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Abstract

We study the existence of interfaces between stripe or roll solutions in the Swift-Hohenberg

equation. We prove the existence of two different types of interfaces: corner-like interfaces,

also referred to as knee solutions, and step-like interfaces. The analysis relies upon a spatial

dynamics formulation of the existence problem and an equivariant center manifold reduction. In

this setting, the interfaces are found as heteroclinic and homoclinic orbits of a reduced system of

ODEs.
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1 Introduction

This paper is concerned with the existence of two-dimensional solutions in damped-driven pattern-

forming systems. To be specific, we focus on the Swift-Hohenberg equation, which has been proposed

as a prototypical example for pattern forming systems, in areas as diverse as nonlinear optics [15],

Rayleigh-Bénard convection [2], granular media [1], chemical reactions [14], liquid crystals and

solidification; see [4] and references there. Most of those systems exhibit stationary stripe (or roll)

patterns, that is, planar patterns which are independent of x and periodic in y, where x and y are

coordinates in the plane of observation. While the formation of these particular spatially periodic

patterns is well understood close to onset, experimental patterns typically exhibit patches of stripe

patterns with varying wavenumbers and orientations, separated by interfaces and defects. The

present paper is a step towards a more systematic understanding of such two-dimensional patterns

which are close to stripes in large parts of the physical domain.

We consider the Swift-Hohenberg equation

∂tu = −(1 + ∆)2u + εu − u3, (1.1)

in which u depends upon two spatial variables (x, y) ∈ R
2 and time t ≥ 0, and ε is a small real

parameter. Our results immediately carry over to more general pattern forming systems, such as

reaction-diffusion systems, convection models, or Ginzburg-Landau-type models in nonlinear optics;

we will comment on these extensions in the discussion at the end of this paper.

It is well-known that this equation possesses roll solutions

uε,κ(y) = Uε,κ(ky) =
√

4(ε − κ2)/3 cos(ky) + O(|ε − κ2|3/2), k =
√

1 + κ, (1.2)

for small ε ∈ (0, ε0] and κ2 < ε. These are steady one-dimensional periodic solutions of (1.1). We

will focus here on two-dimensional steady solutions of (1.1) that are periodic in y and close to roll

solutions everywhere, that is,

u(x, y) = Uε,κ(k(y + ξ(x))) + v(x, k(y + ξ(x))), (1.3)

where ξ : R → R and v is 2π-periodic in its second argument. We say u is δ-close to Uε,κ if

sup
x∈R

|ξ′(x)| < δ, sup
x∈R

‖v(x, ·)‖H1(0,2π) < δ.

A particularly interesting subclass of such solutions are knee solutions, for which ξ′(x) → ±η∗, as

x → ±∞; see Figure 1.1. We refer to [7, 8] and the references therein for a discussion of these

Figure 1.1: Plot of a roll solution (left), a knee solution (middle), and a step (right).

solutions within the approximation of Swift-Hohenberg dynamics through the Cross-Newell phase
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Figure 1.2: Rolls exist in the shaded region. They are Eckhaus unstable in the regions 2 and 3, and

zigzag unstable in the regions 3 and 4. In region 1, rolls are stable in both one and two dimensions.

diffusion equation. Another subclass of solutions are steps, for which ξ′(x) → η∗, as x → ±∞; see

Figure 1.1. Our main results concern the existence of these two types of solutions.

A crucial role in our analysis is played by the stability properties of rolls. Close to threshold, stability

boundaries of rolls are given by two curves

ε = εeck(κ) = 3κ2 + O(|κ|3), κ = κzz(ε) = − 1

512
ε2 + O(ε3),

such that rolls with ε < εeck(κ) are Eckhaus unstable and rolls with κ < κzz(ε) are zigzag unstable

[6, 3]. We also write κeck for the (positive) inverse of εeck. The Eckhaus instability refers to

longitudinal, one-dimensional perturbations, and the zigzag instability refers to transverse, two-

dimensional perturbations. In the remaining region, where ε ≥ εeck(κ) and κ ≥ κzz(ε), the rolls are

linearly stable [17]; see Figure 1.2.

The existence results in this paper concern the parameter region close to the zigzag instability curve.

They are summarized in the following theorem.

Theorem 1 Assume that ε is sufficiently small. Then for any δ > 0 small, there exists κ∗(ε) <

κzz(ε) such that for any κ ∈ (κ∗(ε), κzz(ε)) the following properties hold.

