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EXPONENTIAL AVERAGING FOR HAMILTONIAN EVOLUTION
EQUATIONS

KARSTEN MATTHIES AND ARND SCHEEL

Abstract. We derive estimates on the magnitude of non-adiabatic interac-

tion between a Hamiltonian partial differential equation and a high-frequency
nonlinear oscillator. Assuming spatial analyticity of the initial conditions,

we show that the dynamics can be transformed to the uncoupled dynamics
of an infinite-dimensional Hamiltonian system and an anharmonic oscillator,
up to coupling terms which are exponentially small in a certain power of the
frequency of the oscillator. The result is derived from an abstract averaging
theorem for infinite-dimensional analytic evolution equations in Gevrey spaces.

Refining upon a similar result by Neishtadt for analytic ordinary differential
equations, the temporal estimate crucially depends on the spatial regularity of
the initial condition. The result shows to which extent the strong resonances

between rapid forcing and highly oscillatory spatial modes can be suppressed
by the choice of sufficiently smooth initial data. An application is provided

by a system of Nonlinear Schrödinger Equations, coupled to a rapidly forc-

ing single mode, representing small-scale oscillations. We provide an example
showing that the estimates for partial differential equations we derive here are

necessarily different to those in the context of ordinary differential equations.

1. Introduction

Resonances and interaction between nonlinear coupled oscillators have been a
major driving force in the development of modern dynamical systems theory. Ba-
sically, at least two lines of investigation can be traced back since Poincaré’s work
on celestial mechanics. The first strategy emphasizes the role of interaction and
tries to describe its effects. This leads to the development of normal form theory
and the study of homoclinic bifurcations. On the other side, weak resonances can
often be estimated to have very limited effects.

A most extreme case of coupling occurs already in Poincaré’s original work on
celestial mechanics, where a rapid oscillation with frequency Ω/ε is coupled to a
slow motion. To which extent this coupling actually leads to dramatic instabili-
ties of regular motion, still remains a largely unsolved question, today. A good
approximation for the dynamics of a rapidly forced system can be found by aver-
aging the vector field over one period of the oscillation. Better approximations to
the actual slow motion of the system can be obtained by higher order averaging,
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expanding as a series in the period of the forcing. Even for analytic vector fields,
these series expansions typically do not converge. Whereas the actual implications
of the non-convergence still miss a general description, upper estimates on the ef-
fect, following the second line of investigation described above, have been derived
in several contexts, first by Nekhoroshev, and, in a different spirit, by Neishtadt;
see e.g. [LoMe88]. Neishtadt found a transformation converting a rapidly forced
ordinary differential equation

d
dt
y = f(y,

t

ε
), f(y, τ) = f(y, τ + 1)

into an autonomous equation
d
dt
ỹ = f̃(ỹ) + r(ỹ,

t

ε
),

up to a remainder term r that he showed to be exponentially small in the forcing
frequency 1/ε

|r(ỹ, τ)| ≤ C exp(−c/ε).
The central argument relies on analyticity of the vector field f . The transformations
respect certain structures of the vector field. For example, whenever the vector
field is Hamiltonian, the transformation can be chosen to be canonical, that is, to
preserve the symplectic structure.

Here, our main concern are partial differential equations (PDEs). As a first,
simplest example, we may think of the nonlinear heat equation

∂tu = ∂xxu+ f(u,
t

ε
),

with periodic boundary conditions on [0, 1], say. Trying to apply Neishtadt’s av-
eraging procedure, we realize that partial derivatives not even define a continuous
vector field on any reasonable Banach space, whereas Neishtadt’s results require
analyticity of the vector field. However, the difficulty is generated by spatially
highly oscillatory Fourier modes, which diffusion is supposed to average out after
a short initial transient. In [Mat01], the first author exploited this smoothing ef-
fect to prove a first averaging theorem for dissipative partial differential equations.
Surprisingly enough, the estimate for the remainder seems to be worse then in the
ODE context, no better then

|r(y, τ)| ≤ C exp(−c/ε1/3).

Here, only the nonlinearity f has to be analytic. A lower estimate, which would
show that infinite-dimensional dissipative equations are more sensitive to fast peri-
odic forcing, as exhibited by the exponent 1/3, is not available.

Conservative wave systems provide a variety of examples for partial differen-
tial equations with interactions between spatio-temporal patterns on many scales.
The model equations are mostly Hamiltonian partial differential equations, sim-
ple prominent examples being the Nonlinear Schrödinger Equation, the Korteweg-
deVries family, and semilinear wave equations. Oscillations naturally appear in
Hamiltonian systems as simplest form of stable motion. In turn, the starting point
for an analysis of conservative wave systems typically are plane wave solutions
exp(i(kx− ω(k)t)). Quite often, the frequency ω tends to infinity when the spatial
period 2π/k goes to zero. The interaction between long-wavelength, soliton-like
structures and small-scale plane waves then is one typical example of the coupling
between slow motion and rapid oscillations in wave systems.
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As a particular example, we think of a Nonlinear Schrödinger Equation,

i∂tu = ∂xxu+ uf(|u|2),

describing the slow motion of solitons, coupled to a fast one-degree-of freedom,
anharmonic oscillator, representing weakly nonlinear, small-scale structures. With
the idealization of representing small-scale structures by just one degree of free-
dom, we are able to deduce, as a typical consequence of our main theorems, that
there is a change of coordinates which decouples the slow motion in the Nonlinear
Schrödinger Equation from the rapid oscillations — up to remainder terms which
are exponentially small in the forcing frequency; see section 4.

This particular case is derived from a much more general averaging result on
abstract Hamiltonian partial differential equations, coupled to an anharmonic one-
degree-of-freedom Hamiltonian oscillator, with large minimal frequency. Theorem 2
shows that for spatially regular initial conditions, the coupling can be averaged
up to a remainder which is again exponentially small in the minimal frequency of
the oscillation. The theorem is a special case of an even more general result on
abstract evolution equations, posed on Banach spaces, which “respect” high spa-
tial regularity; Theorem 1. In particular, we show that the results from [Mat01]
for dissipative PDEs can be extended to certain conservative equations. Moreover,
improving upon the corresponding results for dissipative systems, we give exam-
ples which show that the estimates, here, are necessarily different from Neishtadt’s
estimates.

Technically, Galerkin-type approximations are used to approximate the infinite-
dimensional PDE by an ordinary differential equation. Normal form transforma-
tions are then performed just like in Neishtadt’s original work, tracking the norms
of the error terms produced by the transformation. Careful coupling between the
number of Galerkin modes, the number of averaging steps, and the frequency of the
rapid oscillations then allows us to derive exponential estimates on the remainder
term.

The results are different from [Mat01] in that the assumption on a temporally
regularizing effect of the evolution equation is replaced by assuming sufficiently
regular initial conditions. In particular, spatial regularity suppresses high Fourier
modes, which would lead to arbitrarily high oscillatory motion in the Hamiltonian
PDE, generating strong resonances with the rapid forcing.

Admittedly, our results are only a small step towards an estimate on the inter-
action between small-scale and large-scale structures in conservative wave-systems,
where on both scales typically infinitely many frequencies, and not only one fre-
quency on the small scale, interact. Still, they give a first indication how Neishtadt’s
estimates for ordinary differential equations have to be combined with spatial reg-
ularity estimates in order to average spatio-temporal dynamics.

Outline: In Section 2, we introduce basic notation and function spaces and state
our main results on exponential averaging. In Section 3, we prove the main theo-
rems in the abstract setup. An example is provided in Section 4 by the nonlinear
Schrödinger equation. Finally, in Section 5, we construct an example providing
lower estimates.
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2. Exponential Averaging — Main Results

We state our main results on exponential averaging of abstract, infinite-dimen-
sional evolution equations. In Section 2.1, we introduce notation used throughout
and state our first main theorem. In Section 2.2, we specialize to a class of Hamil-
tonian evolution equations and state our second main theorem on exponential av-
eraging. We conclude the section with a discussion of the results, drawbacks, and
possible extensions; Section 2.3.

2.1. Averaging abstract evolution equation. Our first result is concerned with
an abstract evolution equation coupled to a rapidly rotating phase. Let X be a real
Banach space and let A be a closed, densely defined operator, possibly unbounded,
with domain D(A). Denote by S1 = R/Z the circle. Consider the evolution equa-
tion on the phase space X × S1

d
dt
u = Au+ F (u) +G(u, ψ; ε)(2.1)

d
dt
ψ =

Ω(u)
ε

+ g(u, ψ; ε),

where u ∈ X, ψ ∈ S1, and ε > 0 denotes a small, real parameter. Smoothness
assumptions on the nonlinear functions F : X → X, G : X × S1 × R, Ω : X → R,
and g : X × S1 × R→ R will be made precise, below.

We first need an assumption which allows us to approximate the infinite-dimen-
sional evolution to (2.1) by ordinary differential equations.
Hypothesis 2.1. (Galerkin approximation) We assume, that there exists a se-
quence of (Galerkin) projections (Pm)m∈N which satisfy the following requirements:

(i) the sequence of projections converges strongly to the identity on X,

lim
m→∞

Pmu = u in X for all u ∈ X;

(ii) the projections Pm commute with A on its domain of definition

PmAu = APmu for all u ∈ D(A);

(iii) the operator A is bounded on RgPm
|APmu|X ≤ m|Pmu|X for all u ∈ X.

