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Abstract

Reaction-diffusion systems on the real line are considered. TLocalized travelling
waves become unstable when the essential spectrum of the linearization about them
crosses the imaginary axis. In this article, 1t is shown that this transition to instability
is accompanied by the bifurcation of a family of large patterns that are a superposition
of the primary travelling wave with steady spatially-periodic patterns of small ampli-
tude. The bifurcating patterns can be parametrized by the wavelength of the steady
patterns; they are time-periodic in a moving frame. A major difficulty in analyzing this
bifurcation is its genuinely infinite-dimensional nature. In particular, finite-dimensional
Lyapunov-Schmidt reductions or center-manifold theory do not seem to be applicable

to pulses having their essential spectrum touching the imaginary axis.
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1 Introduction

Travelling-wave solutions of parabolic equations on the real line arise in a variety of appli-
cations. An important issue is their stability since it is expected that only stable travelling
waves can be observed. Once stability has been proved over a certain range of parameters,
the dynamics near a travelling wave is predictable: any solution nearby is attracted to the
travelling wave or an appropriate translate of it. In that respect, interesting parameter
values are those at which a transition to instability occurs. Near such transitions, other
and possibly more complicated patterns may bifurcate from the primary travelling wave.
A travelling wave becomes unstable if a subset of the spectrum of the linearization about
it crosses the imaginary axis. One possibility is that this subset consists of isolated eigen-
values. The resulting bifurcation problem can be analyzed using standard center-manifold
theory. In this article, we focus on a qualitatively different mechanism that also leads to
instability, namely that of essential spectrum crossing the imaginary axis. We call this in-
stability mechanism an essential instability. This route to instability is considerably more
difficult to analyze since it is genuinely infinite-dimensional. In fact, to our knowledge,
this transition has not been investigated previously except for small fronts [2]. Another
related article is [20] where essential instabilities of fronts are studied utilizing numerical
simulations and the analysis of a series of caricature problems. The waves investigated

therein are of a quite different nature and we refer to Section 4 for a discussion.

We distinguish between several kinds of travelling waves. Pulses are travelling waves that
converge to the same asymptotic state as the spatial variable z tends to +0o. Fronts, on the
other hand, connect different asymptotic states at £oo. Periodic wave trains are travelling
waves that are periodic in the spatial variable. In the following, we focus on pulses. Most
of the results presented in this article apply also to fronts and wave trains, and we discuss

these generalizations in Section 4.

Essential instabilities of pulses are caused by an instability of the asymptotic equilibrium
state of the pulse. Suppose that h(z — cgt) is a pulse that moves with speed ¢y to the right.
Tts essential spectrum corresponds to small-amplitude waves of the form e*7+* that are
created at the asymptotic state of the pulse, that is, at its tails. The wavenumber k& and
the eigenvalue A satisfy a certain dispersion relation. At the onset of instability induced

kr+wi) — There are four

by the essential spectrum, there exist then waves of the form el
qualitatively different cases corresponding to all possible combinations of w and k being
zero or non-zero. We focus here on the case of a stationary bifurcation, that is w = 0, for

non-zero k.

When both the wavenumber k& and the eigenvalue w are zero, the situation is actually con-
siderably simpler since it corresponds to a homoclinic bifurcation in an ordinary differential
equation where the equilibrium undergoes a pitchfork bifurcation. On the other hand, the

case of non-zero w is similar to the case w = (), and we refer to Section 4 for a discussion.



Figure 1: The superposition of the localized solitary wave h with small patterns that have a i—”*
20

periodic spatial structure is shown in a frame moving with speed ¢g > 0. The small-amplitude
patterns move with speed —¢q relative to the pulse h. The solution shown here has period Z—: n

time in the moving coordinate frame where wg = epky.

From now on, we concentrate on situations where w = 0 and k& = kg are non-zero, that
is, we assume that the dispersion relation is satisfied by Ay = 0 and some kg # 0. The
associated local bifurcation close to the equilibrium state is known as the Turing instability;
see Sections 3.2 and 3.4. Tt generates small patterns of the form e*7 that are often
referred to as Turing patterns. These patterns possess a spatially oscillating structure
with period i—: We seek time-periodic modulations of the pulse that are reminiscent of
a linear superposition of these small steady patterns and the large localized pulse. In a

coordinate system & = z — ¢ot moving with the speed ¢g of the pulse, the steady patterns

e*0” hecome travelling waves eifo(Etet) . oilkodtuwnt) wwith wq = cokop. They move with
speed —ecq relative to the pulse h and have period Z—Z in time. In this moving frame, the

modulated pulse looks roughly like
Aei(kof—l—wot) + h(g)

for small A; see Figure 1. We remark that Turing patterns bifurcate for any wavenum-
ber k close to kg. Correspondingly, we expect to find modulated pulses with asymptotic
wavenumber k and temporal frequency w = cgk for any k close to ky. For the sake of
clarity, we first seek modulated pulses with temporal frequency wy = cokg. Only at the end
of the analysis, in Section 3.7, we show how modulated pulses with other temporal periods

can be obtained.

To set the scene, consider

Uy = D“mm_l_f(“v,u)v T €R7 (]])

where u. € R™ and f(0, 1) = 0 for all p. Casting (1.1) in a frame £ = 2 — ¢of moving with
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Figure 2: The essential spectrum of the parabolic reaction-diffusion system is shown in (a). Picture

(b) shows the spectrum of the associated elliptic system.

speed cg, we obtain

uy = Duge + coug + f(u, p), £ ER, (1.2)

which then has the equilibrium h(&) for p = 0. We are particularly interested in localized
waves satfisfying lim g h(&) = 0. The stability of h is determined by the spectrum

spec(l) of the linearization

Lw := Dwge + cowe + 0, f(h(E),0)w (1.3)

of (1.2) about h. The essential spectrum of I is the complement in spec(l) of the set of
isolated eigenvalues with finite multiplicity. Tt contains the spectrum of the linearization
about the asymptotic state u = 0 that consists of all points A in the complex plane such
that

det(—k*D +ikeo + 9, £(0,0) — X) =0

for some k € R. This equation is the aforementioned dispersion relation in a coordinate
frame moving with the pulse. We assume that the essential spectrum of the asymptotic
state for = 0 has the form depicted in Figure 2(a). With the transformation A= A—ikeg,

we recover the dispersion relation
det(=k2D + 8, £(0,0) — A) = 0

in the original steady coordinate frame. Note that real solutions ) of this dispersion relation

are double zeroes corresponding to wavenumbers +k.

Since the critical eigenvalues A = +iwg are not isolated in the spectrum, it is difficult to
reduce the dimension by applying Lyapunov-Schmidt reduction or center-manifold theory.
Often, modulation equations have been used to describe the dynamics near homogeneous
steady states. In the aforementioned context of bifurcations from equilibria, a partial justi-
fication of the approximation by modulation equations, that is Ginzburg-l.andau equations,
has been achieved in [7]; see also [3, 12] and the references therein. Modulation equations
close to a pulse would have to capture both the dynamics close to the asymptotic equilib-

rium state of the pulse, typically described by a Ginzburg-T.andau equation, and the global



interaction of the modulation through the pulse. An attempt to derive such a modulation
equation, at least formally, has been made in [1]. However, the resulting Ginzburg-Tandau

equation is still difficult to analyze.

We therefore resort to a completely different approach and cast the parabolic equation (1.2)

as an elliptic equation on the space of 2Z-periodic functions, namely
wo .

i w\ v Lo
d¢ <7)> n <D1 (n — cov — f(u, M)))’ tesS = R/MOZ' (1.4)

In other words, we anticipate the temporal period Z—Z and then reverse the role of time

and space by viewing (1.4) as an evolution equation in & The restriction to Z—Z—periodic
functions is very efficient since most of the essential spectrum disappears for the initial-
value problem (1.4). In fact, the spectrum of the linearization of (1.4) about (u,v) = 0
has a pair of isolated imaginary eigenvalues +ikg; see Figure 2(b). Thus, we expect a
Hopf bifurcation leading to spatially periodic solutions with small amplitude. Here, we
recover precisely the Turing patterns of the form e*07 — ei(ko€+wo?) — On the other hand,
the travelling wave h(£) corresponds to a time-independent homoclinic solution (h, he)(€) of
(1.4). We then seek solutions close to (h, he)(€) that are homoclinic to the aforementioned
small periodic waves. If (1.4) were an ODE, we could readily investigate the existence of
such connections by studying intersections of suitable global invariant manifolds associated
with the periodic waves. However, the initial-value problem for (1.4) is ill-posed. Indeed,
Figure 2(b) indicates that the stable and unstable eigenspaces are both infinite-dimensional,
and semigroup theory fails. Therefore, it is not clear whether global invariant manifolds
exist or whether dynamical-systems techniques can be used at all to investigate elliptic

equations such as (1.4).

