
Essential instability of pulses, and bifur
ations to modulatedtravelling wavesBj�orn SandstedeDepartment of Mathemati
sThe Ohio State University231 West 18th AvenueColumbus, OH 43210, USA Arnd S
heelInstitut f�ur Mathematik IFreie Universit�at BerlinArnimallee 2-614195 Berlin, GermanyAbstra
tRea
tion-di�usion systems on the real line are 
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1 Introdu
tionTravelling-wave solutions of paraboli
 equations on the real line arise in a variety of appli-
ations. An important issue is their stability sin
e it is expe
ted that only stable travellingwaves 
an be observed. On
e stability has been proved over a 
ertain range of parameters,the dynami
s near a travelling wave is predi
table: any solution nearby is attra
ted to thetravelling wave or an appropriate translate of it. In that respe
t, interesting parametervalues are those at whi
h a transition to instability o

urs. Near su
h transitions, otherand possibly more 
ompli
ated patterns may bifur
ate from the primary travelling wave.A travelling wave be
omes unstable if a subset of the spe
trum of the linearization aboutit 
rosses the imaginary axis. One possibility is that this subset 
onsists of isolated eigen-values. The resulting bifur
ation problem 
an be analyzed using standard 
enter-manifoldtheory. In this arti
le, we fo
us on a qualitatively di�erent me
hanism that also leads toinstability, namely that of essential spe
trum 
rossing the imaginary axis. We 
all this in-stability me
hanism an essential instability. This route to instability is 
onsiderably morediÆ
ult to analyze sin
e it is genuinely in�nite-dimensional. In fa
t, to our knowledge,this transition has not been investigated previously ex
ept for small fronts [2℄. Anotherrelated arti
le is [20℄ where essential instabilities of fronts are studied utilizing numeri
alsimulations and the analysis of a series of 
ari
ature problems. The waves investigatedtherein are of a quite di�erent nature and we refer to Se
tion 4 for a dis
ussion.We distinguish between several kinds of travelling waves. Pulses are travelling waves that
onverge to the same asymptoti
 state as the spatial variable x tends to �1. Fronts, on theother hand, 
onne
t di�erent asymptoti
 states at �1. Periodi
 wave trains are travellingwaves that are periodi
 in the spatial variable. In the following, we fo
us on pulses. Mostof the results presented in this arti
le apply also to fronts and wave trains, and we dis
ussthese generalizations in Se
tion 4.Essential instabilities of pulses are 
aused by an instability of the asymptoti
 equilibriumstate of the pulse. Suppose that h(x� 
0t) is a pulse that moves with speed 
0 to the right.Its essential spe
trum 
orresponds to small-amplitude waves of the form eikx+�t that are
reated at the asymptoti
 state of the pulse, that is, at its tails. The wavenumber k andthe eigenvalue � satisfy a 
ertain dispersion relation. At the onset of instability indu
edby the essential spe
trum, there exist then waves of the form ei(kx+!t). There are fourqualitatively di�erent 
ases 
orresponding to all possible 
ombinations of ! and k beingzero or non-zero. We fo
us here on the 
ase of a stationary bifur
ation, that is ! = 0, fornon-zero k.When both the wavenumber k and the eigenvalue ! are zero, the situation is a
tually 
on-siderably simpler sin
e it 
orresponds to a homo
lini
 bifur
ation in an ordinary di�erentialequation where the equilibrium undergoes a pit
hfork bifur
ation. On the other hand, the
ase of non-zero ! is similar to the 
ase ! = 0, and we refer to Se
tion 4 for a dis
ussion.1



�t �
02�k0Figure 1: The superposition of the lo
alized solitary wave h with small patterns that have a 2�k0 -periodi
 spatial stru
ture is shown in a frame moving with speed 
0 > 0. The small-amplitudepatterns move with speed �
0 relative to the pulse h. The solution shown here has period 2�!0 intime in the moving 
oordinate frame where !0 = 
0k0.From now on, we 
on
entrate on situations where ! = 0 and k = k0 are non-zero, thatis, we assume that the dispersion relation is satis�ed by �0 = 0 and some k0 6= 0. Theasso
iated lo
al bifur
ation 
lose to the equilibrium state is known as the Turing instability;see Se
tions 3.2 and 3.4. It generates small patterns of the form eik0x that are oftenreferred to as Turing patterns. These patterns possess a spatially os
illating stru
turewith period 2�k0 . We seek time-periodi
 modulations of the pulse that are reminis
ent ofa linear superposition of these small steady patterns and the large lo
alized pulse. In a
oordinate system � = x � 
0t moving with the speed 
0 of the pulse, the steady patternseik0x be
ome travelling waves eik0(�+
0t) =: ei(k0�+!0t) with !0 := 
0k0. They move withspeed �
0 relative to the pulse h and have period 2�!0 in time. In this moving frame, themodulated pulse looks roughly like Aei(k0�+!0t) + h(�)for small A; see Figure 1. We remark that Turing patterns bifur
ate for any wavenum-ber k 
lose to k0. Correspondingly, we expe
t to �nd modulated pulses with asymptoti
wavenumber k and temporal frequen
y ! = 
0k for any k 
lose to k0. For the sake of
larity, we �rst seek modulated pulses with temporal frequen
y !0 = 
0k0. Only at the endof the analysis, in Se
tion 3.7, we show how modulated pulses with other temporal periods
an be obtained.To set the s
ene, 
onsider ut = Duxx + f(u; �); x 2 R; (1.1)where u 2 Rn and f(0; �) = 0 for all �. Casting (1.1) in a frame � = x� 
0t moving with2