A typical example for the projections Pm would be representatives of a spectral
resolution of a self-adjoint operator, for example, when A = i∆ on L2(Rn), then
Rg (Pm) could be chosen to be the space of functions whose Fourier transform has
support in [−m,m]n. We think of sequence Pmu as approximations to u, averaging
spatially small-scale structures.

The next hypothesis ensures rapid rotation of the phase ψ.
Hypothesis 2.2. (Rapid oscillation) We assume that there is c > 0 such that
Ω(u) > c for all u ∈ X.

A further assumption ensures that the perturbations G and g have zero average
over the circle ψ ∈ S1.
Hypothesis 2.3. (Zero mean) We assume that∫

S1
G(u, ψ; ε)dψ = 0,

∫
S1
g(u, ψ; ε)dψ = 0,

for all u ∈ X.
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The spatial regularity, mentioned in the introduction, which compensates for the
possible influence of highly oscillatory motion in the infinite-dimensional evolution
equation, is encoded in spaces with Gevrey regularity. Gevrey spaces have proved
to be useful in the analysis of semilinear parabolic problems, see e.g. [FoTe89,
Pro91, TBDHT96, FeTi98]. Typically, Gevrey spaces are defined via the domain
of definition of the unbounded operator exp(σ|A|p). However, to define |A| might
require some additional work. To allow for a general statement of our result, we as-
sume existence of a closed operator Γσ,p which satisfies the characteristic properties
of the backward semigroup exp(σ|A|p).
Hypothesis 2.4. (Exponential approximation) Assume that there exists a closed,
densely defined, boundedly invertible operator Γσ,p with domain of definition

(2.2) Gσ,p := D(Γσ,p) ⊂ D(A),

such that RgPm ⊂ Gσ,p, Gσ,p(RgPm) = RgPm for all m, and

Γσ,pAu = AΓσ,pu, for all u ∈ RgPm.

We equip the Gevrey spaces Gσ,p with the graph norm

(2.3) |u|Gσ,p = |u|X + |Γσ,pu|X .
We assume that Gevrey-smooth functions in Gσ,p are exponentially well approxi-
mated by the Galerkin projections Pm:

(2.4) |Γ−1
σ,p(1− Pm)| ≤ C0 exp(−c0/mp),

for m-independent constants C0(σ, p) and c0(σ, p).
In most applications, one will choose Γσ,p = exp(σ|A|p) or Γσ,p = exp(σ(−A)p).

The latter choice has been useful in the case of sectorial operators A, in the parabolic
context, see [Mat01]. The first choice will be exploited in the applications to infinite-
dimensional Hamiltonian systems in Section 2.2.

Whenever the Galerkin approximations of an unbounded operator are derived
from some spectral family decomposition, the estimate (2.4) in Hypothesis 2.4 is
satisfied, in general.

For p = 1 and A = ∂xx, x ∈ S1, we may solve the heat equation backwards for
a time interval [−σ, 0] for initial conditions in Gσ,1. In particular, functions in Gσ,1
are therefore analytic.

A more precise measure of analyticity is found in the norm of a suitable extension
to complex numbers. We therefore extend our function spaces to complex Banach
spaces in the standard way.

For a general Banach space Y we denote by

YC = Y × Y
the complexification with norm |(u1, u2)|2YC = |u1|2Y + |u2|2Y . Linear operations are
extended to YC as follows:

(u1, u2) = (u1,−u2)
(a+ bi)(u1, u2) = (au1 − bu2, bu1 + au2)

L(u1, u2) = (Lu1, Lu2) for L ∈ L(Y, Y )
L(u1, u2) = Lu1 + iLu2 for L ∈ L(Y,R).

Complexification of the circle is understood as the quotient of the complexification
of the real line C by real integer translations S1

C
:= C/Z.
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Analyticity properties of functions are quantified by the help of extensions to
the complexified domain. We therefore introduce a short notation. For any open
subset U of a Banach space Y , we define the open complex δ-extension U + δ for
any δ > 0 by

(2.5) U + δ := {y ∈ YC| inf
u∈U
|u− y|Y < δ}.

Smoothness properties of the nonlinearities can now be made precise.
Hypothesis 2.5. (Analyticity of nonlinearities) There is a Gevrey class Y = Gσ,p
with σ, p > 0 and a constant δ > 0 for the size of the complex extension such that
the following properties of the nonlinearities hold.

The nonlinearities are analytic and bounded on bounded subsets when considered
on Gevrey spaces, extended in the complex direction,

F : (Y + δ)→ YC Ω : (YC + δ)→ C,

G : (Y + δ)× (S1 + δ)× R→ YC g : (Y + δ)× (S1 + δ)× R→ C.

In addition, all of the above statements are assumed to hold when the space of
Gevrey regularity Y = Gσ,p is replaced by Y = X.

The main objective, here, is to look for a coordinate transformation which would
decouple fast and slow motion. A complete decoupling would result in an adiabatic
elimination of the rapid phase. We will see in Theorem 1, below, that an almost
complete decoupling is indeed possible for small values of ε. The remainder terms,
coupling in particular the fast phase to the slow motion of u, reflect the non-
adiabatic effects.

We are now ready to state our first main result.
Theorem 1. Assume Hypothesis 2.1 on the existence of Galerkin approximations,
Hypothesis 2.2 for a minimal large oscillation frequency, Hypothesis 2.3 on zero
mean of the non-adiabatic terms, Hypothesis 2.4 on the exponential approximation
and Hypothesis 2.5 on analyticity of the nonlinearities in some Gevrey class Gσ,p+δ.

Then, for any ball of radius R in Gσ,p × S1, there exists ε0 > 0 such that for all
0 < ε < ε0 the following assertions hold.

There exists a near-identity transformation id + εW , defined on the ball BR ×
S1 ⊂ X × S1, which eliminates adiabatically the fast phase, up to an exponentially
small non-adiabatic effect.

More precisely, the transformation is analytic on the ball BR in the complex
extensions (Gσ,p × S1) + δ′ and (X × S1) + δ′ for some δ′ > 0.

In the new variables (ũ, φ), the evolution equation (2.1) reads

d
dt
ũ = Aũ+ F (ũ) + F̃ (ũ; ε) + α(ũ, φ; ε)(2.6)

d
dt
φ =

1
ε

(Ω(ũ) + Ω̃(ũ; ε)) + β(ũ, φ; ε).

The transformed nonlinearities α, β and Ω̃ are bounded on the ball BR in X × S1

and BR respectively, uniformly in 0 < ε < ε0. The adiabatic correction F̃ is even
O(ε

p
p+1 ) on the ball BR in X.

The non-adiabatic interaction terms α and β are exponentially small in ε. More
precisely, there exist constants c1, C1 > 0 such that

(2.7) |α(ũ, φ; ε)|X + |β(ũ, φ; ε)| < C1 exp
(
−c1ε−

p
1+p

)
,
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for all ũ ∈ BR ⊂ Gσ,p, and all φ ∈ S1. The adiabatic corrections F̃ and Ω̃ are small
in Gevrey spaces,

|F̃ (ũ; ε)|Gσ,p ≤ C1ε
p
p+1 , |Ω̃(ũ; ε)| ≤ C1ε,

for ũ ∈ BR ⊂ Gσ,p.

The proof of the theorem will be given in Section 3.1.
Note that until now we did not make any assumptions on well-posedness of the

evolution equation. Indeed, a similar approach has previously been used to average
ill-posed, elliptic problems, when rewritten as an evolution equation; see [Mat00].
Our theorem partially covers this case, too.

On the other hand, comparing solutions to (2.6) with solutions of the adiabatic
approximation, that is, (2.6) with α, β set to zero we need further information on
the (unbounded) linear part A in equation (2.1).

For A sectorial, dissipative, the estimates from Theorem 1 imply that the fast
phase can be adiabatically eliminated, causing an exponentially small error on finite
time intervals; see [Mat01][Theorem 1, Theorem2] for a similar statement. Finite
order estimates over infinite time-intervals have been pursued in [FiVi00, Vis00] for
dissipative evolution equations.

Corollary 1, below, shows that adiabatic elimination causes exponentially small
errors for not necessarily dissipative, strongly continuous prinicipal parts A of the
evolution equation.

Hypothesis 2.6. (Well-posedness) Assume A is the infinitesimal generator of a
strongly continuous semigroup on both, X and Gσ,p.

By smoothness of the nonlinearities, the hypothesis implies that equation (2.1)
possesses unique mild solutions in both X and Gσ,p; see Pazy [Paz83], for example.

We compare solutions of (2.6) with solutions of a truncated equation, with non-
adiabatic terms neglected,

d
dt
u = Au+ F (u) + F̃ (u; ε)(2.8)

d
dt
φ =

1
ε

(Ω(u) + Ω̃(u; ε)).

Corollary 1. (Gronwall estimates) Under the assumptions of Theorem 1, assume
in addition Hypothesis 2.6 is satisfied. Fix R > 0, the maximal amplitude of the
solution. Then for any T > 0 there are constants ε0(T ) > 0, and C ′(T ), c′(T ) > 0
such that the following holds.

