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Summary. In several chemical systems such as the Belousov-Zhabotinsky re-
action or the catalysis on platinum surfaces, transitions from meandering spiral
waves to more complicated patterns have been observed. Seemingly key to the
dynamics of spiral waves is the Euclidean symmetry group SE(N). In this article,
it is shown that the dynamics near meandering spiral waves or other patterns
is determined by a finite-dimensional vector field which has a certain skew-
product structure over the group SE(N). This generalizes our earlier work on
center-manifold theory near rigidly-rotating spiral waves to meandering spirals.
In particular, for meandering spirals, it is much more sophisticated to extract the
aforementioned skew-product structure since spatio-temporal rather than only
spatial symmetries have to be accounted for. Another difficulty is that the action
of the Fuclidean symmetry group on the underlying function space is not differ-
entiable, and in fact may be discontinuous. Using this center-manifold reduction,
Hopf bifurcations and periodic forcing of spiral waves are then investigated. The
results explain the transitions to patterns with two or more temporal frequencies
which have been observed in various experiments and numerical simulations.

1. Introduction

Spiral waves arise as stable spatio-temporal patterns in various chemical systems.
They have been observed experimentally, for instance, in Belousov-Zhabotinsky
reactions [5, 19, 30, 34] and in the catalysis on platinum surfaces [21]. These
patterns can be roughly divided into the following categories. Spiral waves may
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rotate rigidly, that is, they are equilibria in a rotating frame. In the original
frame, rigidly-rotating spirals are periodic in time. On the other hand, spirals
may either drift or else meander, that is, they are time-periodic in a suitable
moving or rotating frame, respectively. In the original frame, drifting spirals are
modulated travelling waves, while meandering waves are quasi-periodic in time.

In several experiments and numerical simulations, transitions from spiral
waves or other patterns to more complicated waves have occurred. The dynamics
near rigidly-rotating spiral waves and their transition to meandering and drifting
spirals has been studied extensively; see, for instance, [3, 30]. The motion of spiral
waves on a large cylinder has been investigated in [31]. The transition from
planar meandering spirals to invariant tori with seemingly three frequencies was
investigated in [23] by calculating the Fourier spectrum of the waves. Winfree and
others [7, 16, 22] observed patterns in models posed on three-dimensional space
in numerical simulations. The effect of periodic forcing on rigidly-rotating spiral-
wave solutions has been investigated experimentally in the catalysis on platinum
surfaces [21], and in the Belousov-Zhabotinsky reaction [5, 34]. The authors of
[29] and [34] also considered periodic forcing of meandering spiral waves and
found invariant three-dimensional tori. They observed that the frequencies of
the solutions on the torus and the external forcing may lock.

Seemingly key to the dynamical behavior of spiral waves and their bifur-
cations 1s the Euclidean symmetry of the plane or the three-dimensional space.
Here, the (special) Euclidean symmetry group SE(N) of IRY consists of all trans-
lations and rotations. Barkley [4] was the first who noticed the relevance of this
group to the understanding of spiral waves. He proposed that the dynamics
of planar rigidly-rotating spirals is governed by an equivariant vector field on
the group SE(2). Phenomenologically, he could then interpret the transition
to meandering or drifting spiral waves as a Hopf bifurcation. Indeed, numeri-
cally, Barkley verified the crossing of a pair of simple eigenvalues through the
imaginary axis; the rest of the spectrum (except for the eigenvalues enforced
by symmetry) is strictly contained in the left half-plane. Similarly, Mantel and
Barkley [20] described periodic forcing of meandering spirals by investigating
periodically-forced equivariant equations on the group SE(2).

The purpose of the present article is to corroborate the role of the Euclidean
symmetry group by establishing a rigorous link between certain modeling as-
sumptions and the description of the dynamics of spiral waves by equivariant
vector fields on the Euclidean symmetry group. We can then explain the afore-
mentioned phenomena observed in experiments and numerical simulations rig-
orously rather than heuristically.

Chemical systems are traditionally modeled by reaction-diffusion systems
on suitable domains. Here, the main modeling assumption is that the domain
i1s actually unbounded, that is, the governing equation is posed on either the
plane or the three-dimensional space. We will discuss in Sect. 9 whether and in
what sense this hypothesis is justified. The symmetry group SE(N) then acts on
functions u(x) according to

(R, S)u)(x) = u(R™(z = 5)) reRY
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where R € SO(N) is a rotation and S € IRY a translation. In other words, the
group element (R, S) first rotates the pattern described by the function u using
R, and then shifts it to .S. In particular, we may interpret rigidly-rotating spiral
waves as relative equilibria, that is, as solutions whose time-orbit is contained in
the group orbit of its initial value. On the other hand, drifting and meandering
spirals can be interpreted as relative periodic orbits; after one time period, the
solution is contained in the group orbit of its initial value. In the spirit of equiv-
ariant bifurcation theory [13], the idea is to prove the existence of a smooth,
SE(N)-invariant center manifold near such spiral waves and to discuss the flow
on this manifold.

Unfortunately, there are some major technical obstacles which have to be
resolved before obtaining such a center manifold. Firstly, the group SE(N) is
not compact, and therefore many standard results are not applicable. Secondly,
and more importantly, the aforementioned SE(N)-action is not differentiable on
reasonable function spaces such as LZ(IRN) or the space C’Smf(IRN) of bounded,
uniformly continuous functions on IRY. On the latter space, the action is not
even strongly continuous; a counterexample is provided by the rotations acting
on the function u(#zq,22) = cos(z1). Therefore, there is no a priori reason why
a center manifold should exist which is at the same time smooth and invariant
under the group SE(N).

In one of the author’s doctoral thesis [33], Hopf bifurcations and period fore-
ing of planar rigidly-rotating spirals were investigated using Lyapunov-Schmidt
reduction, that is, without deriving equations-of-motion. In [25, 26], we pre-
sented a rigorous center-manifold reduction near relative equilibria for general
non-compact groups. Fiedler et al. [9] clarified the skew-product structure of vec-
tor fields on center manifolds associated with relative equilibria having compact
isotropy. In addition, conditions for drifting have been derived in this paper. Si-
multaneously, using a formal center-bundle construction, Golubitsky et al. [12]
investigated Hopf bifurcation of f-armed planar spiral waves and derived con-
ditions for the existence of drifting multi-armed spirals. Normal forms for the
reduced equation on the center manifold have been given in [10]. Ashwin and
Melbourne [1] studied equivariant maps on non-compact groups. They derived
conditions for drifting using group theory. Existence of spiral waves has recently
been established in [27, 28] using a Ginzburg-Landau reduction.

Relative periodic orbits of compact groups have been investigated by Field
[11]. In this article, relative periodic solutions for non-compact groups are con-
sidered. In particular, we extend the aforementioned results derived in [9, 26] so
that they also apply to relative periodic solutions. These solutions exhibit a much
richer structure since spatio-temporal symmetries rather than only spatial sym-
metries have to be accounted for. Therefore, though the extension of the center-
manifold theorem is not particularly original, it is more sophisticated to extract
the skew-product structure. With these methods at hands, we can then explain
various experiments and numerical simulations of spiral waves. Specifically, we
consider Hopf bifurcations of meandering spirals to invariant three-dimensional
tori, the dynamics of spiral waves on cylindrical surfaces, and periodic forcing
of spirals and scroll waves.
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As mentioned above, we consider reaction-diffusion equations of the form
uy = dAu + F(u, ) xRN, N=2,3 (1.1)

on the plane or in three-dimensional space. The matrix d is diagonal with non-
negative entries, and F' is a smooth nonlinearity. The function u : RY — RM
can be interpreted as a vector of spatially dependent concentrations of chemi-
cal species. External control parameters are incorporated into the parameter .
Changes of these parameters may lead to bifurcations. Equation (1.1) is well-
posed on the space C’Smf(IRN, IRM) of bounded, uniformly continuous functions.
In addition, (1.1) is equivariant with respect to the Euclidean group SE(N). The
(special) Euclidean group SE(N) is the semi-direct product SO(N)—i—IRN of the
orthogonal group SO(N) and the group IRV of translations with the composition

(R,S)(R,S)=(RR,S + RS) (1.2)

on the product SO(N)—i—IRN. The Lie algebra se(N) is the product of the space
so(N) of skew-symmetric matrices, which generate the rotations, and the space
IRY generating the translations. We denote elements in the Lie algebra by (r,s) €
so(N) x RY = se(N).

Suppose that u,.(¢) is a relative periodic solution with period T, that is,

we(T) = (R, S )1 (0)

for some (R, S) € SE(N). Furthermore, assume that the group SE(N) acts con-
tinuously on u.. We denote the linearization of the time-T map &7 (u) associated
with (1.1) evaluated at u.(0) by D@Pp(u,). We assume that the set of elements
in the spectrum of (R, S )~ D®7(u,) which have modulus equal or bigger than
one consists of finitely many, isolated eigenvalues with finite multiplicity. Let
ES" be the associated generalized center-unstable eigenspace.

In the first step, it is shown that SE(N) actually acts smoothly on w, and on
all elements in the eigenspace ES". Therefore, even though the group acts dis-
continuously on the space CU_ .., the aforementioned spectral hypothesis enforces
smoothness of the group action on u, and ES". The proof requires results on
strongly-continuous group actions on Banach spaces; in particular, we show that
the group acts differentiably on a dense subspace. This generalizes earlier results
by Dancer [6] for compact groups. The proof given here seems to be simpler even
for compact groups. We then prove the existence of a smooth center-unstable
manifold which is invariant under the semiflow and the group SE(N). Hence, the
infinite-dimensional dynamical system near the relative periodic orbit is reduced
to some ordinary differential equation on the center-unstable manifold.

In the second step, we identify the skew-product structure of the vector
field on the center manifold. The flow on the manifold can be represented as a
dynamical system

R= Ryr(v,0,p) S: Rs(v,0,p1)
i}:fN(vaga/'L) HIf@(U,G,/,L)
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on the space SE(N) x Vi x IR. Here, (R, S) € SE(N) is in the group, § € IR cor-
responds to the coordinate in the time direction, and v € Vj is in a complement
of the tangent space of SE(N)u, and the time derivative d;u,(0) in ESY. Fur-
thermore, the function (r, s)(v, 8, 1) has values in the Lie algebra se(N). There
are further restrictions on the vector field enforced by the spatio-temporal sym-
metries of the relative periodic solution. The skew-product structure manifests
itself in the fact that the equations for (v, ) decouple from the equations on the
group SE(N) as a consequence of SE(N)-equivariance.

Summarizing, a systematic and rigorous procedure is developed which al-
lows us to derive equations-of-motion near relative periodic orbits. The main
difficulty is that not only spatial but also spatio-temporal symmetries of the
relative periodic solution have to be taken into account. We point out that the
aforementioned results are formulated in an abstract functional-analytic set-up
which includes semilinear parabolic equations equivariant under arbitrary finite-
dimensional, and possibly non-compact, Lie groups.

The paper is organized as follows. Section 2 contains the center-manifold
reduction for autonomous equations, while periodic forcing is considered in
Sect. 3. Section 4 contains a short excursion on linear representations of finite-
dimensional Lie groups on Banach spaces. In Sect. 5 and 6, we discuss the reg-
ularity and spectral hypotheses in more detail. Applications to spiral waves are
then given in Sect. 7 and 8. Finally, conclusions and open problems are discussed
in Sect. 9. Sections 7 and 8 are self-contained, so that readers interested mainly
in the applications can skip the other sections.

2. Center Manifolds near Relative Periodic Orbits

The main results of this section, Theorems 2.2 and 2.9, establish the reduction
to a finite-dimensional center manifold and the characterization of the vector
field on the manifold as a skew-product flow.

2.1. The Center-Manifold Reduction
Consider the autonomous semilinear differential equation
up = —Au+ F(u) (2.1)

on a Banach space X. We assume that A is sectorial with dense domain D(A4).
The nonlinearity F' is a C*-function from X% to X for some k& > 3 and some
a € [0,1), and X¢ is the domain of the fractional power A%; see, for instance,
[15]. We set Y = X®. Equation (2.1) generates a local C*-semiflow @, on Y. We
remark that parameters can always be incorporated as additional components
with trivial dynamics.