(a) (b)i!0 ik0Figure 2: The essential spe
trum of the paraboli
 rea
tion-di�usion system is shown in (a). Pi
ture(b) shows the spe
trum of the asso
iated ellipti
 system.speed 
0, we obtain ut = Du�� + 
0u� + f(u; �); � 2 R; (1.2)whi
h then has the equilibrium h(�) for � = 0. We are parti
ularly interested in lo
alizedwaves satisfying limj�j!1 h(�) = 0. The stability of h is determined by the spe
trumspe
(L) of the linearizationLw := Dw�� + 
0w� + �uf(h(�); 0)w (1.3)of (1.2) about h. The essential spe
trum of L is the 
omplement in spe
(L) of the set ofisolated eigenvalues with �nite multipli
ity. It 
ontains the spe
trum of the linearizationabout the asymptoti
 state u = 0 that 
onsists of all points � in the 
omplex plane su
hthat det(�k2D + ik
0 + �uf(0; 0)� �) = 0for some k 2 R. This equation is the aforementioned dispersion relation in a 
oordinateframe moving with the pulse. We assume that the essential spe
trum of the asymptoti
state for � = 0 has the form depi
ted in Figure 2(a). With the transformation ~� = �� ik
0,we re
over the dispersion relationdet(�k2D + �uf(0; 0)� ~�) = 0in the original steady 
oordinate frame. Note that real solutions ~� of this dispersion relationare double zeroes 
orresponding to wavenumbers �k.Sin
e the 
riti
al eigenvalues � = �i!0 are not isolated in the spe
trum, it is diÆ
ult toredu
e the dimension by applying Lyapunov-S
hmidt redu
tion or 
enter-manifold theory.Often, modulation equations have been used to des
ribe the dynami
s near homogeneoussteady states. In the aforementioned 
ontext of bifur
ations from equilibria, a partial justi-�
ation of the approximation by modulation equations, that is Ginzburg-Landau equations,has been a
hieved in [7℄; see also [3, 12℄ and the referen
es therein. Modulation equations
lose to a pulse would have to 
apture both the dynami
s 
lose to the asymptoti
 equilib-rium state of the pulse, typi
ally des
ribed by a Ginzburg-Landau equation, and the global3



intera
tion of the modulation through the pulse. An attempt to derive su
h a modulationequation, at least formally, has been made in [1℄. However, the resulting Ginzburg-Landauequation is still diÆ
ult to analyze.We therefore resort to a 
ompletely di�erent approa
h and 
ast the paraboli
 equation (1.2)as an ellipti
 equation on the spa
e of 2�!0 -periodi
 fun
tions, namelydd��uv� = � vD�1(ut � 
0v � f(u; �))�; t 2 S1 = R=2�!0Z: (1.4)In other words, we anti
ipate the temporal period 2�!0 and then reverse the role of timeand spa
e by viewing (1.4) as an evolution equation in �. The restri
tion to 2�!0 -periodi
fun
tions is very eÆ
ient sin
e most of the essential spe
trum disappears for the initial-value problem (1.4). In fa
t, the spe
trum of the linearization of (1.4) about (u; v) = 0has a pair of isolated imaginary eigenvalues �ik0; see Figure 2(b). Thus, we expe
t aHopf bifur
ation leading to spatially periodi
 solutions with small amplitude. Here, were
over pre
isely the Turing patterns of the form eik0x = ei(k0�+!0t). On the other hand,the travelling wave h(�) 
orresponds to a time-independent homo
lini
 solution (h; h�)(�) of(1.4). We then seek solutions 
lose to (h; h�)(�) that are homo
lini
 to the aforementionedsmall periodi
 waves. If (1.4) were an ODE, we 
ould readily investigate the existen
e ofsu
h 
onne
tions by studying interse
tions of suitable global invariant manifolds asso
iatedwith the periodi
 waves. However, the initial-value problem for (1.4) is ill-posed. Indeed,Figure 2(b) indi
ates that the stable and unstable eigenspa
es are both in�nite-dimensional,and semigroup theory fails. Therefore, it is not 
lear whether global invariant manifoldsexist or whether dynami
al-systems te
hniques 
an be used at all to investigate ellipti
equations su
h as (1.4).In this arti
le, we 
onstru
t global stable and unstable manifolds near the given pulse(h; h�) and study their interse
tions upon 
hanging the parameter �. We use exponentialdi
hotomies for ellipti
 equations to a

