
THE JOURNAL OFNONLINEARSCIENCE26.10.1998Bifurcations and Dynamics of Spiral WavesBj�orn Sandstede1, Arnd Scheel2, Claudia Wul�21 Department of MathematicsOhio State University231 West 18th AvenueColumbus, OH 43210, USA2 Institut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanySummary. In several chemical systems such as the Belousov-Zhabotinsky re-action or the catalysis on platinum surfaces, transitions from meandering spiralwaves to more complicated patterns have been observed. Seemingly key to thedynamics of spiral waves is the Euclidean symmetry group SE(N ). In this article,it is shown that the dynamics near meandering spiral waves or other patternsis determined by a �nite-dimensional vector �eld which has a certain skew-product structure over the group SE(N ). This generalizes our earlier work oncenter-manifold theory near rigidly-rotating spiral waves to meandering spirals.In particular, for meandering spirals, it is much more sophisticated to extract theaforementioned skew-product structure since spatio-temporal rather than onlyspatial symmetries have to be accounted for. Another di�culty is that the actionof the Euclidean symmetry group on the underlying function space is not di�er-entiable, and in fact may be discontinuous. Using this center-manifold reduction,Hopf bifurcations and periodic forcing of spiral waves are then investigated. Theresults explain the transitions to patterns with two or more temporal frequencieswhich have been observed in various experiments and numerical simulations.1. IntroductionSpiral waves arise as stable spatio-temporal patterns in various chemical systems.They have been observed experimentally, for instance, in Belousov-Zhabotinskyreactions [5, 19, 30, 34] and in the catalysis on platinum surfaces [21]. Thesepatterns can be roughly divided into the following categories. Spiral waves may



2 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�rotate rigidly, that is, they are equilibria in a rotating frame. In the originalframe, rigidly-rotating spirals are periodic in time. On the other hand, spiralsmay either drift or else meander, that is, they are time-periodic in a suitablemoving or rotating frame, respectively. In the original frame, drifting spirals aremodulated travelling waves, while meandering waves are quasi-periodic in time.In several experiments and numerical simulations, transitions from spiralwaves or other patterns to more complicated waves have occurred. The dynamicsnear rigidly-rotating spiral waves and their transition to meandering and driftingspirals has been studied extensively; see, for instance, [3, 30]. The motion of spiralwaves on a large cylinder has been investigated in [31]. The transition fromplanar meandering spirals to invariant tori with seemingly three frequencies wasinvestigated in [23] by calculating the Fourier spectrum of the waves. Winfree andothers [7, 16, 22] observed patterns in models posed on three-dimensional spacein numerical simulations. The e�ect of periodic forcing on rigidly-rotating spiral-wave solutions has been investigated experimentally in the catalysis on platinumsurfaces [21], and in the Belousov-Zhabotinsky reaction [5, 34]. The authors of[29] and [34] also considered periodic forcing of meandering spiral waves andfound invariant three-dimensional tori. They observed that the frequencies ofthe solutions on the torus and the external forcing may lock.Seemingly key to the dynamical behavior of spiral waves and their bifur-cations is the Euclidean symmetry of the plane or the three-dimensional space.Here, the (special) Euclidean symmetry group SE(N ) of IRN consists of all trans-lations and rotations. Barkley [4] was the �rst who noticed the relevance of thisgroup to the understanding of spiral waves. He proposed that the dynamicsof planar rigidly-rotating spirals is governed by an equivariant vector �eld onthe group SE(2). Phenomenologically, he could then interpret the transitionto meandering or drifting spiral waves as a Hopf bifurcation. Indeed, numeri-cally, Barkley veri�ed the crossing of a pair of simple eigenvalues through theimaginary axis; the rest of the spectrum (except for the eigenvalues enforcedby symmetry) is strictly contained in the left half-plane. Similarly, Mantel andBarkley [20] described periodic forcing of meandering spirals by investigatingperiodically-forced equivariant equations on the group SE(2).The purpose of the present article is to corroborate the role of the Euclideansymmetry group by establishing a rigorous link between certain modeling as-sumptions and the description of the dynamics of spiral waves by equivariantvector �elds on the Euclidean symmetry group. We can then explain the afore-mentioned phenomena observed in experiments and numerical simulations rig-orously rather than heuristically.Chemical systems are traditionally modeled by reaction-di�usion systemson suitable domains. Here, the main modeling assumption is that the domainis actually unbounded, that is, the governing equation is posed on either theplane or the three-dimensional space. We will discuss in Sect. 9 whether and inwhat sense this hypothesis is justi�ed. The symmetry group SE(N ) then acts onfunctions u(x) according to((R;S)u)(x) := u(R�1(x� S)) x 2 IRN ;



Bifurcations and Dynamics of Spiral Waves 3where R 2 SO(N ) is a rotation and S 2 IRN a translation. In other words, thegroup element (R;S) �rst rotates the pattern described by the function u usingR, and then shifts it to S. In particular, we may interpret rigidly-rotating spiralwaves as relative equilibria, that is, as solutions whose time-orbit is contained inthe group orbit of its initial value. On the other hand, drifting and meanderingspirals can be interpreted as relative periodic orbits; after one time period, thesolution is contained in the group orbit of its initial value. In the spirit of equiv-ariant bifurcation theory [13], the idea is to prove the existence of a smooth,SE(N )-invariant center manifold near such spiral waves and to discuss the 
owon this manifold.Unfortunately, there are some major technical obstacles which have to beresolved before obtaining such a center manifold. Firstly, the group SE(N ) isnot compact, and therefore many standard results are not applicable. Secondly,and more importantly, the aforementioned SE(N )-action is not di�erentiable onreasonable function spaces such as L2(IRN ) or the space C0unif (IRN ) of bounded,uniformly continuous functions on IRN . On the latter space, the action is noteven strongly continuous; a counterexample is provided by the rotations actingon the function u(x1; x2) = cos(x1). Therefore, there is no a priori reason whya center manifold should exist which is at the same time smooth and invariantunder the group SE(N ).In one of the author's doctoral thesis [33], Hopf bifurcations and period forc-ing of planar rigidly-rotating spirals were investigated using Lyapunov-Schmidtreduction, that is, without deriving equations-of-motion. In [25, 26], we pre-sented a rigorous center-manifold reduction near relative equilibria for generalnon-compact groups. Fiedler et al. [9] clari�ed the skew-product structure of vec-tor �elds on center manifolds associated with relative equilibria having compactisotropy. In addition, conditions for drifting have been derived in this paper. Si-multaneously, using a formal center-bundle construction, Golubitsky et al. [12]investigated Hopf bifurcation of `-armed planar spiral waves and derived con-ditions for the existence of drifting multi-armed spirals. Normal forms for thereduced equation on the center manifold have been given in [10]. Ashwin andMelbourne [1] studied equivariant maps on non-compact groups. They derivedconditions for drifting using group theory. Existence of spiral waves has recentlybeen established in [27, 28] using a Ginzburg-Landau reduction.Relative periodic orbits of compact groups have been investigated by Field[11]. In this article, relative periodic solutions for non-compact groups are con-sidered. In particular, we extend the aforementioned results derived in [9, 26] sothat they also apply to relative periodic solutions. These solutions exhibit a muchricher structure since spatio-temporal symmetries rather than only spatial sym-metries have to be accounted for. Therefore, though the extension of the center-manifold theorem is not particularly original, it is more sophisticated to extractthe skew-product structure. With these methods at hands, we can then explainvarious experiments and numerical simulations of spiral waves. Speci�cally, weconsider Hopf bifurcations of meandering spirals to invariant three-dimensionaltori, the dynamics of spiral waves on cylindrical surfaces, and periodic forcingof spirals and scroll waves.



4 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�As mentioned above, we consider reaction-di�usion equations of the formut = d�u+ F (u; �) x 2 IRN ; N = 2; 3 (1:1)on the plane or in three-dimensional space. The matrix d is diagonal with non-negative entries, and F is a smooth nonlinearity. The function u : IRN ! IRMcan be interpreted as a vector of spatially dependent concentrations of chemi-cal species. External control parameters are incorporated into the parameter �.Changes of these parameters may lead to bifurcations. Equation (1.1) is well-posed on the space C0unif (IRN ; IRM ) of bounded, uniformly continuous functions.In addition, (1.1) is equivariant with respect to the Euclidean group SE(N ). The(special) Euclidean group SE(N ) is the semi-direct product SO(N ) _+IRN of theorthogonal group SO(N ) and the group IRN of translations with the composition(R;S)( ~R; ~S) = (R ~R;S +R ~S) (1:2)on the product SO(N ) _+IRN . The Lie algebra se(N ) is the product of the spaceso(N ) of skew-symmetric matrices, which generate the rotations, and the spaceIRN generating the translations. We denote elements in the Lie algebra by (r; s) 2so(N )� IRN = se(N ).Suppose that u�(t) is a relative periodic solution with period T , that is,u�(T ) = (R�; S�)u�(0)for some (R;S) 2 SE(N ). Furthermore, assume that the group SE(N ) acts con-tinuously on u�. We denote the linearization of the time-T map �T (u) associatedwith (1.1) evaluated at u�(0) by D�T (u�). We assume that the set of elementsin the spectrum of (R�; S�)�1D�T (u�) which have modulus equal or bigger thanone consists of �nitely many, isolated eigenvalues with �nite multiplicity. LetEcu� be the associated generalized center-unstable eigenspace.In the �rst step, it is shown that SE(N ) actually acts smoothly on u� and onall elements in the eigenspace Ecu� . Therefore, even though the group acts dis-continuously on the space C0unif , the aforementioned spectral hypothesis enforcessmoothness of the group action on u� and Ecu� . The proof requires results onstrongly-continuous group actions on Banach spaces; in particular, we show thatthe group acts di�erentiably on a dense subspace. This generalizes earlier resultsby Dancer [6] for compact groups. The proof given here seems to be simpler evenfor compact groups. We then prove the existence of a smooth center-unstablemanifold which is invariant under the semi
ow and the group SE(N ). Hence, thein�nite-dimensional dynamical system near the relative periodic orbit is reducedto some ordinary di�erential equation on the center-unstable manifold.In the second step, we identify the skew-product structure of the vector�eld on the center manifold. The 
ow on the manifold can be represented as adynamical system _R = Rr(v; �; �) _S = Rs(v; �; �)_v = fN (v; �; �) _� = f�(v; �; �)



Bifurcations and Dynamics of Spiral Waves 5on the space SE(N )� V�� IR. Here, (R;S) 2 SE(N ) is in the group, � 2 IR cor-responds to the coordinate in the time direction, and v 2 V� is in a complementof the tangent space of SE(N )u� and the time derivative @tu�(0) in Ecu� . Fur-thermore, the function (r; s)(v; �; �) has values in the Lie algebra se(N ). Thereare further restrictions on the vector �eld enforced by the spatio-temporal sym-metries of the relative periodic solution. The skew-product structure manifestsitself in the fact that the equations for (v; �) decouple from the equations on thegroup SE(N ) as a consequence of SE(N )-equivariance.Summarizing, a systematic and rigorous procedure is developed which al-lows us to derive equations-of-motion near relative periodic orbits. The maindi�culty is that not only spatial but also spatio-temporal symmetries of therelative periodic solution have to be taken into account. We point out that theaforementioned results are formulated in an abstract functional-analytic set-upwhich includes semilinear parabolic equations equivariant under arbitrary �nite-dimensional, and possibly non-compact, Lie groups.The paper is organized as follows. Section 2 contains the center-manifoldreduction for autonomous equations, while periodic forcing is considered inSect. 3. Section 4 contains a short excursion on linear representations of �nite-dimensional Lie groups on Banach spaces. In Sect. 5 and 6, we discuss the reg-ularity and spectral hypotheses in more detail. Applications to spiral waves arethen given in Sect. 7 and 8. Finally, conclusions and open problems are discussedin Sect. 9. Sections 7 and 8 are self-contained, so that readers interested mainlyin the applications can skip the other sections.2. Center Manifolds near Relative Periodic OrbitsThe main results of this section, Theorems 2.2 and 2.9, establish the reductionto a �nite-dimensional center manifold and the characterization of the vector�eld on the manifold as a skew-product 
ow.2.1. The Center-Manifold ReductionConsider the autonomous semilinear di�erential equationut = �Au+ F (u) (2:1)on a Banach space X. We assume that A is sectorial with dense domain D(A).The nonlinearity F is a Ck-function from X� to X for some k � 3 and some� 2 [0; 1), and X� is the domain of the fractional power A�; see, for instance,[15]. We set Y = X�. Equation (2.1) generates a local Ck-semi
ow �t on Y . Weremark that parameters can always be incorporated as additional componentswith trivial dynamics.Let G be a �nite-dimensional, possibly non-compact Lie group with Lie al-gebra alg(G) = TidG. We write exp(�) for the exponential map from alg(G) toG. The adjoint action of an element g 2 G on the Lie algebra is given byAdg � := g�g�1 = ddtg exp(�t)g�1���t=0 2 alg(G) :



