0,0}, (u;(¥), 0, u3(£))) = wi(~1) - u1 ().

Hence it is sufficient to prove lim,., o e#+/ 1, (t) 7 0. This is the content of the following
lemma applied to go(t) near p;.
Lemma 6.2. Consider the equation

X = sk +x - filx, 2) 2= Usz+ folx, 2}

in R?, which satisfies 0 < u; < pgs and fi = O(x| + |z0), fo = Ox|* -+ |z|?). Take an
initial point (xp, 7o) sufficiently close to zero such that xp 7 0. Then :

lim e4='x(1) £ 0.
=00 -
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Proof. The solution (x(¢}, z(¢)) satisfies the integral equation

x(2) = e M xp 4 f : e"‘"(“f)x(r) A (D), z(t))dr

2(6) = e~Htzo + f &R £y (x(2), 2(2)) d .
0
Thus
!
e*r x (1) = xo + f et x () f1(x(1), z(x)) dr.
1]

By using |x(#}| + [2{)] € K(lxo| + lzol)e™*" and Gronwall’s inequality we obtain for
|xo] + Izol small '

e* [x(1)] < Klxole™
for 8 € K{|xg| + |zol) arbitrarily small. Hence

| (2)je™Wss =0  K|xo) .

For & < p;, ie. |xg| + |z| sufficiently smali, the following integral exists

./; eMsTx () fi(x(r), z(z))dz| < leo[(]x;ol+lzo|)-

Hence

.x(t)e"“’ =xp+ f e* T x (1) f1(x(1), z(z)) dr
0

o0
~> xo + f e*"x(1) f1(x(r), z()) dr
[
as ¢ tends to infinity. Moreover, we obtain for xp % 0 and |xg| + [zp| small enough

Z Xo — O(|xo|(Ix0| + 20])) > 0

X0 + f ) e#sTx (1) fi(x (1), 2(z))dt
0

which proves the lemma. d

Remark. The hypothesis (N2) can never be satisfied in our cases. Indeed, the manifold
W**{pg) is a neighbourhood of pp in the xz-space, while W*(p,) is a neighbourhood of p;
in the same plane. Hence these manifolds coincide preventing a quadratic tangency. By
including a third parameter it is possible to get a curve of inclination-flip points in a three-
dimensional parameter space, all of which except for ¢ = 0 satisfy (N2}, see lemma 6.3
below. O

Before we verify the assumptions about the unfolding of the flip, we state a lemma
about equivariant extensions of small perturbations of the vector field near the heteroclinic
orbit go(z).

Lemma 6.3.

(i} Any small perturbation of the vector fields (3.1} or (3.4) inside the xz-plane near qo(0)
can be extended equivariantly in R.

(it} Any small parameter dependent perturbation of the form ¢ - h(u, &) of (3.1) or (3.4) with
support close to go(0) can be extended equivariantly with respect to the subgroups H,
mentioned below proposition 4.1, in R,
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Proof.

(1) Here points inside the xz-plane close to g4{0) possess isotropy Z, for £ = 0, while points
close to go(0) but not contained in the coordinate plane have trivial isotropy. Hence
we can extend the perturbation to ‘a neighbourhood of g4(0) by using a Z;-equivariant
cutoff-function. By applying the (discrete) symmetry group the perturbation extends

 equivariantly to R, '

(ii) is proved similarly. : : : 0

By lemma 6.3 (i) and due to invariance of the xz-plané it is clear that assumption
(TF1X(A), ie. golt) &€ Wi {p1), is generically fulfilled. Otherwise change the vector field in
that plane a little bit and extend this perturbation. We consider (M) and (IF2) next.

Lemma 64. The assumptioné (M) and (1F2) are fulfilled for generic H-equivariant
perturbations for H = T or Zy, respectively.