omplish this 
onstru
tion. Exponential di
hotomiesare a well-known te
hnique for ODEs and paraboli
 PDEs; see, for instan
e, [4, 6, 13℄. Forellipti
 equations, however, there are major te
hni
al obsta
les to their global existen
ethat have been resolved only re
ently in [14℄.The idea of using spatial dynami
s has been introdu
ed in [9℄. Sin
e then it has been usedextensively in order to investigate bifur
ations from spatially homogeneous equilibria tosmall steady-state or time-periodi
 solutions; see, for instan
e, [2, 7, 15℄. Typi
ally, theresulting ellipti
 system is redu
ed to a �nite-dimensional equation that des
ribes small so-lutions near the homogeneous steady-state. The redu
ed equation 
an then be investigatedusing bifur
ation theory. The problem analyzed in the present arti
le, however, involves alarge pulse solution that is not 
lose to the equilibrium state. A �nite-dimensional redu
tionto a 
enter manifold for the spatial dynami
s is not known in this 
ontext.This paper is organized as follows. In the next se
tion, we present a four-dimensional4



model problem. The model re
e
ts the essential features of the part of the bifur
ation weare interested in, though we believe that it is inadequate for a 
omplete des
ription. Theanalysis of the in�nite-dimensional problem, in
luding all ne
essary hypotheses, is then
arried out in Se
tion 3. The main result, the bifur
ation of modulated travelling wavesasymptoti
 to spatially-periodi
 steady patterns, is stated in Se
tion 3.7. We 
on
lude inSe
tion 4 with a dis
ussion and generalizations of the result.2 A �nite-dimensional model problemIn this se
tion, we outline the bifur
ation that o

urs in the ellipti
 problem (1.4) whenthe essential spe
trum of (1.3) 
rosses the imaginary axis. For the sake of 
larity, we utilizea four-dimensional model that mimi
s pre
isely the bifur
ation we are interested in. Let(u0; u1) 2 R2�R2 satisfy the di�erential equationdd� u0 = f0(u0; 
; �) (2.1)dd� u1 = f1(u0; u1; 
; �):The reader may think of (u0; u1)(x) as the zeroth and �rst Fourier 
oeÆ
ients of the t-periodi
 fun
tion (u; u�)(t; �) de�ned in (1.4); see also equation (3.4) below.We assume that the subspa
e u1 = 0 is invariant for all values of the parameters, that isf1(u0; 0; 
; �) = 0. The dynami
s in the subspa
e u1 = 0 is then governed by the equationdd� u0 = f0(u0; 
; �): (2.2)Suppose that (2.2) has a homo
lini
 solution to the hyperboli
 equilibrium u0 = 0 for(
; �) = (
0; 0). This homo
lini
 orbit 
orresponds to the pulse solution h of equation (1.2).We assume that the homo
lini
 orbit of (2.2) is transversely unfolded by the parameter 
,that is, stable and unstable manifold of the origin 
ross ea
h other with non-zero speed uponvarying 
 near 
 = 
0. As for the se
ond equation in (2.1), we assume an S1-equivarian
ewith respe
t to the rotations in R2. This symmetry represents the time shift of non-zerosolutions of (1.2). Finally, upon varying the parameter �, suppose that the equilibrium(u0; u1) = 0 undergoes a non-degenerate Hopf bifur
ation in R4 with 
riti
al eigenspa
ef(u0; u1); u0 = 0g.Fa
toring out the S1-symmetry in the u1-variable, we are left with a three-dimensional ODEhaving a homo
lini
 orbit to an equilibrium in a two-dimensional 
ow-invariant subspa
e.Moreover, the equilibrium experien
es a pit
hfork bifur
ation in the dire
tion transverseto this subspa
e; see Figure 3. Upon 
hanging 
, unstable and 
enter-stable manifold ofthe origin 
ross ea
h other with non-vanishing speed in the three-dimensional spa
e. Ifthe pit
hfork bifur
ation is super
riti
al, the bifur
ating equilibrium has a one-dimensional5