6 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Let � : G ! GL(Y ), g 7! �g , be a faithful and isometric representation of G inthe space of bounded, invertible operators. In other words, we require k�gk = 1for all g 2 G. Note that we do not assume continuity or smoothness of the map�. The group orbit of an element u 2 Y is Gu = f�gu; g 2 Gg.The structure we require is G-equivariance of the semi
ow generated by (2.1)�t(�gu) = �g�t(u)for all t > 0 and g 2 G. We are interested in solutions for which time and grouporbit are related. Examples of such solutions are relative periodic solutions which,after one period of time, are contained in the group orbit of their initial value.More precisely, suppose that u� 2 Y is relative periodic with period one, thatis, �1(u�) = �g�u�for some g� 2 G, and �t(u�) =2 Gu� for t 2 (0; 1). Its isotropy subgroup is de�nedby H� = fh 2 G; �hu� = u�g. The relative periodic orbit O� itself is given asthe time orbit of the group orbit of u�O� = f�g�t(u�); g 2 G; t 2 IRg :We shall investigate the dynamics and possible bifurcations of u� using a center-manifold reduction near its orbit O�. Hence, a hypothesis on the spectrum ofthe linearization about u� is needed.Hypothesis (S) Assume that f� 2 C; j�j � 1g is a spectral set for the spectrumspec(L�) of the operator L� := ��1g� D�1(u�) 2 L(Y )with associated spectral projection P� 2 L(Y ) such that the generalized eigenspaceEcu� := R(P�) is �nite-dimensional.In other words, there are only �nitely many elements with norm equal orbigger than one in the spectrum of L�, and these elements are isolated in spec(L�)and have �nite multiplicity. Let Es� := N (P�) be the stable subspace. Finally,we assume certain regularity properties.Hypothesis (R)(i) The function G! Y , g 7! �gu� is Ck.(ii) For any neighborhood U of id in G, there is a � > 0 such that j�gu��u�j � �for all g 2 G n (H�U ) . Here, H�U = fhg; h 2 H�; g 2 Ug.(iii) Considered as elements of L(Y ), the operators �gP� and P��g are Ck�1 ing 2 G.(iv) The tangent space Tu� (Gu�) is contained in the center-unstable eigenspaceEcu� .



Bifurcations and Dynamics of Spiral Waves 7Hypotheses (R)(i) and (ii) imply that the group orbit O� of u� is a smoothembedded manifold which is di�eomorphic to G=H�. Note that the isotropy H�is closed due to Hypothesis (R)(i). Hypothesis (R)(iii) requires in particular thatthe group acts di�erentiably on elements in Ecu� . The last assumption (R)(iv)is true if the group has an invariant metric. In particular, it is met for compactgroups and also for the Euclidean group SE(N ); see Lemma 6.2. For general non-compact groups, however, it is not necessarily satis�ed; as pointed out in [12,Remark after Proposition A.3], the a�ne group provides a counterexample. Weshow in Sect. 5 that Hypothesis (R) is a consequence of the spectral assumption(S) under some mild additional assumptions on the group G.We start with the de�nition of a center manifold.De�nition2.1. Let u� be a relative periodic solution. We say that (2.1) hasa G-invariant center-manifold M cu� associated with u� if the following is true.There exists a G-invariant, locally semi
ow-invariant manifold M cu� containedin Y . The manifoldM cu� is of class Ck�1, the vector �eld on M cu� is Ck�2, andthe action of G on M cu� is Ck�1-smooth. Furthermore, there is a � > 0 suchthat M cu� contains all solutions which stay in the �-neighborhood of the relativeperiodic orbit O� for all negative times. Its tangent space at the point �g�t(u�)is �gD�t(u�)Ecu� . Finally,M cu� is locally exponentially attracting.We emphasize that the action of G on the center manifold is smooth thoughit may act discontinuously on the whole space.In general, the center manifold may contain unstable directions. Invertingthe smooth, equivariant 
ow on the center-manifold, it is straightforward toconstruct a center-manifold tangent to the subspace of Ecu� corresponding tocenter directions. Thus, with a slight abuse of notation, we use the term centermanifold even when unstable directions are included.Recall that a continuous action of a Lie group G on a manifoldM is calledproper if the map (g; u) ! (�gu; u) 2 M �M maps closed sets into closed setsand preimages of points are compact. We can then state the existence result.Theorem2.2. Assume that Hypotheses (S) and (R) are met for the relative pe-riodic solution u� 2 Y of (2.1). There exists then a G-invariant center manifoldM cu� . Moreover, the G-action on M cu� is proper provided H� is compact.The proof of the theorem is given in the next section.2.2. The Center Manifold for the Poincar�e MapTheorem 2.2 will be proved by applying the graph transform to the Poincar�emap associated with a suitable section transverse to the time direction. Sincewe want to preserve G-equivariance, this section should be invariant under thegroup G.First, it is shown that the center-unstable eigenspace is invariant under theisotropy group H�. If the operator L� = ��1g� D�1(u�) were H�-equivariant, the



8 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�center-unstable eigenspace would be H�-invariant as a consequence of the de�ni-tion of P�. Note that D�1(u�) is H�-equivariant. Furthermore, since �h�1(u�) =�1(�hu�) = �1(u�) and �1(u�) = �g�u�, we have ��1g� �h�g�u� = u�. Hence, assets, g�H� = H�g�. However, in general, g� does not commute with all elementsin H�, and L� is then not equivariant under H�.Lemma2.3. The spectral projection P� associated with L� is equivariant with re-spect to the isotropy group H� of u�. In particular, the center-unstable eigenspaceEcu� is H�-invariant.Proof. It su�ces to show that N (P�) = Es� and R(P�) = Ecu� are invariant underH�. On account of the spectral hypothesis (S), there are constants C1, C2, and�s < �cu < 1 such thatkL�̀(id�P�)k � C1�s̀ ; k(L�jEcu� )�`P�k � C2 1�c̀u (2:2)for all ` 2 IN.Suppose that there is an element w such thatjL�̀wj � C�s̀ jwj (2:3)for some C independent of ` 2 IN. We then concludejP�wj = j(L�jEcu� )�`P�L�̀wj � C2 1�c̀u jL�̀wj � CC2� �s�cu�`jwj ;and therefore P�w = 0 since �s < �cu.The idea is now to show that �hv satis�es the estimate (2.3) whenever vdoes. For h 2 H�, using the de�nition of L�, equivariance of the semi
ow, andinvariance of the isotropy subgroup H� under conjugation with g�, we calculateL�̀�hv = (��1g� D�1(u�))`�hv= (��`g� �h�g̀� )(��1g� D�1(��`+1g� �h�`�1g� u�)) � : : : � (��1g� D�1(u�))v= ��`g� �h�g̀�L�̀v :Take any v with P�v = 0 and h 2 H�. ThenjL�̀�hvj � k��`g� �h�g̀�k � jL�̀vj � jL�̀vjby the above calculation and isometry of the group action. Therefore, we con-clude P��hv = 0. In particular, N (P�) is invariant under H�.It remains to show that R(P�) is H�-invariant. Given w such that L�`� wexists for all ` > 0 and jL�`� wj � C 1�c̀u jwj (2:4)for some C independent of `, we conclude as before that (id�P�)w = 0. Next,take any v 2 Ecu� and h 2 H�. Since v 2 Ecu� , there exists a w 2 Ecu� such thatL�w = v. Thus, since L�(�g��h��1g� w) = �hv, we have L�1� �hv = �g��h��1g� L�1� v.Using the isometry of the group action, we obtain jL�`� �hvj = jL�`� vj, and there-fore (id�P�)�hv = 0 by the discussion above. Hence, P��hv = �hv = �hP�v. ut



Bifurcations and Dynamics of Spiral Waves 9Therefore, the splitting of Y into the center-unstable space Ecu� and thestable space Es� = N (P�) is H�-invariant. By Hypothesis (R)(iv), the spaceEcu� contains the tangent space Tu�(Gu�) of the group orbit. Also, the vector�eld @tu�(t)jt=0 lies in Ecu� . Both subspaces Tu�(Gu�) and spanf@tu�(t)jt=0g areinvariant under the isotropy subgroup H�. Note that these subspaces have trivialintersection since we excluded relative equilibria. We construct an H�-invariantcomplement V� of the sum of the aforementioned subspaces in Ecu� .Lemma2.4. There exists an H�-invariant scalar product on Ecu� .Proof. Since the representation � is isometric and H� acts on Ecu� , the image�(H�) of the isotropy group H� under � is bounded in GL(Ecu� ). Hence, the clo-sure clos(�(H�)) � GL(Ecu� ) of �(H�) is a compact group, and therefore admitsa Haar measure. Using this Haar measure of �(H�), we endow Ecu� with an H�-invariant scalar product. utLet V� be the orthogonal complement in Ecu� of the spaceTu�O� = Tu�(Gu�) � spann ddtu�(t)jt=0o ;and denote the orthogonal projection onto V� by PV� . In other words, we havethe H�-invariant splitting Ecu� = Tu�O� � V� : (2:5)Let B� := PV�L�jV� 2 L(V�). We emphasize that the spectrum of B� determinesbifurcations from the relative periodic orbit.Next, we de�ne the sectionS := f�g(u� + v�) + w�; g 2 G; v 2 V�; w� 2 �gEs� with jvj; jwj < �g (2:6)transverse to the time-orbit in u�. In the next lemma, we show that S is smooth,and we construct the Poincar�e-map � : S ! S. It is here where the regularityhypothesis (R) is used.Lemma2.5. The set S is a G-invariant and Ck�1-smooth hypersurface. It con-tains the group orbit Gu� and is transverse to the semi
ow. The correspondingPoincar�e map � : S ! S is Ck�1-smooth, G-equivariant, and close to �1jS inthe C0-topology. Moreover, spec(��1g� D�(u�)) � spec(L�).Proof. By de�nition, S is G-invariant and contains Gu�. Smoothness of S is aconsequence of Hypothesis (R)(iii), and we refer to [26, Sect. 3.2] for the proof.The tangent space of S at u� is Tu� (Gu�) � V� � Es�. By de�nition of V�, thevector �eld at u� is a complement to this tangent space.It remains to verify the claim about the spectrum. The subspaces Es� andTu�(Gu�) of Tu�S are invariant under the linearization L�. Therefore, the spec-trum of ��1g� D�(u�) coincides with the spectrum of L� on these subspaces. Recallthat B� = PV�L�jV� , and let B�v = �v for some v 2 V�. Using PV�@tu�(0) = 0, itis straightforward to show that L�(v+a@tu�(0)) = �(v+a@tu�(0)) for a suitablechoice of a whenever � 6= 1. This proves the lemma. ut



10 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Rather than investigating the semi
ow, we shall concentrate on the Poincar�emap �. The relative periodic solution u� of the semi
ow is a relative �xed pointof the corresponding Poincar�e map �, that is, �(u�) = �g�u�. We now provethe existence of a center manifold near a relative �xed point of a G-equivariantmap.Theorem2.6. Suppose that u� 2 S is a relative �xed point of a G-equivariant,Ck�1-smooth map � : S ! S. Assume that Hypotheses (S) and (R) are met.There exists then a G-invariant center manifold M cu� � S which is locally in-variant under �. If H� is compact, the G-action on the manifold M cu� is proper.Proof. The proof is very similar to that given in [26] for relative equilibria. Wewill therefore only outline the proof and refer to [26] for the details.First, we parametrize a neighborhood of Gu� in the section S smoothly asin (2.6). The map � is then modi�ed for v 2 V� outside a small H�-invariantneighborhood U of the origin in V� by adding a small positive multiple of theidentity; see [26]. The modi�ed map, which is still smooth and G-equivariant, isdenoted by ~�.Next, consider the center-unstable and stable bundlesV cu = fu = �g(u� + v); (g; v) 2 G� V�; jvj < �gand Es = f�g(u� + w); (g; w) 2 G � Es�g, respectively, along the group orbitGu�. The center manifold is sought as a graph of a map from the center-unstableinto the stable bundle. Therefore, consider the closed metric space �#�# = f� 2 C0;1(V cu; Y ); �(�g(u� + v)) 2 �gEs�; j�(�)j � �; Lip(�) � 1gof Lipschitz-continuous sections of the stable bundle equipped with the sup-norm.Since the center manifoldwill be exponentially attracting, any other manifoldnearby is attracted to it under forward iterations of ~�. The idea of the graphtransform is to de�ne a map �# on �# by mapping a section into its imageunder �#, and seek the center manifold as a �xed point of �#. More precisely,for some ` > 1, de�ne ~� = �#(�) by the conditiony + ~�(y) 2 f ~�`(x+ �(x)); x 2 V cugfor each y 2 V cu. The modi�cation of the map � takes care of the complicationthat the domain of the new section ~� may have shrunken under forward iterationof �. On account of Hypothesis (S) and Lemma 2.5, the map ~� is normallyhyperbolic. Hence, the graph transform �# is well-de�ned and a contractionprovided the number ` 2 IN is chosen su�ciently large; see, for instance, [8, 17].The unique �xed point �# of �# de�nes the center manifold byM cu� = f(id+�#)(�g(u� + v)); (g; v) 2 G� V�; jvj < �g : (2:7)Again by [8, 17],M cu� is exponentially attracting, locally invariant under ~�, andof class Ck�1. Since � and ~� coincide in the small neighborhood U of Gu� inS, the manifoldM cu� is also locally invariant under �.