(i) The Swift-Hohenberg equation (1.1) possesses a pair ±uκ of steady knee solutions of the form

(1.3), δ-close to uε,κ, which are periodic in y with period 2π/k, k =
√

1 + κ, and even in x.

Furthermore,

ξ′κ(x) → ±η∞κ = ±
√

−2µ + O(ε|µ|1/2 + |µ|3/2), as x → ±∞, where µ = κ − κzz(ε).

(ii) In addition, there is an open subset Iκ of R and two one-parameter families {±uκ,ν, ν ∈ Iκ}
of steady steps of the form (1.3), δ-close to uε,κ, which are 2π/k–periodic in y, odd in x, and

for which

ξ′κ,ν(x) → η∞κ,ν = O(|µ|1/2), as x → ±∞, with η∞κ,ν 6= η∞κ .

We point out that near stable rolls, that is, for κzz < κ < κeck, there do not exist two-dimensional

solutions which are δ-close to the roll solutions for some δ(κ) sufficiently small (see the discussion

in Section 4).

3



Outline:

The remainder of this paper is occupied with the proof of Theorem 1. In Section 2, we simplify the

existence problem using an equivariant spatial center-manifold reduction, inspired by the general

approach to almost planar waves developed in [9] for reaction-diffusion systems; see also [10, 11].

In Section 3, we then analyze the reduced system of ordinary differential equations. Knee solutions

and steps are found as reversible heteroclinic and homoclinic connections, respectively. We establish

their existence via transversality arguments. We conclude with a discussion of our results and of

possible extensions in Section 4.

2 Reduction to a spatial center-manifold

We are interested in steady solutions of (1.1) which are periodic in y with period 2π/k, so that they

satisfy the equation

−(1 + ∂xx + k2∂yy)
2u + εu − u3 = 0. (2.1)

Here, we have normalized the period in y to 2π by replacing ky by y. Following the general approach

in [9] we start by rewriting this equation as a first order system in which x is the time-like variable.

This is easily achieved by taking u = (u, u1, u2, u3)
t = (u, ux, uxx, uxxx)t, so that (2.1) becomes

du

dx
= A(k, ε)u + F(u), (2.2)

in which

A(k, ε)u = (u1, u2, u3,−(1 + k2∂yy)
2u − 2(1 + k2∂yy)u2 + εu)t, F(u) = (0, 0, 0,−u3)t.

We regard this system as an infinite dimensional dynamical system in the space of 2π-periodic

functions X := H3
per(0, 2π) × H2

per(0, 2π) × H1
per(0, 2π) × L2(0, 2π).

The rolls Uε,κ in (1.2) are equilibria of this dynamical system, and due to the translation invariance

in y we actually have a line of equilibria

Uξ
ε,κ(·) = (Uε,κ(· + ξ), 0, 0, 0)t, ξ ∈ R,

for k =
√

1 + κ. We focus on solutions of (2.1) for parameter values close to the zigzag instability

curve κ = κzz(ε). We therefore choose (ε∗, κ∗) with κ∗ = κzz(ε∗), and consider (k, ε) in (2.2) with

ε = ε∗ and k =
√

1 + κ close to k∗ =
√

1 + κ∗. For simplicity, we write from now on U∗ instead of

Uε∗,κ∗ and U
ξ
∗ instead of U

ξ
ε∗,κ∗.

We start with the linearization at the equilibrium U∗ = U0
∗
,

A∗ = A(k∗, ε∗) + DF(U∗), (k∗ =
√

1 + κ∗),

which is a closed linear operator in X with domain Y := H4
per(0, 2π) × H3

per(0, 2π) × H2
per(0, 2π) ×

H1
per(0, 2π). The spectral properties of A∗ are determined by the linear stability of rolls, more

precisely by the spectral properties of the linearization of (1.1) at U∗,

L∗ = −(1 + ∂xx + k2
∗
∂yy)

2 + ε∗ − 3U2
∗
.
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This differential operator has coefficients which only depend upon y. Then with Fourier decompo-

sition in x with wavenumbers ℓ we find the family of linear operators

L(ℓ) = −(1 − ℓ2 + k2
∗
∂yy)

2 + ε∗ − 3U2
∗
,

acting in L2(0, 2π) with domain H4
per(0, 2π). According to the spectral analysis in [17], the spectra

of L(ℓ) have the following properties:

(i) the spectrum of L(0) is contained in the open left complex half plane, except for a simple

eigenvalue at the origin with associated eigenvector the derivative of the roll U∗y;

(ii) for any ℓ 6= 0, the spectrum of L(ℓ) is contained in the open left complex half plane;

(iii) the smooth continuation of the simple zero eigenvalue of L(0) for small ℓ 6= 0 is a simple

eigenvalue λ∗(ℓ) of L(ℓ) with expansion λ∗(ℓ) = −c∗ℓ
4 + O(ℓ6) in which c∗ > 0 depends

upon (ε∗, κ∗). We denote by v∗(ℓ) the associated eigenvectors, L(ℓ)v∗(ℓ) = λ∗(ℓ)v∗(ℓ), where

v∗(0) = U∗y. We refer to λ = λ∗(ℓ) as linear dispersion relation.

We summarize the properties of A∗ in the next lemma.

Lemma 2.1 Assume (ε∗, κ∗) is such that κ∗ = κzz(ε∗). Then the linear operator A∗ acting in X

with domain Y has the following properties.

(i) The spectrum of A∗ is purely point spectrum,

spec(A∗) = {0} ∪ σ1(A∗), with σ1(A∗) ⊂ {ν ∈ C ; |Re ν| ≥ a∗, | Im ν| ≤ b∗},

for some positive constants a∗ and b∗.

(ii) The zero eigenvalue of A∗ is algebraically quadruple and the four-dimensional generalized ker-

nel of A∗ is spanned by the vectors

e0 =




U∗y

0

0

0


 , e1 =




0

U∗y

0

0


 , e2 =




−1
2v′′

∗
(0)

0

U∗y

0


 , e3 =




0

−1
2v′′

∗
(0)

0

U∗y


 , (2.3)

in which v′′
∗
(ℓ) is the second derivative with respect to ℓ of the eigenvectors v∗(ℓ) of L(ℓ), and

A∗e0 = 0, A∗ej = ej−1, j = 1, 2, 3.

(iii) The spectral projection P : X → X onto the generalized kernel of A∗ is given by

Pu = 〈u, ead
0 〉e0 + 〈u, ead

1 〉e1 + 〈u, ead
2 〉e2 + 〈u, ead

3 〉e3,

in which 〈·, ·〉 denotes the scalar product in (L2(0, 2π))4, and {ead
0 , ead

1 , ead
2 , ead

3 } is a dual basis

with 〈ej , e
ad
k 〉 = δjk, for 0 ≤ j, k ≤ 3, and Aad

∗
ead

3 = 0, Aad
∗

ej = ej+1, for j = 0, 1, 2, where

Aad
∗

is the L2-adjoint of A∗. Furthermore, ead
0 = (V00, 0, V02, 0)

t, ead
1 = (0, V11, 0, V13)

t, with

Vij smooth odd 2π-periodic functions, and

ead
2 =

1

c∗(U∗y, U∗y)




1
2L′′(0)U∗y

0

U∗y

0


 , ead

3 =
1

c∗(U∗y, U∗y)




0
1
2L′′(0)U∗y

0

U∗y


 , (2.4)
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where (·, ·) denotes the scalar product in L2(0, 2π), c∗ is the positive constant in the expansion

of λ∗(ℓ), and L′′(ℓ) the second order derivative with respect to ℓ of L(ℓ).

Proof. (i) Since Y is compactly embedded in X, A∗ has compact resolvent, so that its spectrum

is purely point spectrum. For small (ε∗, κ∗), A∗ is a small bounded perturbation of the operator

with constant coefficients A(k∗, ε∗) with spectrum spec(A(k∗, ε∗)) = {±
√

k2
∗
n2 − 1 ±√

ε∗, n ∈ Z}.
A standard perturbation argument then implies that

spec(A∗) ⊂ iR ∪ {ν ∈ C ; |Re ν| ≥ a∗, | Im ν| ≤ b∗},

for some positive constants a∗ and b∗.

The eigenvalue problem A∗v = νv is equivalent to the equality

−(1 + k2
∗
∂yy)

2v − 2(1 + k2
∗
∂yy)ν

2v + ε∗v − 3U2
∗
v = ν4v.

Upon comparing this equality with the formula for L(ℓ) we conclude that ν = iℓ is an eigenvalue

of A∗ if and only if 0 is an eigenvalue of the operator L(ℓ). Then the properties (i) and (ii) of

L(ℓ) imply that 0 is the only eigenvalue of A∗ on the imaginary axis. In addition, we find that 0 is

geometrically simple with associated eigenvector e0 as in (2.3).