In this article, we construct global stable and unstable manifolds near the given pulse
(h, he) and study their intersections upon changing the parameter p. We use exponential
dichotomies for elliptic equations to accomplish this construction. Exponential dichotomies
are a well-known technique for ODEs and parabolic PDEs; see, for instance, [4, 6, 13]. For
elliptic equations, however, there are major technical obstacles to their global existence

that have been resolved only recently in [14].

The idea of using spatial dynamics has been introduced in [9]. Since then it has been used
extensively in order to investigate bifurcations from spatially homogeneous equilibria to
small steady-state or time-periodic solutions; see, for instance, [2, 7, 15]. Typically, the
resulting elliptic system is reduced to a finite-dimensional equation that describes small so-
lutions near the homogeneous steady-state. The reduced equation can then be investigated
using bifurcation theory. The problem analyzed in the present article, however, involves a
large pulse solution that is not close to the equilibrium state. A finite-dimensional reduction

to a center manifold for the spatial dynamics is not known in this context.

This paper is organized as follows. In the next section, we present a four-dimensional
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model problem. The model reflects the essential features of the part of the bifurcation we
are interested in, though we believe that it is inadequate for a complete description. The
analysis of the infinite-dimensional problem, including all necessary hypotheses, is then
carried out in Section 3. The main result, the bifurcation of modulated travelling waves
asymptotic to spatially-periodic steady patterns, is stated in Section 3.7. We conclude in

Section 4 with a discussion and generalizations of the result.

2 A finite-dimensional model problem

In this section, we outline the bifurcation that occurs in the elliptic problem (1.4) when
the essential spectrum of (1.3) crosses the imaginary axis. For the sake of clarity, we utilize
a four-dimensional model that mimics precisely the bifurcation we are interested in. Tlet

(ug,u1) € R? x R? satisfy the differential equation

d

" = fo(uo, e, p) (2.1)
d
E?M = fi(uo, w1, ¢, p).

The reader may think of (wug,u1)(2) as the zeroth and first Fourier coefficients of the t-

periodic function (u,ug)(t,€) defined in (1.4); see also equation (3.4) below.

We assume that the subspace uy = 0 is invariant for all values of the parameters, that is

fi(ug, 0,¢, 1) = 0. The dynamics in the subspace uy = 0 is then governed by the equation

d
Euo = folug, c, ). (2.2)

Suppose that (2.2) has a homoclinic solution to the hyperbolic equilibrium ug = 0 for
(¢, 1) = (¢0,0). This homoclinic orbit corresponds to the pulse solution h of equation (1.2).
We assume that the homoclinic orbit of (2.2) is transversely unfolded by the parameter ¢,
that is, stable and unstable manifold of the origin cross each other with non-zero speed upon
varying ¢ near ¢ = cq. As for the second equation in (2.1), we assume an S'-equivariance
with respect to the rotations in R% This symmetry represents the time shift of non-zero
solutions of (1.2). Finally, upon varying the parameter u, suppose that the equilibrium
(ug,u1) = 0 undergoes a non-degenerate Hopf bifurcation in R* with critical eigenspace
{(ug,u1); ug = 0}.

Factoring out the S'-symmetry in the u;-variable, we are left with a three-dimensional ODE
having a homoclinic orbit to an equilibrium in a two-dimensional flow-invariant subspace.
Moreover, the equilibrium experiences a pitchfork bifurcation in the direction transverse
to this subspace; see Figure 3. Upon changing ¢, unstable and center-stable manifold of
the origin cross each other with non-vanishing speed in the three-dimensional space. If

the pitchfork bifurcation is supercritical, the bifurcating equilibrium has a one-dimensional



Figure 3: The picture on the left shows the homoclinic orbit (h, he) of the elliptic system at the
bifurcation point. The vertical axis corresponds to the center direction in which a supercritical Hopf
bifurcation takes place. The two horizontal directions coincide with the invariant subspace uy = 0.
The picture on the right shows the homoclinic solution connecting the bifurcating periodic solution
to 1tself.

unstable manifold, which is close to the (strong) unstable manifold of the origin. Therefore,
upon changing ¢, the unstable manifold of the bifurcating equilibrium also crosses the
center-stable manifold of the origin due to the persistence of transverse crossings under
perturbations. The unique intersection curve corresponds to a homoclinic orbit to the

bifurcating equilibrium since the origin is unstable within the center manifold; see Figure 3.

The main difference between the elliptic problem (1.4) and our model problem is that the
phase space for the former equation is infinite-dimensional, and both the unstable and the
center-stable manifold of the origin are infinite-dimensional. Even the existence of these
manifolds far away from the equilibrium is not evident as we do not have a flow to propagate

local invariant manifolds.

3 Bifurcations of time-periodic travelling waves

3.1 The parabolic and elliptic equation
We consider the semilinear parabolic equation

Uy = D“mm + f(“’nu)v T € R7 (3])

where u € R”, D is a diagonal matrix with positive entries, and f : R" x R — R" is a
smooth nonlinearity with f(0, ) = 0 for all p.

Hypothesis (TW) Assume that h(x —cot) is a travelling-wave solution of (3.1) for p =0
and some co # 0 such that h(§) tends to zero exponentially as |£] tends to infinity.



Transforming (3.1) into the moving frame (£,#) = (z — ¢t,t), we obtain

wy = Duge + cug + f(u, p), £ eR, (3.2)

which then admits the equilibrium A(€) for (e, u) = (co,0). Equation (3.2) is well-posed
on the space X := (C?

unif

for instance, [6]. Here, we consider strong solutions u(#) of (3.2) that are differentiable as

(R,R™) of bounded and uniformly continuous functions on R; see,

functions into X, continuous with values in C2 .. and satisfy (3.2) in X.

Next, we cast the parabolic equation (3.2) as an elliptic equation

ie(0) = (o v sy =

reversing the role of time and space. The functions U = (u,v) are contained in V :=

1
Haer (0, Z—:) X L?,M(O7 Z—Z) for some wy > 0 which we specify below. The nonlinearity f maps
1

H3er into L%er provided it has at most polynomial growth. If f has faster growth, we may

1
consider (3.3) on the space ngr X Hger. There are then no restrictions on f necessary

and the analysis presented below is still valid. We say that (u,v)(£) is a solution of (3.3) if
1

(u, v) (&) is differentiable in & as a function into Y, continuous with values in H;erx Hjer and

satisfies (3.3) in Y. We emphasize that the initial-value problem for (3.3) is not well-posed
on Y.

On the space Y, we have the S'-action
(paU)(t) =U(t+ )

with o € R/Z—ZZ. Note that (h(£), he(§)) satisfies (3.3) for (e, u) = (¢o,0). We may think
of this solution, which is contained in the fixed-point space Fix(S") of the S'-action, as a

homoclinic orbit to the zero equilibrium.

Throughout, we utilize the Fourier series of elements (u,v) € Y and identify (u,v) with its

Fourier coefficients (wup, vg)se7, where
(u(t),v(t)) = ( Z wpe o’ Z Wei/‘wot) . (3.4)
LET LET
Note that

1ol = S (Dl + lol?) = D [(we w2 (35)

LeT LeT

() = Juf?

let

i/,ul() 1 7]/&/07‘}

Yo = Spa’n71,/,7}/,71,,/,7},/€R”{(?I’/w U/«)P‘ ’ (?I’*/ﬁ 7)*44)9‘

equipped with the norm | - |,.



3.2 The linearization about v =0

Setting (e, 1) = (¢o,0), we linearize (3.2) about v = 0 and obtain the linear constant-

coefficient operator
Loow = Dwee + cowe + 0, f(0,0)w.
First, we calculate the spectrum of L, on X. Define
d(X,v) == det(v?>D 4 veg + 0, £(0,0) — A). (3.6)
Owing to [6, Theorem A.2], we have
spec(lo) = {A € C; d(A,ik) = 0 for some k € R}, (3.7)

since w(&) = "y is then a bounded eigenfunction associated with the eigenvalue X for

some non-zero wg € C*.

Hypothesis (P1) Assume that spec(L..) NiR = {+iwg} for some wy > 0. Furthermore,

we assume that d(X,ik) =0 for X close to iwg if, and only if, k is close to ko = “:—(? and
A= A(k) = iwg +ico(k — ko) — Cr(k — ko)® + O(|k — kol™), (3.8)

where C. > 0 is real and cog # 0 denotes the wave speed. Finally, we assume that

Ay d (A, 1) (ieso,ito) 7 0-

Hypothesis (P1) states that the essential spectrum of L., touches the imaginary axis at
A = 4iwy. The corresponding eigenfunction e*&wy is unique, up to constant multiples,

and has a non-trivial spatial structure since ko # 0.