Bifurcations and Dynamics of Spiral Waves 11By G-equivariance of ~�, the manifold �gM cu� 2 �# is also invariant under~� for any �xed g 2 G. Therefore, by uniqueness, M cu� is invariant under G. TheG-action on M cu� is smooth since the map �# : V cu ! Y is G-equivariant andthe G-action on V cu is smooth by assumption (R)(iii); see also [26, Sect. 3.4].Finally, if H� is compact, the G-action is proper on the group orbit Gu� byHypothesis (R)(ii). This remains true onM cu� provided the V�-component in theparametrization (2.7) is small enough; see again [26]. utThe following corollary, actually a by-product of the proof of Theorem 2.6,characterizes the structure of the manifoldM cu� and the Poincar�e map�jMcu� . Werecall that V� is an H�-invariant complement of Tu�(Gu�)� spanf ddt�t(u�)jt=0gin Ecu� ; see (2.5).Corollary2.7. Assume in addition to the assumptions of Theorem 2.6 that H�is compact. The center manifold M cu� is then di�eomorphic to G �H� V� :=(G � V�)=� under the identi�cation (gh; v) = (g; �hv) for (g; v) 2 G � V� andh 2 H�. The pull-back of the map �jMcu� to G� V� is�(g; v) = �g�G(v)�N (v) � ; (2:8)and (�G;�N) is H�-equivariant(�G;�N)(�hv) = ('�(h)�G(v)'�(h)�1; �'�(h)�N (v)); (2:9)for all h 2 H� and all v 2 V�, where '�(h) = g�hg�1� .Proof. It follows from the description (2.7) that the manifoldM cu� is di�eomor-phic to G �H� V�. It is then possible to lift the map � to the product G � V�as in [9]. The structure of the pull-back of � to G � V� is a consequence ofG-equivariance of �. utIt has been shown in [9] that the vector �eld near relative equilibria is ofskew-product form. Equation (2.8) establishes the same property near relative�xed points of equivariant maps.Proof of Theorem 2.2. The Poincar�e map � de�ned near the relative periodicsolution u� of (2.1) is a G-equivariant map from the section S given in (2.6) intoitself. By Theorem 2.6, there exists a G-invariant center-unstable manifoldM cu�of class Ck�1 for the Poincar�e map �. We transport M cu� with the semi
ow �talong the time direction. By local invariance of M cu� under �, the setf�t(u); u 2M cu� ; t 2 [0; 3=2]gcontains a smoothmanifoldM cu� in a possibly small,G-invariant, �-neighborhoodof O�. By construction, M cu� is locally invariant under the semi
ow. Since M cu�is G-invariant and attracting, so is M cu� .It remains to prove that the action of G is proper on M cu� if H� is compact.Let gn 2 G and u1, u2 2 M cu� be such that �gnu1 ! u2. We have to show



12 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�that the sequence fgng has a convergent subsequence. With j = 1; 2, we �ndelements ûj 2 M cu� and times tj 2 [0; 3=2] with uj = �tj (ûj). Since �t is adi�eomorphism in M cu� , we can assume that t1 = 0 without loss of generality.Hence, �gn û1 ! �t2(û2). SinceM cu� is G-invariant, we have t2 = 0. Furthermore,using that the G-action is proper onM cu� , we conclude that fgng has a convergentsubsequence, and consequently the G-action is also proper on M cu� . ut2.3. The Skew-Product Flow on the Center ManifoldWith Theorem 2.2 at hands, bifurcations from relative periodic orbits can bereduced to �nite-dimensional smooth bifurcation problems. In order to analyzethese bifurcations, the vector �eld on the manifold M cu� has to be computed.Therefore, we aim for a representation of the vector �eld in the space G�V��IRcorresponding to the directions along the group, the transverse directions inwhich bifurcations take place, and the time direction. However, the manifoldM cu�might have a complicated topological structure; in general, it is not di�eomorphicto a direct product.The main result in this section, Theorem 2.9, clari�es the geometric structureof the center manifold as a bundle. The manifold is di�eomorphic to the coveringspace G� V� � IR under an appropriate identi�cation. It is important that thesubmersion describing this identi�cation is de�ned in a uniform neighborhoodof the possibly non-compact manifold O�. The vector �eld onM cu� is then liftedto the covering space. The lifted vector �eld inherits the G-equivariance fromthe original equation and has additional covering symmetries induced by thespatio-temporal symmetries of the relative periodic orbit.In deriving the representation mentioned above, it is important to separatethe e�ects of the operator D�1(u�) and the group element g�. First, we accountfor the bundle structure induced by the linearized map D�1(u�). Recall thesplitting (2.5), Ecu� = Tu�O� � V�. The �rst subspace is mapped into itself by��1g� D�1(u�). On the space V�, we consider the matrixB� = PV���1g� D�1(u�)jV� 2L(V�) which may induce a non-trivial bundle structure. For instance, an eigen-value �1 of B� may lead to a M�obius bundle. This bundle structure can betaken into account by following a basis in V� along the time orbit of u�. Afterone time unit, the resulting basis in �g�V� de�nes a map in L(V�; �g�V�) whichwe denote by J(1). It describes the structure induced by the operator D�1(u�).This matrix can be chosen in an H�-equivariant fashion retaining some of thesymmetry properties present in the system. The main point is that it is also anisometry; this property guarantees that the center manifold can be parametrizedin a uniform neighborhood of O�. The composition Q� := ��1g� J(1) 2 L(V�) thenencodes the entire bundle structure.Therefore, consider the space E0 := Ecu� . Let E� be the image of E0 underD��(u�), that is, E� := D��(u�)E0 with � 2 (��; 1 + �). The collection E� with� 2 (��; 1+ �) is a di�erentiable trivial vector bundle over (��; 1+ �). Note thateven if g� = id, we consider E0 and E1 as di�erent spaces.



Bifurcations and Dynamics of Spiral Waves 13Lemma2.8. There exists an H�-invariant splittingE� = T�� (u�)O� � V�such that V0 = V�. The associated projections PV (�) onto V� are H�-equivariant,smooth, and satisfy �g�PV (�)��1g� = PV (� + 1) for � 2 (��; �). Moreover, thereexist isomorphisms J(�) : V� ! V� which are smooth in � and H�-equivariant,such that Q� := ��1g� J(1) is an isometry.Proof. Note thatf�g � E0 ! f�g �E�; (�; v0) 7! (�;D��(u�)v0) (2:10)is an H�-equivariant trivialization of the bundle E = (E�)�2(��;1+�). We take theH�-invariant scalar product hu; vi0 in E0 which has been de�ned in Lemma 2.4.The splitting Ecu� = Tu�O� � V� is then H�-invariant and orthogonal. Using theaforementioned trivialization (2.10), we may then choose H�-invariant scalarproducts hu; vi� in E� for � 2 (��; �) which are smooth in �. For � 2 (��; �), weequip the spaces E1+� with the H�-invariant scalar productshu; vi1+� = h��1g� u; ��1g� vi� : (2:11)Note that g�H�g�1� = H� since the isotropy group does not change along timeorbits. Next, we connect the scalar products on E� and E1�� by a smooth, H�-invariant family h�; �i� of scalar products on E� for � 2 (�; 1 � �) using againthe H�-equivariant trivialization (2.10). This can be accomplished exploitingthe Haar measure of �(H�), see Lemma 2.4, and the fact that the set of positivede�nite, symmetric matrices is connected.Using the smooth, H�-invariant scalar product on the bundle, we de�nePV (�) as the orthogonal projection onto the complement of the tangent spaceT��(u�)O� in E�. The projections are smooth and H�-equivariant since the tan-gent spaces and scalar products are smooth and H�-invariant. For � near zero,the scalar products on E� and E1+� are conjugated by g�, see (2.11), and thetangent spaces T��(u�)O� are mapped into T�1+� (u�)O� by �g� . Therefore, wehave �g�PV (�)��1g� = PV (� + 1) for � near zero.The isometries J(�) can now be constructed using the fact that (V�)�2(��;1+�)is a Riemannian, H�-invariant trivial subbundle of the bundle (E�)�2(��;1+�)such that scalar product and H�-action are compatible. We may choose J(�) asa Riemannian, H�-equivariant trivialization of this subbundle. utDe�ne Q� := ��1g� J(1). The next theorem describes the skew-product struc-ture.Theorem2.9. Assume that Hypotheses (S) and (R) are satis�ed and supposethat the isotropy group H� is compact. The center manifold M cu� is then Ck�1-di�eomorphic to (G� V� � IR)=� where the identi�cation is de�ned by(gh; v; �) � (g; �hv; �) and (gg�; Q�v; �) � (g; v; � + 1) (2:12)



14 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�with h 2 H� and (g; v; �) 2 G� V� � IR. The di�erential equations on M cu� canbe lifted to G� V� � IR such that_g = gfG(v; �); _v = fN (v; �); _� = f�(v; �) : (2:13)The vector �eld (fG; fN ; f�) 2 alg(G)� V� � IR is equivariant under the spatio-temporal symmetries of u�, that is,(fG; fN ; f�)(�hv; �) = (hfG(v; �)h�1; �hfN (v; �); f�(v; �)) (2:14)for all h 2 H� and(fG; fN ; f�)(v; �+1) = (g�fG(Q�v; �)g�1� ; Q�1� fN (Q�v; �); f�(Q�v; �)) : (2:15)Moreover, (fG; fN ; f�)(0; �) = (0; 0; 1).Note that the reduced di�erential equations (2.13) are of skew-product form.Indeed, the equations for (v; �) decouple and can be solved independently ofthe equation on the group. Therefore, bifurcations are described entirely by theH�-equivariant (v; �)-equation. In particular, the equation for v describes thedynamics of the shape of the pattern, while the equation for � determines thephase. On the other hand, drift along the group is determined by the g-equationwhere the bifurcating solutions act as an equivariant forcing. For non-compactgroups, resonance phenomena in the g-equation may then lead to unboundedmotion on the group. The skew-product structure is exploited in the applications,and we refer the reader to Sect. 7 for illustrative examples.Proof. We have to construct an appropriate submersion from G� V� � IR ontothe center manifold. Since the center manifold is given as an equivariant graphover the center-unstable bundle, it su�ces to seek a submersion onto this bundle.We choose a smooth function � : (��; 1 + �) ! [0; 1] such that �(�) = 0 for� 2 (��; �), �(�) = 1 for � 2 (1� �; 1 + �), and j�(�) � �j < 2� for all �.By Dunford-Taylor calculus, the operators �g�1� D�1(��(u�)) have spectralprojections P�(�) with P�(0) = P� which depend smoothly on �. By Lemma 2.3,the projections are also H�-equivariant. Furthermore, they satisfy P�(� + 1) =�g�P�(�)��1g� for all �. We shall exploit these projections to extend the domainof de�nition of the projections PV (�) constructed in Lemma 2.8: The operatorsPV (�)P�(�) are again projections de�ned on Y and retain all the propertiesdescribed in Lemma 2.8. With a slight abuse of notation, we denote them againby PV (�).The map � from G� V�� (��; 1 + �) into the center-unstable bundle is thende�ned by � (g; v; �) := �g(��(u�) + PV (�)J(�(�))v) ; (2:16)where (g; v; �) 2 G� V� � (��; 1 + �). For � 2 (��; �), we use the de�nition of �and the properties of PV (�) and J(�) described in Lemma 2.8, and obtain� (g; v; 1 + �) = �g(�1+�(u�) + PV (1 + �)J(�(1 + �))v)= �g(�g���(u�) + �g�PV (�)��1g� J(1)v)



Bifurcations and Dynamics of Spiral Waves 15= �g�g� (��(u�) + PV (�)Q�v)= �g�g� (��(u�) + PV (�)J(�(�))Q�v)= � (gg�; Q�v; �) :Therefore, we may de�ne� (g; v; n+ �) = � (ggn� ; Qn�v; �) (2:17)for � 2 [0; 1) and n > 0, and a similar expression for negative �.The derivative of � is surjective and its kernel is given by alg(H�)�f0g�f0g.Indeed, it su�ces to calculate the derivative of � at (id; 0; 0). The kernel isinduced by the following equivalence relation on G�V��IR. By H�-equivarianceof PV and J , we have� (gh; v; �) = �g�h(��(u�) + PV (�)J(�(�))v) = � (g; �hv; �)for any (g; v; �) 2 G� V� � [0; 1] and h 2 H�. Up to this equivalence relation, �is a covering map where the covering symmetry is induced by the time-one shift(2.17). This proves that a uniform neighborhood of O� in M cu� is di�eomorphicto (G� V� � IR)=� under the equivalence relation mentioned in the theorem.In the next step, we have to lift the di�erential equation from the centermanifold to the covering space. We proceed here as in the proof of [9, Theo-rem 1.1]. In this reference, a manifold with a proper G-action was investigatedin a neighborhood of a relative equilibrium with isotropy H�. For � 2 [0; 1), welift the vector �eld as in the aforementioned reference. For points � 62 [0; 1), wethen use the time shift � 7! � + 1 and conjugation by appropriate powers of�g� and Q�. The relations (2.14) and (2.15) are consequences of G-equivarianceand of the covering symmetries induced by H� and the time shift � 7! � + 1,respectively. utIn the proof given above, we did not use the fact that M cu� is a center mani-fold. If M is a manifold with a smooth and proper action of a Lie group G, and_u = f(u) is a G-equivariant vector �eld on M , then the same conclusions aretrue near relative periodic orbits O� of the 
ow on M .Motivated by the applications in Sect. 7, we will focus on several situationsin which the bundle structure simpli�es considerably. It is then possible to usethe vector �eld on the relative periodic orbit in a more explicit way.Lemma2.10. If g� = exp(��) is in the centralizer of H� for some �� 2 alg(G),then the following is true. The map (g; v; �) 7! (g exp(���); v; �) transforms thevector �eld (2.13) on G� V� � IR into_g = gfG(v; �); _v = fN (v; �); _� = f�(v; �) (2:18)with (fG; fN ; f�)(0; �) = (��; 0; 1). In addition, the equivalence relations (2.14)and (fG; fN ; f�)(v; � + 1) = (fG(Q�v; �); Q�1� fN (Q�v; �); f�(Q�v; �)) (2:19)are met.