Let u(t) be a solution to the truncated equation (2.8) with norm bounded by R
in the Gevrey Gσ,p, for a time interval 0 ≤ t ≤ T <∞.

Then there exists a unique solution (ũ(t), φ(t)) on 0 ≤ t ≤ T to (2.6) with initial
value (u(0), φ0) for any φ0 ∈ S1. Moreover, the solutions are exponentially close in
ε < ε0:

|ũ(t)− u(t)|X ≤ C ′ exp
(
−c′ε−

p
1+p

)
,

for all 0 ≤ t ≤ T .

Proof of Corollary 1. The difference w(t) = ũ(t)− u(t) satisfies the equation

d
dt
w = A(t)w + r(t),
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where

A(t) = A+
∫ 1

0

(∂uF + ∂uF̃ )(τu+ (1− τ)ũ)dτ

and
r(t) = α(ũ(t))− α(u(t)),

where for the sake of notation, we omitted the arguments φ and ε. Since F , F̃ , and
α possess bounded derivatives on bounded sets of Gσ,p, the result is an immediate
consequence of the Gronwall Lemma. Note that the estimate on α, equation (2.7)
is in the X-topology, only, such that the closeness result only holds in this topology,
as well. �

2.2. Averaging Hamiltonian evolution equations. A particularly interesting
setting, where rapidly oscillations naturally occur, are Hamiltonian systems. There
are many examples of Hamiltonian partial differential equations, and, as far as
existence and regularity of solution is concerned, there are fundamental differences
between the examples. We restrict here to a continuous symplectic form, which
basically reduces to the standard symplectic form on finite-dimensional symplectic
subspaces.

Let Z be a possibly infinite-dimensional Hilbert space. Consider the phase space
(Z × Z) × (S1 × R), which we identify with the cotangent bundle of Z × S1. The
standard symplectic form on this cotangent bundle is provided by
(2.9)
ω ((u1, v1, ψ1, I1), (u2, v2, ψ2, I2)) = (u1, v2)Z−(u2, v1)Z+dψ∧dI ((ψ1, I1), (ψ2, I2)) .

Here, (., .)Z denotes the inner product in Z and dψ∧dI is the standard symplectic
form on the cylinder S1 × R with coordinates (ψ, I) , see e.g. [MaRa94].

Partial derivatives in the Hamiltonian equation are represented by a quadratic,
closed form on the phase space.

Let L : D(L) ⊂ Z → Z be a self-adjoint, possibly unbounded linear operator,
with domain dense in Z.

Hypothesis 2.7. (Hamiltonian Galerkin approximation) We assume, that there
exists a sequence of orthogonal (Galerkin) projections (Qm)m∈N which satisfy the
following requirements:

(i) the sequence of projections converges strongly to the identity on Z,

lim
m→∞

Qmu = u in Z for all u ∈ Z;

(ii) the projections Qm commute with L on its domain of definition

QmLu = LQmu for all u ∈ D(L);

(iii) the operator L is bounded on RgQm

|LQmu|Z ≤ m|Qmu|Z for all u ∈ Z;

(iv) on KerQm, we have the resolvent estimate

|(LKerQm)−1|L(Z,Z) ≤ C0/m,

with C0 independent of m.



EXPONENTIAL AVERAGING FOR HAMILTONIAN EVOLUTION EQUATIONS 9

On the phase space, consider a Hamiltonian of the form

(2.10) H(u, v, I, ψ) =
1
2

((Lu, u)Z + (Lv, v)Z)+
Ω(I)
ε

+H0(u, v, I)+H1(u, v, I, ψ),

where I ∈ R, ψ ∈ S1 and u, v ∈ D(L). The nonlinear functions Ω : R → R,
H0 : Z×Z×R→ R, and H1 : Z×Z×R× S1 → R will satisfy certain smoothness
assumptions, which we will specify in Hypothesis 2.10, below.

Similarly to Hypothesis 2.2 and Hypothesis 2.3, we impose a condition on the
frequency Ω.
Hypothesis 2.8. (High frequency oscillation) We assume that there is c > 0 such
that Ω′(I) > c for all I ∈ R.

Again, we assume that the non-adiabatic terms have zero average.
Hypothesis 2.9. (Zero mean) We assume that

∫
S1 H1(u, v, I, ψ)dψ = 0 for all

I ∈ R and u, v ∈ Z.
The assumption corresponding to Hypothesis 2.4 was already encoded in Hy-

pothesis 2.7,(iv).
From the Hamiltonian H and the symplectic structure ω, we derive the following,

general system of abstract Hamiltonian evolution equations:

d
dt

(
u
v

)
=

(
∂vH
−∂uH

)
=
(

Lv
−Lu

)
+
(

∂v(H0 +H1)
−∂u(H0 +H1)

)
d
dt

(
ψ
I

)
=

(
∂IH
−∂ψH

)
=
(

Ω′(I)
ε
0

)
+
(
∂I(H0 +H1)
−∂ψ(H1)

)
.(2.11)

The unbounded operator A : D(A) = D(L) ×D(L) → Z × Z =: X appearing on
the right side, defined through

A

(
u
v

)
=
(

Lv
−Lu

)
,

is a closed, densely defined, anti-symmetric operator. It satisfies Hypothesis 2.1,
when choosing Pm := diag (Qm, Qm).

Just like in the previous section, we define the Gevrey classes Gσ,p by means of
the exponential Γσ,p = exp(σ|A|p). Note that Gσ,p ⊂ Z × Z is dense.

The smoothness assumptions on the non-quadratic part of the Hamiltonian are:
Hypothesis 2.10. (Analyticity of nonlinearities) There is a Gevrey class Y = Gσ,p
with σ, p > 0 and a constant δ > 0 for the size of the complex extension such that
the following properties of the non-quadratic part of the Hamiltonian hold.

The nonlinearities are analytic and bounded on bounded subsets when considered
on Gevrey spaces, extended in the complex direction,

H0 : (Y + δ)× (R+ δ)→ C Ω : (R+ δ)→ C

H1 : (Y + δ)× (R+ δ)× (S1 + δ)× (R+ δ)→ C.

In addition, the above statements are assumed to hold when the space of Gevrey
regularity Y = Gσ,p is replaced by Y := X = Z × Z.

Just like in Section 2.1, we are now looking for a change of coordinate which
would transform the equation with fast and slow motion decoupled in the new
coordinates. Only the ψ-variable is fast and therefore, the main obstacle is the de-
pendence of H1 on ψ. To find such coordinates, we might simply invoke Theorem 1.
However, the change of coordinate might not respect the symplectic structure, and
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the system might not be Hamiltonian with respect to the standard symplectic
structure ω.
Definition 2.11. (Canonical change of coordinates) A diffeomorphism W : U ⊂
Z × Z × S1 × R→ V ⊂ Z × Z × S1 × R is said to be canonical, if it preserves the
symplectic form

ω(W ′·,W ′·) = ω(·, ·).
We are now ready to state our second main result.

Theorem 2. Assume Hypothesis 2.7 on the existence of Hamiltonian Galerkin
approximations, Hypothesis 2.8 for a minimal large oscillation frequency, and Hy-
pothesis 2.10 on analyticity of the non-quadratic part of the Hamiltonian in some
Gevrey class Gσ,p + δ. Then for any R > 0, there exists a canonical transformation
W = id + εW , defined on BR ⊂ Z×Z×S1×R, which eliminates adiabatically the
fast phase, up to an exponentially small non-adiabatic effect.

More precisely, the transformation is analytic on balls BR in the complex exten-
sions (Gσ,p + δ′)× (S1 + δ′)× (R+ δ′) and (X + δ′)× (S1 + δ′)× (R+ δ′), for some
δ′ > 0.

In the new variables (ũ, ṽ, J, φ), the transformed Hamiltonian reads

H̃(ũ, ṽ, J, φ)(2.12)

=
1
2

((Lũ, ũ) + (Lṽ, ṽ)) +
Ω(J)
ε

+H0(ũ, ṽ, J) + H̃1(ũ, ṽ, J ; ε) +Hr(ũ, ṽ, J, ψ; ε)

The adiabatic correction H̃1 of the Hamiltonian is O(ε) and Hr is bounded, on
bounded subsets of Z × Z × R and Z × Z × R× S1 respectively.

The non-adiabatic interaction term Hr is exponentially small in ε when consid-
ered on the Gevrey class Gσ,p. More precisely, there exist constants c1, C1 > 0 such
that

(2.13) |H̃1(ũ, ṽ, φ, J ; ε)| < C1 exp
(
−c1ε−

p
1+p

)
,

for all (ũ, ṽ) ∈ Br ⊂ Gσ,p, |J | ≤ R, φ ∈ S1, and ε > 0 small.
The proof of the Theorem will be given in Section 3.2.
A result similar to Corollary 1 holds in the context of Hamiltonian systems.

2.3. Comments, related results, and open problems. Many generalizations
of our two main theorems are possible. First, continuous dependence on ε is suf-
ficient, as long as analyticity bounds are uniform in ε > 0. On the other hand, if
the equation is smooth in ε, then the change of coordinates can be chosen to de-
pend smoothly on ε. Dependence on ψ can be relaxed in the particular case when
ψ̇ = 1/ε, that is, when ψ merely describes fast time.