Figure 3: The pi
ture on the left shows the homo
lini
 orbit (h; h�) of the ellipti
 system at thebifur
ation point. The verti
al axis 
orresponds to the 
enter dire
tion in whi
h a super
riti
al Hopfbifur
ation takes pla
e. The two horizontal dire
tions 
oin
ide with the invariant subspa
e u1 = 0.The pi
ture on the right shows the homo
lini
 solution 
onne
ting the bifur
ating periodi
 solutionto itself.unstable manifold, whi
h is 
lose to the (strong) unstable manifold of the origin. Therefore,upon 
hanging 
, the unstable manifold of the bifur
ating equilibrium also 
rosses the
enter-stable manifold of the origin due to the persisten
e of transverse 
rossings underperturbations. The unique interse
tion 
urve 
orresponds to a homo
lini
 orbit to thebifur
ating equilibrium sin
e the origin is unstable within the 
enter manifold; see Figure 3.The main di�eren
e between the ellipti
 problem (1.4) and our model problem is that thephase spa
e for the former equation is in�nite-dimensional, and both the unstable and the
enter-stable manifold of the origin are in�nite-dimensional. Even the existen
e of thesemanifolds far away from the equilibrium is not evident as we do not have a 
ow to propagatelo
al invariant manifolds.3 Bifur
ations of time-periodi
 travelling waves3.1 The paraboli
 and ellipti
 equationWe 
onsider the semilinear paraboli
 equationut = Duxx + f(u; �); x 2 R; (3.1)where u 2 Rn, D is a diagonal matrix with positive entries, and f : Rn � R! Rn is asmooth nonlinearity with f(0; �) = 0 for all �.Hypothesis (TW) Assume that h(x�
0t) is a travelling-wave solution of (3.1) for � = 0and some 
0 6= 0 su
h that h(�) tends to zero exponentially as j�j tends to in�nity.6



Transforming (3.1) into the moving frame (�; t) = (x� 
t; t), we obtainut = Du�� + 
u� + f(u; �); � 2 R; (3.2)whi
h then admits the equilibrium h(�) for (
; �) = (
0; 0). Equation (3.2) is well-posedon the spa
e X := C0unif(R;Rn) of bounded and uniformly 
ontinuous fun
tions on R; see,for instan
e, [6℄. Here, we 
onsider strong solutions u(t) of (3.2) that are di�erentiable asfun
tions into X , 
ontinuous with values in C2unif and satisfy (3.2) in X .Next, we 
ast the paraboli
 equation (3.2) as an ellipti
 equationdd��uv� = � vD�1(ut � 
v � f(u; �))�; (3.3)reversing the role of time and spa
e. The fun
tions U = (u; v) are 
ontained in Y :=H 12per(0; 2�!0 )�L2per(0; 2�!0 ) for some !0 > 0 whi
h we spe
ify below. The nonlinearity f mapsH 12per into L2per provided it has at most polynomial growth. If f has faster growth, we may
onsider (3.3) on the spa
e H1per � H 12per. There are then no restri
tions on f ne
essaryand the analysis presented below is still valid. We say that (u; v)(�) is a solution of (3.3) if(u; v)(�) is di�erentiable in � as a fun
tion into Y , 
ontinuous with values in H1per�H 12per andsatis�es (3.3) in Y . We emphasize that the initial-value problem for (3.3) is not well-posedon Y .On the spa
e Y , we have the S1-a
tion(��U)(t) := U(t+ �)with � 2 R=2�!0Z. Note that (h(�); h�(�)) satis�es (3.3) for (
; �) = (
0; 0). We may thinkof this solution, whi
h is 
ontained in the �xed-point spa
e Fix(S1) of the S1-a
tion, as ahomo
lini
 orbit to the zero equilibrium.Throughout, we utilize the Fourier series of elements (u; v) 2 Y and identify (u; v) with itsFourier 
oeÆ
ients (u`; v`)`2Zwhere(u(t); v(t)) = �X̀2Zu`ei`!0t;X̀2Zv`ei`!0t�: (3.4)Note that j(u; v)j2Y = juj2H 12 + jvj2L2 = X̀2Z�(1 + j`j)ju`j2 + jv`j2� =: X̀2Zj(u`; v`)j2̀: (3.5)Let Y` = spanu`;v`;u�`;v�`2Rnf(u`; v`)ei`!0t; (u�`; v�`)e�i`!0tgequipped with the norm j � j`. 7