16 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�The proof is straightforward and will be omitted. In fact, it su�ces that g�is contained in the connected component of the identity in the centralizer of H�in G. The description of the vector �eld in Lemma 2.10 is then still true. Indeed,in the expression for the map given in the lemma, we replace the homotopyexp(���) by a path g(�) which connects id and g� in the centralizer of H�.Remark. By a similar argument, the relative periodic orbit O� itself is di�eomor-phic to (G=H� � IR)=� where points (gH�; � + 1) � (gg�H�; �) are identi�ed. Ifg� lies in the connected component of the identity in the normalizer N (H�) ofH�, then O� is di�eomorphic to G=H�� S1. Note that it is the normalizer, andnot the centralizer, which is relevant here since we only describe the structureof the manifold, and not the vector �eld on it.Next, consider the case of trivial isotropy.Lemma2.11. Assume that H� = fidg and g� = exp(��) for some �� 2 alg(G).If det(B�) > 0, then M cu� is di�eomorphic to the trivial bundle G � V� � S1.The vector �eld is as described in Lemma 2.10 with � 2 S1 and Q� = id. Ifdet(B�) < 0, M cu� is covered twice by G � V� � IR=ZZ. The vector �eld lifted tothe covering space is as described in Lemma 2.10 with � 2 IR=2ZZ and Q� 2 O(V�)with det(Q�) = �1.Proof. If det(B�) > 0 and H� = fidg, we have Q� = id. Therefore, the equiv-alence relations reduce to (gg�; v; �) � (g; v; � + 1). Let �� 2 alg(G) such thatexp(��) = g�. The map ~� (g; v; �) = (g exp(����); v; �) is then the required dif-feomorphism which trivializes the bundle.If det(B�) < 0, we describeM cu� as a bundle over G�S1 with an identi�cationmatrix Q� in the �ber V� which changes the orientation. The resulting non-orientable bundle over S1 can be covered by a trivial bundle in the usual way.utFinally, we focus on the situation where a Hopf bifurcation occurs in thetransverse direction V�.Lemma2.12. Assume that g� = exp(��) is in the centralizer of H� for some�� 2 alg(G). Furthermore, suppose that the matrix Q� is homotopic to the iden-tity in O(V�) in an H�-equivariant fashion. The center manifold is then di�eo-morphic to (G� V� � S1)=� under the identi�cation(g; v; �) � (gh�1; �hv; �)with h 2 H�. The vector �eld on G�V��S1 is as described in Lemma 2.10 withQ� = id.In particular, the assumption on Q� is met if dimV� = 2 and spec(B�) =fexp(�i!�)g with !� 6= 0mod�.



Bifurcations and Dynamics of Spiral Waves 17Proof. Since g� is in the centralizer of H�, Q� commutes with elements h 2 H�.By construction, we can replace Q� by id whenever Q� is homotopic to theidentity in O(V�) in an H�-equivariant fashion.It remains to consider the last claim in the lemma. Since dimV� = 2 and B�has two non-real eigenvalues, H� � SO(2); otherwise, B� 6= � id could not beH�-equivariant. Furthermore, Q� 2 SO(2) since det(B�) = 1. Therefore, Q� ishomotopic in SO(2) to the identity in an H�-equivariant fashion. utFor any subgroup K of G, we denote the connected component of the identityin K by K0. Furthermore, C(K) and N (K) denote the centralizer and normal-izer, respectively, of K in G. Suppose that the isotropy subgroup H� is compact.In the lemmata above, we have always required that g� = exp(��) is in C(H�).This assumption is not optimal and can be relaxed considerably for many, evennon-compact groups G including SE(N ). For this class, arguing as in Field'swork [11], we have the decompositionN (H�)0 = C(H�)0 �H0� ; (2:20)and, in addition, g�̀ = exp(��) 2 N (H�)0 for some ` 2 IN. We can then describethe 
ow on the center manifold in a way which is similar to that in [11].3. Periodic ForcingIn the general set-up of Sect. 2, we consider (2.1) with a time-periodic right-handside ut = �Au + F (u) + �Fext(t; u; �) ; (3:1)where u 2 Y ; recall that Y = X� and � 2 [0; 1). The forcing Fext is Ck fromIR�Y �IR to X for some k � 3. Suppose that Fext is periodic in t with frequency
. We assume that the evolution operator �t;� (u; �) on Y associated with (3.1)is G-equivariant.Theorem3.1. Suppose that u� is a relative 1-periodic solution of (3.1) for � = 0which has compact isotropy H�. Furthermore, suppose that Hypotheses (S) and(R) stated in Sect. 2.1 are satis�ed with V� = f0g, that is, Ecu� = Tu�O�. Thereexists then a G-invariant center-manifold M cu� . The manifold M cu� is di�eomor-phic to (G=H��IR�S1)=� under the equivalence relation (gg�; �; t) � (g; �+1; t).The vector �eld on M cu� is_g = gfG(�; t; �); _� = f�(�; t; �) ; (3:2)where (fG; f�)(�; t; �) is periodic in t with frequency 
 for � 6= 0, while for� = 0 (fG; f�)(�; t; 0) = (fG; f�)(�) does not depend on time. Moreover, (fG; f�)satis�es (2.14).



18 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Proof. Consider the map �(u; �) := � 2�
 ;0(u; �). For � = 0, the orbit O� =f�g�t(u�; 0); (g; t) 2 G� IRg is a smooth, G-invariant, and normally hyperbolicmanifold without boundary which is invariant under �. As such, it persistsunder small perturbations; see [17]. Note that although O� may not be com-pact, it is uniformly attracting since the contraction rates of D�(u) evaluatedat �g�t(u�; 0) do not depend on g 2 G by G-equivariance and the isometricrepresentation of G on Y . Hence, there is a G-invariant and �-invariant man-ifold M cu� for any small �. The manifold M cu� := [0�t�2�
 �t;0(M cu� ; �) is theninvariant under the time evolution �t;� . The structure of the vector �eld onM cu�follows as in Theorem 2.9. utThe theorem is also true if additional center-unstable directions are present.The main di�culty is that the domain of graphs may shrink when using the graphtransform. The proof then requires a modi�cation of the vector �eld which issimilar to the procedure mentioned in the proof of Theorem 2.2; see also [26].A similar reduction as described in Lemma 2.10 applies to periodic forcingprovided g� = exp(��) for some �� 2 alg(G) is in the centralizer of H� in G. If,in addition, H� = fidg is trivial, then the manifoldM cu� is di�eomorphic tof�g�exp(����)��(u�; 0); (g; �) 2 G� S1g = G� S1 :The manifoldM cu� is di�eomorphic to G�S1�S1. For applications, we refer toSect. 8 below.Theorem 3.1 remains true if relative equilibria instead of relative periodic or-bits are considered. Here, u� is a relative equilibrium if �t(u�; 0) = �exp(��t)u� 2Gu� for all t 2 IR. We then have �1(u�; 0) = �exp(��)u� = �g�u�.Theorem3.2. Suppose u� is a relative equilibrium of (3.1) for � = 0 with com-pact isotropy H�. Assume Hypotheses (S) and (R) are satis�ed for �1(u�; 0).There exists then a G-invariant center-manifold M cu� di�eomorphic to G=H� �S1, and the lifted vector �eld on G� S1 is_g = gfG(t; �) ; (3:3)where fG(t; �) is periodic in t with frequency 
 for � 6= 0, and fG(t; 0) = �� isindependent of time. Moreover, fG(t; �) = hfG(t; �)h�1.4. Strongly Continuous Actions of Lie Groups on Banach SpacesIn this section, we prove regularity properties of linear representations of �nite-dimensional Lie groups on Banach spaces. We summarize the results in Theo-rem 4.5 at the end of this section. Consider a linear representation � of a �nite-dimensional Lie group G on a Banach space Y0. We assume that this action isstrongly continuous, that is, the mapG� Y0 ! Y0; (g; u) 7! �(g)u



Bifurcations and Dynamics of Spiral Waves 19is continuous. We mention that in this section we do not assume that the repre-sentation is isometric.By strong continuity of � and semigroup theory, the generator of the one-parameter group �(exp(�t)) for � 2 alg(G) with t 2 IR is a closed operator in Y0which we denote by �(�). The domain of �(�)D(�) := fu 2 Y0; �(�)u := limt!0 1t (�(exp(�t))u� u) existsg (4:1)is dense in Y0 for any � 2 alg(G).The �rst result of this section is that the intersection of all domains D(�)over � 2 alg(G) is also dense in Y0. Dancer [6] proved this result for compactgroups G using the Haar measure associated with G. Intuitively, however, theresult should not depend on the global group structure but only on the Liealgebra alg(G). Indeed, the generators �(�) are related to the Lie algebra; theLie algebra, however, may be the same for a compact and a non-compact group.The proof given here re
ects this reasoning as only the local group structure ina neighborhood of the identity in G is used. It also seems to be more elementarythan the one given in [6] for the particular case of compact groups.Lemma4.1. The intersection \�2alg(G)D(�) is dense in Y0.Proof. The proof is inspired by the treatment of semigroups in the textbook [24].Using a local chart, we equip the Lie algebra alg(G) = TidG of G with a scalarproduct and the Lebesgue measure d� with � 2 alg(G). For r > 0, de�neMru = 1jBr(0)j ZBr(0) �(exp(�))u d� (4:2)for u 2 Y0, where Br(0) is the ball with radius r and Lebesgue-volume jBr(0)jin alg(G). Note that the integrand is continuous in � by strong continuity of theG-action, and thus the integral is well-de�ned. It is straightforward to see thatlimr!0Mru = u. Therefore, it su�ces to show that Mru 2 D(�) for �xed r > 0,u 2 Y0, and � 2 alg(G), that is,�(�)Mru = limt!0 1t (�(exp(�t))Mru�Mru) (4:3)exists. For r small enough, the map�t : alg(G)! alg(G); � 7! exp�1(exp(�t) exp(�))is a di�eomorphism from Br(0) into some neighborhood of � = 0 in alg(G). We�x r > 0 and write B = Br(0). Exploiting continuity and the transformationrule for integrals on IRn, we havejBj �(exp(�t))Mru = �(exp(�t)) Z�2B �(exp(�))u d�= Z�2B �(exp(�t) exp(�))u d�= Z~�2�t(B) �(exp(~�))u det(D��t(~�))d~� :



20 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Using this expression, we obtainjBj (�(exp(�t)) � id)Mru = Z�t(B) �(exp(�))u det(D��t(�)) d�� ZB �(exp(�))u d�= Z�t(B) �(exp(�))u(det(D��t(�)) � 1) d�+�Z�t(B) �(exp(�))u d� � ZB �(exp(�))u d��=: I1 + I2 :It is straightforward to see that the integral 1t I1 converges as t ! 0. Indeed,D�0(�) = id and D�t(�) is smooth in t and �. Therefore, the limit limt!0 1t I1exists.It remains to show that limt!0 1t I2 exists. For any smooth function f : IRn !IR, we haveZ�t(B) f(�) d� � ZB f(�) d� = Z t0 Z@�� (B) f(�)n(�; �) d� d� ; (4:4)where n(�; �) is the � -component of the outer unit normal ofT(�;�)� [s2[0;1] @�s(B)� :Indeed, equality (4.4) is a consequence of Gauss's formula applied to the vector�eld (f(�); 0) in the domain [s2(0;1)�s(B) since div(f(�); 0) = @�f(�) = 0.By continuity of (4.4) with respect to the C0-convergence in f , the formula isalso true for continuous functions f . Finally, testing with functionals in Y �0 , wesee that (4.4) holds for f 2 C0(IRn; Y0). To complete the argument, we apply(4.4) with f(�) = �(exp(�))u. Observe that the integrand n(�; �)�(exp(�))u iscontinuous. Therefore, Z@�� (B) n(�; �) �(exp(�))u d�is continuous in � as the domains varies smoothly. Hence, limt!0 1t I2 exists andis given byZ@�0(B) n(0; �) �(exp(�))u d� = Z@Bh�(�); �i �(exp(�))u d� ;where � is the outer unit normal of @B � alg(G). utThe next lemma shows that � as de�ned in (4.3) is linear.Lemma4.2. For any �xed u 2 \�2alg(G)D(�), the map alg(G)! Y0, � 7! �(�)uis linear in �. Furthermore, we have �(�)�(g)u = �(g)�(Ad�1g (�))u for any g 2G.