Boundedness of the nonlinearities on the entire function space is rather unrealis-
tic. However, the theorems still hold on bounded subsets of X and Gσ,p, when the
assumption on boundedness in Hypotheses 2.5 and 2.10 on analyticity are replaced
by boundedness on bounded subsets of X and Gσ,p, respectively.

In the Hamiltonian case, it is sometimes useful to consider a slightly more general
setup. Whereas the symplectic structure and the equation might be defined on
X, typically an energy space like L2, the nonlinearities often are analytic only
on spaces of higher regularity. Theorem 2 generalizes easily to the case when
the nonlinearities satisfy Hypothesis 2.10 on a fractional power interpolation space
Xs = D(|A|s) equipped with the graph norm, rather than considered on the entire



EXPONENTIAL AVERAGING FOR HAMILTONIAN EVOLUTION EQUATIONS 11

function space X. Then it is convenient also to consider modified Gevrey spaces
Gsσ,p = D(|A|s exp(σ|A|p)), as well.

The original equations might possess structure other than Hamiltonian. For
example, the system might be invariant under the action of a finite-dimensional
Lie group Γ; see for example [SaScWu99] for a general set-up of equivariance and
symmetry in the context of semilinear evolution equations. The averaging trans-
formation would then preserve this symmetry of the system. A particular case of
symmetry occurs in the Hamiltonian set-up. Symmetries correspond, by Noether’s
theorem, to conserved quantities. Symmetries are preserved throughout the av-
eraging procedure, which is equivalent to respecting preserved quantities. Note,
however, that the adiabatically truncated equation (2.8) might possess additional
(or less!) symmetries than the original or the transformed system (2.1),(2.6). The-
orem 2 does not immediately imply a Nekhoroshev type stability theorem [Nek79]
in the case when the adiabatically truncated system is completely integrable; see
however [Bam99, Poe99] for results in this direction.

An important conserved quantity in Hamiltonian PDEs is momentum, corre-
sponding to spatial translational invariance of the original PDE. The averaging
procedure respects this symmetry. However, as a drawback, we are not able to
guarantee that the transformed equation is again local in the sense that nonlineari-
ties only involve point evaluations. In general, averaging PDEs introduces non-local
spatial averages already at low orders in ε. A similar phenomenon is well-known in
reaction-diffusion equations, where rapidly diffusing species can be (formally) adia-
batically eliminated at the expense of non-local coupling terms in the slow species.
We are not aware of results showing that non-local equations evoke phenomena
which are not present in local PDEs.

The small non-adiabatic interaction terms have in general nonzero average over
S1. The theorems remain valid, if we impose zero mean, but then the estimates on
the adiabatic corrections F̃ and Ω̃ only provide boundedness.

We believe that the regularity assumptions on the initial data are crucial. In the
case of parabolic equations, this assumption can be dropped, since, after a short
initial transients, the parabolic smoothing regularizes the initial data such that
the solution belongs to Gevrey spaces with p = 1/2; see [Mat01]. Even (ill-posed)
elliptic equations on infinite cylinders can be formulated as in (2.1) and exponential
averaging applies with p = 1, see [Mat00].

The simplest example is the case of bounded A. Refining the proof below slightly,
it is then not difficult to show that we can obtain p = ∞, that is, exponential
averaging with exponent −cε−1 just like in the case of ODEs, see [Nei84], is possible.

3. Proofs of Theorems 1 and 2

We prove our main results on exponential smallness of non-adiabatic interaction
in infinite-dimensional evolution systems. In Section 3.1, we prove Theorem 1 for
general evolution equations, and in Section 3.2, we sketch the necessary adaptions
in the Hamiltonian set-up, in order to prove theorem 2.

3.1. Proof of Theorem 1. We outline the proof. The proof consists of two main
parts. We split the system by means of a Galerkin projection PN from Hypothe-
sis 2.1 into a system where the unbounded operator is bounded, and a complement.
In the bounded part u ∈ XN := PNX, we perform successive averaging steps in-
spired by Neishtadt’s proof in the case of ordinary differential equations. The main
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difficulty turns out to preserve the semilinear structure of the equation despite of
the norm of the vector field growing with increasing accuracy N of the Galerkin
approximations PN . The key idea is to choose N , which also is the norm of A on
the Galerkin approximation space PNX, proportional to a power of the period ε of
the forcing, N ∼ ερ′ . The exponent ρ′ is yet to be determined. In other words, the
higher the frequency, the more accurate we can choose our approximation to the
original PDE.

Inside this (possibly infinite-dimensional) subspace, we construct a transforma-
tion, such that the non-adiabatic remainder is exponentially small in the frequency
ε. This is achieved by a sequence of successive transfomations, each of which de-
creases the contribution of the non-adiabatic term by a constant factor. The number
of consecutive transformations is chosen as a function of ε, as well. The exponent
of the frequency ε in the exponentially small non-adiabatic contribution within
the Galerkin approximation still depends on the exponent in the coupling between
the accuracy of the Galerkin approximation N and the frequency ε. An optimal
choice of this exponent is provided by comparison with possible non-adiabatic terms
created through coupling to spatially small-scale structures in the complement of
Rg (PN ). These terms appear in the second part of the proof, when extending the
transformation to the full system u ∈ X. Instead of attempting to average these
contributions from the dynamics in the small spatial scales, we estimate the overall
contribution exploiting the high spatial regularity. Indeed, Gevrey regularity guar-
antees that the contributions from small spatial scales are indeed exponentially
small in N . Balancing the exponential estimates for the averaging procedure in
Rg (PN ), Step 1, and the overall contribution of small spatial scales, Step 2, we find
an optimal exponent ρ for the coupling between temporal frequency ε and spatial
resolution N . This yields the estimate on the non-adiabatic terms in Theorem 1.

Step 1: Averaging the Galerkin approximation. We approximate the evolution equa-
tion (2.1), by means of the Galerkin projections PN from Hypothesis 2.1, with an
equation on XN := Rg (PN ) coupled to the fast phase ψ:

u̇N = AuN + PNF (uN ) + PNG(uN , ψ; ε)

ψ̇ =
Ω(uN )
ε

+ g(uN , ψ; ε).(3.1)

We couple the scale of the spatial resolution N−1 and the temporal frequency ε,
choosing N ∈ N maximal such that

(3.2) ε ≤ N−(1+ρ).

The exponent ρ will be chosen in Step 2, when comparing the estimate from the
averaging procedure below to the Gevrey estimates on small spatial scales.

We perform a sequence of successive near-identity transformations(
uN
ψ

)
=
(
ũN
φ

)
+ εWk (ũN , φ; ε)

The total transformation after k steps is given by the composition of the transfor-
mations (id + Wk) ◦ (id + Wk−1) ◦ . . . ◦ (id + W1). After k transformations, the
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equation in the new variable ũ can be written in the general form

u̇N = AuN + PNF (uN ) + F̃k(uN ; ε) + αk(uN , ψ; ε)

ψ̇ =
Ωk(uN ; ε)

ε
+ βk(uN , ψ; ε).(3.3)

We may assume that the average of both αk and βk over the phase ψ ∈ S1 vanishes,
possibly changing F̃k and Ωk:

〈αk(uN , ·; ε)〉 :=
∫
S1
αk(uN , ψ; ε)dψ = 0, 〈βk(uN , ·; ε)〉 :=

∫
S1
βk(uN , ψ; ε)dψ = 0.

By Hypothesis 2.3, the terms G and g from the original equation fulfill this as-
sumption. Comparing equation (3.1) with (3.3), we find the following expressions
for the terms in (3.3) before the first transformation

(3.4) F̃0(u; ε) = 0, α0(u; ε) = PNG(u, ψ; ε),

and

(3.5) Ω0(u; ε) = Ω(u), β0(u, ψ; ε) = g(u, ψ; ε).

For the k+ 1-th transformation, k = 0, 1, 2, . . ., we choose the explicit change of
coordinate

(3.6) Wk+1 (ũN , φ; ε) =
(
W 1
k+1(ũN , φ; ε)

W 2
k+1(ũN , φ; ε)

)
,

with

W 1
k+1(ũN , φ; ε) =

1
Ωk(uN ; ε)

∫ φ

0

αk(ũN , τ ; ε)dτ

and W 2
k+1(ũN , φ; ε) =

1
Ωk(ũN ; ε)

∫ φ

0

βk(ũN , τ ; ε) + ∂ũNΩk(ũN ; ε)(W 1
k+1(ũN , τ ; ε)− 〈W 1

k+1(ũN , .; ε)〉)dτ

where 〈.〉 again denotes the S1-average. Since the averages of αk and βk vanish,
the transformation is well defined for φ ∈ S1. This transformation can formally be
viewed as the classical averaging transformation, which eliminates dependence on
the fast phase ψ in αk and βk to leading order. Substituting the transformation
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into (3.3) and writing u, P instead of ũN , PN for the sake of notation yields

du
dt

=
(
id + ε∂uW

1
k+1(u, φ; ε)

)−1{
A(u+ εW 1

k+1(u, φ; ε)) + PF (u+ εW 1
k+1(u, φ; ε))

+F̃k(u+ εW 1
k+1(u, φ; ε)); ε) + αk(u+ εW 1

k+1(u, φ; ε)), ψ; ε)

−∂φW 1
k+1(u, φ; ε)[Ωk(u+ εW 1

k+1(u, φ; ε); ε)]