Let GG be a finite-dimensional, possibly non-compact Lie group with Lie al-
gebra alg(G) = TiqG. We write exp(€) for the exponential map from alg(G) to
(. The adjoint action of an element g € (G on the Lie algebra is given by

d
Ady € =gty = 77 exp(Et)g™! ., €als(@) .
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Let p: G — GL(Y), g — pg, be a faithful and isometric representation of ¢ in
the space of bounded, invertible operators. In other words, we require ||p,|| = 1
for all ¢ € (G. Note that we do not assume continuity or smoothness of the map
p. The group orbit of an element u € Y is Gu = {p,u; g € G}.

The structure we require is G-equivariance of the semiflow generated by (2.1)

Pi(pgu) = pgPi(u)

for all £ > 0 and g € G. We are interested in solutions for which time and group
orbit are related. Examples of such solutions are relative periodic solutions which,
after one period of time, are contained in the group orbit of their initial value.

More precisely, suppose that u, € Y is relative periodic with period one, that
is,

@1(11*) = Py Us

for some g, € G, and §y(u) ¢ Gu, fort € (0, 1). Tts isotropy subgroup is defined
by H. = {h € G; ppus = us}. The relative periodic orbit O, itself is given as
the time orbit of the group orbit of wu,

O. = {py®@i(uws); g € G, tERY .

We shall investigate the dynamics and possible bifurcations of u, using a center-
manifold reduction near its orbit O,. Hence, a hypothesis on the spectrum of
the linearization about w, 1s needed.

Hypothesis (S) Assume that {\ € C; |A| > 1} is a spectral sel for the spectrum
spec(Ly.) of the operator

Ly := p;'D®y(u.) € L(Y)

with associated spectral projection P, € L(Y) such that the generalized eigenspace
ES = R(Py) is finite-dimensional.

In other words, there are only finitely many elements with norm equal or
bigger than one in the spectrum of L., and these elements are isolated in spec(L.)
and have finite multiplicity. Let E® := A'(P.) be the stable subspace. Finally,
we assume certain regularity properties.

Hypothesis (R)

(i) The function G —Y, g — pyu, is C*.
(i) For any neighborhood U of id in G, there is a § > 0 such that |pgu.—u.| > 6
forallg € G\ (H.U) . Here, H,.U = {hg; he H., g € U}.
(iii) Considered as elements of L(Y), the operators p, Py and P.p, are C*~1 in
gEeq.
(iv) The tangent space Ty, (Guy) is contained in the center-unstable eigenspace
B
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Hypotheses (R)(i) and (ii) imply that the group orbit O, of w. is a smooth
embedded manifold which is diffecomorphic to G/H.. Note that the isotropy H.,
is closed due to Hypothesis (R)(i). Hypothesis (R)(iii) requires in particular that
the group acts differentiably on elements in ES". The last assumption (R)(iv)
is true if the group has an invariant metric. In particular, it is met for compact
groups and also for the FEuclidean group SE(N); see Lemma 6.2. For general non-
compact groups, however, it is not necessarily satisfied; as pointed out in [12,
Remark after Proposition A.3], the affine group provides a counterexample. We
show in Sect. 5 that Hypothesis (R) is a consequence of the spectral assumption
(S) under some mild additional assumptions on the group G.

We start with the definition of a center manifold.

Definition2.1. Let u, be a relative periodic solution. We say that (2.1) has
a G-invariant center-manifold MY associated with wu, if the following is true.
There exists a G-invariant, locally semiflow-invariant manifold MS" contained
in Y. The manifold MS" is of class C* 71, the vector field on MSV is C*~2 and
the action of G on MS" is C*~'-smooth. Furthermore, there is a 6 > 0 such
that M contains all solutions which stay in the é-neighborhood of the relative
periodic orbit O, for all negative times. Its tangent space at the point p,®;(u.)
is pg DPy(u. ) ES". Finally, M is locally exponentially attracting.

We emphasize that the action of G on the center manifold is smooth though
it may act discontinuously on the whole space.

In general, the center manifold may contain unstable directions. Inverting
the smooth, equivariant flow on the center-manifold, it is straightforward to
construct a center-manifold tangent to the subspace of EJ" corresponding to
center directions. Thus, with a slight abuse of notation, we use the term center
manifold even when unstable directions are included.

Recall that a continuous action of a Lie group G on a manifold M is called
proper if the map (g, u) — (pyu,u) € M x M maps closed sets into closed sets
and preimages of points are compact. We can then state the existence result.

Theorem 2.2. Assume that Hypotheses (S) and (R) are met for the relative pe-
riodic solution u, €Y of (2.1). There exists then a G-invariant center manifold
MZS". Moreover, the G-action on M is proper provided H, is compact.

The proof of the theorem is given in the next section.

2.2. The Center Manifold for the Poincaré Map

Theorem 2.2 will be proved by applying the graph transform to the Poincaré
map associated with a suitable section transverse to the time direction. Since
we want to preserve (G-equivariance, this section should be invariant under the
group G.

First, it is shown that the center-unstable eigenspace is invariant under the
isotropy group H,. If the operator L, = p;}D@l(u*) were H.-equivariant, the
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center-unstable eigenspace would be H.-invariant as a consequence of the defini-
tion of P.. Note that D@, (u,.) is H,.-equivariant. Furthermore, since pp®1(u.) =
D1 (prux) = P1(ux) and D1 (ux) = py, us, we have p;*lphpg* Ux = u.. Hence, as
sets, g« H. = H.g.. However, in general, g, does not commute with all elements
in H,, and L, is then not equivariant under H,.

Lemma 2.3. The spectral projection P, associated with L. ts equivariant with re-
spect to the isotropy group Hy of us. In particular, the center-unstable ergenspace
EM is Hi-invariant.

Proof. Tt suffices to show that N'(P.) = E% and R(P.) = FS* are invariant under
H,. On account of the spectral hypothesis (S), there are constants Cy, Cs, and
Ns < Neu < 1 such that

) _ 1
L2 (d=Po)[] < Cugg, (|(Lalpen) ™ Pul| < Corr (22)
for all £ € IN.
Suppose that there is an element w such that
L] < Onfful (2.3)

for some C' independent of £ € IN. We then conclude

|Pow] = (L.

‘
pp) " Pl < Cz%|Lf<w| < CCz( Te ) lw|
77Cu 77Cu
and therefore P,w = 0 since 1y < 7cy.
The idea is now to show that ppv satisfies the estimate (2.3) whenever v
does. For h € H,, using the definition of L., equivariance of the semiflow, and
invariance of the isotropy subgroup H, under conjugation with ¢., we calculate

Lipnv = (pg, DP1(w.)) puv
= (03l Py Py DBy prpy, ') - (py D1 (wa) )
=p;lonpl, Liv .
Take any v with P,v = 0 and h € H,. Then
|Lepnvl < llpy onpl, |l - |Lov] < |Liv]

by the above calculation and isometry of the group action. Therefore, we con-
clude P.pnv = 0. In particular, N'(P,) is invariant under H,.
It remains to show that R(Py) is H,-invariant. Given w such that L*_Zw
exists for all £ > 0 and ]
|L7Cw] < O—Jul (2.4)
77Cu
for some C independent of £, we conclude as before that (id —P.)w = 0. Next,
take any v € F{" and h € H.. Since v € E" there exists a w € FJ" such that
L.w = v. Thus, since L*(pg*php;*lw) = ppv, we have L 1ppv = pg*php;*lL*_lv.
Using the isometry of the group action, we obtain |L; ‘ppv| = |L7*v|, and there-
fore (id — Py)ppv = 0 by the discussion above. Hence, Poppv = ppv = pp Pov. O
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Therefore, the splitting of ¥ into the center-unstable space E." and the
stable space £ = N(P.) is H.-invariant. By Hypothesis (R)(iv), the space
ES" contains the tangent space Ty, (Guy) of the group orbit. Also, the vector
field Oyu.(t)]1=0 lies in ES". Both subspaces Ty, (Gu,) and span{d;u.(t)];=o0} are
invariant under the isotropy subgroup H.. Note that these subspaces have trivial
intersection since we excluded relative equilibria. We construct an H.-invariant
complement V, of the sum of the aforementioned subspaces in ES".

Lemma2.4. There exists an H,-invariant scalar product on EV.

Proof. Since the representation p is isometric and H, acts on FJ", the image
p(H,) of the isotropy group H. under p is bounded in GL(FES"). Hence, the clo-
sure clos(p(H,)) C GL(FE) of p(H.) is a compact group, and therefore admits
a Haar measure. Using this Haar measure of p(H.), we endow ES" with an H.,-
invariant scalar product. a

Let Vi be the orthogonal complement in ES" of the space

d
Ty, 0. =Ty, (Gu.) @ span {Eu*(t”t:O} ,

and denote the orthogonal projection onto Vi by Py, . In other words, we have
the H,-invariant splitting

ES=T,,0, 3V, . (2.5)

Let B. := Py, Ly|v, € L(V.). We emphasize that the spectrum of B, determines
bifurcations from the relative periodic orbit.
Next, we define the section

S = {pg(ux + v.) + wa; g € G, v € Vi, wy € pyES with |, [w| < 6} (2.6)

transverse to the time-orbit in u,. In the next lemma, we show that & is smooth,
and we construct the Poincaré-map 17 : § — &. It is here where the regularity
hypothesis (R) is used.

Lemma2.5. The set S is a G-invariant and C*~'-smooth hypersurface. It con-
tains the group orbit Gu,. and is transverse to the semiflow. The corresponding
Poincaré map Il : 8 — 8 is C*~1-smooth, G-equivariant, and close to ®1|s in
the C°-topology. Moreover, spec(pg_*lDH(u*)) C spec(Ly).

Proof. By definition, § is G-invariant and contains Gu,. Smoothness of § is a
consequence of Hypothesis (R)(iii), and we refer to [26, Sect. 3.2] for the proof.
The tangent space of § at u. is Ty, (Guy) & Vi @ ES. By definition of Vi, the
vector field at u, is a complement to this tangent space.

It remains to verify the claim about the spectrum. The subspaces EP and
Tu.(Guy) of T,,, S are invariant under the linearization L,. Therefore, the spec-
trum of pg_*lDH(u*) coincides with the spectrum of L, on these subspaces. Recall
that B, = Py, L.|v,, and let B,v = Av for some v € V;.. Using Py, 0;u.(0) = 0, it
is straightforward to show that L. (v+ad;u.(0)) = A(v+adu.(0)) for a suitable
choice of @ whenever A # 1. This proves the lemma. ]



10 Bjorn Sandstede, Arnd Scheel, Claudia Wulff

Rather than investigating the semiflow, we shall concentrate on the Poincaré
map I1. The relative periodic solution u, of the semiflow is a relative fized point
of the corresponding Poincaré map II, that is, II(us) = p,, usx. We now prove
the existence of a center manifold near a relative fixed point of a G-equivariant
map.

Theorem 2.6. Suppose that u, € S is a relative fized point of a G-equivariant,
C*=1.smooth map II : & — S. Assume that Hypotheses (S) and (R) are met.
There exists then a G-invariant center manifold M7 C 8 which s locally in-
variant under IT. If H, is compact, the G-action on the manifold MS" s proper.

Proof. The proof is very similar to that given in [26] for relative equilibria. We
will therefore only outline the proof and refer to [26] for the details.

First, we parametrize a neighborhood of Gu, in the section & smoothly as
in (2.6). The map I7 is then modified for v € V outside a small H, -invariant
neighborhood U of the origin in V, by adding a small positive multiple of the
identity; see [26]. The modified map, which is still smooth and G-equivariant, is

denoted by I7.
Next, consider the center-unstable and stable bundles

Vet = {u = pyus +v); (g,v) € G x Vo, |v| < 6}

and E® = {p;(us + w); (g,w) € G x E}, respectively, along the group orbit
Gu.. The center manifold is sought as a graph of a map from the center-unstable
into the stable bundle. Therefore, consider the closed metric space Xyg

g ={o € CONVY); a(pg(ua+0) € py B2, |o(-)] < 6, Lip(o) <1}

of Lipschitz-continuous sections of the stable bundle equipped with the sup-
norm.