(ii) The algebraic multiplicity of the zero eigenvalue of A∗ turns out to be equal to the order of the

root ℓ = 0 of λ∗(ℓ) = −c∗ℓ
4 +O(ℓ6) = 0. First, it is easy to check that e1 given in (2.3) is a principal

vector in the generalized kernel of A∗, A∗e1 = e0. Next, notice that

A∗u =

(
u1, u2, u3,L(0)u − 1

2
L′′(0)u2

)t

,

and that differentiating the equality L(ℓ)v∗(ℓ) = λ∗(ℓ)v∗(ℓ) twice with respect to ℓ gives

L′′(0)v∗(0) + L(0)v′′
∗
(0) = 0.

Together with the formula for e1 these equalities imply that A∗e2 = e1. In addition, A∗e3 = e2, so

that the algebraic multiplicity of 0 is at least four. Now, the fourth order derivative of L(ℓ)v∗(ℓ) =

λ∗(ℓ)v∗(ℓ) with respect to ℓ gives

L(4)(0)v∗(0) + 6L′′(0)v′′
∗
(0) + L(0)v

(4)
∗ (0) = −4! c∗v∗(0).

Since c∗ 6= 0 this equality implies that there is no solution u ∈ X of A∗u = e3. Consequently,

the generalized kernel of A∗ is four-dimensional, spanned by {e0, e1, e2, e3}, so that 0 has algebraic

multiplicity four, just as the order of the root ℓ = 0 of λ∗(ℓ) = 0.

(iii) We construct the spectral projection P with the help of the L2-adjoint of A∗ given by

Aad
∗

u =

(
L(0)u3, u, u1 −

1

2
L′′(0)u3, u2

)t

.

Then the first part in (iii) follows from standard results on adjoint operators, and a direct calculation

shows that ead
2 and ead

3 given in (2.4) have the required properties.

Remark 2.2 For the shifted equilibria U
ξ
∗, the linearization gives the shifted linear operators Aξ

∗ =

A(k∗, ε∗)+DF(Uξ
∗). Clearly, these operators have the same properties as A∗, and we then introduce

the shifted vectors e
ξ
j , e

ad,ξ
j , the shifted adjoints Aad,ξ

∗ , and the shifted spectral projections P ξ.
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We now go back to the system (2.2) in which we take ε = ε∗ and k2 = k2
∗
+µ, with µ small. Following

the general approach to almost planar waves in [9, 11], we set

u = Uξ
∗
+ η1e

ξ
1 + η2e

ξ
2 + η3e

ξ
3 + wξ, with P ξwξ = Pw = 0, (2.5)

where ξ, η1, η2, and η3 are real-valued functions depending upon x. By substituting (2.5) into (2.2),

we find

ξxe0 + η1xe1 + η2xe2 + η3xe3 + ξxη1e1y + ξxη2e2y + ξxη3e3y + wx + ξxwy (2.6)

= A∗(η1e1 + η2e2 + η3e3 + w) + (A(k, ε∗) −A(k∗, ε∗))(U∗ + η2e2 + w) + G(η2,w),

where

G(η2,w) = F(U∗ + η2e2 + w) −F(U∗) − DF(U∗)(η2e2 + w).

We obtain a system for the variables ξ, η1, η2, η3, and w, by taking the scalar product of (2.6) with

ead
0 , ead

1 , ead
2 , ead

3 , successively, and then projecting with id − P . We use the explicit formulas for

ejy, ead
k in Lemma 2.1, and the fact that the components of all these vectors are odd functions, so

that, in particular, the scalar products 〈ejy, e
ad
k 〉 vanish. Then after straightforward calculations we

find a scalar equation for ξ,

ξx = (1 − 〈w, ead
0y〉)−1η1, (2.7)

and the system

η1x = η2 + O(|η1|2 + |η2|2 + ‖w‖2
Y + |µ|)

η2x = η3 + O(|η1|2 + ‖w‖2
X )

η3x = O(|η1|2 + |η2|2 + ‖w‖2
Y + |µ|)

wx = A∗w + O(|η1|2 + |η2|2 + |η3|2 + ‖w‖2
Y + |µ|) (2.8)

in which we have replaced ξx in the right hand sides of (2.8) from (2.7). In particular, the equation

(2.7) decouples, so that we first solve (2.8), and afterwards determine ξ from (2.7). The precise form

of the nonlinear terms in this system is not essential at this point, we shall discuss it more detail in

the next section.