−∂φW 1
k+1(u, φ; ε)[εβk(u+ εW 1

k+1(u, φ; ε), φ; ε)]
}

=: Au+ PF (u) + F̃k(u; ε) + a(u, φ; ε)(3.7)
dφ
dt

=
(
1 + ε∂φW

2
k+1(u, φ; ε)

)−1

{Ωk(u+ εW 1
k+1(u, φ; ε)); ε)
ε

+ βk(u+ εW 1
k+1(u, φ; ε), φ; ε)

−ε∂uW2(u, φ; ε)
du
dt

}
=:

Ωk(u; ε)
ε

+ ∂uΩk(u; ε)〈W 1
k+1(u, ·; ε)〉+ b(u, φ; ε).(3.8)

Here, we singled out the new correction terms a, b appearing in the equation. In
order to write the system in the inductive form (3.2), we define

F̃k+1(u; ε) := F̃k(u; ε) + 〈a(u, ·; ε)〉
Ωk+1(u; ε) := Ωk(u; ε) + ε∂uΩk(u; ε)〈W 1

k+1〉+ ε〈b(u, ·; ε)〉
αk+1(u, ψ; ε) = a(u, ψ; ε)− 〈a(u, ·; ε)〉
βk+1(u, ψ; ε) = b(u, ψ; ε)− 〈b(u, ·; ε)〉.(3.9)

Our objective now is to show that the norms of the non-adiabatic terms αk and
βk are decreasing in k. In fact, we will show that in suitably chosen norms, the size
is reduced by at least a factor 2 in each step. The main ingredient is the analytic
extension of functions into the complexified space. Actually, all functions appearing
in the above equations are analytic on the Gevrey space Gσ,p by Hypothesis 2.5.
Note that the linear projection P = PN is analytic, as well.

We need analyticity to compensate for the loss of derivatives in the averaging
steps. Basically we rely on a variant of the Cauchy estimate. Recall the notation
Y + δ ⊂ YC for the complex δ-extension of a the real subspace Y ⊂ YC, as defined
in (2.5).
Lemma 3.1. (Cauchy estimate) Let f : (Y + δ) → YC be an analytic function
with ‖f‖Y+δ := supu∈(Y+δ) ‖f(u)‖ <∞. Then for all 0 < η < δ,

‖∂uf‖Y+(δ−η) ≤
1
η
‖f‖Y+δ.

The proof is a simple application of the Cauchy formula; see e.g. [Mat01, Lemma
7].

The induction assumption and exponential estimates. We are now going to show
inductively that for all 1 ≤ k ≤ K(ε) and some constant M , we can estimate the
nonlinearities in the transformed equation (3.3) by
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‖F̃k‖Y+δk ≤ 2Mε
ρ

1+ρ(3.10)

‖αk‖Y+δk ≤ 2−kMε
ρ

1+ρ(3.11)

|βk|Y+δk ≤ 2−kMε
ρ

1+ρ(3.12)

|Ω− Ωk|Y+δk ≤ Mε and Ωk >
c

2
.(3.13)

Here, Y = PNGσ,p,

(3.14) δk = δ − kη(ε), η(ε) = η0ε
ρ

1+ρ ,

c is the positive constant from Hypothesis 2.2, and the norms on the left side are
defined by

‖F̃k‖Y+δk := sup{‖F̃k(u; ε)‖Gσ,p ; u ∈ Y + δk},
and analogous expressions for αk, βk, and Ω − Ωk. The maximal number of steps
K(ε) is given by the constraint that the domain Y + δk should be non-empty, that
is, δK(ε) = δ −K(ε)η0ε

ρ
1+ρ > 0, which gives

(3.15) K(ε) =
δ

η0
ε−

ρ
1+ρ .

Assume for the moment, the above inequalities (3.10-3.13) hold. Choosing K(ε)
maximal such that the δk do not vanish, (3.15), we find exponential estimates for
the non-adiabatic interaction terms

(3.16) ‖αK(ε)‖Y + |βK(ε)|Y ≤ 2Mε−
ρ

1+ρ 2−K(ε) ≤ C0e−c0ε
− ρ

1+ρ
.

Therefore, in order to show exponential averaging within the Galerkin approxima-
tion, it is sufficient to show inductively that the inequalities (3.10-3.13) are satisfied.

For k = 1, the assertions follow from a direct estimate, which we postpone until
after the induction step.

The induction step. Assume the inductive assumptions (3.10–3.13) are fulfilled for
the first k steps.

Notation: To simplify notation we write Yk = Y + δk, Mk = 2−kMε
ρ
ρ+1 , and

suppress arguments of W j
k and dependence on the parameter ε whenever possible.

We denote by C a universal constant, which does not depend on k and ε. Note
that we write norms on the function spaces X, Gσ,p, etc. although the functions
are only defined on balls of radius R, arbitrary large.

We start providing estimates on the (k + 1)th coordinate change. By definition,
equation (3.6), we obtain

(3.17) ‖εW 1
k+1‖Yk ≤Mkε, |εW 2

k+1|Yk ≤ 2MMkε.

With the Cauchy estimate, Lemma 3.1, we conclude that

(3.18) ‖ε∂uW 1
k+1‖Yk+1 ≤

Mkε

η(ε)
.

From the definition of W 2
k+1, and directly from (3.6), we find

(3.19) ‖ε∂φW 2
k+1‖Yk+1 ≤ ε

2
c

(
Mk +

M

η(ε)
Mk

)
≤ 3εMMk

cη(ε)
.
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The estimates on αk+1 and F̃k+1, (3.10) and (3.11), are derived from an estimate
on the higher order term a in (3.7). Inspecting the definition of a and rearranging
terms we find

a =
(
I + ε∂uW

1
k+1

)−1
{
PF (u+ εW 1

k+1) + F̃k(u+ εW 1
k+1) + αk(u+ εW 1

k+1)

−αk(u)
Ωk(u)

(
Ωk(u+ εW 1

k+1) + εβk(u+ εW 1
k+1)

)
+A(u+ εW 1

k+1)
}

−
[
Au+ PF (u) + F̃k(u)

]
=

(
I + ε∂uW

1
k+1

)−1
{
εAW 1

k+1 + PF (u+ εW 1
k+1)− PF (u) + F̃k(u+ εW 1

k+1)

−F̃k(u) + αk(u+ εW 1
k+1)− αk(u)

Ωk(u)
(
Ωk(u+ εW 1

k+1) + εβk(u+ εW 1
k+1)

)
−ε∂uW 1

k+1

[
Au+ PF (u) + F̃k(u)

]}
.

Estimating the norms in Yk+1, using ‖Au‖ ≤ N‖u‖ yields

‖a‖ ≤ (1− ‖ε∂uW 1
k+1‖)−1

·
{
‖εW 1

k+1‖
[
N + ‖∂uPF‖+ ‖∂uF̃k‖+ ‖∂uαk‖+ C|∂uΩk(u)|

]
+
∣∣∣∣εαk(u)βk(u+ εW 1

k+1)
Ωk(u)

∣∣∣∣+ ‖ε∂uW 1
k+1‖

[
N‖u‖+ ‖PF‖+ ‖F̃k‖

]}
.(3.20)

Together with the Cauchy estimate, Lemma 3.1, the a priori bound ‖u‖ ≤ R, and
the induction assumption, we can estimate the norms as follows:

‖a‖Yk+1 ≤ 2
{
εMk

[
N +

M

η(ε)
+

2M
η(ε)

+
CM

η(ε)
+
Mk

η(ε)

]
+CεM2

k +
εMk

η(ε)
[NR+M + 2M ]

}
.

Recall that N ≤ ε−
1

1+ρ , equation (3.2), and η(ε) = η0ε
ρ

1+ρ . With these appropriate
scalings, we obtain

‖a‖Yk+1 ≤Mk

{[
2ε

ρ
1+ρ +

CM

η0
ε

1
1+ρ

]
+ CεMk +

R

η0

}
≤ 1

4
Mk

for R/η0 < 1/4 and ε small enough. Therefore,

‖αk+1‖Yk+1 <
Mk

2
= Mk+1

and
‖F̃k+1 − F̃k‖Y k+1 <

Mk

4
.

This proves the first part of the induction step, the estimates (3.10) and (3.11) on
αk and F̃k, with the given appropriate choice of η(ε), (3.14).

We next address the estimates (3.12) and (3.13). We follow the same strategy
and start computing the correction b:

b =
(
1 + ε∂φW

2
k+1

)−1
{

Ωk(u+ εW 1
k+1)

ε
+ βk(u+ εW 1

k+1)− ε∂uW 2
k+1

du
dt

}
−Ωk(u)

ε
− ∂uΩk(u)〈W 1

k+1〉.
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We now take the modulus and estimate, again exploiting the Cauchy estimate,
in Yk+1. Expanding the first term as a series in ε, we find |b| =∣∣∣∣(1− ε∂φW 2

k+1 + O
(
M2
kε

2

η(ε)2

)){Ωk(u+ εW 1
k+1)

ε
+ βk(u+ εW 1

k+1)

+O(
εNR

η(ε)
)
}
−Ωk(u)

ε
− ∂uΩk(u)〈W 1

k+1〉
∣∣∣∣ .