3.2 The linearization about u = 0Setting (
; �) = (
0; 0), we linearize (3.2) about u = 0 and obtain the linear 
onstant-
oeÆ
ient operator L1w = Dw�� + 
0w� + �uf(0; 0)w:First, we 
al
ulate the spe
trum of L1 on X . De�ned(�; �) := det(�2D + �
0 + �uf(0; 0)� �): (3.6)Owing to [6, Theorem A.2℄, we havespe
(L1) = f� 2 C ; d(�; ik) = 0 for some k 2 Rg; (3.7)sin
e w(�) = eik�w0 is then a bounded eigenfun
tion asso
iated with the eigenvalue � forsome non-zero w0 2 C n .Hypothesis (P1) Assume that spe
(L1)\ iR= f�i!0g for some !0 > 0. Furthermore,we assume that d(�; ik) = 0 for � 
lose to i!0 if, and only if, k is 
lose to k0 = !0
0 and� = ��(k) = i!0 + i
0(k � k0)� Cr(k � k0)2 + O(jk � k0j3); (3.8)where Cr > 0 is real and 
0 6= 0 denotes the wave speed. Finally, we assume that��d(�; �)j(i!0;ik0) 6= 0.Hypothesis (P1) states that the essential spe
trum of L1 tou
hes the imaginary axis at� = �i!0. The 
orresponding eigenfun
tion eik0�wH is unique, up to 
onstant multiples,and has a non-trivial spatial stru
ture sin
e k0 6= 0.Note that the parti
ular form of the dispersion relation (3.8) follows from a generi
 as-sumption on the bifur
ation in the steady 
oordinate frame. Indeed, 
onsider the operatorL01w := Dw�� + �uf(0; 0)w: (3.9)Its dispersion relation for � = ik isdet(�k2D + �uf(0; 0)� �) = 0: (3.10)Eigenvalues �0� of L01 transform into eigenvalues �� of L1 via ��(k) = �0�(k) + ik
0. InHypothesis (P1), we have assumed that only k = �k0 satisfy (3.10) for � = 0. In addition,we assumed in (P1) that the derivative of (3.10) with respe
t to k evaluated at (�; k) =(0; k0) is not zero. Hen
e, there are unique solutions �0�(k) satisfying (3.10) for k near �k0with �0�(�k0) = 0. Note that (3.10) is symmetri
 with respe
t to k ! �k. Therefore, we
on
lude that �0�(k) are both real-valued. Summarizing, Hypothesis (P1) is satis�ed byan open set of one-parameter families. Many rea
tion-di�usion systems that satisfy (P1)8



are known. One example is the Brusselator; see [5, Ch.VII, x5℄ or, for the �rst referen
e toTuring instabilities, [21℄.Next, we 
ompute the spe
trum of the linearizationA1 =  0 idD�1(�t � �uf(0; 0)) �
0D�1 !of (3.3) at the equilibrium U = 0 
onsidered in the spa
e Y with !0 
hosen as in (P1). Weremark that we may 
onsider the spa
e Y for any frequen
y ! 
lose to !0; see Se
tion 3.7.Lemma 3.1 Suppose that (P1) is met. The operator A1 has then two simple eigenvalues�ik0 on the imaginary axis with eigenfun
tions ei!0tUH and e�i!0tUH, respe
tively, forsome non-zero UH 2 C 2n , while the rest of its spe
trum is uniformly bounded away from theimaginary axis. The operator A1 has 
ompa
t resolvent. Furthermore, there are 
onstantsÆ 6= 0 small and K > 0 su
h thatk(A1 + (Æ � ik) id)�1kL(Y ) � K1 + jkjfor all k 2 R. Finally, there exist spe
tral proje
tions P u, P 
 and P s in L(Y ) 
orrespondingto eigenvalues of A1 with positive, zero and negative real part, respe
tively.Proof. Let V = (V1; V2) 2 Y . We have A1V = �V if, and only if, V2 = �V1, and(�2D + �
0 + �uf(0; 0)� �t)V1 = 0:Upon exploiting the Fourier series (3.4) of V with 
oeÆ
ients (a`; b`), we see that � 2spe
(A1) if, and only if,det(�2D + �
0 + �uf(0; 0)� i`!0) = d(i`!0; �) = 0for some ` 2 Z. It follows from (P1) and (3.7) that � = �ik0 are the only eigenvalues ofA1 on the imaginary axis. These eigenvalues are simple sin
e the algebrai
 multipli
ity ofik0 
oin
ides with the order of ik0 as a zero of the determinant d(i!0; �) with respe
t to �.By Hypothesis (P1), this order is equal to one.In parti
ular, A1 is invertible on Y . It is 
lear that the inverse is 
ompa
t sin
e the domainH1per �H 12per of A1 is 
ompa
tly embedded into Y .Next, we 
onsider the eigenvalue problem for A1. Note that the Fourier subspa
es Y` areinvariant under A1. The asso
iated eigenvalue problem for the Fourier 
oeÆ
ients (a`; b`)is given by  �� idD�1(i`!0 � �uf(0; 0)) �� � 
0D�1 !�a`b`� = 0: (3.11)9



In order to prove the remaining 
laims on the resolvent and spe
tral splittings, it suÆ
esto investigate (3.11) for ` 2Zwith j`j large. We then s
alea` = 1pj`j â`; b` = b̂`: (3.12)This res
aling a