The system (2.8) is a quasilinear system in the Hilbert space R
3 ×Xh, where Xh = (id−P )X, with

smooth nonlinear vector field defined on R
3 × Yh, where Yh = (id − P )Y . At µ = 0 its linearization

about zero decomposes into the direct sum of a matrix on R
3 having a triple zero eigenvalue and the

restriction of A∗ to Xh. According to Lemma 2.1, the latter operator is hyperbolic, so that we can

apply the center manifold theorem for quasilinear systems in [16, Theorem 1], and conclude that

the small bounded solutions of (2.8) for µ small are of the form

(η1, η2, η3,w) = (η1, η2, η3,h(η1, η2, η3;µ)), h(η1, η2, η3;µ) = O(|η1|2 + |η2|2 + |η3|2 + |µ|),

in which the reduction function h : U → Yh is of class Ck, for an arbitrary positive integer k, on

a neighborhood U of the origin in R
4. As a consequence, we can determine the small bounded

solutions of (2.8) by solving the system of ODEs

η1x = η2 + f1(η1, η2, η3;µ)

η2x = η3 + f2(η1, η2, η3;µ)

η3x = f3(η1, η2, η3;µ) (2.9)
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obtained by substituting w = h(η1, η2, η3;µ) into (2.8), with fj(η1, η2, η3;µ) = O(|η1|2 + |η2|2 +

|η3|4 + |µ|), j = 1, 2, 3. Notice also that the equation (2.7) now becomes

ξx = η1(1 + f0(η1, η2, η3;µ)), f0(η1, η2, η3;µ) = O(|η1|2 + |η2|2 + |η3|2 + |µ|). (2.10)

3 The reduced equations

In this section, we discuss the reduced system (2.9). More precisely, we focus on the existence of

heteroclinic and homoclinic orbits of (2.9), which correspond to knees and steps, respectively, for the

Swift-Hohenberg equation. The result in Theorem 1 is a consequence of the following proposition.

Proposition 3.1 Assume ε∗ is sufficiently small. There exists µ∗ > 0 such that for any µ ∈ (−µ∗, 0)

the following properties hold.

(i) The reduced system (2.9) possesses a pair of heteroclinic orbits ±(ηµ
1 , ηµ

2 , ηµ
3 ) with

ηµ
1 = ηµ

∗
+ O(|µ|3/2) → ± ηµ

∞
, as x → ±∞, (3.1)

ηµ
2 = ηµ

∗x + O(|µ|2) → 0, as x → ±∞, ηµ
3 = ηµ

∗xx + O(|µ|5/2) → 0, as x → ±∞,

in which

ηµ
∗
(x) =

√
−α∗µ

β∗

tanh

(√
−α∗µ

2
x

)
, α∗ =

2

c∗
(1 + O(ε∗)) , β∗ =

1

c∗
(1 + O(ε∗)) .

Moreover, ηµ
1 , ηµ

3 are odd and ηµ
2 is even in x.

(ii) There exist open subsets Iµ and Oµ of R, such that the reduced system (2.9) possesses a pair

of one-parameter families of homoclinic orbits {±(ηµ,ν
1 , ηµ,ν

2 , ηµ,ν
3 ), ν ∈ Iµ}, with

(ηµ,ν
1 , ηµ,ν

2 , ηµ,ν
3 ) → (ηµ,ν

∞
, 0, 0), as x → ±∞, ηµ,ν

∞
= O(|µ|1/2).

Here ηµ,ν
∞ ∈ Oµ and ηµ,ν

∞ 6= ηµ
∞, ηµ

∞ being the constant in (3.1). Furthermore, ηµ
1 , ηµ

3 are even

and ηµ
2 is odd in x, and the map ν ∈ Iµ 7→ ηµ,ν

∞ ∈ Oµ is one-to-one and onto.

Proof. A standard normal form transformation allows to change the variables η1, η2, and η3, such

that the equations (2.9), (2.10) become

η1x = η2, η2x = η3, η3x = f(η1, η2, η3;µ), (3.2)

with f(η1, η2, η3;µ) = O(|η1|2 + |η2|2 + |η3|2 + |µ|), and

ξx = η1. (3.3)

Here, we have used the same notation for the variables, for simplicity. Our purpose is to show that

(3.2) possesses heteroclinic and homoclinic orbits for sufficiently small µ < 0.