Since the center manifold will be exponentially attracting, any other manifold
nearby is attracted to it under forward iterations of II. The idea of the graph
transform is to define a map II4 on Xy by mapping a section into its image
under /74, and seek the center manifold as a fixed point of 7. More precisely,
for some ¢ > 1, define & = Il (o) by the condition

y+6(y) € {I" (v + o(x)); 2 €V}

for each y € VU, The modification of the map II takes care of the complication
that the domain of the new section & may have shrunken under forward iteration
of ¢. On account of Hypothesis (S) and Lemma 2.5, the map I is normally
hyperbolic. Hence, the graph transform I/4 is well-defined and a contraction
provided the number ¢ € IN is chosen sufficiently large; see, for instance, [8, 17].
The unique fixed point o4 of Iy defines the center manifold by

M5 = {(id4op)(pg (e +0)); (9.0) €G x Vi, [l <6} . (27)

Again by [8, 17], M3" is exponentially attracting, locally invariant under ﬁ, and
of class C*~1. Since IT and IT coincide in the small neighborhood U of Gu, in
S, the manifold M " is also locally invariant under I7.
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By G-equivariance of ﬁ, the manifold p, MS* € Y% is also invariant under
II for any fixed g € GG. Therefore, by uniqueness, M" is invariant under GG. The
G-action on M3 is smooth since the map o4 : V' — Y is G-equivariant and
the G-action on V" is smooth by assumption (R)(iii); see also [26, Sect. 3.4].
Finally, if H, is compact, the G-action is proper on the group orbit Gu. by
Hypothesis (R)(ii). This remains true on M3 provided the Vi-component in the
parametrization (2.7) is small enough; see again [26]. O

The following corollary, actually a by-product of the proof of Theorem 2.6,

characterizes the structure of the manifold M7 and the Poincaré map I7|prz. We
recall that V, is an H.-invariant complement of Ty, (Guy) @span{%@t(u*)h:o}
in ESY; see (2.5).
Corollary 2.7. Assume wn addition to the assumptions of Theorem 2.6 that H,
15 compact. The center manifold MS" is then diffeomorphic to G xg, Vi =
(G x Vi)/ ~ under the identification (gh,v) = (g, pnv) for (g,v) € G x Vi and
h € H.. The pull-back of the map Il |yer to G x Vi is

(g,v) = (g]]]]NG((:))) , (2.8)

and (g, IIN) is H.-equivariant

(L, IN)(prv) = (pu(h) G (0) s (h) ™, po(my N (v)), (2.9)
for allh € H, and all v € Vi, where p.(h) = g.hg '

Proof. Tt follows from the description (2.7) that the manifold M&" is diffeomor-
phic to G x g, Vi. It is then possible to lift the map 7 to the product G x V,
as in [9]. The structure of the pull-back of I7 to G x Vi is a consequence of
G-equivariance of I7. a

It has been shown in [9] that the vector field near relative equilibria is of
skew-product form. Equation (2.8) establishes the same property near relative
fixed points of equivariant maps.

Proof of Theorem 2.2. The Poincaré map Il defined near the relative periodic
solution u, of (2.1) is a G-equivariant map from the section S given in (2.6) into
itself. By Theorem 2.6, there exists a G-invariant center-unstable manifold M "
of class C*~1 for the Poincaré map II. We transport Mc" with the semiflow @,
along the time direction. By local invariance of Mg" under II, the set

{Pi(u); we M, t€]0,3/2]}

contains a smooth manifold M in a possibly small, G-invariant, é-neighborhood
of O.. By construction, MS" is locally invariant under the semiflow. Since M "
is G-invariant and attracting, so is MY,

It remains to prove that the action of G is proper on MS" if H. is compact.
Let g, € G and uj, us € MJ" be such that p;, u; — us. We have to show
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that the sequence {g,} has a convergent subsequence. With j = 1,2, we find
elements u; € M7" and times ¢; € [0,3/2] with u; = @;,(u;). Since @; is a
diffeomorphism in M%) we can assume that {; = 0 without loss of generality.
Hence, pg, 41 — @, (t2). Since M is G-invariant, we have ¢, = 0. Furthermore,
using that the G-action is proper on M&", we conclude that {g,,} has a convergent
subsequence, and consequently the G-action is also proper on MS". O

2.8. The Skew-Product Flow on the Center Manifold

With Theorem 2.2 at hands, bifurcations from relative periodic orbits can be
reduced to finite-dimensional smooth bifurcation problems. In order to analyze
these bifurcations, the vector field on the manifold M " has to be computed.
Therefore, we aim for a representation of the vector field in the space G x V, xR
corresponding to the directions along the group, the transverse directions in
which bifurcations take place, and the time direction. However, the manifold M "
might have a complicated topological structure; in general, it is not diffeomorphic
to a direct product.

The main result in this section, Theorem 2.9, clarifies the geometric structure
of the center manifold as a bundle. The manifold is diffeomorphic to the covering
space G X Vi, x IR under an appropriate identification. It is important that the
submersion describing this identification is defined in a uniform neighborhood
of the possibly non-compact manifold O,. The vector field on M" is then lifted
to the covering space. The lifted vector field inherits the G-equivariance from
the original equation and has additional covering symmetries induced by the
spatio-temporal symmetries of the relative periodic orbit.

In deriving the representation mentioned above, it is important to separate
the effects of the operator D@, (u.) and the group element g,. First, we account
for the bundle structure induced by the linearized map D®;(u,). Recall the
splitting (2.5), E$Y = Ty, O © Vi. The first subspace is mapped into itself by
pg_*1 D& (u.). On the space Vi, we consider the matrix B, = P, pg_*1 D&y (u.)|v, €
L(Vi) which may induce a non-trivial bundle structure. For instance, an eigen-
value —1 of B, may lead to a Mobius bundle. This bundle structure can be
taken into account by following a basis in V, along the time orbit of u,. After
one time unit, the resulting basis in p,, Vi defines a map in £(V4, py, Vi) which
we denote by J(1). It describes the structure induced by the operator D@y (u,.).
This matrix can be chosen in an H,-equivariant fashion retaining some of the
symmetry properties present in the system. The main point is that it 1s also an
isometry; this property guarantees that the center manifold can be parametrized
in a uniform neighborhood of O,. The composition @), := p;*lj(l) € L(V.) then
encodes the entire bundle structure.

Therefore, consider the space Ey := E.". Let Ey be the image of Ey under
D®g(uy), that is, Fy := D®@g(u,)Ey with 6 € (=6, 1+ ). The collection Ey with
0 € (—é,1+6) is a differentiable trivial vector bundle over (=8, 14 §). Note that
even if g, = 1d, we consider Fy and F; as different spaces.
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Lemma 2.8. There exists an Hy-tnvariant splitting
Ey =T5,(u)O0« ® Vp

such that Vo = V... The associated projections P, () onto Vy are H,-equivariant,
smooth, and satisfy p,, PV(H)p;*l =P, (04 1) for § € (=6,8). Moreover, there
exist isomorphisms J() : Vi, — Vp which are smooth in 6 and H,-equivariant,
such that QQ, = p;*lj(l) is an isometry.

Proof. Note that
{0} x Ey — {6} x Eo, (0,v9) — (0, DPg(u,)vg) (2.10)

is an H.-equivariant trivialization of the bundle F/ = (Ee)ge(_§71+§). We take the
H,-invariant scalar product {u, v}y in By which has been defined in Lemma 2.4.
The splitting F{* =T, O, @ Vi is then H.-invariant and orthogonal. Using the
aforementioned trivialization (2.10), we may then choose H,.-invariant scalar
products (u, v}y in Ey for § € (—8§,4) which are smooth in 6. For § € (—86,4), we
equip the spaces Eq4¢ with the H.-invariant scalar products

(w,v) 146 = (o5 u, pl0)s - (2.11)

Note that g.H,g-' = H, since the isotropy group does not change along time
orbits. Next, we connect the scalar products on Fs and Fy_s by a smooth, H.-
invariant family (-, )¢ of scalar products on Ey for § € (6,1 — é) using again
the H,-equivariant trivialization (2.10). This can be accomplished exploiting
the Haar measure of p(I1,), see Lemma 2.4, and the fact that the set of positive
definite, symmetric matrices is connected.

Using the smooth, H.-invariant scalar product on the bundle, we define
P, (6) as the orthogonal projection onto the complement of the tangent space
T (u,)O« in Ey. The projections are smooth and H.-equivariant since the tan-
gent spaces and scalar products are smooth and H,-invariant. For # near zero,
the scalar products on Fy and Ei1¢ are conjugated by g., see (2.11), and the
tangent spaces Tg,(y,)O« are mapped into T, ,(u,)O« by py,. Therefore, we
have p,, PV(H)p;*l = P,(0 + 1) for # near zero.

The isometries J(6) can now be constructed using the fact that (Vs)ee(—s 146
is a Riemannian, H,-invariant trivial subbundle of the bundle (E@)ge(_@l”)
such that scalar product and H.-action are compatible. We may choose J () as
a Riemannian, H,-equivariant trivialization of this subbundle. a

Define Q. = p;*lj(l). The next theorem describes the skew-product struc-
ture.

Theorem 2.9. Assume that Hypotheses (S) and (R) are satisfied and suppose
that the isotropy group H, is compact. The center manifold MSY is then C*~1-
diffeomorphic to (G x Vi, x IR)/ ~ where the identification is defined by

(gh,v,0) ~ (g, ppv,0) and (g9«,Q.v,0) ~ (g,v,0+ 1) (2.12)
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with h € H. and (g,v,0) € G x V. x R. The differential equations on M" can
be lifted to G x V, x IR such that

§=gfa(v,0), o= fn(v,0), 0=Ffo(v,0) . (2.13)

The vector field (fa, [n, fo) € alg(G) x Vi x IR is equivariant under the spatio-
temporal symmetries of uy, that is,

(far [, fo)lpnv,0) = (hfc(v,O)h™", pr fn(v,6), fo (v, 0)) (2.14)
for all h € H, and
(fa, In, fo)(v,0+1) = (9 fa(Quv, 0)g:t, Q7 v (Quv, 8), fo(Quv,0)) . (2.15)
Morcover, (fa, [, Jo)(0,6) = (0,0, 1).

Note that the reduced differential equations (2.13) are of skew-product form.
Indeed, the equations for (v,8) decouple and can be solved independently of
the equation on the group. Therefore, bifurcations are described entirely by the
H-equivariant (v,#)-equation. In particular, the equation for v describes the
dynamics of the shape of the pattern, while the equation for § determines the
phase. On the other hand, drift along the group is determined by the g-equation
where the bifurcating solutions act as an equivariant forcing. For non-compact
groups, resonance phenomena in the g-equation may then lead to unbounded
motion on the group. The skew-product structure is exploited in the applications,
and we refer the reader to Sect. 7 for illustrative examples.

Proof. We have to construct an appropriate submersion from G x V, x IR onto
the center manifold. Since the center manifold is given as an equivariant graph
over the center-unstable bundle, it suffices to seck a submersion onto this bundle.

We choose a smooth function x : (=8,1 + 8) — [0, 1] such that x(8) = 0 for
0 e(=6,68), x(6)=1for € (1—61+6), and [x(#) — 6] < 26 for all 4.

By Dunford-Taylor calculus, the operators p - D& (Py(uy)) have spectral
projections P, (@) with P.(0) = P, which depend smoothly on 6. By Lemma 2.3,
the projections are also H,-equivariant. Furthermore, they satisfy P.(f + 1) =
Py P*(H)p;*l for all 8. We shall exploit these projections to extend the domain
of definition of the projections Py (#) constructed in Lemma 2.8: The operators
P, (0)P.(6) are again projections defined on ¥ and retain all the properties
described in Lemma 2.8. With a slight abuse of notation, we denote them again
by P.(#).

The map 7 from G x Vi x (=6, 1+ §) into the center-unstable bundle is then
defined by

#(9,0,6) = py(@a(us) + Py (0)T(\(0))0) . (2.16)

where (g,v,0) € G x Vi, x (=8,1+6). For 6 € (=6,8), we use the definition of y
and the properties of Py, () and J(@) described in Lemma 2.8, and obtain

(g0, 14 0) = py(@116(u) + Po(1 4 00T (x(1 4 0)))
= py(Pa.@o() + py. Pu(0)5; T (1)0)
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= pgPg. (Po(ux) + Pu(0)Quv)
= Dape. @al.) + Po(0) (x(0)Q. )
= 7(ggs, Quv,0) .

Therefore, we may define

(g, v,n+0) = (g9, Qiv,0) (2.17)

for # € [0,1) and n > 0, and a similar expression for negative .