Note that the particular form of the dispersion relation (3.8) follows from a generic as-

sumption on the bifurcation in the steady coordinate frame. Indeed, consider the operator
LY w == Dwgg + 8, F(0,0)w. (3.9)

Its dispersion relation for v = ik is
det(—k>D + 8, f(0,0) — X) = 0. (3.10)

Figenvalues A? of LY transform into eigenvalues A, of Lo, via A (k) = A2(k) + ikeg. Tn
Hypothesis (P1), we have assumed that only k = +kq satisfy (3.10) for A = 0. In addition,
we assumed in (P1) that the derivative of (3.10) with respect to k evaluated at (A k) =
(0, ko) is not zero. Hence, there are unique solutions A} (k) satisfying (3.10) for k near £k
with A (+ko) = 0. Note that (3.10) is symmetric with respect to & — —k. Therefore, we
conclude that A% (k) are both real-valued. Summarizing, Hypothesis (P1) is satisfied by

an open set of one-parameter families. Many reaction-diffusion systems that satisfy (P1)



are known. One example is the Brusselator; see [5, Ch.VII, §5] or, for the first reference to

Turing instabilities, [21].

Next, we compute the spectrum of the linearization

4 — 0 id
N DD — 2, (0,0) —coD!

of (3.3) at the equilibrium U = 0 considered in the space Y with wq chosen as in (P1). We

remark that we may consider the space Y for any frequency w close to wg; see Section 3.7.

Lemma 3.1 Suppose that (P1) is met. The operator A, has then two simple eigenvalues
+iko on the imaginary axis with eigenfunctions e“o'Uy and e 0Ty, respectively, for
some non-zero Uy € C?, while the rest of its spectrum is uniformly bounded away from the
imaginary axis. The operator A, has compact resolvent. Furthermore, there are constants
6 # 0 small and K > 0 such that

A § —ik)id)™! <
(Ao 6= 8)0) iy < o

for all k € R. Finally, there exist spectral projections P, P® and P® in L(Y') corresponding

to eigenvalues of Ao, with positive, zero and negative real part, respectively.

Proof. TetV = (Vi,V,) € Y. We have A,V = vV if, and only if, V, = vV;, and
(V2D 4+ veg + 0, £(0,0) — 9,)V, = 0.

Upon exploiting the Fourier series (3.4) of V' with coefficients (a,, bs), we see that v €
spec(A.) if, and only if|

det(VQD + veg + 0, f(0,0) — ilwy) = d(ilwy,v) =0

for some ( € Z. Tt follows from (P1) and (3.7) that v = +ikq are the only eigenvalues of
As on the imaginary axis. These eigenvalues are simple since the algebraic multiplicity of
ikg coincides with the order of ikg as a zero of the determinant d(iwg, v) with respect to v.

By Hypothesis (P1), this order is equal to one.

In particular, A, isinvertible on Y. Tt is clear that the inverse is compact since the domain
1

H! % ngr of Ay, is compactly embedded into Y.

per
Next, we consider the eigenvalue problem for A.,. Note that the Fourier subspaces Y, are

invariant under A.,. The associated eigenvalue problem for the Fourier coefficients (ay, by)

- v <”"”‘> —0 (3.11)
D (ilwo — 0, f(0,0)) —v—coD " ) \be) v

is given by



In order to prove the remaining claims on the resolvent and spectral splittings, it suffices

to investigate (3.11) for £ € Z with |(| large. We then scale

1 ~
ay = —(Al,/7 bg = b[. (3.]2)

N

This rescaling accounts for the norm on Yy; see (3.5). In particular,

(ae, be) 2= 1] [ae 4 |be = a0 4 e = |(de, be)| .

We also rescale the eigenvalue v = /|[f|0. The eigenvalue problem then reads
-0 id iy
T . - ~ ) =0, 3.13
D~ (iwg sign £ — |],—@|(3?“f(07 0) —v-— \/1—WCOD 1 <b/> ( )
which has a non-trivial solution if, and only if,
76 1
det (92D + —2% 4 =0, (0,0) — iwosign () = 0. (3.14)

VR

Taking the limit || — co gives
b id |\ /a
o <W>—0 (3.15)
D~ Viwgsignl  —0D by

det(D?D — iwgsign £) = 0,

and

respectively. The last equation has 2n solutions ©; which are not imaginary and independent,
of £. By Rouche’s Theorem, there are then 2n zeroes of (3.14) near the set {0;}. The
rescaling v = \/Wﬁ shows that the real parts of the corresponding eigenvalues are actually
unbounded as |/| — oo. Similarly, the spectral projections associated with the limiting
problem (3.15) perturb to spectral projections of (3.13) in Y, that are bounded uniformly
in £. Due to the definition of the norms on ¥ and the rescaling (3.12), the lemma is proved.

3.3 The linearization about the travelling wave

We consider the linearizations of (3.2) and (3.3) about the pulse h(&) for (¢, p) = (¢o,0).

For the parabolic equation, define

Lw = Dwge + cowe + 9, f(R(E), 0)w

for w € X. The variational equation about the homoclinic solution (h, he) (&) of the elliptic
equation (3.3) is given by

0 id
emAOr = ( DD Duf(h(€).0)) oD ) " (3.16)

10



with V' € Y. Note that the Fourier subspaces Yy are invariant under A(&) since h(€) does
not depend on t. In Y7, equation (3.16) reads

(o) - ( 1 — BuFHE.0) —ral ) (i) 1

The next lemma characterizes the set of bounded solutions of (3.16).

Lemma 3.2 Assume that Hypothesis (P1) is met. We then have XA = ilwy € spec(l) for
some { € 7 if, and only if, there exists a bounded solution V (£,t) = o'V (&) of (3.16)
defined for £ € R.

Proof. If V(&,1) = etV (€) is a bounded solution of (3.16) on R, then Vy(&) =
(w, we) (&), and w(&) lies in the null space of L — ifwy:

Dweg + cwe + 0, f(R(€),0)w = ilwy w. (3.18)

Moreover, w € X. Therefore, ilwy € spec(l).

Next, suppose that A = ifwy € spec(L). If |{| # 1, then X is not contained in the essential
spectrum by (P1). Hence, the eigenfunction associated with ifwq is localized, and therefore

corresponds to a bounded solution of (3.18).

It remains to consider the case A = +iwg. We seek bounded solutions of (3.17) with £ = +1,

that is,
d (o _ 0 id o
¥<b1> N ( D71(iw0 - 871f(h(£)70)) *C()D71 ) <b1> (3]())

Due to Hypothesis (P1), we have A € spec(l,). Moreover, Lemma 3.1 shows that the

spectrum of the asymptotic matrix

s e 0 id
Y\ D (e — 90 f(0,0) —eoD!

defined on Y7 has two simple imaginary eigenvalues +ikg, while the other eigenvalues have
non-zero real part. Since the function h(£) converges to zero exponentially as [£] — oo,
we can now apply ODE results on exponential dichotomies [4, 13]. Hence, there are two
subspaces F{°(0) and F{"(0) of Y7 such that solutions of (3.19) with initial values in F{°(0)

or F{"(0) are bounded for £ — oo or £ = —o0, respectively. Furthermore,
dim E75(0) = #{v € spec(Ay); Rev <0}, dim E7"(0) = #{v € spec(A1); Rev > 0},

counted with multiplicity; see [4]. In particular, dim F{5(0) + dim F{"(0) = dimY; 4 2.
Therefore, any solution of (3.19) with initial value in F{(0) := F{°(0) N F{"(0) is bounded

on R. Moreover, dim E7(0) > 2, and therefore E{(0) contains non-trivial initial values. m

11



Note that the lemma would be wrong if the limiting matrix A, were containing a non-
trivial Jordan block corresponding to the eigenvalue A = iwg. In this situation, even though
A € spec(l), there would in general be no bounded solution of (3.16) since solutions are

expected to grow linearly in €.

Actually, we have proved much more. Using the notation introduced in the proof above,
the set F§(0) of bounded solutions of (3.17) with |{| = 1 is at least two-dimensional. If we
modify the nonlinearity f(u,0) by adding a small rotation normal to the homoclinic orbit
h, we can arrange that F{(0) is two-dimensional. Furthermore, by the same argument,
solutions associated with initial values in F{(0) do generically not decay exponentially as
|€] = oo but oscillate. In other words, generically in f(-,0), we have F{(0)N F5(0) = {0}
and F7(0)N FY(0) = {0} where F5(0) and F}'(0) are subspaces of ¥ such that solutions
of (3.19) with initial values in F5(0) or F}(0) decay exponentially for £ — oo or & — —o0,

respectively.