Bifurcations and Dynamics of Spiral Waves 21Proof. The relations �(t�) = t�(�) for t 2 IR and �(�)�(g) = �(g)�(Ad�1g (�))follow from the de�nition of �. It su�ces to prove that�(�1 + �2) = �(�1) + �(�2) (4:5)for all �1; �2 2 alg(G). Furthermore, it is su�cient to prove the identity (4.5)evaluated at elements Mru since these are dense in Y0 and the operators areclosed. Now, we can proceed as in the proof of the preceding lemma; insteadof multiplying the element Mru by �(exp(�t)) � id, we multiply by �(exp((�1 +�2)t)) � �(exp(�1t))� �(exp(�2t)) + id. We omit the details. utWe de�ne Y1 := \�2alg(G)D(�) (4:6)with norm jujY1 := juj + supj=1;::;dim alg(G) j�(�j)uj where �j is a �xed basis ofalg(G).Lemma4.3. The space Y1 is closed with respect to j � jY1 , and hence a Banachspace.The proof is straightforward using � =P aj�j and closedness of � and �j.We remark that it is also possible to prove that �([�1; �2]) = [�(�1); �(�2)],that is, � preserves the Lie structure of alg(G).Lemma4.4. The representation � is continuous, that is, the map alg(G)�Y1 !Y0, (�; u) 7! �(�)u, is continuous. Furthermore, the group G acts strongly con-tinuously on Y1, and �(g)u is continuously di�erentiable as a function from Ginto Y0 for any u 2 Y1.Proof. The �rst claim follows from the principle of uniform boundedness sincethe map (�; u) 7! �(�)u is linear and uniformly bounded for � bounded in alg(G).Next, note that Y1 is invariant under G since�(�)�(g)u = �(g)�(Ad�1g (�))u 2 Y0by Lemma 4.2. For any two sequences gn ! g and un ! u, we have�(Ad�1gn (�))un ! �(Ad�1g (�))uby continuity of � proved above. Therefore, by strong continuity of the G-actionon Y0, �(�)�(gn)un = �(gn)�(Ad�1gn (�))un ! �(g)�(Ad�1g (�))ufor gn ! g, and the action on Y1 is strongly continuous.Finally, consider g 7! �(g)u 2 Y0. The partial derivative of �(g)u in the �-direction evaluated at ĝ is given by �(ĝ)�(Ad�1ĝ �)u. Continuity of this expressionwith respect to ĝ follows as above. utWe summarize the main results in the following theorem.



22 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Theorem4.5. The space Y1 = \�2alg(G)D(�) is dense in Y0, and is a Banachspace with normjujY1 = juj+ supfj�(�)uj; � 2 alg(G); j�j = 1g :Furthermore, the group G acts strongly continuously on Y1 and the map g !�(g)u 2 Y0 is C1 in g for any u 2 Y1.For j > 1, de�neYj := fu 2 Yj�1; �(�)u 2 Yj�1 for any � 2 alg(G)g (4:7)equipped with the graph norms j � jYj de�ned byjujYj = jujYj�1 + sup�2alg(G);j�j=1 j�(�)ujYj�1 :By induction, applying the aforementioned results to the spaces Yj , we see thatYj is dense in Y0.5. The Regularity HypothesisHere, we prove that the smoothness assumption (R) is essentially implied by thespectral hypothesis (S). Suppose that G acts on some Banach space Y via theisometric representation �g . Let j � j and k � k denote the norms on Y and L(Y ),respectively. Assume that u� 2 Y is a relative �xed point of a G-equivariant,Ck-smooth map � : Y ! Y , that is, �(u�) = �g�u� for some g� 2 G. Let Y0 � Ybe the largest subspace in Y in which G acts strongly continuously. We assumethat the G-action on the Banach space Y is weakly continuous.Hypothesis (W)(i) If �gu! w as g ! id for some w 2 Y , then u = w.(ii) The adjoint representation Adg� on alg(G) has all its spectrum on the unitcircle.Note that Hypothesis (W)(ii) is on the group rather than on the representa-tion. The following theorem is the main result of this section.Theorem5.1. Suppose that u� 2 Y0. Moreover, we assume that Hypotheses (S)and (W) are met. Then, Hypotheses (R)(i), (iii), and (iv) are satis�ed.The theorem will be a consequence of Lemmata 5.4, 5.6, and 5.7 below. Westart with the proof that Ecu� � Y0.Lemma5.2. If u� 2 Y0, and Hypotheses (S) and (W)(i) are met, then Ecu� � Y0.In particular, �gP� is norm-continuous in g 2 G.



Bifurcations and Dynamics of Spiral Waves 23Proof. Assume �rst that the spaces �gEcu� are continuous in g. For any v 2 Ecu�and any sequence gn ! id, the bounded sequence �gnv converges to some elementw 2 Ecu� possibly after choosing a subsequence. Indeed, the spaces �gEcu� arecontinuous and Ecu� is �nite-dimensional. From Hypothesis (W)(i) we concludethat w = v. The same argument shows norm-continuity of �gP�.It su�ces therefore to prove that the spaces �gEcu� are continuous as g !id in G. We argue by contradiction. Since Ecu� has �nite dimension, there isthen a sequence gn ! id and an element v0 2 Ecu� with jv0j = 1 such thatj(id�P�)�gnv0j � � > 0 for all n. For convenience, we use the notation L� =��1g� D�(u�) and L(u) = ��1g� D�(u). On account of the spectral hypothesis (S),there are constants C1, C2, and � < 1 such thatjL�̀(id�P�)vj � C1�`j(id�P�)vj; jL�̀P�vj � C2`�mjP�vjfor some k > 0 and any ` 2 IN and v 2 Y . Indeed, vectors in the center-unstableeigenspace can decay at most algebraically in `. In particular, choosing ` largeenough, there are then numbers �s < 1 and �cu such thatkL�̀jEs�k � �s; k(L�̀jEcu� )�1k � 1�cu (5:1)and ��cu > (1 + kP�k)�s : (5:2)In order to keep notation simpler, we assume that (5.1) and (5.2) are met with` = 1; otherwise, replace the map � by �`. Since D�(�gu�) = �gD�(u�)��1g byequivariance, we have L(�g��g��1g� u�) = �gL��g���1g ��1g� (5:3)for any g 2 G. In particular,jL(�g��gn��1g� u�)�1�gnv0j � 1�cu : (5:4)Suppose that there are elements v and w such that L(�gu�)w = v. We claimthat jwj = jL(�gu�)�1vj � 1�s j(id�P�)vj � 1�cu jP�vj+ o(1)jvj (5:5)for all g su�ciently close to id 2 G. Indeed, since �gu� is continuous in g,L(�gu�)w = (L� + o(1))w = v. It is then straightforward to prove (5.5) by pro-jecting the expression L(�gu�)w = v into center-unstable and stable eigenspaces,and estimating the resulting terms using (5.1).Due to (5.3), for any n, there exists a w such that L(�g��gn��1g� u�)w = �gnv0.Hence, by (5.5),jL(�g��gn��1g� u�)�1�gnv0j � 1�s j(id�P�)�gnv0j � 1�cu jP��gn v0j+ o(1)jv0j :



24 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Using (5.4) and j(id�P�)�gnv0j � �, we obtain1�cu � 1�s � � 1�cu kP�k+ o(1) ;which contradicts (5.2) for su�ciently large n. utLet Y ? be the dual space to Y and de�neZ?0 := fy? 2 Y ?; �?gy? is C0 in gg ;where �?g denotes the adjoint operator of �g. For j > 1, we de�ne Z?j with normj � jZ?j for the adjoint group action as in (4.7) with Y0 replaced by Z?0 .Lemma5.3. Under the assumptions of Lemma 5.2, the adjoint projection P ?�maps Y ? into Z?0 .Proof. Arguing for the adjoint group action as in the proof of Lemma 5.2, wesee that �?gP ?�Y ? ! P ?� Y ? as g ! id. Since Hypothesis (W)(i) is not necessarilytrue in the dual space, we still have to prove pointwise convergence, that is,�?gP ?� y? ! P ?� y? for g ! id. We argue by contradiction. Since the space P ?� Y ? is�nite-dimensional, �?gnP ?� y? ! P ?� z? for some z? and some subsequence gn ! id.Therefore, (id�P ?� )�?gnP ?� y? ! 0. Moreover, hP ?� �?gnP ?� y?; �i = hP ?� y?; �gnP� �i,and, by Lemma 5.2, �gnP� converges to P�. Hence, we conclude P ?� y? = P ?� z?.utLemma5.4. Suppose that u� 2 Y0. Moreover, we assume that Hypotheses (S)and (W)(i) are met. The following is then true. For any small � > 0, there is aprojection P̂� which is �-close to P� in L(Y ) such that P̂��g is C1 in g 2 G.Proof. Throughout, the indices i and j are in the range f1; : : : ; dimEcu� g. SinceEcu� is �nite-dimensional, there are bases ei and e?i of Ecu� = P�Y and P ?�Y ?,respectively, such that P� = dimEcu�Xi=1 he?i ; �iei : (5:6)By Theorem 4.5, there are elements êi 2 Y1 which are close to ei in the Y -norm for all i. By Lemma 5.3, P ?� Y ? � Z?0 , so that by Theorem 4.5 we mayalso approximate the vectors e?i by elements ê?i 2 Z?1 in the Y ?-norm. Using anappropriate normalization, we can assume that hê?i ; êji = �ij. We then de�neP̂�y := dimEcu�Xi;j=1 hê?i ; yiêj :Since P̂��gy := dimEcu�Xi;j=1 hê?i ; �gyiêj = dimEcu�Xi;j=1 h�?g ê?i ; yiêjand �?g ê?i is C1 in g in the Y ?-norm, we conclude that P̂��g is C1 in g. ut



Bifurcations and Dynamics of Spiral Waves 25Next, we prove that G acts C1-smoothly on u� provided u� 2 Y0, that is, Gacts continuously on u�. Recall the de�nition (4.1) of the operators �(�) on Y0for � 2 alg(G).Lemma5.5. Under the assumptions of Theorem 5.1, u� 2 Y1, that is, �gu� isC1 in g 2 G.Proof. It su�ces to show that �(�)u� exists for any � 2 alg(G) since the derivativeof �gu� in g is continuous, see Lemma 5.2. We use the notation ��(u) = ��1g� �(u).Since Y1 is dense in Y0, there is an element u0 2 Y1 such that �n� (u0) =: un con-verges to u�. In other words, u0 is in the intersection of the strong stable manifoldof u� and Y1. Note that this intersection is non-empty; we may approximate thea�ne space u�+Ecu� by an a�ne subspace of Y1 of the same dimension, and usetransversality of the strong stable manifold and u� + Ecu� in Y . Now, take anyelement � 2 alg(G). It su�ces to prove that �(�)unk converges to some elementw 2 Y0 for some subsequence nk !1 since then u� 2 D(�) and �(�)u� = w byclosedness of �(�).First, choose a projection P̂� close to P� such that P̂��exp �t is di�erentiablein t; see Lemma 5.4. The operatorR� := ddt�P̂��exp �t����t=0 2 L(Y )is then well-de�ned and bounded. In particular, R�u� 2 Y exists andR��n� (u0)! R�u� as n!1 :Since R�v = P̂��(�)v for any v 2 D(�), we have P̂��(�)�n� (u0) ! R�u� asn!1, and we conclude that P̂��(�)�n� (u0) is bounded uniformly in n.In the second step, we use�(�)�n� (u0) = D(�n� )(u0)�(Ad�1gn� �)u0 :We estimate the operators appearing on the right-hand side separately. It fol-lows from the Roughness Theorem [15] for exponential dichotomies applied toD�n� (u�) that there are projections Pn 2 L(Y ) for n � 0 with Pn ! P� suchthatkD(�n� )(u0)(id�P0)k � C1�n and D(�n� )(u0)P0 = PnD(�n� )(u0) (5:7)for all n � 0, and some constants C1 > 0 and � < 1 independent of n.Next consider �(Ad�1gn� �)u0. By Hypothesis (W)(ii), for any � > 0 there is anumber C2 such that jAd�1gn� (�)j � C2(1 + �)nj�j :Moreover, the operatorT0 : alg(G)! Tu0 (Gu0) � 7! �(�)u0