The derivative of 7 is surjective and its kernel is given by alg(H.) x {0} x {0}.
Indeed, it suffices to calculate the derivative of 7 at (id,0,0). The kernel is
induced by the following equivalence relation on G' x V,, X IR. By H,-equivariance
of P, and J, we have

r(gh, 1,0) = pypn(Bo(us) + Pu(0)T((O)0) = (g, pav.0)

for any (g,v,0) € G x Vi x [0,1] and h € H.. Up to this equivalence relation, 7
is a covering map where the covering symmetry is induced by the time-one shift
(2.17). This proves that a uniform neighborhood of O, in M2" is diffeomorphic
to (G x Vi x IR)/~ under the equivalence relation mentioned in the theorem.
In the next step, we have to lift the differential equation from the center
manifold to the covering space. We proceed here as in the proof of [9, Theo-
rem 1.1]. In this reference, a manifold with a proper G-action was investigated
in a neighborhood of a relative equilibrium with isotropy H.. For ¢ € [0, 1), we
lift the vector field as in the aforementioned reference. For points 8 ¢ [0, 1), we
then use the time shift § — 6 4+ 1 and conjugation by appropriate powers of
pg. and Q. The relations (2.14) and (2.15) are consequences of G-equivariance
and of the covering symmetries induced by H, and the time shift § — 6 4+ 1,
respectively. a

In the proof given above, we did not use the fact that MS" is a center mani-
fold. If M is a manifold with a smooth and proper action of a Lie group G, and
4 = f(u) is a G-equivariant vector field on M, then the same conclusions are
true near relative periodic orbits O, of the flow on M.

Motivated by the applications in Sect. 7, we will focus on several situations
in which the bundle structure simplifies considerably. It is then possible to use
the vector field on the relative periodic orbit in a more explicit way.

Lemma 2.10. If g. = exp(&) is in the centralizer of H, for some £, € alg((G),
then the following is true. The map (g,v,0) — (gexp(£.0),v,0) transforms the
vector field (2.13) on G x V., x IR into

§=9fa(v,0), ©=fn(v,0), 0= fo(v,0) (2.18)
with (fa, fn, fo)(0,60) = (£.,0,1). In addition, the equivalence relations (2.14)

and

(fGa In, f@)(v, 0+ 1) = (fG(Q*Ua 9)’ Q:lfN(Q*v’ 9)’ f@(Q*U’ 9)) (2'19)

are met.
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The proof is straightforward and will be omitted. In fact, it suffices that g,
is contained in the connected component of the identity in the centralizer of H,
in (G. The description of the vector field in Lemma 2.10 is then still true. Indeed,
in the expression for the map given in the lemma, we replace the homotopy
exp(&.0) by a path g(6) which connects id and g, in the centralizer of H,.

Remark. By a similar argument, the relative periodic orbit O, itself is diffeomor-
phic to (G/H, x IR)/ ~ where points (gH.,0 + 1) ~ (gg. H., 0) are identified. If
¢« lies in the connected component of the identity in the normalizer N(H,) of
H., then O, is diffeomorphic to G/H, x S1. Note that it is the normalizer, and
not the centralizer, which 1s relevant here since we only describe the structure
of the manifold, and not the vector field on 1t.

Next, consider the case of trivial isotropy.

Lemma 2.11. Assume that H, = {id} and g. = exp(&.) for some &, € alg(G).
If det(By) > 0, then MSY is diffeomorphic to the trivial bundle G x Vi x St.
The vector field is as described in Lemma 2.10 with 6 € S' and Q. = id. If
det(By) < 0, MY is covered twice by G x Vi, x R/Z. The vector field lifted to
the covering space is as described in Lemma 2.10 with @ € R/2Z and Q. € O(V4)
with det(Q.) = —1.

Proof. Tf det(B.) > 0 and H, = {id}, we have Q). = id. Therefore, the equiv-
alence relations reduce to (g9g«,v,0) ~ (g,v,0 + 1). Let &, € alg(G) such that
exp(€+) = g«. The map 7(g,v,0) = (gexp(—£.0),v,0) is then the required dif-
feomorphism which trivializes the bundle.

If det(B.) < 0, we describe MY as a bundle over G x S1 with an identification
matrix (), in the fiber V. which changes the orientation. The resulting non-
orientable bundle over S' can be covered by a trivial bundle in the usual way.

O

Finally, we focus on the situation where a Hopf bifurcation occurs in the
transverse direction V..

Lemma2.12. Assume that g. = exp(&.) is in the centralizer of H, for some
& € alg(G). Furthermore, suppose that the matriz Q. is homotopic to the iden-
tity in O(Vi) in an H.-equivariant fashion. The center manifold is then diffeo-
morphic to (G x Vi x S1)/~ under the identification

(ga v, 9) ~ (gh_laphva 9)

with h € H.. The vector field on G x V. x S' is as described in Lemma 2.10 with
Q. =1d.

In particular, the assumption on Q. is met if dimVy = 2 and spec(By) =
{exp(tiw,)} with w, #0mod .



Bifurcations and Dynamics of Spiral Waves 17

Proof. Since g, is in the centralizer of H,, (). commutes with elements h € H,.
By construction, we can replace Q. by id whenever @, is homotopic to the
identity in O(V4) in an H,-equivariant fashion.

It remains to consider the last claim in the lemma. Since dim V., = 2 and B,
has two non-real eigenvalues, H, C SO(2); otherwise, B. # +id could not be
H,-equivariant. Furthermore, Q. € SO(2) since det(B,) = 1. Therefore, Q. is
homotopic in SO(2) to the identity in an H,.-equivariant fashion. a

For any subgroup K of G, we denote the connected component of the identity
in K by K°. Furthermore, C(K) and N(K) denote the centralizer and normal-
izer, respectively, of K in (G. Suppose that the isotropy subgroup H, is compact.

In the lemmata above, we have always required that g. = exp(£.) isin C'(H,).
This assumption is not optimal and can be relaxed considerably for many, even
non-compact groups G including SE(V). For this class, arguing as in Field’s
work [11], we have the decomposition

N(H) =C(H) - HY | (2.20)

and, in addition, gf = exp(&.) € N(H.)" for some £ € IN. We can then describe
the flow on the center manifold in a way which is similar to that in [11].

3. Periodic Forcing

In the general set-up of Sect. 2, we consider (2.1) with a time-periodic right-hand
side

up = —Au+ Fu) + pFei(t,u, ) (3.1)

where u € Y recall that Y = X and a € [0,1). The forcing Fey; is C* from
IRxY xIR to X for some k > 3. Suppose that Fiy; is periodic in ¢ with frequency
£2. We assume that the evolution operator @; ;(u, 1) on Y associated with (3.1)
i1s G-equivariant.

Theorem 3.1. Suppose that u, is a relative 1-periodic solution of (3.1) for p =0
which has compact isotropy H.. Purthermore, suppose that Hypotheses (S) and
(R) stated in Sect. 2.1 are satisfied with Vi, = {0}, that is, F* =T, 0. There
exists then a G-invariant center-manifold MS". The manifold M s diffeomor-
phic to (G/H.xIRxS1)/~ under the equivalence relation (gg.,0,t) ~ (g,0+1,1).
The vector field on MS™ s

§=gla0,t.p), 0=Ffo(6,tn) (3.2)
where (fa, fo)(0,t, 1) is periodic in t with frequency §2 for u # 0, while for

=0 (fq, fo)0,t,0) = (fg, fo)(f) does not depend on time. Moreover, (fg, fo)
satisfies (2.14).
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Proof. Consider the map IT(u,p) := @%70(11,/1). For p = 0, the orbit O, =
{p¢P+(ux,0); (g,t) € G xR} is a smooth, G-invariant, and normally hyperbolic
manifold without boundary which is invariant under I7. As such, it persists
under small perturbations; see [17]. Note that although @, may not be com-
pact, it is uniformly attracting since the contraction rates of DIT(u) evaluated
at pyP:(u«,0) do not depend on g € G by G-equivariance and the isometric
representation of GG on Y. Hence, there is a G-invariant and I7-invariant man-
ifold M7" for any small yi. The manifold M" := Uycyc2z@eo( M7, i) is then
invariant under the time evolution @, .. The structure of the vector field on M
follows as in Theorem 2.9. O

The theorem is also true if additional center-unstable directions are present.
The main difficulty is that the domain of graphs may shrink when using the graph
transform. The proof then requires a modification of the vector field which is
similar to the procedure mentioned in the proof of Theorem 2.2; see also [26].

A similar reduction as described in Lemma 2.10 applies to periodic forcing
provided g. = exp(£.) for some &, € alg(G) is in the centralizer of H, in G. If,
in addition, H, = {id} is trivial, then the manifold M" is diffeomorphic to

{PgPexp(—e.0)Po(ux, 0); (9,0) € G x S} =G x St .

The manifold M is diffeomorphic to G x S* x S*. For applications, we refer to
Sect. 8 below.

Theorem 3.1 remains true if relative equilibria instead of relative periodic or-
bits are considered. Here, u, is a relative equilibrium if @;(u,,0) = Pexp(é,1)Us €
Gu, for all t € IR. We then have @4 (u.,0) = Pexp(éx)Use = Pg, Us-

Theorem 3.2. Suppose u, is a relative equilibrium of (3.1) for p = 0 with com-
pact isotropy H,.. Assume Hypotheses (S) and (R) are satisfied for ®1(u.,0).
There exists then a G-invariant center-manifold MS" diffeomorphic to G/H, X
S1, and the lifted vector field on G x S' is

g=gfalt,p) , (3.3)

where fa(t, 1) is periodic in t with frequency £2 for p #£ 0, and fe(t,0) = €. is
independent of time. Moreover, fa(t, u) = hfg(t,p)h=t.

4. Strongly Continuous Actions of Lie Groups on Banach Spaces

In this section, we prove regularity properties of linear representations of finite-
dimensional Lie groups on Banach spaces. We summarize the results in Theo-
rem 4.5 at the end of this section. Consider a linear representation p of a finite-
dimensional Lie group G on a Banach space Y. We assume that this action is
strongly continuous, that is, the map

G x Yy — Yo, (g,u)+ p(g)u
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is continuous. We mention that in this section we do not assume that the repre-
sentation is isometric.

By strong continuity of p and semigroup theory, the generator of the one-
parameter group p(exp(&t)) for £ € alg(G) with ¢ € IR is a closed operator in Yp
which we denote by £(£). The domain of k(&)

D) :={ueYy; k(&u:= tlg% %(p(exp(ft))u — u) exists} (4.1)

is dense in Y for any ¢ € alg(G).

The first result of this section is that the intersection of all domains D(£)
over £ € alg(() is also dense in Y. Dancer [6] proved this result for compact
groups (G using the Haar measure associated with . Intuitively, however, the
result should not depend on the global group structure but only on the Lie
algebra alg(G). Indeed, the generators (&) are related to the Lie algebra; the
Lie algebra, however, may be the same for a compact and a non-compact group.
The proof given here reflects this reasoning as only the local group structure in
a neighborhood of the identity in (G is used. It also seems to be more elementary
than the one given in [6] for the particular case of compact groups.

Lemma4.1. The intersection NecagayD(§) is dense in Yy,

Proof. The proof is inspired by the treatment of semigroups in the textbook [24].
Using a local chart, we equip the Lie algebra alg(G) = TiqG of G with a scalar

product and the Lebesgue measure dn with n € alg(G). For r > 0, define
1
Moy = ——— plexp(n))udny 4.2
1B-(0)] /B, (o) (=xp(n)) (*2)

for u € Yy, where B,(0) is the ball with radius » and Lebesgue-volume |B,(0)]
in alg(G). Note that the integrand is continuous in » by strong continuity of the
G-action, and thus the integral is well-defined. It is straightforward to see that
limy .o Myu = u. Therefore, it suffices to show that M,u € D(£) for fixed r > 0,
u €Yy, and & € alg((), that is,

1
k(&) Mpu = tlir% g(p(exp(gt))Mru — Myu) (4.3)
exists. For » small enough, the map

¢, alg(G) — alg(G), n— exp~'(exp(&t) exp(n))

is a diffeomorphism from B, (0) into some neighborhood of = 0 in alg(G). We
fix » > 0 and write B = B,(0). Exploiting continuity and the transformation
rule for integrals on IR", we have

B pexp(€0) 0 = plesplct)) [ plexpln)uidy

= /EB plexp(&t) exp(n))u dn

= [ pemp(iudet(D ()i
7€$+(B)
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Using this expression, we obtain

|B] (plexp(&l) — id) Mru = /¢ .y, Hexp()udet(Do-i(o)

- [ stexpmyudy
= / plexp(n))u(det(Dé_+(n)) — 1) dn
#1(B)

+( /¢ G /B plexp(n))udn)
=1 + I; .

It is straightforward to see that the integral %Il converges as t — 0. Indeed,
D¢o(n) = id and D¢4(n) is smooth in ¢ and 5. Therefore, the limit lim;_ g %Il
exists.