Using similar arguments, A = +ilw is generically not in the spectrum of I, for |¢] > 1.
Note that A = 0 € spec() with eigenfunction he by translation invariance. This eigenvalue
is typically simple. For generic nonlinearities f(u,0), the following hypothesis is therefore

met.

Hypothesis (P2)

(i) X =0 € spec(L.) is a simple eigenvalue.

(ii) (I — iwg)w = 0 has a unique, up to constant complex multiples, non-zero bounded
solution w°(&), and we have |w°(&) — eikogwﬁ — 0 as £ = *oo for appropriate

non-zero vectors wﬁ cC.

(iii) X = +ilwq is not in spec(L) for £ > 1.

On account of Hypothesis (P2) and LLemma 3.2, the subspace of initial values in ¥ associated

with bounded solutions of (3.16) is given by

F(0) = span{(h, h¢)e (0), w“(())eiw“f7 mefiwot}. (3.20)

Our next goal is to solve (3.3) using the information gathered so far. Unfortunately, the
initial-value problem for (3.3) is not well-posed on Y. Under certain circumstances, how-
ever, (3.3) can be solved in forward or backward &-direction for initial values in certain
&-depending subspaces of Y. We say that (3.3) has an exponential dichotomy on R1if there
are projections Py (&) defined for € > 0 with the following property: for any Vi € R(P4(0)),
there exists a unique solution V(&) of (3.3) which is defined for £ > 0 such that V(0) = V4.
Moreover, V (£) tends to zero exponentially as & — oo, and V(&) € R(Py(§)) for all £ > 0.
Similarly, for any V4 in the null space of Py (&), there is a unique solution V(&) of (3.3)
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which is defined for 0 < & < &, such that V(&) = Vp; furthermore, V(§) decays expo-
nentially for decreasing & with 0 < £ < &. In other words, for & > 0, there are two
complementary subspaces, R(Py(£)) and R(id — Py (&)), such that we can solve the elliptic
equation forward and backward in £ for initial values in R(Py(£)) and R(id — Py (§)), re-
spectively. Exponential dichotomies on R~ are defined analogously; solutions in R(P_(0))

decay exponentially as & — —o0.

In the following lemma, we show that equation (3.3) has dichotomies so that we can solve
it forward and backward in & provided the initial values are contained in appropriate
subspaces. The only difference to the situation described right above is that solutions

do not necessarily decay.

Lemma 3.3 Assume that Hypothesis (P1) is met. There are bounded operators ®3 (&, 1),
D (&, n) and O (&, n) defined on' Y for 0 < n <& 0< n,& and 0 < & <, respectively,
such that ®3 (£, n)Vo, ®L(E ) Vo and ®L(E,n)Vy satisfy (3.16) for & > n, any & and & <
n, respectively, and are continuous in (&,1n) for any Vo € Y. Furthermore, ®3 satisfies
the evolution property ®5 (&, )P (n,() = PL(E,C) for any 0 < ¢ < n < & Analogous
properties hold for ®S (&, n) and & (£, n). Moreover,

B, €) + BL(E, ) + BLEE) =id,  PL(EOPL(EE =0 fori#

where i,j € {s,c,u}. Finally, there are constants K > 0 and x > 0 such that

1% (€ lngry < ™IS E My < Ko @308l < Ko™ (3.21)

for any 0 < n < &. Similar properties hold for operators ®° (£, 1), ®° (&, n) and O™ (&, n)
defined for negative & and 7.

Proof.  The statement of the lemma follows from [14, Theorem 1]. We give another
simpler proof that works for the particular case studied here. As mentioned above, the
Fourier subspaces Y; are invariant under A(€) since h(€) does not depend on . The Fourier

coefficients (ay, by) satisfy equation (3.17)

O G A 105}

We can readily solve this equation for any £ € Z. L.emma 3.1 shows that the spectrum of the
asymptotic operator A |y, is strictly hyperbolic except when || = 1 where it contains two
simple imaginary eigenvalues. The case || = 1 has been discussed in LLemma 3.2. Hence,
we conclude the existence of evolution operators Py 4
In fact, ®% , = 0 except when |/| = 1. Furthermore, the estimates (3.21) are true in Y, for

S, and Y ,in each subspace Y.

some k independent of £ due to l.emma 3.1.
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It is, however, not clear whether the constant K is independent of £ and whether the
resulting evolution operators are bounded on Y. To prove this, it suffices to estimate the
norm of the evolution operators on the space Y, for large /. Thus, let |[{| > 1. Using the

scaling (3.12), that is, ay = \/1—m&g and by = i)g, we obtain

d (ag\ 0 id kY
de <i)/> n \/m D~ (iwq sign £ — |}—@|(3?“f(h(€)7 0)) f\)—m(:(ﬂ?*1 <i)/> ’

Rescaling the &-variable by /|/|¢ = £, we get,

d <’“> : . v <”‘”> (3.22)
dé \ by VD7 (iwg sign £ — |],—4((J?uf(h(f/\/m),0)) f\/;m(:onf1 b )" o

Taking the limit |{] — oo, we obtain the equation

d <f1> B 0 id <?1>
dg\b D liwgsign 0 b)’

which is independent of &: The matrix on the right-hand side is hyperbolic; see Lemma 3.1.

A perturbation argument shows that the evolution operators (131% and (13‘4’_% of (3.22) satisfy
195 (€Al < Ke ™M [|dY (7, €)|| < Ke ™7

for0 <5< &:, where K and k are independent of £. Due to the definition of the norms on

Y and the rescaling of the £-variable, the lemma is proved. ]

With LLemma 3.3 at hand, we can define the subspaces

FS(0) = R(P%(0,0) + <(0,0)), F1(0) = R(95.(0,0)),
E(0) = R(3" (0,0) + ¢ (0, 0)), 1" (0) = R(®" (0,0)).

For any initial value in F$3(0) or F3(0), there exists a solution of (3.16), and it is bounded
or exponentially decaying, respectively, as £ — co. An analogous characterization is true
for F<'(0) or E"(0) as £ — —oo. Note that the subspace F°(0) defined in (3.20) is given
by F°(0) = E$°(0) N FE2(0).

Lemma 3.4 Assume that Hypotheses (P1) and (P2) are true. There exists then a non-zero
element g € Yy such that

(FL(0) + F(0)) & spa,n{w“(())eiw“f7 ?1)“(0)(%7“075} @ span{vg} =Y,

and F5.(0) N E(0) = span{(h, he)e(0)}.
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Proof. 1t suffices to construct a complement of the stable and unstable subspaces in Yj.
Note that Yy = Fix(p) is invariant under the nonlinear elliptic equation (3.3). In fact, on

Yo, (3.3) coincides with the travelling-wave equation

i#(0) = Coor ) 59

for u € R”, which is satisfied by the wave (h, h¢)(€). The equilibrium » = 0 is hyperbolic,
and the intersection T(h’hf)(o)Ws(O) N T(h,hf)(o)W”(O) of tangent spaces of the stable and
unstable manifolds of (3.23) is one-dimensional by Hypothesis (P2)(i). Otherwise, the
geometric multiplicity of A = 0 would be bigger than one. We may choose g as the unit
vector in the one-dimensional orthogonal complement of T, 1, 0)W* (0) 4+ T(h,hf)(o)W“(O)-

|

3.4 Hopf bifurcations near [/ =0 in YV

We return to the nonlinear reaction-diffusion system, first considered in the original coor-

dinate frame

= Dty + f(u, ).

Under the assumptions on the linearization LY in the steady coordinate frame, see (3.9),
spatially-periodic steady patterns with wavelength 27” bifurcate typically from the zero so-
lution for k close to the critical wavelength kg. This is usually proved using center-manifold

theory or Lyapunov-Schmidt reduction in a function space of 2Tw—periodic functions.

Next, consider the nonlinear parabolic equation (3.2)

wy = Duge + cug + f(u, p), £ e R.

In a coordinate frame moving with speed ¢, the aforementioned spatially-periodic steady
patterns become time-periodic travelling wave-trains with frequency w = ck. We assume
from now on that the wave speed ¢g of the pulse is negative, i.e. ¢g < 0. If ¢ > 0, we

change £ — —& and obtain ¢y < 0 in the new spatial variable.