ounts for the norm on Y`; see (3.5). In parti
ular,j(a`; b`)j2̀ = j`j ja`j2 + jb`j2 = jâ`j2 + ĵb`j2 =: j(â`; b̂`)j2:We also res
ale the eigenvalue � =pj`j�̂ . The eigenvalue problem then reads0� ��̂ idD�1(i!0 sign `� 1j`j�uf(0; 0)) ��̂ � 1pj`j
0D�1 1A�â`b̂`� = 0; (3.13)whi
h has a non-trivial solution if, and only if,det��̂2D + �̂
0pj`j + 1j`j�uf(0; 0)� i!0 sign `� = 0: (3.14)Taking the limit j`j ! 1 gives ��̂ idD�1i!0 sign ` ��̂ !�â`b̂`� = 0 (3.15)and det(�̂2D � i!0 sign `) = 0;respe
tively. The last equation has 2n solutions �̂j whi
h are not imaginary and independentof `. By Rou
he's Theorem, there are then 2n zeroes of (3.14) near the set f�̂jg. Theres
aling � =pj`j�̂ shows that the real parts of the 
orresponding eigenvalues are a
tuallyunbounded as j`j ! 1. Similarly, the spe
tral proje
tions asso
iated with the limitingproblem (3.15) perturb to spe
tral proje
tions of (3.13) in Y` that are bounded uniformlyin `. Due to the de�nition of the norms on Y and the res
aling (3.12), the lemma is proved.3.3 The linearization about the travelling waveWe 
onsider the linearizations of (3.2) and (3.3) about the pulse h(�) for (
; �) = (
0; 0).For the paraboli
 equation, de�neLw = Dw�� + 
0w� + �uf(h(�); 0)wfor w 2 X . The variational equation about the homo
lini
 solution (h; h�)(�) of the ellipti
equation (3.3) is given byV� = A(�)V =  0 idD�1(�t � �uf(h(�); 0)) �
0D�1 !V (3.16)10



with V 2 Y . Note that the Fourier subspa
es Y` are invariant under A(�) sin
e h(�) doesnot depend on t. In Y`, equation (3.16) readsdd��a`b`� =  0 idD�1(i`!0 � �uf(h(�); 0)) �
0D�1 !�a`b`�: (3.17)The next lemma 
hara
terizes the set of bounded solutions of (3.16).Lemma 3.2 Assume that Hypothesis (P1) is met. We then have � = i`!0 2 spe
(L) forsome ` 2 Zif, and only if, there exists a bounded solution V (�; t) = ei`!0tV0(�) of (3.16)de�ned for � 2 R.Proof. If V (�; t) = ei`!0tV0(�) is a bounded solution of (3.16) on R, then V0(�) =(w;w�)(�), and w(�) lies in the null spa
e of L� i`!0:Dw�� + 
w� + �uf(h(�); 0)w = i`!0 w: (3.18)Moreover, w 2 X . Therefore, i`!0 2 spe
(L).Next, suppose that � = i`!0 2 spe
(L). If j`j 6= 1, then � is not 
ontained in the essentialspe
trum by (P1). Hen
e, the eigenfun
tion asso
iated with i`!0 is lo
alized, and therefore
orresponds to a bounded solution of (3.18).It remains to 
onsider the 
ase � = �i!0. We seek bounded solutions of (3.17) with ` = �1,that is, dd��a1b1� =  0 idD�1(i!0 � �uf(h(�); 0)) �
0D�1 !�a1b1�: (3.19)Due to Hypothesis (P1), we have � 2 spe
(L1). Moreover, Lemma 3.1 shows that thespe
trum of the asymptoti
 matrixA1 :=  0 idD�1(�i!0 � �uf(0; 0)) �
0D�1 !de�ned on Y1 has two simple imaginary eigenvalues �ik0, while the other eigenvalues havenon-zero real part. Sin
e the fun
tion h(�) 
onverges to zero exponentially as j�j ! 1,we 
an now apply ODE results on exponential di
hotomies [4, 13℄. Hen
e, there are twosubspa
es E
s1 (0) and E
u1 (0) of Y1 su
h that solutions of (3.19) with initial values in E
s1 (0)or E
u1 (0) are bounded for � !1 or � !�1, respe
tively. Furthermore,dimE
s1 (0) = #f� 2 spe
(A1); Re � � 0g; dimE
u1 (0) = #f� 2 spe
(A1); Re � � 0g;
ounted with multipli
ity; see [4℄. In parti
ular, dimE
s1 (0) + dimE
u1 (0) = dim Y1 + 2.Therefore, any solution of (3.19) with initial value in E
1(0) := E
s1 (0)\ E
u1 (0) is boundedon R. Moreover, dimE
1(0) � 2, and therefore E
1(0) 
ontains non-trivial initial values.11