It remains to show that lim;_.g %Iz exists. For any smooth function f : IR” —
IR, we have

/m(B) f(n) dn—/Bf(n) dn:/ot /amus) fepn(r,n)dndr | (4.4)

where n(r, ) is the 7-component of the outer unit normal of

T(nn)(Use[o,l] afés(B)) :

Indeed, equality (4.4) is a consequence of Gauss’s formula applied to the vector
field (f(n),0) in the domain Use(o,1)¢s(B) since div(f(n),0) = d;f(n) = 0.
By continuity of (4.4) with respect to the C'%-convergence in f, the formula is
also true for continuous functions f. Finally, testing with functionals in Yy, we
see that (4.4) holds for f € C°(IR",Yy). To complete the argument, we apply
(4.4) with f(n) = p(exp(n))u. Observe that the integrand n(7, n)p(exp(n))u is
continuous. Therefore,

/ n(1,n) p(exp(n))u dn
96.(B)

i1s continuous in 7 as the domains varies smoothly. Hence, lim;_. g %Iz exists and
is given by

/ n(O,n)p(eXp(n))udnz/ {(v(n),€) plexp(n))udy ,
d¢o(B)

oB

where v is the outer unit normal of B C alg(G). O
The next lemma shows that « as defined in (4.3) is linear.

Lemma4.2. For any fized u € Neealg(a)D(E), the map alg(G) — Yo, £ — w(&)u

is linear in &. Purthermore, we have x(&)p(g)u = p(g)ﬁ(Adgl(g))u for any g €
G.
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Proof. The relations x(t€) = tx(§) for t € R and x(&)p(g) = p(g)n(Adgl(f))

follow from the definition of . It suffices to prove that

£(&1 +&2) = k(&1) + K(E2) (4.5)

for all £1,&2 € alg(G). Furthermore, it is sufficient to prove the identity (4.5)
evaluated at elements M, u since these are dense in Yy and the operators are
closed. Now, we can proceed as in the proof of the preceding lemma; instead
of multiplying the element M,u by p(exp(£t)) — id, we multiply by p(exp((£1 +

£2)t)) — plexp(é1t)) — plexp(€at)) + id. We omit the details. O
We define
Y1 = Neeatg(a)D(E) (4.6)
with norm |uly, := |u| +8up;_; _ dimaig(a) [£(§;)ul where &; is a fixed basis of
alg(G).

Lemma4.3. The space Y1 is closed with respect to |- |y,, and hence a Banach
space.

The proof is straightforward using £ = )" a;&; and closedness of £ and ¢;.
We remark that it is also possible to prove that «([£1,&2]) = [k(&1), K(€2)],
that is, & preserves the Lie structure of alg(G).

Lemmad4.4. The representation £ is continuous, that is, the map alg(G)xY, —
Yo, (&,u) — &(&)u, is continuous. Furthermore, the group G acts strongly con-
tinuously on Y1, and p(g)u is continuously differentiable as a function from G
mto Yy for any u € Y7.

Proof. The first claim follows from the principle of uniform boundedness since
the map (&, u) — x(&)u is linear and uniformly bounded for £ bounded in alg(G).
Next, note that Y7 is invariant under G since

K(€)p(g)u = plg)r(Ad; (€))u € Yo

by Lemma 4.2. For any two sequences ¢, — ¢ and u, — u, we have
k(A H(€))un — k(A (€))u

by continuity of k proved above. Therefore, by strong continuity of the G-action
on Yp,

K(E)p(gn)un = p(gn )6 (AT (E))un — plg)R(AdS(€))u

for g, — g, and the action on Y7 is strongly continuous.

Finally, consider g — p(g)u € Yy. The partial derivative of p(g)u in the ¢-
direction evaluated at ¢ is given by p(g)ﬁ(Adg_1 &)u. Continuity of this expression
with respect to ¢ follows as above. a

We summarize the main results in the following theorem.
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Theorem4.5. The space Y1 = Necalgia)D(E) s dense in Yy, and is a Banach
space with norm

luly, = |ul + sup{|x()ul; € € alg(G), [¢] =1} .

Furthermore, the group G acts strongly continuously on Y1 and the map g —
p(g)u € Yy is CLin g for any u € V7.

For j > 1, define
Y, ={ueY;_1; v(§)u € Y;_q for any £ € alg(G)} (4.7)
equipped with the graph norms |- |y, defined by

|U|Yj = |U|Yj—1 + sup |H(€)u|yj‘1 ’
£calg(G),l¢l=1

By induction, applying the aforementioned results to the spaces Y}, we see that
Y; is dense in Yp.

5. The Regularity Hypothesis

Here, we prove that the smoothness assumption (R) is essentially implied by the
spectral hypothesis (S). Suppose that ¢ acts on some Banach space Y via the
isometric representation p,. Let |- | and || - || denote the norms on ¥ and £(Y),
respectively. Assume that w, € Y is a relative fixed point of a (GG-equivariant,
C*-smooth map @ : Y — Y, that is, ®(u.) = p,, u. for some g. € G. Let Yy C Y
be the largest subspace in Y in which G acts strongly continuously. We assume
that the G-action on the Banach space Y is weakly continuous.

Hypothesis (W)

(i) If pou — w as g — id for some w €Y, then u = w.

i e adjoint representation on a as all its spectrum on the uni

i) The adjoint tation Ad,, lg(G) has all it t th it
circle.

Note that Hypothesis (W)(ii) is on the group rather than on the representa-
tion. The following theorem is the main result of this section.

Theorem 5.1. Suppose that u. € Yy. Moreover, we assume that Hypotheses (S)
and (W) are met. Then, Hypotheses (R)(i), (iii), and (iv) are satisfied.

The theorem will be a consequence of Lemmata 5.4, 5.6, and 5.7 below. We
start with the proof that F{" C Yj.

Lemma5.2. Ifu, € Yy, and Hypotheses (S) and (W)(i) are met, then E$* C Y.
In particular, py P. s norm-continuous in g € G.
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Proof. Assume first that the spaces p, )" are continuous in g. For any v € EJ"
and any sequence g, — id, the bounded sequence p, v converges to some element
w € EM possibly after choosing a subsequence. Indeed, the spaces p, ES" are
continuous and ES" is finite-dimensional. From Hypothesis (W)(i) we conclude
that w = v. The same argument shows norm-continuity of p, P,.

It suffices therefore to prove that the spaces p, " are continuous as g —
id in G. We argue by contradiction. Since ES" has finite dimension, there is
then a sequence g, — id and an element vg € E$" with |vg] = 1 such that
|(id —P.)pg,v0| > & > 0 for all n. For convenience, we use the notation L. =
p;*lD@(u*) and L(u) = p;*lD@(u). On account of the spectral hypothesis (S),
there are constants C7, Csy, and 1 < 1 such that

|LE(Gid = Po)w| < Cintl(id =Po)v|,  |LEPev| > Col=™|Poy|

for some k > 0 and any £ € IN and v € Y. Indeed, vectors in the center-unstable
eigenspace can decay at most algebraically in £. In particular, choosing ¢ large
enough, there are then numbers 7, < 1 and ¢, such that

1

[P
Ncu

<ns, |I(LE

pen) | <

(5.1)

E;
and

bneu > (14 [[Pull)ns - (5.2)
In order to keep notation simpler, we assume that (5.1) and (5.2) are met with
¢ = 1; otherwise, replace the map @ by ®¢. Since D@(p,u.) = pgD§Z5(u>.<)p;1 by
equivariance, we have
L(pg. papyus) = pyLupg.py ' py) (5.3)
for any g € GG. In particular,
1

cu

| L(pg. g g, )™ pg, 00 < (5.4)

Suppose that there are elements v and w such that L(p,ju.)w = v. We claim

that
1

cu

[l = 1E(pgu) ™0l = —-[d=P.)ol = [Pl +o(Dl]  (5.5)
for all g sufficiently close to id € G. Indeed, since pyu. is continuous in g,
L(pgus)w = (L. 4+ o(1))w = v. It is then straightforward to prove (5.5) by pro-
jecting the expression L(p,us)w = v into center-unstable and stable eigenspaces,
and estimating the resulting terms using (5.1).

Due to (5.3), for any n, there exists a w such that L(p,, pgnpg_*lu*)w = pg, V0.
Hence, by (5.5),

_ _ 1 . 1
|L(pg. Py Py i)™ Py, v0] > n—l(ld—P*)pgnvol - U—IP*pgnvol + o(1)[vo] -
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Using (5.4) and |(id —Py)pg, vo| > 6, we obtain
1 1

1
> —6 — P+ o(1) ,
o 2 o T g Il of1)
which contradicts (5.2) for sufficiently large n. O

Let Y™ be the dual space to Y and define
Z5 ={y e Y”; pyy is C’ing} |

where p¥ denotes the adjoint operator of p,. For j > 1, we define ZF with norm
| - |Zj for the adjoint group action as in (4.7) with Yy replaced by 7.

Lemma5.3. Under the assumptions of Lemma 5.2, the adjoint projection PF
maps Y* into ZF.

Proof. Arguing for the adjoint group action as in the proof of Lemma 5.2, we
see that py PXY* — PfY™ as ¢ — id. Since Hypothesis (W)(i) is not necessarily
true in the dual space, we still have to prove pointwise convergence, that is,
Py Pry* — Pry* for ¢ — id. We argue by contradiction. Since the space PfY™ is
finite-dimensional, pj; PZy* — Prz* for some z* and some subsequence g, — id.
Therefore, (id —Pf)p; Pry* — 0. Moreover, (Prpy Pry*, ) = (Pry*, pg, Pi ),
and, by Lemma 5.2, p,, P, converges to P,. Hence, we conclude Pfy* = P}z*.
O
Lemma 5.4. Suppose that u, € Yy. Moreover, we assume that Hypotheses (S)
and (W)(i) are met. The following is then true. For any small e > 0, there is a
projection P, which is e-close to P, in L(Y') such that P.p, is Ctlinged.

Proof. Throughout, the indices ¢ and j are in the range {1,... dim F"}. Since
ESY is finite-dimensional, there are bases e; and ef of E{" = P.Y and PfY™,

respectively, such that
dim ES*

P, = Z (eF, Yei . (5.6)
i=1
By Theorem 4.5, there are elements é; € Y; which are close to e; in the Y-
norm for all ¢. By Lemmab.3, PFY* C Zf, so that by Theorem 4.5 we may
also approximate the vectors ef by elements ¢f € Z7 in the Y*-norm. Using an
appropriate normalization, we can assume that (€7, é;) = §;;. We then define

dim E;*
Py = Z (€7, y)e; .
i,j=1
Since
dim ES® dim ES®
Papgy = > (&5 pam)é; = Y (prer, u)é
i,j=1 i,j=1
and pyef is C'in g in the Y*-norm, we conclude that p*pg is Clin g. O
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Next, we prove that G acts C''-smoothly on u, provided u, € Yp, that is, G
acts continuously on wu,. Recall the definition (4.1) of the operators x(£) on Yp
for & € alg(G).

Lemma5.5. Under the assumptions of Theorem 5.1, u, € Y1, that 1s, pyus ts
Clinged.

Proof. Tt suffices to show that £(&)u. exists for any & € alg(G) since the derivative
of pgu. in g is continuous, see Lemma 5.2. We use the notation @, (u) = p;}@(u).
Since Y7 is dense in Yy, there is an element ug € Y7 such that @7 (ug) =: u, con-
verges to u,. In other words, ug is in the intersection of the strong stable manifold
of u, and Y7. Note that this intersection i1s non-empty; we may approximate the
affine space u, + ES" by an affine subspace of Y7 of the same dimension, and use
transversality of the strong stable manifold and u, + E" in Y. Now, take any
element £ € alg(G). Tt suffices to prove that x(£)u,, converges to some element
w € Yy for some subsequence nj — oo since then u, € D(£) and &(§)u. = w by
closedness of k(§).

First, choose a projection ]5* close to P, such that P*pexp ¢¢ 1s differentiable
in ¢; see Lemma 5.4. The operator

€ L(Y)

Re = %(p*pexp ft)

t=0

is then well-defined and bounded. In particular, Reu. € Y exists and
Re®% (up) — Reus as n— oo .