Since the pulse is not spatially periodic, we introduced spatial dynamics on time-periodic
functions. In the next step, we rephrase the aforementioned result on bifurcation to wave

trains in terms of the spatial dynamics. Consider the nonlinear elliptic problem (3.3)

()= oo swm)

with (u,v) € Y. The linearization of (3.3) at U = 0 is given by

0 id
AOO(C, 'u) - ( D! (87‘ - (()uf(onu)) —eD™! ) .
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The operator A, (co,0) has a pair of simple eigenvalues +ikg with eigenfunctions e “ot [y

and e “0'TT: see Lemma 3.1. As in (3.6), we define
AN, v, e, 1) = det(*D +ve 49, f(0, 1) — A).
Note that we have the relation
d(Mv,e,u)=d(A—v(c— o), v, co, 1), (3.24)
which follows immediately from the definition.

For a generic Hopf bifurcation, the eigenvalues +ikg should cross the imaginary axis with

non-zero velocity. We assume the following:

d,.d(iwy, ko, co, 0
Hypothesis (P3) Assume that 'y = — Re -2 (1w, iko, o, 0)

> 0.
(()Ad(iw(% ”{?07 Cp, 0) >

The reader might check, using (3.24), that the condition 'y # 0 is equivalent to the
transverse crossing of eigenvalues when considering the temporal dynamics of Z—:—periodic
functions. If C'y < 0, we can transform the parameter u — —pu to achieve 'y > 0; see also
Remark 3.10 below.

Note that the denominator dyd(iwy, iko, co, 0) is not equal to zero since hd d,A = —d,d # 0
by (P1). Upon differentiating (3.8) with respect to &k and using v = ik, it follows that
dy A = ¢g. The eigenvalue ik persists as a simple eigenvalue v(u) of the operator A (co, 1)
considered in Y. Using —d,d/d\d = d,\ = ¢o, we obtain

Oud — Oud Oxd 1 0,d

0,d od d,d  cohd’
Hence, owing to (P3), the real part of v(p) is given approximately by —puC'y /eo. Therefore,

o v =

with ¢g < 0 and the sign of (' as in (P3), the eigenvalues +ikqy cross the imaginary axis
from left to right as u becomes positive. Furthermore, exploiting (P1), (P3) and (3.24),
d(X, v, e, 1) vanishes for (A v) close to (iwg, ikg) if, and only if,
A = lk((’*(‘o)—l—lwo—l—l(‘o(k‘fko)7(770(]{‘7k0)2+(j1u+0(|u|2+|k71{‘0|2)
= iwg +i(ck —wo) — Crlk — ko) 4+ Cip + O(ul* + |k — ko).

According to T.emma 3.1, eigenvalues of the linearization A, (¢, ) are on the imaginary

axis precisely when Im A = wg and Re A = 0, that is

0 = ck—wg (3.25)
0 = —Ci(k—ko)* + Crp+O(pl* + [k — kol?).
This equation can be solved for (u, k). Thus, A, (¢, 1) has a pair of imaginary eigenvalues
whenever
k—Fky = fk—:((: — ¢p) (3.26)
o= e ) Ol af)



Denoting the function in the last equation by u = u.(c¢), we see that (3.3) has a simple
pair of imaginary eigenvalues for (¢, u) = (¢, ui(c)) for any ¢ close to ¢g. We introduce new

parameters by
(1) = (6 1ale) + ). (3.27)

The Jacobian of this transformation is equal to the identity at (e¢,pu) = (¢o,0). Also,
imaginary eigenvalues occur precisely for i = 0. Alternatively, we may solve the first

equation in (3.26) with respect to k& and obtain

((;7 M) = (wo/k”u*(k) +ﬂ)’

where we again use u. with a slight abuse of notation.

Recall that S' acts on Y via (paU)(t) = U(t + ). We say that a manifold W is invariant
under equation (3.3) for £ > 0 (£ < 0) if, for any Uy € W, there is a solution U(&) of (3.3)
defined for £ > 0 (£ < 0) with U(0) = Uy and U(§) € W for sufficiently small £.

Lemma 3.5 Assume that Hypothesis (P1) is met. For any (¢, 1) close to (co,0), there
exists then a two-dimensional, smooth and S'-invariant center-manifold Wfﬂ(()) CY that
contains U = 0 and is tangent to span{e°* Uy, e 'y} at U = 0 for (¢, 1) = (co,0).

Furthermore, Wfﬂ(()) is invariant under (3.3) and smooth in (¢, f1).

Proof. The lemma follows from results of Mielke [11]; see also [22]. The assumptions in

these references are satisfied due to .Lemma 3.1 and 3.3. |

Hence, the elliptic PDE (3.3) near I/ = 0 is essentially reduced to an S'-equivariant ODE
on Wfﬂ(()) We assume that the Hopf bifurcation is supercritical.

Hypothesis (H) Assume that the vector field on W¢ ,(0), projected onto the center
eigenspace and in polar coordinates, is given by re = —Cor®, ¢ = ko up to terms of fourth

order for some Cy > 0.

Note that the vector field on the center eigenspace takes this particularly simple form due
to the equivariance with respect to the isometric action of ST on the center eigenspace. We
remark that the sign of (5 is not important. The arguments given below work also in the

case where (5 < 0; see Remark 3.10 below.

The coefficient (/5 may be computed explicitly following standard procedures. The linear
part of the vector field on the center manifold is given by the restriction of the linearization,
Awo, to the invariant center eigenspace span{e [, e o'y}, By S'-equivariance, the
quadratic terms of the Taylor expansion of the vector field projected onto this subspace
vanish. The computation of the cubic term requires in general the quadratic approximation

of the center manifold. However, if the nonlinearity f is cubic, the computation of the cubic
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term simplifies greatly: in this situation, the third-order term of the vector field is obtained
by simply evaluating and then projecting the nonlinearity onto the center eigenspace. A
vector in the center eigenspace is of the general form ze'o* /iy 4+ c.c. with z € C. We write
Un = (?I,H,UH)t where, due to the second-order structure of the equation, vy = ikguy.

Fvaluating f and projecting onto the subspace span{e“°’l; [/ € R?"}, we obtain
307 1(0,0) (Zeiw“t?m7 zel oy, zelwolyy) + c.c.

up to fourth order. In order to compute the equation on the center manifold, we have to

multiply with the left eigenvector Uy = (ujy, vf;) which satisfies

0 id
ikoUpy = U .
o ”( D™ (iwy — 3,£(0,0)) —eqD~! )

For cubic nonlinearities, the cubic coefficient (U5 is therefore given by

1
Coy = 57){1(83][(07 0) (?I’Hv UH, W) + C‘C‘)‘

Hypotheses (P3) and (H) are related to the signs of the coefficients in the Ginzburg-TLandau
equation

associated with (1.1) near u = 0. Indeed, Hypothesis (P3) implies 5y > 0, while (H)
enforces B3 > (0. We may now apply the S'-equivariant Hopf bifurcation theorem and

obtain the following lemma.

Lemma 3.6 Assume that Hypotheses (P1) (P3) and (H) are satisfied. There is then a
family Ty (&) € Y of periodic solutions of (3.3) with (¢, ) = (wo/k, p<(k) + f) defined for
k close to kg and ji > 0 small. These solutions are C* in k uniformly in ji > 0. Moreover,

they are relative equilibria, that is,

Peale) = (pac Do) () = Tes (0,04 ).

In particular, Uy ; has period 27” in & and Z—Z int. Furthermore, Uy ; is stable with respect

to the dynamics on Wfﬂ(()) Finally, we have the expansion

e (0,8) = Ann/f e U 4+ O(|k — kol /it + | ) (3.28)

for some Ay #£ 0.

Proof. The lemma follows from the standard S'-equivariant. Hopf-bifurcation theorem.
We obtain a family T, ;, of periodic solutions parametrized by (¢, i). Using the relations
(3.25) and (3.27), it is easy to see that we can parametrize the periodic solutions also by the
spatial wavenumber k. The relation ¢ = wq/k follows since we deal with steady patterns of

spatial period 27” considered in a coordinate frame moving with speed c. ]
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Of course, the family of solutions I'y ; is precisely the family of Turing patterns that we
would have obtained via standard Lyapunov-Schmidt reduction for the temporal dynamics.
The periodic solutions Ty (&) of (3.3) correspond to solutions vy, (&, 1) of (3.2) with u =
pi(k) + fi. The Turing patterns v, have period Z—Z in ¢ and 27” in £&. Furthermore, they

satisfy vi . (&, 1) = vg..(§ — ¢t,0). In the original frame (z,1), their wave speed is zero.

For any ¢, the function

Poal€t) == il — ety = T (0.0 254 L)
wo

Wo

satisfies (3.3) with (¢, ) = (52 +¢, p (k) + 1) and has frequency w = wy — ké in t. However,

.00 (€) is not contained in Y but in the space of 2Uw—periodic functions. Solving the

equation for w, we obtain ¢ = 22— and we set 'y 5 ,(§) = Tz 1 4 (€)-

Remark 3.7 The first component yi .0 (&,t) of Uy yi, (k) Satisfies (3.2) for p > p.(k)

and ¢ = Z. It has period 27” int and 27” in €.