Note that the lemma would be wrong if the limiting matrix A1 were 
ontaining a non-trivial Jordan blo
k 
orresponding to the eigenvalue � = i!0. In this situation, even though� 2 spe
(L), there would in general be no bounded solution of (3.16) sin
e solutions areexpe
ted to grow linearly in �.A
tually, we have proved mu
h more. Using the notation introdu
ed in the proof above,the set E
1(0) of bounded solutions of (3.17) with j`j = 1 is at least two-dimensional. If wemodify the nonlinearity f(u; 0) by adding a small rotation normal to the homo
lini
 orbith, we 
an arrange that E
1(0) is two-dimensional. Furthermore, by the same argument,solutions asso
iated with initial values in E
1(0) do generi
ally not de
ay exponentially asj�j ! 1 but os
illate. In other words, generi
ally in f(�; 0), we have E
1(0) \ Es1(0) = f0gand E
1(0) \ Eu1 (0) = f0g where Es1(0) and Eu1 (0) are subspa
es of Y1 su
h that solutionsof (3.19) with initial values in Es1(0) or Eu1 (0) de
ay exponentially for � !1 or � !�1,respe
tively.Using similar arguments, � = �i`!0 is generi
ally not in the spe
trum of L for j`j > 1.Note that � = 0 2 spe
(L) with eigenfun
tion h� by translation invarian
e. This eigenvalueis typi
ally simple. For generi
 nonlinearities f(u; 0), the following hypothesis is thereforemet.Hypothesis (P2)(i) � = 0 2 spe
(L) is a simple eigenvalue.(ii) (L � i!0)w = 0 has a unique, up to 
onstant 
omplex multiples, non-zero boundedsolution w
(�), and we have jw
(�) � eik0�w�H j ! 0 as � ! �1 for appropriatenon-zero ve
tors w�H 2 Cn .(iii) � = �i`!0 is not in spe
(L) for ` > 1.On a

ount of Hypothesis (P2) and Lemma 3.2, the subspa
e of initial values in Y asso
iatedwith bounded solutions of (3.16) is given byE
(0) = spanf(h; h�)�(0); w
(0)ei!0t; w
(0)e�i!0tg: (3.20)Our next goal is to solve (3.3) using the information gathered so far. Unfortunately, theinitial-value problem for (3.3) is not well-posed on Y . Under 
ertain 
ir
umstan
es, how-ever, (3.3) 
an be solved in forward or ba
kward �-dire
tion for initial values in 
ertain�-depending subspa
es of Y . We say that (3.3) has an exponential di
hotomy onR+ if thereare proje
tions P+(�) de�ned for � � 0 with the following property: for any V0 2 R(P+(0)),there exists a unique solution V (�) of (3.3) whi
h is de�ned for � � 0 su
h that V (0) = V0.Moreover, V (�) tends to zero exponentially as � !1, and V (�) 2 R(P+(�)) for all � � 0.Similarly, for any V0 in the null spa
e of P+(�0), there is a unique solution V (�) of (3.3)12



whi
h is de�ned for 0 � � � �0 su
h that V (�0) = V0; furthermore, V (�) de
ays expo-nentially for de
reasing � with 0 � � � �0. In other words, for � � 0, there are two
omplementary subspa
es, R(P+(�)) and R(id�P+(�)), su
h that we 
an solve the ellipti
equation forward and ba
kward in � for initial values in R(P+(�)) and R(id�P+(�)), re-spe
tively. Exponential di
hotomies on R� are de�ned analogously; solutions in R(P�(0))de
ay exponentially as � !�1.In the following lemma, we show that equation (3.3) has di
hotomies so that we 
an solveit forward and ba
kward in � provided the initial values are 
ontained in appropriatesubspa
es. The only di�eren
e to the situation des
ribed right above is that solutionsdo not ne
essarily de
ay.Lemma 3.3 Assume that Hypothesis (P1) is met. There are bounded operators �s+(�; �),�
+(�; �) and �u+(�; �) de�ned on Y for 0 � � � �, 0 � �; � and 0 � � � �, respe
tively,su
h that �s+(�; �)V0, �
+(�; �)V0 and �u+(�; �)V0 satisfy (3.16) for � > �, any � and � <�, respe
tively, and are 
ontinuous in (�; �) for any V0 2 Y . Furthermore, �s+ satis�esthe evolution property �s+(�; �)�s+(�; �) = �s+(�; �) for any 0 � � � � � �. Analogousproperties hold for �
+(�; �) and �u+(�; �). Moreover,�s+(�; �) + �
+(�; �) + �u+(�; �) = id; �i+(�; �)�j+(�; �) = 0 for i 6= j;where i; j 2 fs; 
; ug. Finally, there are 
onstants K > 0 and � > 0 su
h thatk�s+(�; �)kL(Y ) � e��(���); k�
+(�; �)kL(Y ) � K; k�u+(�; �)kL(Y ) � Ke��(���) (3.21)for any 0 � � � �. Similar properties hold for operators �s�(�; �), �
�(�; �) and �u�(�; �)de�ned for negative � and �.Proof. The statement of the lemma follows from [14, Theorem 1℄. We give anothersimpler proof that works for the parti
ular 
ase studied here. As mentioned above, theFourier subspa
es Y` are invariant under A(�) sin
e h(�) does not depend on t. The Fourier
oeÆ
ients (a`; b`) satisfy equation (3.17)dd��a`b`� =  0 idD�1(i`!0 � �uf(h(�); 0)) �
0D�1 !�a`b`�:We 
an readily solve this equation for any ` 2Z. Lemma 3.1 shows that the spe
trum of theasymptoti
 operator A1jY` is stri
tly hyperboli
 ex
ept when j`j = 1 where it 
ontains twosimple imaginary eigenvalues. The 
ase j`j = 1 has been dis
ussed in Lemma 3.2. Hen
e,we 
on
lude the existen
e of evolution operators �s+;`, �
+;` and �u+;` in ea
h subspa
e Y`.In fa
t, �
+;` = 0 ex
ept when j`j = 1. Furthermore, the estimates (3.21) are true in Y` forsome � independent of ` due to Lemma 3.1.13