We next exploit the explicit form of the averaging transformation

ε∂φW
2
k+1 =

1
Ωk

(
βk + ∂uΩ(W 1

k+1 − 〈W 1
k+1〉)

)
,

to see, after a short computation, that again the leading order terms drop out. The
remainder terms are estimated just like above.

After tedious but straight forward estimates we arrive at

|b| ≤ 1
4
Mk,

for ε0 small enough, and η0 large. In consequence, we conclude that

|βk+1| <
Mk

2
= Mk+1,

|Ωk+1 − Ωk| < 2Mkε,

and

|Ωk+1| >
c

2
,

uniformly in k and ε small. This proves the remaining statements (3.12) and (3.13)
of the induction procedure.

It remains to check the assertions for k = 1. Starting with (3.4),(3.5) we perform
a first averaging step of the same form as in the induction step, only with a slightly
different estimate. We use a fixed shrinking η of the complex neighborhood Y + δ,
instead of the ε dependent one above. This allows us to estimate a and b as above
and get

‖a‖ ≤ MεN = Mε
ρ
ρ+1 ,

‖b‖ ≤ MεN = Mε
ρ
ρ+1 .

This yields, possibly increasing M , the estimates (3.10-3.13) for k = 1.
Summarizing, we have shown that the Galerkin approximation with N ≤ N(ε),

equation (3.2), can be averaged by a sequence ofK(ε) successive coordinate changes,
with K(ε) defined in (3.15), such that the resulting equation takes the form

u̇ = Au+ PF (u) + F̃∗(u; ε) + α∗(u, φ; ε)

φ̇ =
Ω∗(u; ε)

ε
+ β∗(u, φ; ε),(3.21)
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with

sup
|Pu|Gσ,p<R,φ∈S1

|α∗(u, φ; ε)|Gσ,p < C exp
(
−c2ε−

ρ
1+ρ

)
(3.22)

sup
|Pu|Gσ,p<R,φ∈S1

|β∗(u, φ; ε)| < C exp
(
−c2ε−

ρ
1+ρ

)
(3.23)

sup
|Pu|Gσ,p<R

|F̃∗(u; ε)|Gσ,p < 2Mε
ρ

1+ρ(3.24)

sup
|Pu|Gσ,p<R

|Ω∗(u; ε)− Ω(u)| < 4Mε(3.25)

uniformly in 0 < ε < ε0 with N(ε) chosen by (3.2). Using exactly the same esti-
mates just with the Gσ,p-norm replaced by the X-norm, gives that F̃∗, α∗,Ω∗/ε, β∗
and W are bounded on bounded sets in X. Note that the parameter ρ > 0 is still
free. We will choose ρ when taking into account the corrections to the Galerkin
approximation in the next paragraph.

Step 2: Averaging the full system. The last step of the proof of Theorem 1 consists
in extending the transformation to the full system and estimating the “small-scale”
contributions from Ker (PN ).

We define the transformation on the entire space X = Rg (PN ) ⊕ Ker (PN )
through

u = ũ+ εW (PN ũ, φ; ε,N)

where W is the transformation, constructed in Step 1, with range contained in
the not necessarily finite-dimensional image Rg (PN ). The order of approximation
N = N(ε) is chosen according to Step 1, equation (3.2), maximally, such that
N1+ρε ≤ 1 holds. Substituting the transformation into the full system, equation
(2.1), we find a transformed equation of the general form in (2.6)

d
dt
ũ = Aũ+ F (ũ) + F̃ (ũ; ε) + α(ũ, ψ; ε)

d
dt
φ =

Ω̃(ũ; ε)
ε

+ β(ũ, φ; ε),

where

F̃ (ũ; ε) = F̃∗(ũ; ε)
α = α∗ + b1 + b2

Ω̃ = (Ω− Ω∗) + ε < b3 >

β = β∗ + b3− < b3 > .(3.26)
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The terms b1, b2, and b3 are corrections to the Galerkin approximation. They are
given, again suppressing dependence on φ and ε in W , by

b1 = (I − PN )
{
F (ũ+ εW 1

k+1(ũ))− F (ũ) +G(ũ+ εW 1
k+1(ũ), φ; ε)

}
(3.27)

b2 =
[
I + ε∂ũW

1
k+1(ũ)

]−1

PN

{
F (ũ+ εW 1

k+1(ũ))− F (PN ũ+ εW 1
k+1(ũ))

+G(ũ+ εW 1
k+1(ũ), φ; ε)−G(PN ũ+ εW 1

k+1(ũ), φ; ε)
}

(3.28)

b3 =
[
I + ε∂φW

2
k+1(ũ)

]−1{1
ε
{Ω(ũ+ εW 1

k+1(ũ))− Ω(PN ũ+ εW 1
k+1(ũ))}

+g(ũ+ εW 1
k+1(ũ), φ; ε)− g(PN ũ+ εW 1

k+1(ũ), φ; ε)
}
.(3.29)

All three terms converge to zero when N → ∞. Exploiting Gevrey regularity of
the variable u, we can even find exponential smallness. The main observation is,
that for any u with |u|Gσ,p ≤ R, we have

|u− PNu|X ≤ C exp(−c3Np)

from Hypothesis 2.4. Expanding the bj in u, for fixed ψ, this estimate immediately
leads to

|b1|X ≤ C exp(−c3Np)(3.30)
|b2|X ≤ C exp(−c3Np)(3.31)
|b3| ≤ C exp(−c3Np),(3.32)

for some positive, N - and ε-independent constants C and c3. With the choice of N
from (3.2), all of the bj are bounded by

|b1|X + |b2|X + |b3| ≤ C ′ exp
(
−c′ε−

p
1+ρ

)
.

Step 1, (3.22 and 3.23) give an additional exponentially small contribution to the
non-adiabatic terms, with exponent −ρ/(1+ρ). The estimate for the bj is improving
with smaller ρ, the estimate for α∗ and β∗ is improving with larger ρ. The optimal
choice is to have the exponent equal in both cases, which is achieved setting

(3.33) ρ := p.

Summarizing, this choice of ρ in (3.33) leads to the estimate for the non-adiabatic
terms from Theorem 1. For all ũ with |ũ|Gσ,p < R, we have

|α(ũ, ψ; ε)|X ≤ C exp
(
−cε−

p
1+p

)
|β(ũ, φ; ε)| ≤ C exp

(
−cε−

p
1+p

)
.

It remains to verify the claims on boundedness of the transformed nonlinearities in
Theorem 1. We already observed in Step 1, that α∗, F̃∗, β∗, and Ω∗ are bounded,
with F̃∗ even O(ε

p
p+1 ). It is therefore sufficient to show, that b1, b2, and b3 are

bounded in X for bounded values of ũ in X. Since W,F and G are bounded, b1
and b2 are bounded as well. The last correction, b3, is bounded by C/ε, which gives
boundedness of Ω̃ in X. A more careful inspection of b3− < b3 > shows, that,
indeed, β is bounded as well. The claims of smallness of F̃ and Ω̃ as functions from
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Gσ,p to Gσ,p and R, respectively, follow from those for F̃ and b3. This concludes the
proof of Theorem 1.
Remark 3. We briefly comment on proofs of some of the extensions mentioned in
Section 2.3.

Equivariance of A,F,G,Ω, g with respect to a bounded representation of a finite-
dimensional Lie group Γ is preserved under the averaging procedure. We have to
assume that Γ leaves the Fourier approximation spaces PNX invariant. Then, the
Wk given in (3.6) are equivariant and the resulting, transformed equation (2.6) is
Γ-equivariant too.

If A is a bounded operator, we do not need Step 2 and can bound |Au| without
approximation in (3.20). This will lead to an exponent −cε−1.

The construction presented here is discontinuous in ε, because the number of
averaging steps and the Galerkin approximation are increased discretely. However,
we can smoothly interpolate in ε to obtain transformations and resulting equations
smoothly depending on ε.

3.2. Proof of Theorem 2. We adapt the strategy from the proof of Theorem 1
to the case of Hamiltonian systems. The additional difficulty lies solely in assuring
that the transformations preserve the symplectic structure — while respecting the
estimates from the iterative procedure, (3.10-3.13).

Again, the non-adiabatic terms derive from two sources, first the approxima-
tion of the true system by a Galerkin projection, then the non-convergence of the
averaging procedure in the approximation.

Approximation with the Galerkin projection is achieved by replacing the Hamil-
tonian H by HN = H ◦(QN , QN , id , id ), with projections QN from Hypothesis 2.7.

The associated Hamiltonian system becomes an abstract ordinary differential
equation with vector field bounded on bounded subsets of Z × Z × R × S1 or the
corresponding Gevrey class. The vector field does not depend on (id − QN )u and
(id−QN )v and leaves the subset (id−QN )uN = 0; (id−QN )vN = 0 invariant —
which follows directly from the definition of the symplectic structure and orthogo-
nality of the QN .

The difference H−HN is small on Gevrey classes, arguing just like in the proof of
Theorem 1. We therefore concentrate on the bounded part of the Hamiltonian HN

and drop the index N for sake of notation. Since the vector field does not depend on
the “small-scale” part in Ker (QN ), it is sufficient to construct the transformation
in ZN := Rg (QN ).