3.5 Existence of invariant manifolds

We state existence results for the global center-stable manifold W:T’ (0) of the equilibrium

U = 0 and the local unstable manifold W;jg"“(rc,ﬂ (0)) of the periodic solution I'. ;(£). The
key to obtain these manifolds are the exponential dichotomies derived in T.emma 3.3. In

this section, we parametrize the periodic waves by (e, i) rather than using (k, ft).

Proposition 1 Assume that Hypothesis (P1) is satisfied. Equation (3.3) has then a C*-
smooth, locally invariant center-stable manifold W:T_(O) which is tangent to F{(0) at
(h,he)(0) for (e, ft) = (c0,0). It contains all solutions that stay close to (h,he)(&) for all
£ > 0. Moreover, W:T’ (0) is C?-smooth in (c, ji).

Proof. If we parametrize a neighborhood of (h, he)(€) by U = (h, he) + V', we obtain the

equation

0 id
e = | - )Y
( D! (87‘ — 871,.f(h/7 0)) 700]—) 1 )

0
* <D‘ (O f (hy O)Vi 4 f(hy () + 1) = f(h A+ Vi, pa(e) + 1) = (e = CO)V2)>

for V.= (V4,V2) € Y. Since YV is a Hilbert space, there exists a smooth cut-off function
X-({V,V)y). We define the modified nonlinearity

G(E Vs i) = (V. V) X

0
<D1 (D f(h(), Vi + f(R(E), pule) + 1) — f(R(E) + Vi, pule) + 1) — (¢ = Co)V2)>'
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The linear equation Ve = A(§)V has been solved in Lemma 3.3. For the constant x
appearing in Lemma 3.3 and any number § with 0 < & < k, we define

7+ = {V € CO(R*,Y); igge’5flV(€)lv =: [V]5 < o0}

We seek the solutions in the center-stable manifold as fixed points of the equation

&
V(€ = qu(fvo)v(?s+/() SE(E, )G (n, V(n), e, i) dy (3.29)

¢
+/ L& mG(n,V(n), e, ) dn,

e o)

where Vi® € F(0) and V € Z;'. It follows from the estimates obtained in Lemmata 3.1
and 3.3 that the hypotheses in [22] are met. The proposition is then a consequence of
the results presented in [22]. Note that any solution of the integral equation is actually a

smooth solution; see [14, Lemma 3.1]. n

Similarly, we obtain the global center-unstable manifold W:E’f(()) of /' = 0 that enjoys

the analogous properties for £ — —oo. Finally, we construct the local unstable manifold of

I'..2(0).

Proposition 2 Assume that Hypotheses (P1) (P3) and (H) are satisfied. For any (e, 1)
with |¢ — ¢o| and fi > 0 small, equation (3.3) has a C*-smooth, locally invariant unstable
manifold Wﬂfji““(rc,ﬂ(o)) which is tangent to R(P") at U = 0 for (¢, i) = (co,0). It consists
precisely of those solutions Uy that stay in a small neighborhood of U = 0 for £ < 0 and
satisfy

U(€) —Tea(€)] < Ke™

loc
as & = —oo. Moreover, W'".¢

i (T2 (0)) is continuous in ji in the C*-topology and C*-

smooth in c.
Here, x > 0 and the projection P" have been defined in LLemma 3.3 and 3.1, respectively.

Proof. We use the parametrization U(§) = I'. 4 (€) + V(€) and obtain the equation

- - 0 ) id - v
D (8f - (()uf(rC,ﬂ? Hox (p) + :u)) —cD

0
* <D1 (O f (Ve pisc(€) + 1)VA 4 f (Ve pi(€) + 1) = (Ve + Vi, () + ﬂ)))
for V.= (Vi,Vy) € Y. As before, we define the modified nonlinearity
G(Sv V7 Cv:&) = XF(<V7 V>Y) X
0
<D1 (0 f (Pe,i(€)s pele) + )VA + f(Te,a(€)s pele) + 1) = F(Tea(€) + Vi, pule) + ﬂ)))l
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It follows from the roughness theorem for exponential dichotomies proved in [14] that the

linear equation

Vi = ( ) 0 ) 1d7 )V
D 1((()757(()“,f(rc’ﬂ(f),ﬂ*((f)—l-ﬂ)) 70]—)1

has evolution operators (1')22(5, n) and ¢Eﬂ(n,f) defined for n < & < 0 provided |¢— ¢o| and

i > 0 are small. The evolution operators satisfy the estimates

105 (&l < Koo (190200, 6) ||rvy < Ke #E0)

and

105 (€3 m) — % o (&M lngry + 19840, €) — D o (1)l nevy < K(le — eol + Vi)

for n < & <05 see [14]. For any & with 0 < § < &, we define

75 ={VeC'(R,Y); supe %V (&)|y = |V]s5 < oo}.
£<0
We seek the unstable manifold as a fixed point of the equation
g ~
V() = @& 0V + / L& mG(n, V), e, i) dn (3.30)
Jo

¢
+ / B, (€, )G (1, V (1), . i) i,

O =00

where V' € FY and V € 7. Since G(&,V, ¢, 1) = O(|V[}) uniformly in ¢ and fi, the non-
linearity G is C% as a map from 75 into itself. By the uniform-contraction theorem, there
exists a unique fixed point of (3.30) that depends smoothly on V' and ¢, and continuously

on fi. This proves the proposition. ]

By the above proof and equation (3.28), W”’]OC(FC’[L(O)) is given by

()
U = Toa(0)+®0,00.0) V3 + O(V3}) (3.31)
= AnVEC T+ V3 4+ OUAl+ VAl — col + [Vly) + V1),

where V' € 5"

3.6 Transversality

We seek solutions of (3.3) connecting the bifurcating periodic solution T'.; with itself.
Therefore, we are interested in intersections of the local unstable manifold W;jg"“(rc,ﬂ (0))
with the global center-stable manifold W:T’ (0). For (e, @t) = (¢o,0), the former manifold
coincides with W"’]OC(O). We may then shift the variable £ such that (h, he)(0) is contained

(:0,0
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in the local unstable manifold W"’IOC(O). In particular, W;:)ISC(O) and Wf;;(()) intersect

(:0,0

along the homoclinic solution U(&) = (h, he)(€). In order to find intersections for i # 0,

we consider the suspended manifolds

WEt = {(U, )i |e— ol < 6, U € WF(0)}
W= {(Ue)s |e—col <8, U € WM ;1(0))}

as manifolds in ¥ x R. Note that they are indeed C2 due to the propositions proved ahove.
For ji = 0, these manifolds intersect along (U, ¢) = ((h, he), co)-

Lemma 3.8 For i =0, we have

span{((h, he)e(0),0)},
§7os+ Fru,—
Tihbe)©@e)Wo " + Timne) )Wo' = ¥V XR.

17c8,+ Iru,—
T((hhe)(©).c)Wo " N T((hhe) (0).c0)Wo

In other words, the suspended manifolds intersect transversely in the extended phase space
Y xR.

Proof. We observe that I, o(§) = 0 vanishes identically for all £. The tangent spaces of
WSH_ and W(;]’f are given by

Tihne) ey o™ = (FL(0) x {0}) + (E°(0) x {0}) + span{ (V7 (0), 1)},

Tihney ey Wo = (F"(0) x {0}) 4 span{((h, he)e(0),0)} + span{ (V5 (0), 1)}

The tangent vector ‘N/F:)S’O_I_ (&) of the center-stable manifold in the c-direction can be calcu-

lated by taking the derivative of (3.29) with respect to ¢ at V= 0. Similarly, V"' (£) is

€0,

the derivative of (3.30) with respect to ¢ at V' = (h, he)(0). Computing these derivatives,

we obtain the expressions

o = [eren( 0 )

On account of Lemma 3.4, it suffices to prove that

(40, Vi (0)) # (90, Vg (0)),
that is,
o m " (0,7)(0, ~ D~ e (1)) dny /m OL(0,m)(0, D he(m) dn) £ 0. (3.32)

Note that the integrands are actually contained in Yy. In particular, the term on the

left-hand side in (3.32) is given by

M= [ (0.0 el dy (3.33)

22



where (&) is the unique, up to constant multiples, bounded solution of the adjoint varia-

j?() - ( D‘au,?‘(h(f)ﬁ) jv ) <>

for (u,v) € R” X R". Since zero is a simple eigenvalue by (P2)(i), we can conclude that M,

tional equation

defined in (3.33), is non-zero; see [16, Lemma 5.5]. A similar argument, and more details,

can be found in [17, Section 5]. n

Therefore, for any & > 0, the manifolds W;S’+ and W:7 intersect along a unique line
(Un(€),c(fr)) that depends on fi. The associated solution Uy (&) of (3.3) with ¢ = ¢(f)

converges exponentially to I'.(z) 5 as § — —oo by definition. Tt is also contained in the