26 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�is onto and bounded. Thus, �(Ad�1gn� �)u0 = (T0Ad�1gn� )(�), and we obtainj�(Ad�1gn� �)u0j � kT0kC2(1 + �)nj�j � C3(1 + �)n (5:8)with C3 := kT0kC2j�j. Therefore, using (5.7) and (5.8),j(id�Pn)D(�n� )(u0)�(Ad�1gn� �)u0j � C1�nj(id�P0)�(Ad�1gn� �)u0j� C1C3k id�P0k�n(1 + �)n ! 0 (5.9)for n!1 provided we choose � > 0 su�ciently small.Summarizing, we proved that P̂��(�)�n� (u0) stays bounded and the expres-sion (id�Pn)�(�)�n� (u0) converges to zero as n ! 1. Since kP� � P̂�k issmall and kP� � Pnk tends to zero, the map v 7! (P̂�v; (id�Pn)v) is an iso-morphism from Y onto R(P̂�) � R(id�Pn) with uniformly bounded inverse.Hence, �(�)�n� (u0) is bounded as n tends to in�nity. Using boundedness of�(�)�n� (u0), it follows that in fact (id�P�)�(�)�n� (u0)! 0 as n!1. Therefore,dist(�(�)�n� (u0); Ecu� ) ! 0 as n ! 1, and, since Ecu� is �nite-dimensional, wehave �(�)�nk� (u0) ! w 2 Ecu� for some subsequence nk ! 1 as k ! 1. Thisproves the lemma. utThis lemma is the only result where we have used that the spectrum of theadjoint representation on alg(G) has its spectrum on the unit circle. Next, weprove that the group actually acts smoothly on u� and Ecu� provided u� 2 Y1.Lemma5.6. Under the assumptions of Theorem 5.1, Hypotheses (R)(i) and(iii) are satis�ed. In other words, the relative �xed point u� is contained in Yk.Moreover, the operators �gP� and P��g are Ck�1 in g. In particular, �g(u� + v)is Ck�1-smooth in g 2 G for any v 2 Ecu� .Proof. By Lemma 5.5, u� 2 Y1. Let L� = ��1g� D�(u�). Fix � in the resolvent setof L�. Di�erentiatingexp(�t)D�(u�) = D�(exp(�t)u�) exp(�t)with respect to t at t = 0, and multiplying by ��1g� , we obtain�(�)(L� � �) = (L� � �)�(Adg� �) + L (5:10)where L = ��1g� D2�(u�)[�(Adg� �)u�; �] 2 L(Y0). Multiplying both sides of (5.10)from the right and left with (L� � �)�1, we see that the spectrum spec(L�) ofL� considered as a map from Y1 into itself is contained in the spectrum of L�considered as map from Y0 into itself. An analogous statement is true in thespaces Yj with j > 1 whenever u� 2 Yj. The projection P� onto Ecu� is given byP� = 12�i I� (�� L�)�1 d� ;where the closed curve � encloses precisely the center-unstable spectral set ofspec(L�) in the complex plane. In particular, P� maps Yj into itself providedu� 2 Yj. Since Yj is dense in Y0 by Theorem 4.5, we conclude that Ecu� � Yj



Bifurcations and Dynamics of Spiral Waves 27whenever u� 2 Yj . Therefore, in particular, �(�)u� 2 Yj for any � 2 alg(G) since�(�)u� 2 Ecu� . Hence, by induction, we see that u� 2 Yk and Ecu� � Yk�1. Thesame arguments apply in the dual spaces. Using the expression (5.6), we see thatthe operators �gP� and P��g are Ck�1 in g. utFinally, we have the following remark.Lemma5.7. Hypothesis (R)(iv), that is Tu� (Gu�) � Ecu� , is an immediate con-sequence of (W)(ii) since ��1g� D�(u�)�(�)u� = �(Adg� �)u� for � 2 alg(G).6. SE(N )-Equivariant Reaction-Di�usion SystemsIn this section, we show that reaction-di�usion equations on unbounded domainsmeet the basic hypotheses assumed in the sections above. It is also proved thatthe spectral hypothesis is satis�ed if the relative periodic solution is localized,that is, converges to a stable homogeneous state as jxj ! 1. Furthermore, ifa relative equilibrium or relative periodic solution is not localized, that is, doesnot converge to a homogeneous state as jxj ! 1, then the spectral hypothesisis not met.Consider the following model for isotropic excitable mediaut = d�u+ f(u) x 2 IRN (6:1)with N = 2; 3. The matrix d is diagonal with non-negative entries, and f isa smooth nonlinearity. The above equation is well-posed on the space X =C0unif (IRN ; IRM ) of bounded, uniformly continuous functions. In particular, itgenerates a smooth local semi
ow on Y = X, see [15]. We denote solutions of(1.1) by �t(u). In addition, (6.1) is equivariant with respect to the Euclideangroup SE(N ) = SO(N ) _+IRN under the action ((R;S)u)(x) := u(R�1(x � S))with x 2 IRN . The space Y0 = C0eucl(IRN ) is de�ned as the largest subspace ofX = C0unif (IRN ) on which the SE(N )-action is strongly continuous.Suppose that u� is a relative periodic solution of (6.1) with period T , thatis, we have �T (u�) = (R�; S�)u�for some element g� := (R�; S�) 2 SE(N ). Let L� = g�1� D�T (u�). Furthermore,assume that SO(N )u� is continuous and the isotropy group H� of u� is compact.Finally, suppose that f� 2 spec((R�; S�)�1D�T (u�)); j�j � 1g consists of�nitely many eigenvalues with �nite multiplicity. We then have the followingtheorem.Theorem6.1. In the above set-up, assume that Hypothesis (S) is met. Supposefurthermore that the rotations SO(N ) act continuously on u� and that u� is notconstant as a function of x. Hypothesis (R) is then also true, and the isotropysubgroup H� of u� is a compact subgroup of SO(N ). In particular, the center-manifold theorem 2.2 and Theorem 2.9 on the skew-product structure apply.



28 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�Proof. Since the action of the translations on C0unif (IRN ) is strongly continuous,the translational orbit of relative periodic points is always continuous. There-fore, by Lemma 6.2 below, the assumptions of Theorem 5.1 are satis�ed. Thus,Hypotheses (R)(i), (iii), and (iv) are met as a consequence of Theorem 5.1. Fi-nally, by [26, Lemma 4.1], Hypothesis (R)(ii) is satis�ed and the isotropy iscompact. There, we proved that if u� 2 C0unif (IRN ) meets Hypothesis (R)(i),that is, (R;S)u� is Ck in (R;S) 2 SE(N ), then Hypothesis (R)(ii) is also trueand the isotropy is compact. In particular, the SE(N )-orbit of u� is embedded.ut6.1. Satisfaction of Hypothesis (W)Lemma6.2. The SE(N )-action de�ned above satis�es Hypothesis (W) on thespace C0unif .Proof. It is straightforward to see that Hypothesis (W)(i) is met. Indeed, supposethat (Rn; Sn)u! w as (Rn; Sn)! (id; 0) as n!1, that is, u(R�1n (x�Sn))!w(x) uniformly in x. However, for any �xed x, u(R�1n (x�Sn))! u(x) as n!1.Therefore, w = u.It remains to verify Hypothesis (W)(ii), that is, that the spectrum of Adg�on alg(G) is on the unit circle. This can be veri�ed directly using the expression(R;S)(r; s)(R;S)�1 = (RrR�1;�RrR�1S +Rs)for the adjoint representation, see [9, Eqn. (4.3)]. Alternatively, we may use thefact that the Euclidean group SE(N ) has an SE(N )-invariant metric, namely theKilling form on T SO(N ) and the Euclidean metric on IRN . We then argue bycontradiction. Suppose Adg� � = �� with j�j < 1, for example. Hence, Adgn� � !0 as n!1, and therefore gn� exp(�t)g�n� ! id for any �xed t � 0. By invarianceof the metric, exp(�t)! id, that is, � = 0. utNote that the veri�cation of (W)(ii) is not restricted to SE(N ) but holds forany group with an invariant metric.6.2. The Spectral Hypothesis (S)If the relative periodic solution �t(u�) converges to zero uniformly as jxj ! 1for any t 2 [0; T ], and the homogeneous state u = 0 is stable with respect to(6.1), then the spectral hypothesis (S) is satis�ed for u�.This result is reminiscent of the situation for travelling waves on the realline, which are relative equilibria with respect to translations. If the asymptoticstate is homogeneous and stable, the essential spectrum of the travelling waveis strictly contained in the left half-plane; see [15, Appendix to Sect. 5]. Here,the essential spectrum is de�ned as the complement in the spectrum of the setof isolated eigenvalues with �nite multiplicity.



Bifurcations and Dynamics of Spiral Waves 29Lemma6.3. Suppose that the di�usion matrix d is non-singular. We assumethat u� is a relative periodic solution such that u�(t; x)! 0 uniformly as jxj !1 for each t. Furthermore, assume that the spectrum of the operator L1 :=d� + Df(0) on C0unif satis�es spec(L1) < �� < 0. Under these conditions,Hypothesis (S) is met.Proof. We have (R�; S�)�1D�T (u�) = (R�; S�)�1(eL1T +K) (6:2)with K := Z T0 D�T�t(�t(u�))�Df(�t(u�))� Df(0)�eL1t dt (6:3)by the variation-of-constant formula. Note that L1 is sectorial with domainC2unif (IRN ; IRM ) since the di�usion matrix d is positive. Therefore, spec(eL1T )is contained in the circle with radius e��T . Since (R�; S�) is an isometry andcommutes with L1, we readily conclude that spec((R�; S�)�1eL1T ) is containedin the same circle. We claim that K is a compact operator in L(C0unif ). Supposefor a moment that the claim is true. By [15, Theorem A.1], the essential spectraof (R�; S�)�1D�T (u�) and (R�; S�)�1eL1T coincide, and the statement of thelemma is proved. It remains to show that K is compact. This follows fromnorm-continuity of the integrand in (6.3) and the fact that Df(�t(u�))�Df(0) iscompact for any t as an operator fromC2unif toC0unif . We refer to [26, Lemma 5.4],see also [2, pp. 27-28], for the details. utNote that Lemma 6.3 is also true in L2(IRN ; IRM ). The next lemma statesthat the spiral wave must be localized in space; otherwise Hypothesis (S) is nevermet since the essential spectrum contains part of the unit circle. We remark thatthe statement of the lemma is also true for relative equilibria.Again, the result is not surprising. On the real line, that is, x 2 IR, it iswell known that the essential spectrum of a travelling wave is determined byits asymptotic state with jxj ! 1. However, the spectrum of periodic travel-ling waves on the real line consists entirely of essential spectrum, and thereforetouches the imaginary axis since � = 0 is always in the spectrum due to trans-lational invariance; see [15].Lemma6.4. Suppose that SE(N ) acts smoothly on u�. If u�jt=0 does not con-verge uniformly to a constant as jxj ! 1, then the set f� 2 spec(L�); j�j � 1gis not isolated in spec(L�). In other words, the essential spectrum of L� containselements on the unit circle. In particular, the spectral hypothesis (S) is not met.Proof. For relative equilibria, this lemma and the idea for its proof were com-municated to us by Herbert Koch; see also [15, p. 139] for a similar idea.Let �(r) be a cut-o� function de�ned for r � 0 such that�(r) = �1 for r � 4;0 for r � 1 :



30 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�De�ne �n(r) := �( rn) for r � 0. Note that we havejD�n(r)j+ jD2�n(r)j � C 1nfor some constant C > 0.Take any � 2 se(N ) = alg(SE(N )). Let u�(t) = �t(u�(0)). By equivariance,(�u�(t))(x) satis�es vt = d�v + Df(u�(t; x))v : (6:4)Let vn(t; x) := �n(jxj)(�u�(t))(x) and v = vn +w. The function v satis�es (6.4)if and only if w satis�eswt = d�w+Df(u�(t; x))w + d�vn + Df(u�(t; x))vn � @@t vn= d�w+Df(u�(t; x))w + d�(�u�)��n + 2r�n � r(�u�)�= d�w+Df(u�(t; x))w +O( 1n )using the fact that �u� satis�es (6.4). Solving this equation with w(0) = 0, weobtain w(t) = O( 1n ) for t 2 [0; T ] by Gronwall's Lemma. Thus,D�T (u�(0))(�n�u�(0)) = �n�u�(T ) + O( 1n ) :Since u�(T ) = g�u�(0), we haveL��u�(0) = g�1� D�T (u�(0))�u�(0) = g�1� �u�(T ) = Ad�1g� (�)u�(0) ;and thereforeL�(�n�u�(0)) = (g�1� �n)Ad�1g� (�)u�(0) + O( 1n ) = �nAd�1g� (�)u�(0) + O( 1n ) :Indeed, the �rst equality is true due to the de�nition of the SE(N )-action. Thesecond equality follows since g� = (R�; S�) is �xed,jg�1� �n(jxj)j = j�n(jx� S�j)j � jD�nj jS�j ;and D�n = O( 1n ).Comparing the last two equations, we haveL��u�(0) = Ad�1g� (�)u�(0); L�(�n�u�(0)) = �nAd�1g� (�)u�(0) + O( 1n ) : (6:5)Consider the spacesE� := f�u�(0); � 2 se(N )g and En := f�n�u�(0); � 2 se(N )g :If u�(x) does not tend to a constant for jxj ! 1, then there are elements in Enwhich do not converge strongly (in norm) to zero as n ! 1. These elementsalso have an O(1)-distance from the space E�. On the set of such elements, thelinearization acts up to order O( 1n) as on the tangent space E� of the group orbitof u�(0) as n ! 1. Therefore, the essential spectrum of L� has to include thespectrum of L� restricted to E�, and the lemma is proved. ut