The most common way to construct symplectic, near-identity coordinate changes
is as time-one maps of Hamiltonian vector fields; see for example [LoMe88]. We
adopt this strategy and construct the transformation

Φ(ũ, ṽ, φ, J) = id + εW (ũ, ṽ, φ, J)

as the time-1 map of an abstract Hamiltonian differential equation on ZN × ZN ×
R× S1, with Hamiltonian εχ.

After k averaging steps, we find a general Hamiltonian of the form

Hk(u, v, ψ, I) =
1
2

((Lu, u) + (Lv, v)) +
Ω(I)
ε

+ H̃0,k(u, v, I) + H̃1,k(u, v, I, ψ),

where we suppressed the dependence on ε. The symplectic transformation Φk+1 is
now constructed such that the absolute value of the non-adiabatic part H̃1,k+1 for
Gevrey data is decreased by a factor 2 compared to H̃1,k. This task is accomplished
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as follows. We may assume that the average over the fast phase ψ vanishes, 〈H̃1,k〉 =
0. We next expand H̃1,k in a Fourier series

(3.34) H̃1,k(u, v, ψ, I) =
∑

0 6=j∈Z

H̃
(j)
1,k(u, v, I)e2πijψ.

The Hamiltonian εχk+1 is now explicitly defined through
(3.35)

εχk+1(ũ, ṽ, φ, J) = −ε
(

Ω(J) + εH̃0,k(u, v, J)
)−1 ∑

0 6=j∈Z

H̃
(j)
1,k(ũ, ṽ, J)

1
2πij

e2πijψ.

This change of coordinates removes the leading order terms as we will show now
by means of a Lie series expansion; see again [LoMe88] for some background on Lie
series expansions. Denote by {, } the Poisson bracket according to the symplectic
structure and by χ(j)

k+1 the jth Fourier coefficient of χk+1. In our case, the Poisson
bracket of two functions F1, F2 : Z × Z × S1 × R→ R is given by

{F1, F2}(u, v, ψ, I) = (∂uF1, ∂vF2)Z − (∂vF1, ∂uF2)Z + ∂ψF1 · ∂IF2 − ∂IF1 · ∂ψF2

We find the formal expansion

Hk+1(ũ, ṽ, φ, J) = Hk ◦ Φk+1(ũ, ṽ, φ, J)

=
1
2

((Lu, u) + (Lv, v)) + H̃0,k(ũ, ṽ, J) +
Ω(J)
ε

+H̃1,k(ũ, ṽ, J, φ) + {Hk; εχk+1}+ h.o.t.

=
1
2

((Lu, u) + (Lv, v)) + H̃0,k(ũ, ṽ, J) +
Ω(J)
ε

+H̃1,k(ũ, ṽ, J, φ)

−
∑
j∈Z

1
ε
∂J

(
Ω(J) + H̃0,k(ũ, ṽ, J)

)
2πijεχ(j)

k+1e2πijφ + h.o.t.

=
1
2

((Lu, u) + (Lv, v)) + H̃0,k(ũ, ṽ, J) +
Ω(J)
ε

+ H̃1,k(ũ, ṽ, J, φ)

−
∑
j∈Z

∂J(Ω(J) + εH̃0,k(ũ, ṽ, J))
H̃

(j)
1,k(ũ, ṽ, J)

∂J(Ω(J) + εH̃0,k(ũ, ṽ, J))
e2πijφ

+h.o.t.

Indeed, the transformation removes formally the lowest order term depending on
φ. In order to estimate the transformation, later, we express εWk+1 in terms of the
vector field, given by the partial derivatives of the Hamiltonian εχk+1,

(3.36) εW (ũ, ṽ, J, φ) = ε


Wũ

Wṽ

WJ

Wφ

 = ε

∫ 1

0


∂ṽχ(ũ(τ), ṽ(τ), J(τ), φ(τ))
−∂ũχ(ũ(τ), ṽ(τ), J(τ), φ(τ))
∂φχ(ũ(τ), ṽ(τ), J(τ), φ(τ))
−∂Iχ(ũ(τ), ṽ(τ), J(τ), φ(τ))

dτ ;

see also [LoMe88][Appendix 7, Lemma 1]. For convenience, we omitted the indices
k + 1 of the functions W and χ. In the remainder of this section, we show how to
obtain quantitative estimates for the higher order terms. We write the transformed
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Hamiltonian in the form

Hk+1(u, v, φ, J) = Hk ◦ Φ

=
1
2

((Lu, u) + (Lv, v)) +
Ω(J)
ε

+ H̃0,k(u, v, J) + H̃1,k(u, v, J) + hk(u, v, J, φ).

We set

H̃0,k+1(u, v, J) := H̃0,k(u, v, J) + 〈hk(u, v, J, ·)〉,
H̃1,k+1(u, v, J) := H̃1,k(u, v, J) + hk(u, v, J, ψ)− 〈hk(u, v, J, ·)〉.

We shall inductively show that

|H̃1,k|Y+δk ≤ Mk = 2−kM(3.37)

‖DH̃1,k‖Y+δk ≤ Mk(3.38)

|H̃1,k|Y+δk ≤ M(3.39)

‖DH̃1,k‖Y+δk ≤ M,(3.40)

where Y = ZN ×ZN ×R×S1, with the Gevrey norm, and Y+δk is the extension in
a complex strip, and D denotes the Fréchet derivative. The sequence δk = δ−kη(ε)
is defined just like in the previous section, (3.14).

We have to estimate hk in each step. Using the Cauchy estimate, Lemma 3.1,
and the explicit formula for εWk+1, (3.36), we can estimate

(3.41) |εWk+1|Y+δk+1 ≤
Mkε

η(ε)
This gives us an estimate for the correction to the Hamiltonian hk+1,

|hk+1|Y+δk = |1
2

(ε(LWũ, ũ+ εWũ) + ε(Lũ,Wũ) + ε(LWṽ, ṽ + εWṽ) + ε(Lṽ,Wṽ))

+
Ω(J + εWJ)

ε
+ H̃0,k(ũ+ εWũ, ṽ + εWṽ, J + εWJ)

+H̃1,k(ũ+ εWũ, ṽ + εWṽ, J + εWJ , xφ+ εWφ)

−H̃0,k(ũ, ṽ, J)− Ω(J)
ε
− H̃1,k(ũ, ṽ, J, ψ)|Y+δk

≤ 4MkNε+ |Ω′′|Y+δkεMk + ε(M +Mk)Mk.

Then

‖h′k+1‖Y+δk+1 ≤ εMk
4N + |Ω′′|Y+δk +M +Mk

η(ε)

For the same choice of η(ε) = η0ε
p

1+p , both h and h′ can therefore be estimated by
Mk

4 , provided ε is sufficiently small and η0 sufficiently large. Proceeding with the
induction as in the proof of the non-Hamiltonian version, we can perform

K(ε) ≤ δ

η0
ε−

p
1+p

transformations. Choosing K(ε) maximal, the non-adiabatic dependence on the
fast phase becomes exponentially small in ε

|H̃1,K(ε)|Y+δ/2 ≤ C exp(−c2ε−
p

1+p )

for (u, v) bounded in Gσ,p. Furthermore H̃1,K(ε) and H̃1,K(ε) are bounded for (u, v)
bounded in X. Proceeding as in the proof of Theorem 1, the terms in the com-
plement of Rg(PN ) can be estimated again using Gevrey regularity. Note that A



EXPONENTIAL AVERAGING FOR HAMILTONIAN EVOLUTION EQUATIONS 23

is equivalent to (iL,−iL), and therefore |A| is conjugate to (|L|, |L|), a self-adjoint
operator. The exponential decay properties from Hypothesis 2.4 therefore follow
from the resolvent estimate in 2.7, (iv). This concludes the proof of Theorem 2.

4. Example: Nonlinear Schrödinger Equations

We consider a system of nonlinear Schrödinger equations on the entire space
x ∈ Rn, or with periodic boundary conditions,alternatively. We couple the partial
differential equations to a fast, anharmonic oscillator. More precisely, consider

(4.1) i∂tA = ∆A+ ∂ĀV (A, Ā),

where A ∈ Cm, Ā is the complex conjugate, and the potential V is analytic in both
arguments, invariant under phase rotation

V (eiϕA, e−iϕĀ) = V (A, Ā) ∈ R.

We take x ∈ Rn or x ∈ [0, `1]× . . .× [0, `n] with periodic boundary conditions and
consider (4.1) on the phase space A ∈ X = L2, with values in Cm ' Rm × Rm.

In addition to this partial differential equation, we consider a fast one degree of
freedom oscillator, which we write in action-angle coordinates I ∈ R, ψ ∈ S1

dI
dt

= 0,
dψ
dt

=
ω(I)
ε

.

The scaled frequency ω(I) = Ω′(I) is supposed to be strictly positive, uniformly in
I ∈ R.

Translating into the formalism of Section 2.2, we write A = u+ iv and define an
unperturbed Hamiltonian function on X = X × R× S1 by

H0(u, v, I) =
1
2

((∇u,∇u)L2 + (∇v,∇v)L2)

+
∫
Rn

V (u(x) + iv(x), u(x)− iv(x))dx+
Ω(I)
ε

.

The symplectic form on X is defined via the L2-scalar product, as explained in
Section 2.2.