We claim that (3.2) has a line of equilibria (η1, 0, 0) near the origin, for any µ. In order to see this, we

go back to the Swift-Hohenberg equation (1.1) and notice that for any ε ∈ (0, ε0] in addition to the x-

independent roll solutions uε,κ(y) in (1.2) the equation (1.1) has rotated rolls uε,κ(sin(ϕ)x+cos(ϕ)y)
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for angles ϕ ∈ [−π/2, π/2), due to rotation invariance. These rotated rolls are periodic in y with

periods 2π/(k cos(ϕ)), and provide us with a family of solutions of the dynamical system (2.2),

uϕ = (uϕ, ∂x(uϕ), ∂xx(uϕ), ∂xxx(uϕ)) , uϕ = Uε,κ(k tanh(ϕ)x + y), k =
√

1 + κ cos(ϕ),

for any pair (k, ε). With the Ansatz (2.5) we obtain a family of solutions to (2.7)–(2.8) with

ξx = k tanh(ϕ). After the center manifold reduction and the normal form transformation we find

the line of equilibria (η1, 0, 0) = (k tanh(ϕ), 0, 0), for small ϕ, of (3.2), which proves the claim.

Next, the reflection invariances x 7→ −x and y 7→ −y of the equation (1.1), together with the parity

properties of Uε,κ and ej, imply that the vector field in (3.2) commutes with the symmetry S defined

by

S(η1, η2, η3) = (−η1,−η2,−η3),

and that it has a reversibility symmetry R, i.e., it anti-commutes with

R(η1, η2, η3) = (−η1, η2,−η3).

In particular, these properties imply that the truncation at order 3 of the system (3.2) is of the form

η1x = η2, η2x = η3, η3x = α∗µη2 + β1η
2
1η2 + β2η

3
2 + β3η1η2η3 + β4η2η

2
3 . (3.4)

The important coefficients in this system are α∗ and β1 which are given by the formulas

α∗ =
2

c∗
(1 + O(ε∗)) > 0, β1 =

3

c∗
(1 + O(ε∗)) > 0,

for sufficiently small ε∗. Here c∗ is the positive coefficient in the expansion of the eigenvalue λ∗(ℓ).

Indeed, going back the reduction procedure, we find that α∗ is the coefficient of the linear term in µ

in the scalar product 〈(A(k, ε∗)−A(k∗, ε∗))e2, e
ad
3 〉 (with k2 = k2

∗
+ µ). Using the explicit formulas

in Lemma 2.1 and the expansion (1.2) we obtain the expression for α∗ above. Next, for the second

coefficient we find β1 = 〈h12, ∂y(e
ad
3 )〉, where h12 ∈ Yh is the coefficient of η1η2 in the expansion of

the reduction function h. In order to compute h12 we replace w by the expansion of h(η1, η2, η3; 0)

in the last equation in (2.8) for µ = 0, and then substitute the derivatives ηjx from (3.4). Collecting

the quadratic terms in the resulting expression we find that h12 is the unique solution in Yh of the

equation A∗h12 = e2y + 2h11, where h11 is the unique solution in Yh of A∗h11 = e1y. After lengthy

calculations we obtain the formula for β1 above.

We now introduce the scaling

x̃ = (α∗|µ|)1/2x, η1 =
(α∗|µ|)1/2

β
1/2
∗

η̃1, η2 =
α∗|µ|
β

1/2
∗

η̃2, η3 =
(α∗|µ|)3/2

β
1/2
∗

η̃3,

where β∗ = β1/3, and find the scaled system

η1x = η2, η2x = η3, η3x = sign(µ)η2 + 3η2
1η2 + O(|µ|), (3.5)

in which we have dropped the tilde, for notational simplicity. At zeroth order in µ, in the case

sign(µ) = −1, this system has a pair of heteroclinic orbits with

η1(x) = ± tanh

(
x√
2

)
. (3.6)
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These heteroclinic orbits are embedded in two one-parameter families of homoclinic orbits

±(ηq
1(x), ηq

2(x), ηq
3(x)) → ±(q, 0, 0), as x → ±∞, for

1√
3

< q <
2√
3
, q 6= 1.

To end the proof we show that these heteroclinic and homoclinic orbits persist for small µ < 0. Due

to the symmetry S, we can restrict to the orbits with the sign + in the above formulas.