Bifurcations and Dynamics of Spiral Waves 31In fact, the following slightly more general result is true.Lemma6.5. Suppose that SE(N ) acts smoothly on u�. Assume that �� 2 S1 �C is an eigenvalue of L� on the unit circle with eigenfunction v�(x). If v�(x)does not converge to zero uniformly as jxj ! 1, then �� is not isolated inspec(L�). In other words, the essential spectrum of L� contains the element ��.In particular, the spectral hypothesis (S) is not met.Proof. The proof is completely analogous to that of the previous lemma with�u�(t) replaced by v�(t; x) := (D�t(u�)v�)(x), which again satis�es (6.4). Weomit the details. ut7. Bifurcations from Planar Spiral Waves in Excitable MediaIn this section, we concentrate on planar waves. Hopf bifurcations of patternsoccurring in reaction-di�usion equations in three dimensions can be investigatedwith the same techniques. Indeed, the reduced equations for Hopf bifurcationsand periodic forcing are identical, so that the results presented in Sect. 8 alsoapply to Hopf bifurcations in three dimensions. The choice of examples we madehere is motivated by chemical and numerical experiments. There, Hopf bifur-cations from modulated waves have not yet been observed in three-dimensionalmedia but similar phenomena have been produced through periodic forcing.7.1. Hopf Bifurcation of Planar Meandering SpiralsIn numerical simulations of reaction-di�usion systems in the plane, modulatedwaves with three frequencies have been observed in [23]. They may arise via aHopf bifurcation from a meandering spiral to a relative invariant torus. Considerthe reaction-di�usion system (1.1)ut = d�u+ f(u; �) x 2 IR2with N = 2. Solutions of this equation are denoted by �t(u; �). The semi
ow�t(u; �) is equivariant with respect to the group of rotations and translationsof the plane SE(2). We write elements (R;S) 2 SE(2) in the form (R;S) =(�; a) 2 S1 � C where a 2 C �= IR2 is a translation and � denotes the rotationaround zero by the angle �. Suppose that u� is a meandering spiral wave ofthe above equation for � = ��, that is, a relative periodic solution satisfying(��; 0)u� = �T (u�; ��). We assume that rotations act continuously on u�.Since we are mainly interested in Hopf bifurcations, we assume that the lin-earization about u� has a complex conjugated pair of eigenvalues on the unitcircle besides the eigenvalues enforced by symmetry. The rest of the spectrumshould be strictly contained inside the unit circle. In other words, counting multi-plicity, the spectrum of the operator (��; 0)�1D�T (u�) on the unit circle consistsof the eigenvalues exp(�i!HT ); !H 6= 0mod�, and the eigenvalues on the tan-gent space spanf@x1u�; @x2u�; @�u�; @tu�g of the relative periodic orbit O�.



32 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�By Theorems 2.2, 2.9, and 6.1, and Lemma 2.12, the following is then true.The isotropy subgroup H� = f(�; a) 2 SE(2); (�; a)u� = u�g is either S1 or ZZ`for some `. Furthermore, a center manifold exists. In particular, the essentialdynamics near the relative periodic orbit can be reduced to an ODE on SE(2)�V� � S1. The vector �eld on SE(2)� V� � S1 is given by_� = f1(v; �; �); _a = ei�f2(v; �; �);_v = fN (v; �; �); _� = f�(v; �; �) : (7:1)Here, the coordinates (�; a) 2 SE(2) relate to the group orbit: a 2 C and� 2 SO(2) correspond to the position of the spiral tip and the rotation angle ofthe spiral, respectively. The variable � 2 S1 is the time-phase of the meander-ing spiral and v 2 V� is contained in the eigenspace associated with the Hopfeigenvalues. Hence, � measures changes of the shape due to the time-dependenceof the relative periodic orbit, while bifurcations will occur within the space V�.We may assume that f1(0; �; ��) = !� where !� corresponds to the rotationfrequency of the meandering spiral wave. In other words, T!� = �� modulo 2�.The function (f1; f2)(v; �; �) has values in the Lie algebra IR�C. Note that theequations for (v; �) decouple from the equations on the group SE(2) due to theskew-product nature of the 
ow.In order to simplify the discussion of the reduced equation (7.1) and accordingto the numerical observations [23], we assume that �� 6= 0 and that the isotropyH� of the meandering spiral is trivial. To avoid strong resonances, we assumethat ein!HT 6= 1 for n = 1; : : : ; 4. Furthermore, we assume that the eigenvaluesei!HT and e�i!HT cross the unit circle with non-zero speed as � changes. Wemay then apply the Hopf-bifurcation theorem for maps, see, for instance, [18],and obtain an invariant torus for the last two equations in (7.1). On this torus,frequency locking may occur for � > ��, say; see [14, 18].We discuss the full system (7.1) next. The aforementioned invariant torus forthe (v; �)-system corresponds to a relative invariant torus of (7.1). Let (v(t); �(t))be a solution on the torus. The corresponding solution (a(t); �(t)) of the �rsttwo equations in (7.1) may then be unbounded. In particular, linear drift occursif the rotation frequency !� satis�es!� = m!H + n!T ; (7:2)where m;n 2 ZZ, and !H, !T = 2�T are the frequencies on the relative invarianttorus.Indeed, integrating the �rst equation in (7.1), we obtain to leading order in� a(t) = a(0) + Z t0 ei!�� f2(v(� ); �(� ); ��) d� : (7:3)The function f2(v(t); �(t); ��) is quasi-periodic with frequencies !H and !T . Weexpand f2 into a Fourier seriesf2(v(t); �(t); ��) =Xk;` �k` ei(!Hk+!T `)t :



Bifurcations and Dynamics of Spiral Waves 33Substituting this expansion into (7.3), we see that linear drift limt!1 1ta(t) =�mn occurs if (7.2) is satis�ed. Indeed, the remainder term a(t)��mnt is periodicin t if the fraction !H=!T is rational. If the fraction is irrational, the abovementioned remainder term still grows only sub-linearly in t sinceei!��f2(v(� ); �(� ); ��)� �mnis quasi-periodic in � and its constant term vanishes. Therefore, the mean valuelimt!1 1t Z t0 (ei!��f2(v(� ); �(� ); ��)� �mn) d� = 0is zero.A similar situation occurs for periodic forcing of meandering spiral waves. Inthis case, there are actually experimental results; see Sect. 8.2 for a discussion.If the solution (a(t); �(t)) of the �rst two equations in (7.1) is unbounded, theassociated spiral waves are called generalized drifting waves since they may notbe periodic but quasi-periodic in an appropriate moving frame.7.2. Spiral Waves on Cylindrical SurfacesNext, we consider spiral waves on cylindrical surfaces. Suppose that the reaction-di�usion system on the cylinder C = S1�IR is equivariant under the group G :=SO(2) � IR. Note that this group is abelian. Suppose that the aforementionedspectral hypothesis is satis�ed. By Theorems 2.2 and 5.1, the equivariant center-manifold reduction applies.Relative equilibria move along helical curves without oscillating, that is, theysatisfy (�(t); a(t)) = (�0+!�t; a0+s�t). Typically, !� 6= 0 except when the spiralhas an additional re
ection symmetry inside each cross-section. Relative equi-libria may undergo a Hopf bifurcation to a relative periodic orbit. In numericalsimulations, Steinbock [31] actually observed a spiral wave in the Belousov-Zhabotinsky system on a cylinder which appears to be a stable relative periodicorbit u� 2 C0unif (C; IRM ). After an appropriate time rescaling, the reduced vector�eld on the center manifold is given by_� = f1(t); _a = f2(t) :Here, f1(t) and f2(t) are periodic in t. The variables � 2 SO(2) and a 2 IRcorrespond to the coordinates of the spiral tip on the cylindrical surface.The relative periodic orbit typically oscillates around a helical curve. Indeed,if T denotes the period of u�, we generically have (�(T ); a(T )) 6= 0. This explainsthe numerical observation in [31] that the tip of the spiral wave follows helicalloops along the cylinder.We remark that further secondary Hopf bifurcations of the meandering spiralson the cylinder do not lead to more complicated dynamical phenomena. Indeed,the helical curve still depends continuously on parameters, while the oscillationsaround it depend on two frequencies.



34 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�8. Periodic Forcing of Spiral WavesIn this section, we consider periodically-forced reaction-di�usion systemsut = d�u+ f(u) + �fext(t; u) x 2 IRN ; N = 2; 3 (8:1)on X = C0unif (IRN ) with N = 2; 3. The forcing term fext(t; u) has frequency 
in t. Let u� 2 X be a relative equilibrium or a relative periodic solution of (8.1)for � = 0. Suppose that u�(x) is not a constant function in x.We assume that SO(N ) acts continuously on u�. Whether this assumptionis satis�ed or not depends strongly on the shape of the pattern; see Sect. 8.3below. If this hypothesis is not met, then certain restrictions are imposed on thetime evolution of the pattern. Indeed, suppose that the one-parameter familyexp(r�� ) of rotations acts discontinuously on the function u�, that is,ju� � exp(r�� )u�jC0 � � > 0for small � 6= 0. As a result, the associated solution �t(u�) of (8.1) for � = 0 andt small also stays away from the rotated patterns exp(r�� )u�. Hence, the timeevolution of u� cannot involve rotations of the pattern about the axis determinedby r�. In this situation, we may then consider the largest subgroup of SO(N )which acts continuously on u�. We obtain a lower-dimensional center-manifold,which does not contain the functions exp(r�� )u� for small � 6= 0.Next, we assume that the operator (R�; S�)�1D�T (u�) has �nitely manyeigenvalues on the unit circle, while the rest of the spectrum is strictly containedin the unit circle. Moreover, the center-unstable eigenspace associated with theeigenvalues on the unit circle coincides with the tangent space of the group orbitof u�, plus the time-direction if u� is a relative periodic solution.For any small �, there exists then an SE(N )-invariant center manifoldM cu� of(8.1). For relative periodic orbits, the center manifold can be described using thevariables ((R;S); �) 2 SE(N )�S1 and the time t 2 IR. We refer to Theorems 3.1and 3.2 for more details. The vector �eld on the center manifold is then givenby _R = Rf1(t; �; �); _S = Rf2(t; �; �); _� = f�(t; �; �) : (8:2)For � = 0, the function(f1; f2; f�)(t; �; 0) = (f1; f2; f�)(�; 0)does not depend on the time variable t. Note that the equation for � decouplesfrom the equations on the group SE(N ). Equation (7.1) is equivariant withrespect to the isotropy subgroup H�, that is,f1(t; �; �) = hf1(t; �; �)h�1; f2(t; �; �) = hf2(t; �; �)h�1 (8:3)for any h 2 H�. These restrictions imposed by the isotropy subgroup can preventspirals or scroll waves from drifting in certain directions.



Bifurcations and Dynamics of Spiral Waves 358.1. Periodic Forcing of Rigidly-Rotating Spiral WavesPeriodic forcing of rigidly-rotating spiral waves leading to meandering and drift-ing spiral waves is described by the vector �eld_� = f1(t; �); _a = ei�f2(t; �) ; (8:4)where f1(t; �) and f2(t; �) are time-independent for � = 0 and time-periodicwith frequency 
 otherwise. Using a Fourier-series argument, see [20], it canthen be shown that a path of drifting spiral waves emanates from the point(0; 
) = (0; 1n!�) in the (�;
)-plane whenever the rotation frequency !� of therigidly-rotating spiral wave is a multiple of 
. We refer to [33] for a di�erentapproach to this phenomenon. In experiments [21, 34], drifting spirals have beenobserved for the resonances !� = 
 and !� = 2
.Note that the rotation orbit SO(2)u� of the rigidly-rotating spiral u� is au-tomatically smooth since it is equal to the time-orbit of u�. Thus, the center-manifold reduction applies whenever the Hypothesis (S) on the spectrum is sat-is�ed.8.2. Periodic Forcing of Meandering Spiral WavesPlanar meandering spiral waves u� of an SE(2)-equivariant system satisfy�T (u�) = (��; 0)u� :Here !� = ��T is the non-zero rotation frequency of the meander. The reducedequations are given by_� = f1(t; �; �); _a = ei�f2(t; �; �); _� = f�(t; �; �)where � 2 S1, a 2 C, and � 2 S1. We can choose coordinates such thatf1(t; �; 0) = !�, f2(t; �; 0) = 0, and f�(t; �; 0) = 1.Note the equation for � 2 S1 decouples. Since this equation is periodicallyforced, frequency locking may occur. Let �(t) be a solution. We then solve theequations for (�; a) and denote the solutions by (�(t); a(t)).If a(t) is unbounded, the spiral is drifting. As mentioned in Sect. 7.1, suchspirals are called generalized drifting solutions in the literature [34, 29], see alsoFig. 1. The analysis is very similar to the one presented in Sect. 7.1, where weconsidered secondary Hopf bifurcation from meandering spiral waves.Rescaling time, we obtain that f1(t; �; �) = !� for all � and t, as long as �is small. Denote the second frequency of �(t) by !. Generically, a(t) then growslinearly provided !� = n! +m
 for some n;m 2 ZZ. We omit the details.