/‘1)7
center-stable manifold W T (0).
(i),

Lemma 3.9 We have the estimate |c(f) — o] < K|l

Proof. We consider the suspended local center-unstable manifold

cu,— . cu,loc .
W: = {(U,¢); [e—co <8, U €W ;7(0)};

m

see the comment after Proposition 1. Since the manifolds W;"’f and W;S’+ are smooth in

Q, we can parametrize them locally near ((h, he)(0), co) according to

Wi = ((hyhe)(0), o) + (V" 0) + (e — ) (Vo (0), 1) + O(le — eol* + [V + |l
Wit™ = (b he)(0), co) + (VE2,0) + (e — o) (Vigo(0), 1) + Ol — col® + [V} + ),

where V' e F(0) and V{* € FF(0). Projecting the difference of elements (U™, ¢) and
(U$, ¢) in W;”’f and W;S’+, respectively, onto span{ (o, 0)}, we obtain

((¢0,0), (U™, ) = (UL, €)) = (¢ — co) M + O(|e — o + [Vi + V[T + ).

Upon inserting the intersection point, the left-hand side vanishes. On the other hand, the
distance between the intersection point and (h, he)(0) is of the order /fi. This proves the

lemma. [ ]

It remains to show that U(£) cannot converge to zero as & — oo but approaches the
periodic solution T'.(4) 5. Since it already converges to I'(;) ; for £ — —oo by construction,
it is then a homoclinic orbit to I';(z) 5. On account of Lemma 3.6, it suffices to show that
U (0) is not contained in the stable manifold of the origin W:(:)M(O) Firstly, we shift time

such that (h, he)(0) is contained in the local unstable manifold of zero and has distance

r > 0 small from zero. We shall now estimate the distance between W:(:)WM(FFM(O)) and
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W:(:)WM(O), measured near (h, he)(0). Using the expansion (3.31) and Lemma 3.9, we can

estimate this distance from below by

Vil Ul — KAVl + 1e(@) — col) > VA Al Ul — K\/alr + ).

Note that we do not have to account for the quadratic terms O(|Vy']y-) in (3.31) since they
correspond to the local unstable manifold for it = 0. Hence, they disappear when computing
the distance. After choosing r sufficiently small, we conclude from the above estimate that
the aforementioned distance between W"’IOCA(FC’[L(O)) and W:(:;CM(O) is bigger than §y/{i

c(fu), i
for some § > 0. On the other hand, the distance between W -(0) and phloc (0) is of
(), c(fv), i

the order fi since both are smooth in . Therefore, W:(:)M(O) and W:(:)WM(FFM (0)) cannot.

s

intersect near (h, he)(0).

3.7 The homoclinic bifurcation

We summarize our findings in the following existence theorem.

Theorem 1 Assume that Hypotheses (H), (P1) (P3) and (TW) are satisfied. There is
then a smooth function p.(w) > 0 with p«(wy) = ph(we) = 0 and pl(we) > 0 such that,
for any w close to wy and any small p > p.(w), the following is true. For a unique wave

speed ¢ = c.(p,w) close to ¢y, equation (3.2) has a solution h, (&, t) with the following

properties.

(1) hyuw(&, 1) is periodic in t with period 27” In other words, the bifurcating pulse is time-
periodic in an appropriate moving frame. The family h,, (-, ) is continuous in (y,w)

with values in C°(R%R™) provided with the local topology.
(i) We have ¢.(0,wq) = cq and hq ., (€,t) = h(£).

(iii) There exists a constant & > 0 such that, for ¢ < 0,

|hu,w(£7 t) - 7k*(u,w),u,w(£ + P+ f)| S [(eimg g — 00
|hw(&t) — 'yk*(ﬂﬁw)%w(f +p 1) < Ko sl £ = —o0
for some o1 = oi(p,w) independent of & and t, where k,(u.(w),w) = —~—. If

ex (1)
co > 0, replace & by —& in the above expressions.

(iv) The functions vy, (,.w),uw(& 1) have amplitude of the order \/p — p.(w), spatial period

W in & and temporal period 27”; see Remark 3.7.

Proof. Forw = wy, the claims in the theorem have been proved in the previous sections. It

is straightforward to see that these proofs remain valid for any fixed w close to wy. Indeed,
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all hypotheses are open conditions. In order to show that the estimates and existence

domains are uniform in w, we change the time and space variables in (3.1) according to

(rym) = (%f %5)

Equation (3.1) then reads
w
wy = Dugy + — f(u, p). (3.34)
Wo

In particular, the nonlinearity depends smoothly on the parameter w. Any solution of (3.34)
with period 2= in t corresponds to a solution of (3.1) with period 2= in . We may now cast
wp w -
(3.34) in a moving frame as an elliptic problem on the space Y and apply the analysis of
the previous sections to this problem with the additional parameter w. The crucial point
is that only the nonlinearity depends on the parameter w, and in fact smoothly. A pure
wn d

time-rescaling would result in an operator 2 in the elliptic problem; the dependence on

w is then more delicate. [ ]

The solutions h, ., are relative periodic orbits with respect to the group of translations
acting on the function space X = C° .(R,R"”). At the tails, they have small spatial

unif

oscillations of period i—: that move with speed of about —¢y = ,o]:_g relative to the resting

large pulse profile; see Figure 1. Their temporal period is close to Z—Z

Remark 3.10 In Hypotheses (P3) and (H), we assumed that C'y > 0 and Cy > 0 are both
positive. As mentioned earlier, these conditions are not really necessary. In fact, Theorem 1
holds provided Cy # 0 and Cy # 0. We expect, however, that the modulated pulses are
stable only if the Hopf bifurcation, which generates the Turing patterns, is supercritical; see

Section 4.1 below.

3.8 Other modulated waves

There are many more qualitatively different modulated waves that bifurcate near an essen-
tial instability. For instance, it is straightforward to prove the following. Suppose that the
assumptions of Theorem 1 are met. Also, without loss of generality, assume that ¢y < 0.
Then, for any w near wy and any fixed g > p.(w), there exists a one-parameter family of
modulated waves that connect the trivial asymptotic state v = 0 at & — —oo to a Tur-
ing pattern at £ — oco. These waves can be parametrized by their distance, measured at
& = —& for some large &, from the invariant subspace of time-independent functions. The

proof is very similar to the one given above and we shall omit it.
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4 Discussion

The approach presented here is a natural generalization of deriving ODEs describing trav-
elling waves. Tt allows us to investigate the local Turing bifurcation to patterns with small
amplitude and the global bifurcation involving the pulse separately. The method is appli-
cable to a variety of other instability phenomena. We restricted ourselves to the case of an
instability from a primary pulse only in order to make our strategy more transparent. The
most general framework would be a bifurcation from a heteroclinic orbit for the spatial
dynamics, that is, a travelling-wave solution of a parabolic equation posed on an infinite

cylinder that approaches stationary states at both ends of the cylinder.

4.1 Modulated waves bifurcating from pulses

In this section, we discuss some other issues related to bifurcations from pulses as considered

in Section 3.

Modulated waves connecting different Turing patterns

The modulated waves we described in Theorem 1 converge to the same Turing pattern as
& — +o0o. One might expect that, near an essential instability, generalized modulated waves
arise that connect two Turing patterns with different wavenumbers. These generalized
modulated waves would be quasi-periodic in time with two frequencies that are associated
with the temporal periods of the asymptotic Turing patterns. The approach pursued here
does not work when investigating waves that are quasi-periodic in time. Tt is natural
and tempting to consider the elliptic equation on the space of quasi-periodic functions.
Unfortunately, this procedure leads to small-divisor problems that are difficult to resolve

even on the linear level.

Shape of the modulated pulses

An interesting aspect of our analysis are the rates of convergence of the pulse towards the
oscillatory patterns. A computation shows that in the moving coordinate frame, for y > 0,
the origin is unstable in the center manifold for the £&-dynamics when ¢ < 0 and stable if
¢ > 0. Suppose that ¢ < (). This is the situation we discussed in Section 3.7; the other case
is obtained by reversing & — —&£. For £ — —o0, the time-periodic pulse that bifurcates
from the original pulse h(£) converges to the periodic pattern Iy, exponentially with rate
k= O(1) with respect to fi as it lies in the strong unstable manifold of the periodic orbit.
For & — 0o, however, it approaches first the center manifold with exponential rate O(1) at
a point with distance O(u) to the periodic pattern 'y ,. It then approaches the periodic
pattern, which is of amplitude O(,/z), with exponential rate O(u).
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In physical space, in a steady coordinate frame, we can interpret this as follows. In front
of the pulse, we see the possibly stable periodic pattern with amplitude O( /). We then
observe the pulse that passes by and moves exponentially fast away from the oscillatory
pattern. Behind the pulse, there is some kind of recovery zone where the amplitude of the
oscillations grows or decays exponentially towards the same value as ahead of the wave,

but on the large spatial scale & ~ 1/pu.