Proof. By lemma 5.2 we have to show that for generic H-equivariant perturbations the
following two vectors are linearly independent in parameter space

5= f (W), higo(t), 0)) dt

J2 =f {¥o(®), (Duh(g0(2), 0) + Df f (go(®), DI (2), -])¢(I,O)Qz((_)5) ds

with 7
fu P"(t)ﬁb(f,S)h(qO(S),O)dS+f (1 —P“(f)¢(t,5)h(f10(5)_,0)ds
o) = | . _ ) fort <0
fo PAOBC M@0+ | (= POBE Dhian), 0 ds
forr 2 0.

Moreover 0.(0) projects onto qu{o) W (p1) in Ty W (p1) along Ryrg(0). The image
of ¢(t,0)02(0) is a line transverse to span go(Q) in the invariant xz-plane. We prove the
genericity by claiming that the set

= {h{n, &) | Jy and J, are linearly independent}

is open and dense in the space of H-equivariant C!-vector fields. Clearly, M is open,
because J; and J; are linear continuous functionals on C'. In order to prove our claim it
is therefore sufficient to’show the existence of two arbitrarily small H-equivariant vector
fields with the following properties: -

(1) The first vector field makes J; non-zerc but may change Ja, too.
(i1) The second vector field changes J; arbitrarily without changing Ji.

Moreover, due to lemma 6.3 (ii), it is sufficiént to construct these vector fields near go(0).
The first property (i) is easily obtained by choosing f(u, 0) = v,(0) for u close to go(0)
and multiplication with a-cut-off function. For (ii) we choose A(x, 0) in such a way that it
vanishes at the heteroclinic orbit, i.e.

R{go(),0) = vt.
‘Hence Jr=0and

Jz=f {o(2). Dyuh{go(t), 0)o(z, 0)22(0)} dt

—30
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because v(#} vanishes, too. The remaining integral can be changed arbitrarily by taking
Dyh(go(t), 0) as a small rotation with axis go(r). Indeed, 1,00(:) is perpendicular to the
xz-plane, whereas the range of ¢(z, 0) @2(0) is transverse to q(t) in the xz-coordinate plane.
This proves the lemma. O

Lemma 6.5. I is non-zero (and therefore (M) is satisfied) for the lowest-order polynomials,
which break the symmetry G to H. These polynomials are given by

G='JI‘®ZZ,H=']I':h(u,O_)=(yz,zx,xy)
G=D4y H=Zs: 2(u,0) = (y,—x,0).

Proof. Here Yo(t) = (0, w2(t), 0) and go(t) = (u1(2), 0, u3(r)), see lemma 5.1, First
consider G = T & Z,. We obtain the formula

=]

f (Wo(t). hgo(t), 0)) dt = [ (Wo(0), (72 252 59 i) &8

—0

o
= [ wem .
—00
This integral is non-zero, because u1 (¢), #3(¢) and w2 (¢} do not change sign. Next we look

at G = D4 and obtain :

| w0 haoer. e = [ 000, 5, =2, Ol

= —foo we ()i (2)de .

-0
Again u;{t) and w,(¢) do not change sign, which implies that J; is non-zero. It is
straightforward to show that the given polynomials are of lowest order among the H-
equivariant ones. : : . O

With this series of lemmata the proofs of theorems 4.1 and 4.2 are completed. Indeed,
the hypothesis (IF1) was proved in lemma 6.1, while (IF2) and (M) are shown in lemma 6.4
-Moreover, we proved assumption (N1} in lemma 6.2. In the remark following lemma 6.2
the necessity of a three-parameter unfolding is explained due to the failure of (N2) caused by
symmetry The proofs of bifurcation diagrams in the cases SI and U can be done similarly,
using the standard results on homoclinic bifurcation (for references see [Lin90]). O

6.3. The orbit-flip

Let us now consider the four-dimensional systems with tetrahedral symmetry and Dy-
symmetry with H-equivariant perturbations &1k (x, ¥, 2, £, ) + &2h2(x, ¥, 2, §, £). In this
paragraph we will prove the results (theorem 4.3 and 4.5) concerning the existence of an
orbit-flip bifurcation for these systems. The proofs follow the same lines as those given for
the inciination-flip in the previous section.