Since Rev = P*H(E’)v for any v € D(£), we have p*lﬁ?(f)@:}(UQ) — Reu. as
n — oo, and we conclude that p*ﬁ(f)@il(uo) is bounded uniformly in n.
In the second step, we use

RO (o) = D) (g r(Ad s €

We estimate the operators appearing on the right-hand side separately. It fol-
lows from the Roughness Theorem [15] for exponential dichotomies applied to
D@7 (u,) that there are projections P, € L(Y) for n > 0 with P, — P, such
that

ID(@2) (ua)(id —Po)l| < G and D(@])(uo)Po = PaD(@])(wo)  (5.7)

for all n > 0, and some constants C; > 0 and 7 < 1 independent of n.
Next consider K?(Ad;; &)ug. By Hypothesis (W)(ii), for any § > 0 there is a
number C such that

|AdZHO)] < Cal1+6)"e] -

Moreover, the operator

To - alg(G) — Tuy (Guo) & — r(&)uo
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is onto and bounded. Thus, K?(Ad;; Eug = (T Adg‘;)(f), and we obtain

|[R(Ady, E)uol < [|Tol|Ca(1 4 8)"[€] < Ca(1 + 6)" (5.8)
with C5 := ||T5||C2]é|. Therefore, using (5.7) and (5.8),

|(id = P )D(P]) (uo)w(Ad ) E)uol < Cun|(id —Po)r(Ady, )uol
< CLCs]|id =Po|In™ (1 4+ 86)" — 0 (5.9)

for n — oo provided we choose é > 0 sufficiently small.

Summarizing, we proved that P*ﬁ(f)@fj(uo) stays bounded and the expres-
sion (id —Pp)k(€)P? (ug) converges to zero as n — oo. Since [Py, — ]5*|| 1s
small and ||P. — Py|| tends to zero, the map v — (p*v, (id = Py)v) is an iso-
morphism from Y onto R(p*) x R(id —P,) with uniformly bounded inverse.
Hence, #(£)®7(ug) is bounded as n tends to infinity. Using boundedness of
K(&)PT (ug), it follows that in fact (id — P, )x(£)P7 (ug) — 0 as n — oo. Therefore,
dist(k (&)@ (up), F$) — 0 as n — o0, and, since F is finite-dimensional, we
have k(&)@ (ug) — w € ES" for some subsequence ny — oo as k — oo. This
proves the lemma. a

This lemma is the only result where we have used that the spectrum of the
adjoint representation on alg((G) has its spectrum on the unit circle. Next, we
prove that the group actually acts smoothly on u, and ES" provided w, € Y7.

Lemma5.6. Under the assumptions of Theorem 5.1, Hypotheses (R)(i) and
(iii) are satisfied. In other words, the relative fized point u, is contained in Yy.
Moreover, the operators p, P, and P.py are C*=1in g. In particular, pg(te +v)
is C*~1.smooth in g € G for any v € EV.

Proof. By Lemma 5.5, u, € Y. Let L, = p;*lD@(u*). Fix X in the resolvent set
of L. Differentiating

exp(£6)DP(uy ) = DP(exp(Et)uy) exp(€l)
with respect to ¢ at ¢ = 0, and multiplying by pg_*l, we obtain
RN Ly —A) = (Ls — Mr(Ady, £)+ L (5.10)

where L = p;*lDZQS(U*)[K?(Adg* &)y, -] € L(Yy). Multiplying both sides of (5.10)
from the right and left with (L. — A)~!, we see that the spectrum spec(L,) of
L, considered as a map from Y7 into itself is contained in the spectrum of L,
considered as map from Yy into itself. An analogous statement is true in the
spaces Y; with j > 1 whenever u, € Y. The projection P, onto E:" is given by
P, = i (A= L)~ Hda
27 Jp
where the closed curve I' encloses precisely the center-unstable spectral set of
spec(Ly) in the complex plane. In particular, P, maps Y; into itself provided
Uy € Y. Since Y; is dense in Yy by Theorem 4.5, we conclude that EJ" C Y;
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whenever u, € Y;. Therefore, in particular, x(§)u, € Y; for any £ € alg(() since
k(€)u. € ESM. Hence, by induction, we see that u, € Y3 and ES* C Y3—1. The
same arguments apply in the dual spaces. Using the expression (5.6), we see that
the operators py, P, and P, p, are CF=1in g. a

Finally, we have the following remark.

Lemma5.7. Hypothesis (R)(iv), that is T, (Gu,) C ESV, is an immediate con-
sequence of (W)(ii) since pg_*lD@(u*)ﬁ(f)u* = k(Ady, &u. for € € alg(G).

6. SE(IV)-Equivariant Reaction-Diffusion Systems

In this section, we show that reaction-diffusion equations on unbounded domains
meet the basic hypotheses assumed in the sections above. It is also proved that
the spectral hypothesis is satisfied if the relative periodic solution is localized,
that is, converges to a stable homogeneous state as |¢| — co. Furthermore, if
a relative equilibrium or relative periodic solution is not localized, that is, does
not converge to a homogeneous state as || — oo, then the spectral hypothesis
is not met.
Consider the following model for isotropic excitable media

up = dAu+ f(u) zeRY (6.1)

with N = 2,3. The matrix d is diagonal with non-negative entries, and f is
a smooth nonlinearity. The above equation i1s well-posed on the space X =
C’Smf(IRN,IRM) of bounded, uniformly continuous functions. In particular, it
generates a smooth local semiflow on ¥ = X see [15]. We denote solutions of
(1.1) by @4(u). In addition, (6.1) is equivariant with respect to the Euclidean
group SE(N) = SO(N)—i—IRN under the action ((R,S)u)(z) := u(R~(z — S))
with z € IR . The space Yy = C’gud(IRN) is defined as the largest subspace of
X = C° -(IRY) on which the SE(N)-action is strongly continuous.

Suppose that u, is a relative periodic solution of (6.1) with period 7', that
1s, we have

Dr(u.) = (Re, 5. ).

for some element g, := (R., Si) € SE(N). Let L, = g7 D®p(u.). Furthermore,
assume that SO(N)u, is continuous and the isotropy group H. of u, is compact.

Finally, suppose that {A € spec((R.,Si)"!D®r(uy)); |A| > 1} consists of
finitely many eigenvalues with finite multiplicity. We then have the following
theorem.

Theorem 6.1. In the above set-up, assume that Hypothesis (S) is met. Suppose
furthermore that the rotations SO(N) act continuously on u, and that u, is not
constant as a function of x. Hypothesis (R} is then also true, and the isotropy
subgroup H, of u. is a compact subgroup of SO(N). In particular, the center-
manifold theorem 2.2 and Theorem 2.9 on the skew-product structure apply.
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Proof. Since the action of the translations on CC, . (IRN) is strongly continuous,
the translational orbit of relative periodic points is always continuous. There-
fore, by Lemma 6.2 below, the assumptions of Theorem 5.1 are satisfied. Thus,
Hypotheses (R)(i), (iii), and (iv) are met as a consequence of Theorem 5.1. Fi-
nally, by [26, Lemma 4.1], Hypothesis (R)(ii) is satisfied and the isotropy is
compact. There, we proved that if u, € C’Smf(IRN) meets Hypothesis (R)(i),
that is, (R, S)u, is C* in (R, S) € SE(N), then Hypothesis (R)(ii) is also true
and the isotropy is compact. In particular, the SE(N)-orbit of u, is embedded.

O

6.1. Satisfaction of Hypothesis (W)

Lemma6.2. The SE(N)-action defined above satisfies Hypothesis (W) on the
space CU ...
Proof. Tt is straightforward to see that Hypothesis (W)(i) is met. Indeed, suppose
that (R, Sp)u — w as (R, Sn) — (id,0) as n — oo, that is, u(R;Y(z — S,)) —
w(z) uniformly in . However, for any fixed z, u(R; Y (x—S,)) — u(x) as n — oo.
Therefore, w = u.

It remains to verify Hypothesis (W)(il), that is, that the spectrum of Ad,,
on alg(G) is on the unit circle. This can be verified directly using the expression

(R,S)(r,s)(R,S)™ " = (RrR™*, —RrR™'S + Rs)

for the adjoint representation, see [9, Eqn. (4.3)]. Alternatively, we may use the
fact that the Euclidean group SE(N) has an SE(N )-invariant metric, namely the
Killing form on T'SO(N) and the Euclidean metric on IRY. We then argue by
contradiction. Suppose Ady, &€ = A¢ with [A| < 1, for example. Hence, Adgr & —
0 as n — oo, and therefore g7 exp(ét)gy " — id for any fixed ¢ > 0. By invariance
of the metric, exp(ét) — id, that is, £ = 0. O

Note that the verification of (W)(ii) is not restricted to SE(N) but holds for
any group with an invariant metric.

6.2. The Spectral Hypothesis (S)

If the relative periodic solution @;(u,) converges to zero uniformly as |¢| — o
for any ¢ € [0,7], and the homogeneous state u = 0 is stable with respect to
(6.1), then the spectral hypothesis (S) is satisfied for w,.

This result is reminiscent of the situation for travelling waves on the real
line, which are relative equilibria with respect to translations. If the asymptotic
state is homogeneous and stable, the essential spectrum of the travelling wave
is strictly contained in the left half-plane; see [15, Appendix to Sect. 5]. Here,
the essential spectrum is defined as the complement in the spectrum of the set
of isolated eigenvalues with finite multiplicity.
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Lemma6.3. Suppose that the diffusion matriz d is non-singular. We assume
that u, is a relative periodic solution such that u.(t,z) — 0 uniformly as |z| —
oo for each t. Furthermore, assume that the spectrum of the operator Lo, :=
dA + Df(0) on CU . satisfies spec(Los) < —B3 < 0. Under these conditions,
Hypothesis (S) is met.

Proof. We have
(Ra, S )71DPp(uy) = (Ra, So) " H(el=T + K) (6.2)

with .
K= /0 D& _y(B1(u)) (Df(@t(u*)) - Df(O))ewa dt (6.3)

by the variation-of-constant formula. Note that L., 1s sectorial with domain
C’gnif(IRN, IRM) since the diffusion matrix d is positive. Therefore, spec(ef=T)
is contained in the circle with radius e #T. Since (R, Si) is an isometry and
commutes with L., we readily conclude that spec((R., S.)~tef=T) is contained
in the same circle. We claim that K is a compact operator in £(C?_.;). Suppose
for a moment that the claim is true. By [15, Theorem A.1], the essential spectra
of (R, S:) 1 D®p(u.) and (R*,S*)_leLwT coincide, and the statement of the
lemma is proved. It remains to show that K is compact. This follows from
norm-continuity of the integrand in (6.3) and the fact that D f(®;(u.))—Df(0) is
compact for any ¢ as an operator from C2 .. to CU ... We refer to [26, Lemma 5.4],
see also [2, pp. 27-28], for the details. O

Note that Lemma 6.3 is also true in LZ(IRN,IRM). The next lemma states
that the spiral wave must be localized in space; otherwise Hypothesis (S) is never
met since the essential spectrum contains part of the unit circle. We remark that
the statement of the lemma is also true for relative equilibria.

Again, the result is not surprising. On the real line, that is, x € IR, it is
well known that the essential spectrum of a travelling wave is determined by
its asymptotic state with || — oco. However, the spectrum of periodic travel-
ling waves on the real line consists entirely of essential spectrum, and therefore
touches the imaginary axis since A = 0 1s always in the spectrum due to trans-
lational invariance; see [15].

Lemma 6.4. Suppose that SE(N) acts smoothly on u,. If u.|i=0 does not con-
verge uniformly to a constant as || — oo, then the set {\ € spec(L.); |A| > 1}
is not isolated in spec(L.). In other words, the essential spectrum of L, contains
elements on the unit circle. In particular, the spectral hypothesis (S) is not met.

Proof. For relative equilibria, this lemma and the idea for its proof were com-
municated to us by Herbert Koch; see also [15, p. 139] for a similar idea.
Let x(r) be a cut-off function defined for » > 0 such that

_J1 for r > 4,
X(r) = 0 forr<1
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Define x,(r) := x(5) for » > 0. Note that we have

1
DX ()] + D ()] < O

for some constant C' > 0.