36 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�
Fig. 1. Motions of spiral tips in the Oregonator-model of the Belousov-Zhabotinsky reactionwith periodically-forced excitability for di�erent values of the forcing period; courtesy of [29].A generalized drifting spiral appears in (c).8.3. Periodic Forcing of HelicesHelices have frequently been observed in reaction-di�usion systems in three di-mensions: For instance, Henze et al. [16] observed stable helical waves in nu-merical simulations of the Oregonator model. Helices have a spiral wave in eachhorizontal plane such that the cores of these spirals are aligned along a helical�lament.For a helix, the rotation orbit SO(3)u� might be discontinuous. Though rota-tions around the axis of the core helix act continuously, rotations around otheraxes may lead to large deviations from u� in the C0unif -norm. Motivated by theobservation that the rotations which do not �x the horizontal plane act discon-tinuously on the spatial pattern, we restrict the following discussion to verticallyperiodic patterns. The symmetry group is then given by G = SE(2)� S1 ratherthan SE(3). Besides continuity of the group action, there is yet another reasonfor restricting to vertically periodic patterns: Lemma 6.4 states that the spec-tral hypothesis can only be satis�ed if the underlying relative periodic solutionis localized in space. Certainly, helices are not localized in the vertical direction.Restricting to the function space of vertically-periodic functions, however, allowsthat the essential spectrum may indeed be bounded away from the unit circleprovided the spirals in each horizontal plane are localized.We write the group elements of SE(2) � S1 as (�; a;  ) with (�; a) 2 SE(2)and  2 S1. Near a periodically-forced helical wave, the reduced equations read_� = f1(t; �); _a = ei�f2(t; �); _ = f3(t; �) ; (8:5)where a 2 C are the translations in the horizontal plane, � 2 S1 describesrotations in this plane, and  2 S1 is the shift along the vertical axis due tovertical periodicity. We have f1(t; �), f3(t; �) 2 IR and f2(t; �) 2 C.



Bifurcations and Dynamics of Spiral Waves 37First, we set � = 0 and consider the unperturbed helix. Equation (8.5) isthen autonomous. Typically, as far as symmetry is concerned, a helical wave isa relative equilibrium which rotates around its axis and drifts along the axisof rotation. Therefore, a helical wave u� satis�es �t(u�) = (!�t; 0; s�t)u�. Inparticular, we have f1(t; 0) = !�, f2(t; 0) = 0, and f3(t; 0) = s�.Next, let � 6= 0. The spiral waves in the horizontal planes along the helical�lament will start to meander. Indeed, note that the �rst two equations in (8.5)decouple and are precisely the di�erential equations (8.4) for the motion alonggroup orbits near rigidly-rotating spirals. Therefore, drift in the horizontal di-rection occurs if the rotation frequency !� is a multiple of the external frequency
. In addition, there is a small periodic perturbation added to the linear driftterm along the vertical axis.8.4. Periodic Forcing of Twisted Scroll WavesA twisted scroll wave is similar to a helix with the only di�erence that the core�laments are aligned on a straight line rather than on a helix. For the reasonsmentioned in Sect. 8.3, we restrict to functions which are spatially periodic inthe vertical direction. The relevant symmetry group is then G = SE(2)�S1. Itselements (�; a;  ) are rotations � 2 S1 and translations a 2 C in the horizontalplane as well as vertical translations  with  2 S1 due to vertical periodicity.Furthermore, by de�nition, a twisted scroll wave u� has nontrivial isotropy S1given by ( ; 0;  )u� = u� for all  2 S1. In other words, shifting the scroll wavealong the vertical axis and rotating at the same time with the same speed in thehorizontal plane does not change the pattern.Without periodic forcing, twisted scroll waves u� are rotating waves satisfying�t(u�) = (!�t; 0; 0)u�. The reduced equations_� = f1(t; �); _a = ei�f2(t; �); _ = f3(t; �)coincide with the equations (8.5) for helices. However, the action of the isotropygroup enforces f2(t; �) = ei f2(t; �) ;that is, f2(t; �) = 0 for all � and t. Therefore,_� = f1(t; �); _a = 0; _ = f3(t; �) :Under periodic forcing, the spiral waves in the horizontal planes begin to me-ander. On account of the isotropy group S1, unbounded drift in the horizontalplane cannot occur since a(t) = a0 is constant.8.5. Periodic Forcing of Twisted Scroll RingsOther patterns in reaction-di�usion systems in three dimensions are twistedscroll rings which have been studied numerically in [7, 22]. They rotate aroundthe x3-axis, say, while drifting with constant speed along the vertical axis. Thespatial pattern typically resembles a one-parameter family of spirals with cores



38 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�aligned along a circle. The spiral patterns occur in the bundle of planes normal tothe core circle. Furthermore, the spirals have a phase di�erence along the familyof normal planes; see Fig. 2. For `-twisted scroll rings, this phase di�erence is`-times the di�erence in angle between the core points on the unit circle.
Fig. 2. A twisted scroll ring; reprinted from Fig. 13b of [32]1.Without periodic forcing, an `-twisted scroll ring u� is a relative equilibriumwith spatial isotropyH� = ZZ`. Its time evolution is given by �t(u�) = exp(��t)u�for an element �� = (r�; s�) 2 se(3) where s� lies in the �xed-point space of ZZ`;see [9]. We assume that the group orbit of u� is continuous.In passing, we remark that relative periodic orbits satisfying�T (u�) = (R�; S�)u�in three dimensions drift in a direction orthogonal to the axis of rotation. Moreprecisely, among the elements in the group orbit SE(3)u�, there is one, sayû, such that �T (û) = (R̂; Ŝ)û and R̂Ŝ = Ŝ. Indeed, let S� = Ŝ + S1 suchthat Ŝ 2 N (id�R�) and S1 ? N (id�R�). Moreover, let S2 = (id�R�)+S�.Here, L+ denotes the Moore-Penrose pseudo-inverse of the matrix L, that is,L+jR(L) = (LjN (L)?)�1 and L+jR(L)? = 0. Rather than investigating u�, wemay focus on û = (id;�S2)u�. We obtain�T (û) = (id;�S2)(R�; S�)u� = (id;�S2)(R�; S�)(id; S2)û= (R�; S� + (R� � id)S2)û = (R�; Ŝ)û :Therefore, without loss of generality, we assume that R�S� = S�.1 With kind permission fromElsevier Science, Sara Burgerhartstraat25, 1055 KV Amsterdam,The Netherlands



Bifurcations and Dynamics of Spiral Waves 39Note that (R�; S�) lies in the centralizer of ZZ` = H� by the above con-sideration. This is useful when studying Hopf bifurcations from twisted scrollrings since, under this condition, Lemma 2.12 ensures that the center manifoldis di�eomorphic to the trivial product SE(3)� S1 � V� with V� = IR2.The reduced equations are given by_R = Rf1(t; �); _S = Rf2(t; �) ;where f1(t; 0) = r� and f2(t; 0) = s�. For `-twisted scroll rings, we havef2(t; �) = Rf2(t; �)for all (R; 0) 2 ZZ` in the isotropy group H�.For � 6= 0, that is, under periodic forcing, the spirals in the vertical planesstart to meander. In the case of `-twisted scroll rings with ` > 1, drift is onlypossible along the symmetry axis of the scroll ring since then f2(t; �) 2 spanfs�g.Simply-twisted scroll rings typically drift in a direction di�erent from thex3-direction provided the group orbit is continuous, see [1]. The direction ofdrift generically varies in �, regardless of resonances in the periodic forcing. Ifrotations around axes di�erent from the vertical x3-axis act discontinuously, thescroll ring generically drifts along the vertical axis. Additional slow horizontaldrift occurs only at resonances, that is, when the rotation frequency !� is amultiple of the external frequency. Indeed, if rotations around axes di�erent fromthe x3-axis act discontinuously, the pattern cannot reach these rotated states ina small amount of time regardless how close the rotation is to the identity. Hence,the �lament of the scroll ring is restricted to the vertical axis. Mathematically,we have to remove the corresponding rotations from the symmetry group SE(3)and obtain a lower-dimensional center manifold which is smooth and attracting.Note that, in function space, the patterns rotated around an axis di�erent fromthe vertical axis are then not close to the center manifold.9. ConclusionsIn this article, we developed an equivariant center-manifold reduction near rela-tive periodic orbits. The underlying symmetry group G is possibly non-compactand may act discontinuously. The 
ow on the center manifold is identi�ed withan equivariant vector �eld of skew-product type on the product G � V� � IRunder an equivalence relation involving the spatio-temporal symmetries of therelative periodic orbit. Here, V� is some �nite-dimensional vector space.In particular, using only a priori known symmetries of patterns arising inchemical or physical systems, we can systematically derive equations-of-motionwhich govern the dynamical behavior and bifurcations of patterns.Finally, we applied this method to several kinds of waves which were ob-served in experiments and numerical simulations. We assumed that the under-lying chemical systems can be modeled by reaction-di�usion systems posed onunbounded domains such as the plane or the three-dimensional space. Our ap-proach then applies, and the arising phenomena such as meandering and drifting



40 Bj�orn Sandstede, Arnd Scheel, Claudia Wul�of spiral waves can be explained using the Euclidean symmetry group as sug-gested �rst by Barkley.It remains to discuss the validity of the aforementioned modeling assump-tion. There are three aspects involved. Firstly, neither experiments nor numericalsimulations are posed on unbounded domains. However, both suggest that theboundaries are actually not important at all. The indications are that spiralwaves behave dynamically as if there were no boundaries. Secondly, consid-ering symmetry as a modeling parameter, it seems impossible to explain, forinstance, drifting by using compact symmetries induced by bounded domains.Taking translations into account, we have to consider unbounded domains as aconsequence of the Euclidean symmetry group. Thirdly, mathematically, the im-plications are that in order to apply the center-manifold reduction on unboundeddomains, the underlying spirals must be localized. However, the spirals observedin experiments appear to be non-localized. This seems to be the only objectionas to whether the results presented here actually apply to real-life chemical sys-tems. Note that the predictions from center-manifold reduction are in excellentagreement with experiments and numerical simulations.Clearly, spirals observed in experiments arise as parts of much more compli-cated patterns; they never occur as single patterns but only together with otherspiral waves, target patterns, and travelling waves, all of which are not isolated.From that point-of-view, the analysis presented here is only a very small steptowards an understanding of spirals.Acknowledgement We are grateful to Herbert Koch who, for relative equi-libria, communicated Lemma 6.4 and its proof. B. Sandstede was partially sup-ported by a Feodor-Lynen Fellowship of the Alexander von Humboldt Founda-tion. Part of this work was done while the �rst two authors were visiting theInstitute of Mathematics and its Applications (Minneapolis, USA). We thankthe IMA for providing a stimulating atmosphere and for the �nancial support.References1. Ashwin, P., Melbourne, I.: Noncompact drift for relative equilibria and relative periodicorbits. Nonlinearity 10 (1997) 595{6162. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial di�erential equa-tions. Dynamics Reported 2 (1989) 1{383. Barkley, D.: Linear stability analysis of rotating spiral waves in excitable media. Phys.Rev. Lett. 68 (1992) 2090{20934. Barkley, D.: Euclidean symmetry and the dynamics of rotating spiral waves. Phys. Rev.Lett. 72 (1994) 164{1675. Braune, M., Engel, H.: Compound rotation of spiral waves in active media with periodi-cally modulated excitability. Chem. Phys. Lett. 211 (1993) 534{5406. Dancer, E.N.: The G-invariant implicit function theorem in in�nite dimensions. Proc.Roy. Soc. Edinburgh 92 A (1981) 13{307. Doyle, M., Mantel, R.-M., Barkley, D.: Fast simulation of waves in three-dimensionalexcitable media. Int. J. Bifurcation Chaos 7 (1997) 2529{25468. Fenichel, N.: Persistence and smoothness of invariant manifolds of 
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