We will first consider the equations with tetrahedral symmetry (3.3) in the case where
the eigenvalue v in the fourth direction is negative. For this equation we are able to
give an explicit expression for a perturbation which satisfies the genericity conditions (M)
and (OF2). In fact, this perturbation is the polynomial of lowest possible degree which
breaks the symmeiry.
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Hence we consider only (3.3) with a T-equivariant perturbation
8(x,5,2,8) =&1(0,0,0, x* + y* + 2% + £2(yz, 2%, 2y, O

from now on. We have to prove that (ND), (M), (OF1), (OF2) and (N1) are satisfied.
We fix the heteroclinic connection g(f) in the xy-coordinate plane, thus go(f) =
(x{t), y(2),0,0). The variational equation along g is given by

d

A 0 0
> =] 0 A+ +cy)  dx(Dy) |

0 0 =y

P STR T
VTR PN S e

Therefore, the bounded solution ¥ of the adjoint equation solves -

d —AT@ o 0
— = 0 —(A+b2+cy®) 0 |y
dr 0 —dxy v°
On the other hand, we have
_ TnW¥(p) ={z=§ =0}.
Hence ¥ (1) = (0,0, ¥3(t), Yalt)

g( ¥3 )_ ( ~(A+bx2+cy?) 0 )(wg )_. ( —A(2) 0)( ¥s )
de\ va /T —dxy v wg )T\ —dxy v Wa )
Thus '
Ys(e) = &~ h Oy, 0)
¢4(r)%—d f " Dx()y(T)ys(r) dz.
‘We first compute the Melnikov integrals
M= [ ). Dataots. 0)
Deg is given by

0 , 0
D:,8(q00), 0= g De,g(g (), 0) = x(:)oy(r)'
X2t} + y*(r) 0

and we obtain

M= [ 0. Dag@®. 01t = [ wrena

- f ) 3(0)e~ B MO (1) (2) dr £ 0

because x(f) and y(t) do not change sign.

Next we consider the assumption (OF1). Again (OF1) (1) and (ii) are fulfilled due to
the assumptions on the eigenvalues of Df(pg).

We have to show. (OF1) (111) Because —v is the stable e1genva1ue close to zero, we
have to consider :

Hm e " r(2).
r—>—00
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For the second component we obtain
)
lim e™yy() = lim e ™ (—d f e x(T)y (e (T) dr)
o >+ Y [—+—00 oo

= —y3(0)d f ) e x(r)y(v)eh HI gr

#0.

due to 4 £ 0. Hence (OF1) (iii} is fulfilled.
By lemma 5.1 (OF2) is equivalent to linear independence of M and

N = f 01(0)6 (0, 1) Deglgot), 0) dt .

Here Q1(0) projects onto a complement of Ty 08 W** (po) in Ty W* (}70) along Ry (0). In
particular, {Z =% = 0} < Ker @1(0) and we are concerned only with the equation

g(g)_(x(r) dx(t)y(t))(?)
d\ &) \0 —-v £

in order to compute Q;(0). The flow of this linear system is given by

tﬁ(t,s) — ( ej;l(;r)dr df ef R(O')da'x_(l;?igr)e—u(t—s) dr ) -

Hence the kemnel of Q;(0) is given by {£ = 0}. Moreover, the kemel is invariant under the
flow ¢ (0, 1) and we can write Q1) as

01(1) = (0,0,a(),® - {(0,0,0, 1), )
for some function a(-) Now, D.,g(go(t),0) C {£ = 0} and therefore N» = 0. N, is given
by

Ny = f 80,1 Q1) D g(@o(t), 0)
f 60,0 (@) + Y@ ( a(®) )

— f (xZ(t) +y2(t)) ( a(O) )evt dr

- ( “(10) ) _/: IEGOEREOU

e

>0.