Take any & € se(N) = alg(SE(N)). Let u.(t) = ®+(u.(0)). By equivariance,
(€ui(t))(z) satisfies

vy = dAv 4+ Df(u.(t, 2))v . (6.4)

Let vp(t, 2) := xn(|2])(Eus(t))(2) and v = vy, + w. The function v satisfies (6.4)
if and only if w satisfies
9
ot
= dAw+ Df(un(t, 2))w + d((gu*)AXn + 2V, - V(gu*))

wy = dAw + Df(u.(t, 2))w+ dAv, + Df(u.(t, ), —

Un

= dAw+ Df(u(t,z))w+ O(%)

using the fact that &u. satisfies (6.4). Solving this equation with w(0) = 0, we
obtain w(t) = O(%) for ¢ € [0,T] by Gronwall’s Lemma. Thus,

D (1 (0)) (€1 (0)) = xnre(T) +O()
Since u.(T) = ¢g.u.(0), we have
Lu&us(0) = g7 D7 (us(0)éux(0) = g 'éun(T) = Ad (€)u(0) |

and therefore
Le(xn€a(0)) = (97 x0) AdZ (O (0) 4+ O() = xo Ady H(€)ue(0) 4 O(1)

Indeed, the first equality is true due to the definition of the SE(N)-action. The
second equality follows since g, = (R., Sy) is fixed,

l9- ' xn(l2))] = [xa(lz — S )] < [Dxal 1S4
and Dy, = O(%)

Comparing the last two equations, we have

Li€u(0) = Adg 1 (€)ua(0),  Lu(xn€un(0)) = xn Ady,! (€)ux(0) + O(%) - (6:5)
Consider the spaces
Ey = {u.(0); £ €se(N)} and FE, :={xnfu.(0); £ €se(N)} .

If u.(x) does not tend to a constant for |#| — oo, then there are elements in £,
which do not converge strongly (in norm) to zero as n — oco. These elements
also have an O(1)-distance from the space E,. On the set of such elements, the
linearization acts up to order O(%) as on the tangent space F, of the group orbit
of u.(0) as n — oo. Therefore, the essential spectrum of L. has to include the
spectrum of L, restricted to F.,, and the lemma is proved. a
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In fact, the following slightly more general result is true.

Lemma 6.5. Suppose that SE(N) acts smoothly on u,.. Assume that A, € S* C
C is an eigenvalue of L. on the unit circle with eigenfunction v, (). If v.(x)
does not converge to zero uniformly as |x| — oo, then A, is notl isolaled in
spec(L.). In other words, the essential spectrum of L. contains the element A,.
In particular, the spectral hypothesis (S) is not met.

Proof. The proof is completely analogous to that of the previous lemma with
Eu.(t) replaced by vi(t,z) := (D®:(us)v.)(x), which again satisfies (6.4). We
omit the details. O

7. Bifurcations from Planar Spiral Waves in Excitable Media

In this section, we concentrate on planar waves. Hopf bifurcations of patterns
occurring in reaction-diffusion equations in three dimensions can be investigated
with the same techniques. Indeed, the reduced equations for Hopf bifurcations
and periodic forcing are identical, so that the results presented in Sect. 8 also
apply to Hopf bifurcations in three dimensions. The choice of examples we made
here is motivated by chemical and numerical experiments. There, Hopf bifur-
cations from modulated waves have not yet been observed in three-dimensional
media but similar phenomena have been produced through periodic forcing.

7.1. Hopf Bifurcation of Planar Meandering Spirals

In numerical simulations of reaction-diffusion systems in the plane, modulated
waves with three frequencies have been observed in [23]. They may arise via a
Hopf bifurcation from a meandering spiral to a relative invariant torus. Consider
the reaction-diffusion system (1.1)

up = dAu+ fu, p1) r € IR

with N = 2. Solutions of this equation are denoted by @:(u, ). The semiflow
@(u, 1) is equivariant with respect to the group of rotations and translations
of the plane SE(2). We write elements (R,S) € SE(2) in the form (R,S) =
(¢,a) € ST x © where a € € = IR? is a translation and ¢ denotes the rotation
around zero by the angle ¢. Suppose that u, is a meandering spiral wave of
the above equation for p = p,, that is, a relative periodic solution satisfying
(¢s, 0)tt = P (s, pts). We assume that rotations act continuously on ..

Since we are mainly interested in Hopf bifurcations, we assume that the lin-
earization about wu, has a complex conjugated pair of eigenvalues on the unit
circle besides the eigenvalues enforced by symmetry. The rest of the spectrum
should be strictly contained inside the unit circle. In other words, counting multi-
plicity, the spectrum of the operator (¢., 0)~ D@7 (u,) on the unit circle consists
of the eigenvalues exp(+iwnT), wp # 0modw, and the eigenvalues on the tan-
gent space span{dy, t«, Oy, U, Opty, Orus } of the relative periodic orbit O,.
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By Theorems 2.2, 2.9, and 6.1, and Lemma 2.12, the following is then true.
The isotropy subgroup H. = {(¢,a) € SE(2); (4, a)u, = u.} is either S or Z,
for some £. Furthermore, a center manifold exists. In particular, the essential

dynamics near the relative periodic orbit can be reduced to an ODE on SE(2) x
Vi x St. The vector field on SE(2) x Vi x St is given by

6= fi(v,0,p), @ = e fr(v,0,p), (7.1)
v :fN(Uaga/'L)a GIf@(U,G,/,L) . .

Here, the coordinates (¢,a) € SE(2) relate to the group orbit: @ € € and
¢ € SO(2) correspond to the position of the spiral tip and the rotation angle of
the spiral, respectively. The variable ¢ € S' is the time-phase of the meander-
ing spiral and v € V, is contained in the eigenspace associated with the Hopf
eigenvalues. Hence, § measures changes of the shape due to the time-dependence
of the relative periodic orbit, while bifurcations will occur within the space V.
We may assume that f1(0,6, us) = w, where w, corresponds to the rotation
frequency of the meandering spiral wave. In other words, Tw, = ¢, modulo 2.
The function (f1, f2)(v, 0, i) has values in the Lie algebra IR x €. Note that the
equations for (v, 0) decouple from the equations on the group SE(2) due to the
skew-product nature of the flow.

In order to simplify the discussion of the reduced equation (7.1) and according
to the numerical observations [23], we assume that ¢, # 0 and that the isotropy
H, of the meandering spiral is trivial. To avoid strong resonances, we assume
that ¢”“sT £ 1 for n = 1,..., 4. Furthermore, we assume that the eigenvalues
e“nT and e~ wnT cross the unit circle with non-zero speed as p changes. We
may then apply the Hopf-bifurcation theorem for maps, see, for instance, [18],
and obtain an invariant torus for the last two equations in (7.1). On this torus,
frequency locking may occur for p > p,, say; see [14, 18].

We discuss the full system (7.1) next. The aforementioned invariant torus for
the (v, f)-system corresponds to a relative invariant torus of (7.1). Let (v(¢), 8(¢))
be a solution on the torus. The corresponding solution (a(t), #(t)) of the first
two equations in (7.1) may then be unbounded. In particular, linear drift occurs
if the rotation frequency w, satisfies

Wy = Mwy + nwp (7.2)

where m,n € Z, and wy, wr = 2& are the frequencies on the relative invariant

T
torus.
Indeed, integrating the first equation in (7.1), we obtain to leading order in

I
a(t) = a(0) —1—/0 elwsT Fa(v(r), 0(7), ps ) dr . (7.3)

The function fa(v(t), 0(1), pt«) is quasi-periodic with frequencies wyr and wp. We
expand f» into a Fourier series

fz(v(t)a H(t), ﬂ*) = Z e ei(WHk+wTZ)t .

kL



Bifurcations and Dynamics of Spiral Waves 33

Substituting this expansion into (7.3), we see that linear drift lim;_ o %a(t) =
Tmn occurs if (7.2) is satisfied. Indeed, the remainder term a(t) — 0.t is periodic
in t if the fraction wy/wyp is rational. If the fraction is irrational, the above
mentioned remainder term still grows only sub-linearly in ¢ since

T Fo(0(7), 0(T), fix) — O
1s quasi-periodic in 7 and 1ts constant term vanishes. Therefore, the mean value

t
lim L (eiw*sz(v(T), O(7), fts) — Omn)d7 =0
t—oo t 0

1S zero.

A similar situation occurs for periodic forcing of meandering spiral waves. In
this case, there are actually experimental results; see Sect. 8.2 for a discussion.
If the solution (a(t), ¢(¢)) of the first two equations in (7.1) is unbounded, the
assoclated spiral waves are called generalized drifting waves since they may not
be periodic but quasi-periodic in an appropriate moving frame.

7.2. Spiral Waves on Cylindrical Surfaces

Next, we consider spiral waves on cylindrical surfaces. Suppose that the reaction-
diffusion system on the cylinder C' = S* x IR is equivariant under the group G :=
SO(2) x IR. Note that this group is abelian. Suppose that the aforementioned
spectral hypothesis 1s satisfied. By Theorems 2.2 and 5.1, the equivariant center-
manifold reduction applies.

Relative equilibria move along helical curves without oscillating, that is, they
satisfy (¢(1), a(?)) = (do+wit, ag+s.t). Typically, w,. # 0 except when the spiral
has an additional reflection symmetry inside each cross-section. Relative equi-
libria may undergo a Hopf bifurcation to a relative periodic orbit. In numerical
simulations, Steinbock [31] actually observed a spiral wave in the Belousov-
Zhabotinsky system on a cylinder which appears to be a stable relative periodic
orbit u, € C° (C, IRM). After an appropriate time rescaling, the reduced vector
field on the center manifold is given by

6=h(t), a=ft) .

Here, fi1(t) and fa(t) are periodic in ¢t. The variables ¢ € SO(2) and ¢ € IR
correspond to the coordinates of the spiral tip on the cylindrical surface.

The relative periodic orbit typically oscillates around a helical curve. Indeed,
if T' denotes the period of u,, we generically have (¢(7"), a(T')) # 0. This explains
the numerical observation in [31] that the tip of the spiral wave follows helical
loops along the cylinder.

We remark that further secondary Hopf bifurcations of the meandering spirals
on the cylinder do not lead to more complicated dynamical phenomena. Indeed,
the helical curve still depends continuously on parameters, while the oscillations
around it depend on two frequencies.
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8. Periodic Forcing of Spiral Waves

In this section, we consider periodically-forced reaction-diffusion systems
ur = dAu~+ F(u) + pfoxs (1, 1) rcRN, N =23 (8.1)

on X = C’Smf(IRN) with N = 2,3. The forcing term fex(t, u) has frequency £
in t. Let u, € X be a relative equilibrium or a relative periodic solution of (8.1)
for p = 0. Suppose that u,(#) is not a constant function in x.

We assume that SO(N) acts continuously on w,. Whether this assumption
is satisfied or not depends strongly on the shape of the pattern; see Sect. 8.3
below. If this hypothesis is not met, then certain restrictions are imposed on the
time evolution of the pattern. Indeed, suppose that the one-parameter family
exp(r.7) of rotations acts discontinuously on the function w,, that is,

[ty — exp(reT)tu|co > 8 >0

for small 7 # 0. As a result, the associated solution @;(u,) of (8.1) for 4 = 0 and
t small also stays away from the rotated patterns exp(r.7)u.. Hence, the time
evolution of u, cannot involve rotations of the pattern about the axis determined
by 7. In this situation, we may then consider the largest subgroup of SO(N)
which acts continuously on u,. We obtain a lower-dimensional center-manifold,
which does not contain the functions exp(r.7)u. for small 7 # 0.

Next, we assume that the operator (R.,S.) 'D®p(u,) has finitely many
eigenvalues on the unit circle, while the rest of the spectrum is strictly contained
in the unit circle. Moreover, the center-unstable eigenspace associated with the
eigenvalues on the unit circle coincides with the tangent space of the group orbit
of u,, plus the time-direction if u, is a relative periodic solution.

For any small p1, there exists then an SE(N )-invariant center manifold M" of
(8.1). For relative periodic orbits, the center manifold can be described using the
variables ((R, S),0) € SE(N) x St and the time ¢ € IR. We refer to Theorems 3.1
and 3.2 for more details. The vector field on the center manifold is then given

by
R:Rfl(taga/'t)a SIRf?(taga/'L)a ng@(tagaﬂ) . (82)

For y = 0, the function

(flafZaf@)(tagaO) = (flafZaf@)(gaO)

does not depend on the time variable ¢. Note that the equation for 8 decouples
from the equations on the group SE(N). Equation (7.1) is equivariant with
respect to the isotropy subgroup H,, that is,

fl(ta 9,/1) = hfl(ta ga/'t)h_la f2(ta 9,/1) = hf?(ta ga/'t)h_l (83)

for any h € H,. These restrictions imposed by the isotropy subgroup can prevent
spirals or scroll waves from drifting in certain directions.
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8.1. Periodic Forcing of Rigidly-Rotating Spiral Waves

Periodic forcing of rigidly-rotating spiral waves leading to meandering and drift-
ing spiral waves is described by the vector field

qj)zfl(t’/,t)’ d:ei¢f2(taﬂ) 3 (84)

where fi(t, ) and fa(t, ) are time-independent for p = 0 and time-periodic
with frequency {2 otherwise. Using a Fourier-series argument, see [20], it can
then be shown that a path of drifting spiral waves emanates from the point
(0, £2) = (0, %w*) in the (p, £2)-plane whenever the rotation frequency w, of the
rigidly-rotating spiral wave is a multiple of £2. We refer to [33] for a different
approach to this phenomenon. In experiments [21, 34], drifting spirals have been
observed for the resonances w, = 2 and w, = 2{2.