Recall that the reduced system (3.2) has a line of equilibria (η1, 0, 0) near the origin. After the

scaling, we then find a line of equilibria (q, 0, 0) to (3.5) for |q| ≤ q∗, q∗ >> 1. When µ = 0 the

linearization about the equilibrium (q, 0, 0) has the eigenvalues 0, ±
√

3q2 − 1, so that equilibria

with q > 1/
√

3 have a one-dimensional unstable manifold. For small µ, this property still holds for

equilibria with qµ < q ≤ q∗, for some qµ < 1. In order to show the persistence of the heteroclinic

orbit, we consider the surface Uµ which is the union of the unstable manifolds of the equilibria

(q, 0, 0), qµ < q ≤ q∗. In view of the reversibility R of the system, it suffices to show that the

surface Uµ and the line L2 = {(0, η2, 0), η2 ∈ R}, which is invariant under R, intersect for small µ.

Indeed, by taking the intersection point as initial data in (3.5) we obtain an orbit which converges

backwards in time x to an equilibrium (q, 0, 0), by construction, and which converges forward in

time x to R(q, 0, 0) = (−q, 0, 0), due to reversibility.

The surface Uµ and the line L2 intersect for small µ when they intersect transversely at µ = 0.

When µ = 0, the intersection point is P0 = (0, 1/
√

2, 0), as it belongs to the heteroclinic orbit (3.6).

We compute the normal n0 to U0 at this point and show that the scalar product 〈n0, (0, 1, 0)〉 does

not vanish, which implies that U0 and L2 intersect transversely. Using the first integrals

A = η3 + η1 − η3
1 , B = η2

2 + η2
1 − 1

2
η4
1 − 2Aη1,

we parameterize U0 by q, which gives the line of equilibria (q, 0, 0), and p = η1. We obtain the

parametric equations

η1 = p, η2 =

√
−p2 +

1

2
p4 + 2p(q − q3) − q2 +

3

2
q4, η3 = −p + p3 + q − q3. (3.7)

The intersection point P0 is found for (p, q) = (0, 1), and a straightforward calculation gives n0 =

(−2
√

2, 2, 2
√

2), so that 〈n0, (0, 1, 0)〉 6= 0. This shows that U0 and L2 intersect transversely, and

proves the existence of the heteroclinic orbit in part (i).

We use a similar transversality argument to prove the persistence of the family of homoclinic orbits

in which we replace the surface Uµ by the unstable manifold to a given equilibrium and the line L2

by the plane P2 = {(η1, 0, η3), η1, η3 ∈ R}, which is invariant under the second reversibility SR. At

µ = 0, the unstable manifold to an equilibrium (q, 0, 0) is given by the parametric equations (3.7)

and it intersects transversely the plane P2 when

−p + p3 + q − q3 6= 0,

at the intersection point where

−p2 +
1

2
p4 + 2p(q − q3) − q2 +

3

2
q4 = 0.

A straightforward calculation shows that these conditions hold for 1/
√

3 < q < 2
√

3 provided q 6= 1.

This proves the second part of the proposition.
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4 Discussion

We showed existence of solutions to the two-dimensional Swift-Hohenberg equation which are spa-

tially periodic in one direction and asymptotic to roll solutions in the other direction. These solu-

tions are parameterized either by the wavenumber in the horizontal direction, ky, or by the effective

wavenumber of the rolls in the far field, keff , both close to the wavenumber of the zigzag instability,

so that the wavenumber of the rolls in the far field lies in the zigzag-stable regime. In the following,

we comment on some generalizations and possible extensions of our result.

Large amplitude and amplitude equations. The proofs in the present paper immediately gen-

eralize to more general dissipative systems, for instance to reaction-diffusion systems or to problems

in convection. Technically, we only require the existence of spatial center-manifolds. The results

also generalize to not necessarily small-amplitude roll solutions, which possess a zigzag-type stabil-

ity boundary. For instance, one can consider a reaction-diffusion system ut = D∆u + f(u) on R
2,

which possesses y-periodic stripe solutions, such as the Gray-Scott or Gierer-Meinhardt models; see

[12], or [5, 13] for a recent account. A formal expansion of solutions close to a zigzag instability,

with periodic boundary conditions in y and long-wavelength modulations in x typically yields a

fourth-order equation of Cahn-Hillard type,

ξt = (−ξxxx + σ1ξx + σ2ξ
3
x)x,

where ξ(t, x) is the location of the rolls as in (1.3). The sign of σ1 is determined by the period in y:

σ1 < 0 indicates that the vertical stripe pattern is zigzag unstable. The sign of σ2 can be understood

in terms of a linear stability analysis of rotated rolls. Consider therefore a solution with ξx = α,

which corresponds to a roll solution rotated by an angle θ = arctan α. Since the y-period now is

fixed, this solution possesses a wavenumber k(θ) = k∗/ cos θ ∼ k∗(1 + (α2/2)). The linearization of

the Cahn-Hillard approximation at this rotated roll therefore becomes

ξt = −ξxxxx + (σ1 + 3σ2α
2)ξxx = −ξxxxx + (σ1 + 6

σ2

k∗
(k − k∗))ξxx.

In particular, the sign of σ2 distinguishes two types of zigzag instabilities: for σ2 > 0, the instability

is supercritical and wavenumbers larger than κzz are stable (as in the Swift-Hohenberg equation),

and for σ2 < 0, the instability is subcritical and wavenumbers smaller than κzz are stable. We

use the terms sub- and supercritical in the sense of local pitchfork bifurcations, where supercritical

refers to existence of nontrival branches in the regime where the trivial pattern is unstable, and

linear instability is typically saturated by nonlinearity; subcritical branches exist where the primary

branch is stable and nonlinearity amplifies the linear instability. We are not aware of an example

for this latter, subcritical case. In the supercritical case, the knee solution corresponds to the kink

in the Cahn-Hillard appoximation. In the subcritical case, we would find localized pulse solutions

for ξx, which correspond to dislocated vertical rolls.

More parameters. Adding an additional parameter, one can study the emergence of this sideband

instability in a family of wavetrains. As a specific example, one can think of a family of rolls with

k ∼ 0, which limit on a localized stripe at k = 0. The stripe itself, ”homoclinic” in the y-direction,

may undergo a transverse sideband instability upon increasing a system parameter µ above zero.
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An example for such an onset has been observed experimentally and shown to exist analytically;

see [13]. Analytically, one finds the periodic rolls near the localized stripe as reversible periodic

solutions near a homoclinic orbit in the y-dynamics [19]. The linearization at the pulse possesses

an algebraically simple zero eigenvalue which continues to an algebraically simple eigenvalue for

the periodic roll patterns. For non-zero x-Fourier modes, eiℓx, this eigenvalue moves along a curve

λ(ℓ2) ∼ α(µ, k)ℓ2, where we can assume that α(µ, 0) = µ. An analysis as in [18, Theorem 5.5] shows

that typically α(µ, k) = α(µ, 0)+ (Me−4πν/k + ok(1)), where ν is the spatial decay rate of the pulse.

For M < 0, µ > 0, the band of zigzag-unstable wavenumbers is approximately given by

|k| < kzz(µ) =
−4πν

log |µ/M | .

One can now investigate the existence of knees close to k ∼ 0 following our approach. While our

analysis applies to the case k = 0, there do not exist knees in localized stripes: the coefficient of the

cubic nonlinearity vanishes for k = 0. To see this, note that the rotated localized stripe, unlike the

periodic stripes, possesses the same zero wavenumber and therefore the linearization in the constant

ξx ≡ η∗ does not change the diffusion coefficient. For k ∼ 0, one expects an accompanying sideband

instability with a small cubic coefficient, so that one would find knees at a finite wavenumber.

Non-existence. We focussed here on parameter values close to the zigzag instability curve κzz(ε),

but the same approach can be used in the other parameter regions, as well; see Figure 1.2. In

particular, in region 1 where rolls are stable in both one and two-dimensions the linear dispersion

relation is quadratic λ∗(ℓ) = −c∗ℓ
2 + O(ℓ4), c∗ > 0, so that the zero eigenvalue of the linearization

A∗ is now double. Then, instead of a four-dimensional center manifold, we find a two-dimensional

manifold in the directions ξ and η1. This manifold is filled with equilibria corresponding to translated

and rotated rolls, which shows that there are no solutions of the form (1.3) in this case.

Stability. We expect that the knee solutions from Theorem 1 are asymptotically stable, steps

would be unstable. A first indication of this is the Cahn-Hillard approximation, where knees are

minimizers of the bistable energy. A perturbation analysis taking into account higher-order terms

and modulations in the direction of y will be the subject of future work.
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