Therefore we finally obtain
M = (x, M>) N =(N.,0

and Ny # 0, Mz # 0. Hence, M and N are linearly independent, which in turn yields
{OF2). (NI) follows from the fact that

Aﬁ!@(:) - ef‘(l-?-(r))drw 0
=g _&] (bxz (1')+C}2(1')) dr 1‘[’ (O)

which cannot converge to zero, because

foo(bxz(l') -+ Cyz('r)) dr < 0.
0



Forced symmetry breaking of homoclinic cycles 359

This proves thecrem 4.3 in the case v < 0. O

In the tetrahedral case, when the fourth eigenvalue v is positive, the unstable and
stable manifolds of the equilibria are two-dimensional. Hence we have to apply the remark
following theorem 5.2 to the time-reversed system. The hypotheses (OF2) and (M) on the
unfolding are again satisfied for the explicit polynomial perturbation given above. Checking
(OF1) and (N1} for the time-reversed system follows the same lines as for v negative. The
additional hypothesis (ND) is satisfied for equation (3.3), because the fourth equation of the
linearization along a heteroclinic orbit decouples. The last assumption (OF3) is fulfilled,
because the coordinate axes are invariant. As these are the strong stable directions in case
U, the solutions g(¢} and ¥ (#) cannot converge with these strong contraction rates, see -
section 6.2 on the inclination-flip for more details.

The proofs of the Dj-symmetric case are again very similar to the ones for the
inclination-flip, whence we will not go into details here. Let us just note that (ND) is
fulfilled by assumption. Moreover, (OF1), (OF3) and (N1) are fullfilled due to genericity
of symmetry breaking from O(2) to Dy. The unfolding conditions are again satisfied for
generic perturbations breaking symmetry from Dy to Za.

7. Existence of strange attractors

We consider again the three-dimensional equation's (3.1) and (3.4), see section 3. .In the
unperturbed case, we know by [KM®91] that the cycle is asymptotically stable provided the
stable non-radial eigenvalue is in modulus larger than the unstable one. Then the stability
of the heteroclinic cycle ‘persists’ for non-zero &,

Lemma 7.1, Assume that an asymprotically stable hamaclm:c cycle exists for (3.1) or (3. 4 )

Then for any small & there exists an attractor A; for the e-perturbed. eguation, which is
upper semicontinuous in £. Moreover, A, is the maximal invariani set in some &- mdependem
neighbourhood of the cycle.

Proof. In order to apply standard results, e.g. [Hal88, theorem 3.5,2], we have to show,
that there exists a set B near the cycle which attracts points, i.e.

rI_1>r£,10 dist(B, u(t)) =0
for atiy solution of (Th), or (D4): such that |
u(0) e U = [u|dist(x, Q) < 8}
for some small § > 0. Here @ = | ] T'go(¢} denotes the heteroclinic cycle.

teR
Due to the stability of @, there exists an open neighbourhood V of @ suchthat V CC Uy

and ¢p(V C V for ¢ = 0, see [Hal88, lemma 3.3.1]. Here ¢.(¢) denotes the flow of the
g-perturbed equation. Due to the compactness of ¢! V and the asymptotic stability of T’
there exists a tp > O such that

Golt)V CcC V.
Now choose an open set W such that
Golte)V CcC Wcc V.

For the same reasons as above, there exists a #; > 0O such that ¢go(t1)U; CC W.
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We define B= |J |J ()W and claim that B attracts points in U; for |g| < &
|t <gp +e[0.09) ’
sufficiently small. Firstly, B is contained in Us for g small. Indeed,

[J sedWc [ stV VvV cc Us.
1ef0.15] te[l,t]
For gp small we still have

$:(1)Us C W and ¢:(00)W C @:(10)V C W.
Therefore
Ueyw = | ettyw
=0 : te[0,50]
is forward invariant. Moreover,
eet)UscWe | eedWcC B
tef0,t] '
"which proves our claim and the lemma. O

By using this lemma together with the theorems 4.1 and 4.2, we cbtain the following
corollary.