Note that the rotation orbit SO(2)u, of the rigidly-rotating spiral u, is au-
tomatically smooth since it is equal to the time-orbit of wu.. Thus, the center-
manifold reduction applies whenever the Hypothesis (S) on the spectrum is sat-

1sfied.

8.2. Periodic Forcing of Meandering Spiral Waves

Planar meandering spiral waves u, of an SE(2)-equivariant system satisfy

@T(U*) = (¢*, O)U*

Here w, = ¢T—* is the non-zero rotation frequency of the meander. The reduced

equations are given by

qj)zfl(t’g’/,t)’ d:ei¢f2(ta6aﬂ)a ng@(taga/'t)

where ¢ € S', a € €, and § € S'. We can choose coordinates such that
f1(t,0,0) = wy, f2(t,0,0) = 0, and feo(?,0,0) = 1.

Note the equation for & € S' decouples. Since this equation is periodically
forced, frequency locking may occur. Let 6(¢) be a solution. We then solve the
equations for (¢, a) and denote the solutions by (¢(2), a(?)).

If a(t) is unbounded, the spiral is drifting. As mentioned in Sect. 7.1, such
spirals are called generalized drifting solutions in the literature [34, 29], see also
Fig. 1. The analysis is very similar to the one presented in Sect. 7.1, where we
considered secondary Hopf bifurcation from meandering spiral waves.

Rescaling time, we obtain that fi(¢,0, u) = w. for all ¢ and ¢, as long as p
is small. Denote the second frequency of 8(t) by w. Generically, a(¢) then grows
linearly provided w, = nw + m4{2 for some n, m € Z. We omit the details.
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Fig. 1. Motions of spiral tips in the Oregonator-model of the Belousov-Zhabotinsky reaction
with periodically-forced excitability for different values of the forcing period; courtesy of [29].
A generalized drifting spiral appears in (c).

8.3. Periodic Forcing of Helices

Helices have frequently been observed in reaction-diffusion systems in three di-
mensions: For instance, Henze et al. [16] observed stable helical waves in nu-
merical simulations of the Oregonator model. Helices have a spiral wave in each
horizontal plane such that the cores of these spirals are aligned along a helical
filament.

For a helix, the rotation orbit SO(3)u, might be discontinuous. Though rota-
tions around the axis of the core helix act continuously, rotations around other
axes may lead to large deviations from w, in the C° ..-norm. Motivated by the
observation that the rotations which do not fix the horizontal plane act discon-
tinuously on the spatial pattern, we restrict the following discussion to vertically
periodic patterns. The symmetry group is then given by G = SE(2) x S* rather
than SE(3). Besides continuity of the group action, there is yet another reason
for restricting to vertically periodic patterns: Lemma 6.4 states that the spec-
tral hypothesis can only be satisfied if the underlying relative periodic solution
is localized in space. Certainly, helices are not localized in the vertical direction.
Restricting to the function space of vertically-periodic functions, however, allows
that the essential spectrum may indeed be bounded away from the unit circle
provided the spirals in each horizontal plane are localized.

We write the group elements of SE(2) x St as (¢, a,v) with (¢,a) € SE(2)

and ¥ € S'. Near a periodically-forced helical wave, the reduced equations read

Q;:fl(ta/")a d:ei¢f2(t,ﬂ), 1/):f3(tal't) ’ (85)

where @ € € are the translations in the horizontal plane, ¢ € S! describes
rotations in this plane, and ¥ € S' is the shift along the vertical axis due to
vertical periodicity. We have f1 (¢, u), fs(t, 1) € R and fa(t, 1) € C.
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First, we set g = 0 and consider the unperturbed helix. Equation (8.5) is
then autonomous. Typically, as far as symmetry is concerned, a helical wave is
a relative equilibrium which rotates around its axis and drifts along the axis
of rotation. Therefore, a helical wave u, satisfies @;(u.) = (wit, 0, s:¢)u,. In
particular, we have f1(¢,0) = w., f2(¢,0) =0, and f3(¢,0) = s..

Next, let g # 0. The spiral waves in the horizontal planes along the helical
filament will start to meander. Indeed, note that the first two equations in (8.5)
decouple and are precisely the differential equations (8.4) for the motion along
group orbits near rigidly-rotating spirals. Therefore, drift in the horizontal di-
rection occurs if the rotation frequency w, is a multiple of the external frequency
£2. In addition, there is a small periodic perturbation added to the linear drift
term along the vertical axis.

8.4. Periodic Forcing of Twisted Scroll Waves

A twisted scroll wave is similar to a helix with the only difference that the core
filaments are aligned on a straight line rather than on a helix. For the reasons
mentioned in Sect. 8.3, we restrict to functions which are spatially periodic in
the vertical direction. The relevant symmetry group is then G = SE(2) x S, Its
elements (¢, a, 1)) are rotations ¢ € S' and translations a € € in the horizontal
plane as well as vertical translations t with ¥ € S' due to vertical periodicity.
Furthermore, by definition, a twisted scroll wave u, has nontrivial isotropy S*
given by (¥,0,¢)u, = u, for all ¢ € S*. In other words, shifting the scroll wave
along the vertical axis and rotating at the same time with the same speed in the
horizontal plane does not change the pattern.

Without periodic forcing, twisted scroll waves u, are rotating waves satisfying
@i (uy) = (wit, 0,0)uy. The reduced equations

&Ifl(ta/'t)a d:ei¢f2(taﬂ)a 1/):f3(ta/'t)

coincide with the equations (8.5) for helices. However, the action of the isotropy
group enforces .

f2(taﬂ) = elwa(ta/'L) s
that is, fa(¢, #) = 0 for all x4 and ¢. Therefore,

6= filt,n), a=0, ¥=f(t,p) .

Under periodic forcing, the spiral waves in the horizontal planes begin to me-
ander. On account of the isotropy group S, unbounded drift in the horizontal
plane cannot occur since a(t) = ag is constant.

8.5. Periodic Forcing of Twisted Scroll Rings

Other patterns in reaction-diffusion systems in three dimensions are twisted
scroll rings which have been studied numerically in [7, 22]. They rotate around
the zs-axis, say, while drifting with constant speed along the vertical axis. The
spatial pattern typically resembles a one-parameter family of spirals with cores
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aligned along a circle. The spiral patterns occur in the bundle of planes normal to
the core circle. Furthermore, the spirals have a phase difference along the family
of normal planes; see Fig. 2. For £-twisted scroll rings, this phase difference is
£-times the difference in angle between the core points on the unit circle.

Fig. 2. A twisted scroll ring; reprinted from Fig. 13b of [32]'.

Without periodic forcing, an ¢-twisted scroll ring u, is a relative equilibrium
with spatial isotropy H, = Z,. Its time evolution is given by @;(u.) = exp(&.t)u.
for an element &, = (7., s.) € se(3) where s, lies in the fixed-point space of Z,;
see [9]. We assume that the group orbit of u, is continuous.

In passing, we remark that relative periodic orbits satisfying

D () = (Re, 5. )us

in three dimensions drift in a direction orthogonal to the axis of rotation. More
precisely, among the elements in the group orbit SE(3)u., there is one, say
@, such that &p(a) = (R, S’)ﬂ and RS = S. Indeed, let S, = S + S; such
that S € N(id—R.) and S; L N(id —R.). Moreover, let Sy = (id —R.)*S..
Here, It denotes the Moore-Penrose pseudo-inverse of the matrix L, that is,
Lt|ry = (L|N(L)J.)_1 and L+|R(L)J_ = 0. Rather than investigating u,, we
may focus on @ = (id, —Sz)u.. We obtain

D (1) = (id, —S2)(Re, Su)us = (id, —S5)(Rs, S, )(id, Sz )a

= (Ri, Si + (Ry —1d)S2)a = (R, S)u .
Therefore, without loss of generality, we assume that R.S, = S..

1 With kind permission from Elsevier Science, Sara Burgerhartstraat 25, 1055 KV Amsterdam,
The Netherlands
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Note that (R.,Si) lies in the centralizer of Z, = H. by the above con-
sideration. This 1s useful when studying Hopf bifurcations from twisted scroll
rings since, under this condition, Lemma 2.12 ensures that the center manifold
is diffeomorphic to the trivial product SE(3) x S x Vi with Vi, = R2.

The reduced equations are given by

R:Rfl(ta/'t)a S:RfZ(ta/'L) )

where f1(¢,0) = r, and f2(¢,0) = s.. For {-twisted scroll rings, we have

fz(ta/") = sz(taﬂ)

for all (R,0) € Z; in the isotropy group H,.

For u # 0, that is, under periodic forcing, the spirals in the vertical planes
start to meander. In the case of f-twisted scroll rings with ¢ > 1, drift is only
possible along the symmetry axis of the scroll ring since then f5(¢, u) € span{s.}.

Simply-twisted scroll rings typically drift in a direction different from the
zs-direction provided the group orbit is continuous, see [1]. The direction of
drift generically varies in p, regardless of resonances in the periodic forcing. If
rotations around axes different from the vertical x3-axis act discontinuously, the
scroll ring generically drifts along the vertical axis. Additional slow horizontal
drift occurs only at resonances, that is, when the rotation frequency w, is a
multiple of the external frequency. Indeed, if rotations around axes different from
the x3-axis act discontinuously, the pattern cannot reach these rotated states in
a small amount of time regardless how close the rotation is to the identity. Hence,
the filament of the scroll ring is restricted to the vertical axis. Mathematically,
we have to remove the corresponding rotations from the symmetry group SE(3)
and obtain a lower-dimensional center manifold which i1s smooth and attracting.
Note that, in function space, the patterns rotated around an axis different from
the vertical axis are then not close to the center manifold.

9. Conclusions

In this article, we developed an equivariant center-manifold reduction near rela-
tive periodic orbits. The underlying symmetry group G is possibly non-compact
and may act discontinuously. The flow on the center manifold is identified with
an equivariant vector field of skew-product type on the product G x Vi x IR
under an equivalence relation involving the spatio-temporal symmetries of the
relative periodic orbit. Here, Vi is some finite-dimensional vector space.

In particular, using only a priori known symmetries of patterns arising in
chemical or physical systems, we can systematically derive equations-of-motion
which govern the dynamical behavior and bifurcations of patterns.

Finally, we applied this method to several kinds of waves which were ob-
served in experiments and numerical simulations. We assumed that the under-
lying chemical systems can be modeled by reaction-diffusion systems posed on
unbounded domains such as the plane or the three-dimensional space. Our ap-
proach then applies, and the arising phenomena such as meandering and drifting
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of spiral waves can be explained using the Euclidean symmetry group as sug-
gested first by Barkley.

It remains to discuss the validity of the aforementioned modeling assump-
tion. There are three aspects involved. Firstly, neither experiments nor numerical
simulations are posed on unbounded domains. However, both suggest that the
boundaries are actually not important at all. The indications are that spiral
waves behave dynamically as if there were no boundaries. Secondly, consid-
ering symmetry as a modeling parameter, 1t seems impossible to explain, for
instance, drifting by using compact symmetries induced by bounded domains.
Taking translations into account, we have to consider unbounded domains as a
consequence of the FKuclidean symmetry group. Thirdly, mathematically, the im-
plications are that in order to apply the center-manifold reduction on unbounded
domains, the underlying spirals must be localized. However, the spirals observed
in experiments appear to be non-localized. This seems to be the only objection
as to whether the results presented here actually apply to real-life chemical sys-
tems. Note that the predictions from center-manifold reduction are in excellent
agreement with experiments and numerical simulations.

Clearly, spirals observed in experiments arise as parts of much more compli-
cated patterns; they never occur as single patterns but only together with other
spiral waves, target patterns, and travelling waves, all of which are not isolated.
From that point-of-view, the analysis presented here 1s only a very small step
towards an understanding of spirals.
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