There are now various possible choices for coupling the partial differential equa-
tion to the anharmonic oscillator. A simplest example is given by coupling the
angle ψ to the first component,

(4.2) H1(u, v, I, ψ) = I

∫
Rn

(u1 cos(2πψ)− v1 sin(2πψ)) dx,

which preserves the gauge symmetry A 7→ eiϕA, ψ 7→ ψ − ϕ. In complex notation,
H1 is simply given by

∫
Re (A1Ieiψ).

We might as well break this symmetry, using a coupling of the form

(4.3) H2(u, v, I, ψ) =
1
2
I

∫
Rn

(
(u2

1 − v2
1) cos(2πψ)− 2uv sin(2πψ)

)
dx,

which corresponds to 1
2

∫
Rn

Re(A2
1Ieiψ)dx.

Adding these two non-adiabatic coupling terms, we have to discuss Hamiltonian
functions given by

H(u, v, I, ψ) = H0(u, v, I) + γ1H1(u, v, I, ψ) + γ2H2(u, v, I, ψ), γ1, γ2 ∈ R.
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If we write B = Ie−iψ, and specialize to m = 1, the coupled system of evolution
equations can be written in the compact form

i∂tA = ∆A+ ∂ĀV (A, Ā) + γ1B + γ2ĀB,

i∂tB =
ω(|B|)
ε
B + γ1

∫
A+ γ2

∫
A2.

We claim that Theorem 2 can be applied to the Hamiltonian system (4.3). We
therefore have to check Hypotheses 2.7 to 2.10.

Galerkin approximations, Hypothesis 2.7, are easily constructed by a cut-off in
Fourier space. More precisely, we define

(P̂mÂ)(k) = θm(|k|)Â(k),

with θm(|k|) = 1 for |k|2 ≤ m and θm(|k|) = 0, otherwise. The required properties
of Pm then follow easily. The assumption on the frequency, Hypothesis 2.8, only
requires Ω′ to be strictly positive. The assumption on zero mean, Hypothesis 2.9,
is easily checked. The assumptions on analyticity of the nonlinearities are satisfied
in the interpolation space Xs = H2s if 2 > 2s > n/2, that is, for the (realistic) case
of n ≤ 3; see the remark in Section 2.3. The analyticity for the Gevrey spaces can
then be checked for an also modified Gevrey space Gsσ,p = D(|A|s exp(σ|A|p)) with
the differential operator A = −i(∆ − id). For p = 1/2 and s > n/4 this follows
as in [FeTi98, Mat01] using that this Gevrey space is an algebra under pointwise
multiplication. Theorem 2 now predicts that the influence of the rapid forcing can
be adiabatically eliminated up to terms which are extremely, exponentially, small
in the forcing frequency ω/ε.

5. Lower Estimates

In this section, we give an example which shows that the exponential estimate
for the non-adiabatic effects with ε-exponent −p/(1+p) in the exponential estimate
(2.7) cannot be improved to an estimate exp(−c/ε), which would hold for ordinary
differential equations. Partial differential equations are genuinely different from
ordinary differential equations — as far as averaging is concerned!

More precisely, our example shows that for a large class of “averaging-type”
transformations, there exists a lower estimate with an exponent −cε−p on the non-
adiabatic terms.

Throughout, we consider a simplified version of (2.1),

(5.1)
d
dt
u = Au+ F (u) +G(u,

t

ε
; ε).

Averaging transformations like the ones we constructed in the proofs of the main
theorems are of the form id + εW (., tε ; ε). The transformed equation can then be
written in the general form

(5.2)
d
dt
u = Au+ F (u) + F̃ (u, ε) + α(u,

t

ε
; ε).

Definition 5.1. A transformation id + εW (., tε ; ε) is called a transformation of
averaging-type, if

(i) the transformation is close to the identity both in X- and Gσ,p-topology;
more precisely, we require W (., τ ; ε) to be bounded as a function from
BX(R) to X and as a function from BGσ,p(R) to Gσ,p;

(ii) the function W (u, τ ; ε) is 1-periodic in τ , and we fix W (u, 0; ε) = 0;
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(iii) if F and G are linear functions of u, then W and the transformed equation
are linear as well;

(iv) autonomous subspaces are preserved; more precisely, if there exists a linear
projection P with

AP = PA; PF = PF ◦ P ; PG ≡ 0,

then
PW ≡ 0; Pα ≡ 0.

Proceeding by induction, it is not difficult to check that the transformation given
in Theorem 1 is of averaging-type.

For the rest of this section, we specialize to a linear Schrödinger equation with
a rapidly oscillating, nonlocal potential influence. Consider

(5.3) ∂tu = iuxx + i exp
(

2πi
t

ε

) ∑
k∈Z,k 6=0

uk,

with initial value u(0) = u0 ∈ H1(S1,C). Here, the uk denote the spatial Fourier
coefficients of the 2π-periodic function u(t, ·), where uk are the spatial Fourier co-
efficients u =

∑
k∈Z u

k exp(ikx). This equation fits into the framework of Theorem
1 with

Au = i∂xxu, F (u) = 0, G(u,
t

ε
; ε) = i exp

(
2πi

t

ε

) ∑
k∈Z,k 6=0

uk.

We consider this abstract linear evolution equation on the function space X =
H1(S1,C), or the corresponding Gevrey classes Gσ,p. Since the forcing G is linear
and bounded in u, it is analytic when considered as an operator on either X or
Gσ,p. It is not difficult to see that for p ≥ 1

2 and σ > 0, the functions in Gσ,p are
real analytic in the spatial coordinate x.
Proposition 5.2. Fix a function space Gσ,p. Then for all transformations of
averaging-type id + εW (., tε ; ε) of (5.3), there exists a sequence εk → 0 such that
the non-autonomous term in the transformed equation is estimated from below by

(5.4) sup
|u|Gσ,p<R,τ∈(0,1)

|α(u, τ ; εk)|X ≥
R√
2π
ε

1/2
k exp

(
−σ(2π)pε−pk

)
.

Note that the estimate does not depend on the choice of the transformation W .

Proof. We exploit the definition of transformations of averaging-type, Definition 5.1.
The transformation id +εW (., tε ; ε) is linear since the original equation is, see (iii). If
we project the dynamics on the subspace of functions with mean value zero, u0 = 0,
then dynamics are autonomous. The associated projection in Definition 5.1, (iv),
is

P

(∑
k∈Z

uk exp(ikx)

)
=

∑
k∈Z,k 6=0

uk.

In particular, Fourier modes with index k 6= 0 remain unchanged under the trans-
formation. Hence, the transformation is of the form

u = v + εW

(
(vk)k∈Z,

t

ε

)
,
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with PW ≡ 0 and W linear in v. This gives

W
(
(vk)k∈Z, τ

)
=
∑
k∈Z

wk (τ) vk.

Writing the transformed equation in spatial Fourier modes yields

d
dt
vk = −ik2vk, for k ∈ Z, k 6= 0

d
dt
v0 =

(
1 + εw0

(
t

ε

))−1

(
exp

(
2πi

t

ε

) ∑
k∈Z,k 6=0

vk − ε
∑
k∈Z

wk
(
t

ε

)
d
dt
vk −

∑
k∈Z

d
dτ
wk
(
t

ε

)
vk
)
.

Next, consider a continous family of possible initial conditions

u(x, τ, ε) = (1 + εw0 (τ, ε))
R

| exp(ikx)|Gσ,p
exp(ikx).

Because of (ii), we have

u(., 0, ε) = u(., 1, ε) =
R

| exp(ikx)|Gσ,p
exp(ikx) = v̄k,

for all ε. We solve the differential equation for vk, insert the result into the equation
for v0, then the terms involving w0 cancel. We expand the right hand side of this
equation in a Fourier series with respect to the fast time variable τ = t/ε. Then
the Fourier coefficient for exp (2πiτ) is

v̄k + (εik2 − 2πi)2
∫ 1

0

wk(τ, ε(τ)) exp(2πiτ)dτ v̄k.

Thus for εk = 2π/k2 the term exp
(
2πi tε

)
v̄k cannot be eliminated by any choice of

the wk. The norm of this term gives a minimal contribution to the non-adiabatic
remainder α of the size

R

| exp(ikx)|Gσ,p
= R|k|−1 exp(−σ|k|2p) =

R√
2π
ε

1/2
k exp

(
−σ(2π)pε−pk

)
,

which proves the lower estimate (5.4) and the proposition. �

Remark 4. Specializing to real analytic initial data, p = 1
2 , the optimal exponent

for exponential averaging of equation (5.3) lies between −cε−1/2 and −c′ε−1/3.
In particular, the exponent is different from the exponent in the case of ordinary
differential equations, where we can achieve −cε−1.

If we further specialize the averaging method to the procedure in the proof of
Theorem 1, then we find in the case of the evolution equation (5.3) that the estimate
(2.7) in Theorem 1 is sharp.

Indeed, in the proof of Theorem 1, all spatial Galerkin modes of index N with
N1+pε ≥ C are neglected. In our example, the Galerkin modes coincide with
the spatial Fourier modes and N = k2. Just like in Proposition 5.2, the non-
autonomous terms in the neglected modes can then be estimated from below by
R√
2π
ε

1/2
k exp

(
−σ(2π)pε

− p
p+1

k

)
.
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