Corollary 7.2. Consider (Ty)e and (Dy4); in the regions HKK. Then there exist parameter
values for which the attractor A, contains horseshoes.

Of course, we have not shown the existence of dense orbits in this case. But at least for
equation with tetrahedral symmeiry we are able to show the existence of a strange attractor
for a generic unfolding.

Theorem 7.3. Consider (3.1} in the parameter region KKO of theorem 4.2 with the
assumptions of that theorem being fulfilled. Then there exist values of €, such that the
attractor Ag of the e-perturbed equation near Q contains a geometric Lorenz attractor as
an asymptotically stable set.

Proof. The existence of A, is guaranteed by lemma 7.1. We still show that the equation
(3.1) fulfils the conditions of [Ryc90, theorem 1.2] together with the simplifications in
[KK(Q93, section 3¢]. Note that in the statement of that theorem the requirement

Bhs < fly < IINQ2LLs, fhss)
. is missing, but occurs in [Rye90, (2.4) and lemma 3.4].

Firstly we will show that we can reduce (3.1) to a system possessing two homoclinic
orbits conjugated by a Zz-symmetry. This will again be done by a suitable identification,
see figure 15.

We choose two generators of T

o:(x,y,2) = (y,2,x) (Zs) . _ 7.1

_ k: @, y,z)> (—x,—~y—2) = (Z). 7.2

Now we identify go and g2 by using ko, and g, and g3 by o*ko?2. Hence we obtain a
system with two different homoclinie solutions g and §;. The group element oo induces

a Zy-symmetry on the reduced system, which maps gg onto ;. Furthermore, it acts like

oo 1 (x,y,2) = (x, =y, =2)

near po. A
Together with the proof of theorem 4.2, we have therefore proved that the assumptions
of [Ryc90, theorem 1.2] are fulfilled. This proves the theorem. d
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Figure 14. The domain of existence of a Lorenz attractor in parameter space.
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Figure 15. The Z;-symmetric homoclinic orbits.

8. Discussion

The present work can be understood as a first attempt to give a detailed description
of dynamical phenomena created by symmetry breaking effects on homoclinic cycles.
The principal observations are that the unfolding of a codimension zero sitvation in the
equivariant context will require one, two or even more parameters even in simple situations
with large residual symmetry groups. Unfortunately, there does not seem to be an easy
connection between the stability properties of the heteroclinic cycles and bifurcating cycles
and periodic orbits. Another important complication arises when one tries to determine aff
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orbits in a neighbourhood of the cycle. Our method of looking for symmetric orbits then
fails and the complications involved are not fully explained by our results in the last section
on Lorenz attractors. We hope to be able to describe the dynamics on the attractor in such
situations more comprehensively in a forthcoming paper.

In space dimension four, there is actually another way of forcing an inclination flip
situation by symmetry. Krupa and Melbourne [KM91] observed that in R*, there are
basically three different possibilities for a homoclinic cycle, captured by the following three
examples: '

(i) the group T & Z, acting as in section 3;

(i) the group T & Z» @ Zy, where T @ Z; acts in R* as usually and the second copy of
Z, is a reflection with this copy of B? as a fixed point space; the cycle is the same as
in ();

(iii) the group Z4 - Z3 (see [FS91]) generated by a cyclic permutation of the coordinate
axes and a reflection with respect to R3. There may exist homoclinic cycles lying in
two-dimensional fixed point spaces of Z2.

In case (iii), an unfolding will require at least two parameters as can be seen as follows.
In order to avoid the orbit-flip situation, we assume that in the equilibria with isotropy Z3,
the radial direction (full isotropy!) is the strongest. The picture in the remaining directions
then simplifies and is shown in the following diagram:

We can now easily observe that the strong stable fibres in W*(p;1) converge to the
weakly stable direction in pp as + — —oo : a non-generic situation occurs which is captured
precisely by hypothesis (IF1).