Stability

Having established the existence of modulated pulses, an important issue is their stability.
We say that a time-periodic solution is spectrally stable if the spectrum of the linearization
of the time-period map about the wave is contained strictly inside the unit circle with the
exception of the point A = 1. Note that A = 1 is always contained in the essential spectrum

of modulated pulses on account of translation and time invariance.

The bifurcating time-periodic pulses are spectrally stable in the moving coordinate frame
if the small-amplitude periodic patterns are spectrally stable and the point spectrum of
the primary pulse is strictly contained in the left half-plane with the exception of a simple
eigenvalue at zero. This statement is proved in the second part [18] of this work. Assume
that the Hopf bifurcation leading to Turing patterns is supercritical. Tt then follows that,
for > 0 fixed, there is an open interval of wavenumbers £ and an open set of temporal

frequencies w such that the modulated pulses with asymptotic wavenumber k& and temporal
2w

period =& described in Theorem 1 are spectrally stable; see [18].

Genuine Hopf bifurcations

Similar dynamical problems arise when genuine Hopf bifurcations are considered. We again
restrict ourselves to pulse solutions that decay to the zero equilibrium at both ends of the
real axis. Suppose that this equilibrium becomes unstable in the non-moving coordinate
frame with essential spectrum crossing the imaginary axis at +iwg for some non-zero wy.
The associated critical wave vector k£ may again be zero or non-zero. If k = 0, spatially

homogeneous oscillations e'“0’

are created. Reversing space and time, these correspond to
equilibria of the elliptic system (1.4). Due to the time-shift symmetry, there is a whole group
orbit of equilibria bifurcating from zero in a two-dimensional center-manifold for (1.4).
Arguing again as in Section 3.7, we obtain the following result: there exists a homoclinic
trajectory to this circle of ’equilibria’. Tt corresponds to a pulse solution where both tails
experience a spatially homogeneous time-periodic oscillation.

The case of a Hopf bifurcation with non-zero wavenumber involves non-resonance condi-

wofikoﬂ’?)

tions. Small-amplitude waves of the form el correspond to waves moving with

speed i“li—g — ¢ relative to the pulse. In addition, we expect the creation of standing waves
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eilwottkor) _ eilwot=kor)  However, in a moving coordinate frame and fixing the temporal

(wofiko?”)

frequency wy + ckq (or wy — ckg), only one of the linear waves ¢' yields a bounded

solution of the linearized elliptic operator A, defined in Section 3.2  provided ¢ is non-

resonant, that is, ¢ # 72;_} -5 (or e # Z;} - 42). The center manifold is again two-
dimensional with the time shift acting as rotational symmetry, and we recover precisely the
same setting as in the stationary bifurcation. We obtain time-periodic modulated pulses
converging at both tails to travelling-wave patterns moving with speed i“li—g — ¢ relative to

the pulse.

Standing pulses

If the wave speed vanishes so that ¢g = 0, then the bifurcation problem reduces to an ODE
since the Turing patterns and the primary pulse are stationary. Note, however, that the
center manifold is four-dimensional due to the reversibility; see [8] or [18]. It is then not
obvious whether standing pulses bifurcate that converge to one of the stationary Turing

patterns as  — +o00.

Numerical computation of the time-periodic pulses

We mention that the analysis presented here also indicates how the bifurcating periodic
pulses might be computed numerically. Indeed, we sought and found them as homoclinic
orbits towards a periodic orbit for the elliptic equation (3.3). In particular, a Galerkin
approximation of (3.3) in time and the subsequent computation of a homoclinic connection
to the small-amplitude patterns should provide a robust method of computing modulated
pulses; we refer to [10] for details and more references of such methods for elliptic equations.
The only difficulty here is the start-off near the bifurcation point. Also, an additional phase

condition has to be incorporated to factor the S'-symmetry induced by the shift in time.

4.2 Modulated waves bifurcating from fronts or wave trains
Heteroclinic connections and fronts

In this section, we consider travelling waves (&) of (1.1) with wave speed ¢y that converge
to two different equilibria p4 as £ — +00. The asymptotic states p4 could be either stable

or unstable.

First, suppose that the travelling wave connects a stable with an unstable equilibrium or
vice versa. Such waves are often called fronts. Fronts exist typically for a continuum
of wave speeds and move towards the unstable state. The stability of a front is recovered
upon choosing a suitable weighted norm in the relevant function space. We may investigate

the situation when the stable asymptotic state becomes unstable. Whether this route to
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instability produces modulated waves depends crucially on certain Fredholm properties of
the linearization about the primary front. If a certain Fredholm index becomes positive, the
approach introduced in Section 3 is applicable under conditions as in Hypothesis (P1). The
resulting pattern is a time-periodic front that connects the spatially homogeneous unstable
state to a spatially oscillatory pattern; see [2] for an example of such a phenomenon. We
refer to [19] for a more thorough discussion. Sherratt [20] investigated a series of certain
caricature problems numerically and analytically for fronts with negative Fredholm index.
He observed several modulated waves of different wave speed that are glued together.
Following the approach presented in this paper, we can show that modulated fronts cannot

bifurcate in this situation.

The second possibility is that the travelling wave connects two stable equilibria. In this case,
one of the stable equilibria may destabilize. Whether or not modulated waves bifurcate

depends again on the sign of a certain Fredholm index. The details can be found in [19].

Periodic wave trains

Another interesting example are periodic wave trains that destabilize due to essential spec-
trum that crosses the imaginary axis. The difference to the previous cases is that there are
no asymptotic states involved. Suppose that the linearized operator about the wave train
has two bounded eigenfunctions associated with the essential instability. Investigating the
spatial dynamics in an appropriate moving frame, we obtain a trichotomy that characterizes
solutions that decay for either forward or backward &-direction, or are bounded for £ € R.
The bifurcation problem can then be reduced to equations that live on the two-dimensional
space of bounded solutions. The resulting bifurcation is similar to a Hopf bifurcation to
an invariant circle for the Poincare map associated with periodic orbits in ODEs. The
bifurcation direction depends upon higher-order terms of the equation restricted to the
space of bounded functions at the bifurcation point. Generically, modulated wave trains
bifurcate that are periodic in time. Their spatial structure is given by a superposition of

the bounded eigenfunctions and the primary wave train.

Cylindrical domains

Generalizations to travelling-wave problems posed on cylinders R x € require some more

technical preparation. Consider, for example,
up = DA, u+ f(u), (x,y) € R x Q,

with, say, Dirichlet or Neumann boundary conditions on R x d€). Here, € is a bounded
domain in R”. Travelling waves are of the form u = u(2 — ct,y) and satisfy the elliptic

system of partial differential equations

cug = DAg yu+ f(u, 1), (x,y) € Rx Q. (4.1)
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Again, there is a dynamical interpretation for solutions of this elliptic equation induced by
the shift of solutions along the cylinder. If u(&,y) — pi(y) as & — +oo, then DA py +
f(px) = 0 and pyi(y) are ’equilibria’ of (4.1). In this sense, a travelling wave u can be
interpreted as a heteroclinic orbit of the dynamical system associated with the elliptic
system (4.1). A generic choice for the phase space would then be (u,us) € Hy(Q)" x
L2()™ if, for example, Dirichlet boundary conditions were chosen. The bifurcation analysis
can now be carried out as in Section 3 making extensive use of the results in [14]. In
particular, the existence of global invariant manifolds and a Fredholm property for the

resulting bifurcation equation has been proved there.

4.3 Applications

Nishiura [personal communication] has recently observed modulated fronts of the form de-
scribed in this paper in numerical simulations of reaction-diffusion systems. Modulated
wave trains have been observed numerically by Ogawa [personal communication] in dissi-
patively perturbed generalized KdV equation. The appearance of these wave trains can
probably be explained rigorously by essential instabilities of periodic wave trains; this is
work in progress. As mentioned earlier, Sherratt [20] investigated, numerically and other-
wise, fronts that destabilize in an essential instability. The reaction-diffusion systems he
used are predator-prey models. The patterns he observed, however, are not modulated

fronts but are composed of several modulated waves with different wave speeds.
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