We would also like to point out that the bifurcation diagrams we have obtained are
robust in the sense that they persist with respect to symmetry breaking with less residual

symmetry.

ats{t)

[
F ol

p;; doft)

A J

Py

Figure 16. Homo;!inic cycle with Z4 - Z‘?‘_ symmeiry.
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In the case of equivariance with respect to continous symmetry groups, we would guess
that our results can be obtained whenever the continuous symmetry is preserved (see also
[Cho92] and [CF92]). We were not able to describe symmetry breaking bifurcations when
continuous symmetries are broken.
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Appendix A. Bifurcation scenario for Dy-symmetry in 7 = 0

Let us first determine the mixed modes. For x % 0, the equations for equilibria simplify to
Atztel+ax’=0 vz —2° — (1 = Bz)x* = 0. |

In x2 =z = A = v = 0, the linearization with respect to the variables z and x2is (4)
and therefore invertible, which yields a unique solution z(A, v) and x2(, v). It remains to
ensure that x? is positive, which is equivalent to the conditions

Adz4er >0 and vz—z0 > 0.
So the only bifurcation points are at x? = 0,z € {£./v, 0} and it is now easy to see the
pitchfork bifurcations that describe appearing and vanishing of the mixed modes.
The Hopf curve is determined by trace (Df) = 0 on the curve of bifurcating equilibria
Z(A, v) = —A + aiv —cA? 4+ AO((v + [ADP
x2(A, v) = —Av + A0((v + |ADP).
The trace condition gives ‘
Az 4 c2? +3ax? = v — 322+ Bx”
or '
v =347 + A0(|A1%)

which gives the desired curve. One can easily verify that.the determinant is ron-zero.
The only possibility for the periodic orbit to disappear is a blue-sky catastrophy near a
heteroclinic cycle p* — 0 — pt.

Therefore the Hopf bifurcation has to be supercritical. The curve for the codimension-
one global heteroclinic loop bifurcation will now be obtained by a particular scaling. We
set

- 1 = _L
I=vix AX=vz2A
. 1 d _%d
Z=v71z _——= T =
dt dr

and we obtain the scaled equations
= iE 4+ F 4 vIE@E 43D
7= it v+ BE+ 1)
where ’ = f;. We study this system as a pertufbation of the limit in v < 0

¥ =(h+DF 7 =—32.
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Dividing by the Euler multiplicator X, the right-hand side is just a linear vector field,
turning around (0, —X). The F-axis consists entirely of equilibria. The strong unstable
manifold of the equilibrium (0, £) with £ > —J is identical with the strong stable manifold
of the equilibiivm (0, —2A — £). Fixing two equilibda and varying the parameter A, the
stable and unstable fibres cross transversely in . The Melnikov function can easily be
calculated to be non-degenerate. In particular, for i = —%, the stable and unstable fibres of
{ =1and ¢ = 0 (which correspond to p* and 0) intersect. As the stable and unstable fibres
depend smoothly on the parameter v7 (ef {Fen797), this intersection persisis for some nearby
parameter value Ay = —3 + O(v?). For & > X, the unstable fibre of the equilibrium
¢ =1 intersects a stable fibre of a point on the {—axis, which converges to £ = —1 and
therefore yields a heteroclinic orbit p* — p~. For % < Xy, the unstable fibre approaches
the singular point { =-—2, where the mixed mode is created for v > 0. In the original
coordinates this yields a heteroclinic bifurcation at Ay = f + O(v) and a heteroclinic
orbit p* — p~ for A > Apy. The upper bound for the ex1stence of p* — p~ connections
can, also from this picture, be seen to be precxsely the bifurcation point, when p~ loses
stability.

Let us remark that near A = Agp = O(v), the heteroclinic orbit switches side: it
approaches the equilibrium p™ ffom below for A > Agp. At A = lﬂ,p, a symmetry breaking
unfolding should exhibit phenomena of the orbit-flip bifurcations in the four-dimensional
examples. Only here this bifurcation is of codimension one already in the symmetric context.
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