It is, however, not 
lear whether the 
onstant K is independent of ` and whether theresulting evolution operators are bounded on Y . To prove this, it suÆ
es to estimate thenorm of the evolution operators on the spa
e Y` for large `. Thus, let j`j > 1. Using thes
aling (3.12), that is, a` = 1pj`j â` and b` = b̂`, we obtaindd��â`b̂`� =pj`j0� 0 idD�1(i!0 sign `� 1j`j�uf(h(�); 0)) � 1pj`j
0D�1 1A�â`b̂`�:Res
aling the �-variable by pj`j� = �̂, we getdd�̂�â`b̂`� = 0� 0 idD�1(i!0 sign `� 1j`j�uf(h(�̂=pj`j); 0)) � 1pj`j
0D�1 1A�â`b̂`�: (3.22)Taking the limit j`j ! 1, we obtain the equationdd�̂�â̂b� =  0 idD�1i!0 sign ` 0 !�â̂b�;whi
h is independent of �̂. The matrix on the right-hand side is hyperboli
; see Lemma 3.1.A perturbation argument shows that the evolution operators �̂s+;` and �̂u+;` of (3.22) satisfyk�̂s+;`(�̂; �̂)k � Ke��(�̂��̂); k�̂u+;`(�̂; �̂)k � Ke��(�̂��̂)for 0 � �̂ � �̂, where K and � are independent of `. Due to the de�nition of the norms onY and the res
aling of the �-variable, the lemma is proved.With Lemma 3.3 at hand, we 
an de�ne the subspa
esE
s+ (0) = R(�s+(0; 0)+ �
+(0; 0)); Es+(0) = R(�s+(0; 0));E
u� (0) = R(�u�(0; 0) + �
�(0; 0)); Eu�(0) = R(�u�(0; 0)):For any initial value in E
s+ (0) or Es+(0), there exists a solution of (3.16), and it is boundedor exponentially de
aying, respe
tively, as � ! 1. An analogous 
hara
terization is truefor E
u� (0) or Eu�(0) as � ! �1. Note that the subspa
e E
(0) de�ned in (3.20) is givenby E
(0) = E
s+ (0)\E
u� (0).Lemma 3.4 Assume that Hypotheses (P1) and (P2) are true. There exists then a non-zeroelement  0 2 Y0 su
h that(Es+(0) +Eu�(0))� spanfw
(0)ei!0t; w
(0)e�i!0tg � spanf 0g = Y;and Es+(0) \Eu�(0) = spanf(h; h�)�(0)g. 14



Proof. It suÆ
es to 
onstru
t a 
omplement of the stable and unstable subspa
es in Y0.Note that Y0 = Fix(�) is invariant under the nonlinear ellipti
 equation (3.3). In fa
t, onY0, (3.3) 
oin
ides with the travelling-wave equationdd��uv� = � v�D�1(
v + f(u; �))� (3.23)for u 2 Rn, whi
h is satis�ed by the wave (h; h�)(�). The equilibrium u = 0 is hyperboli
,and the interse
tion T(h;h�)(0)W s(0) \ T(h;h�)(0)W u(0) of tangent spa
es of the stable andunstable manifolds of (3.23) is one-dimensional by Hypothesis (P2)(i). Otherwise, thegeometri
 multipli
ity of � = 0 would be bigger than one. We may 
hoose  0 as the unitve
tor in the one-dimensional orthogonal 
omplement of T(h;h�)(0)W s(0)+ T(h;h�)(0)Wu(0).3.4 Hopf bifur
ations near U = 0 in YWe return to the nonlinear rea
tion-di�usion system, �rst 
onsidered in the original 
oor-dinate frame ut = Duxx + f(u; �):Under the assumptions on the linearization L01 in the steady 
oordinate frame, see (3.9),spatially-periodi
 steady patterns with wavelength 2�k bifur
ate typi
ally from the zero so-lution for k 
lose to the 
riti
al wavelength k0. This is usually proved using 
enter-manifoldtheory or Lyapunov-S
hmidt redu
tion in a fun
tion spa
e of 2�k -periodi
 fun
tions.Next, 
onsider the nonlinear paraboli
 equation (3.2)ut = Du�� + 
u� + f(u; �); � 2 R:In a 
oordinate frame moving with speed 
, the aforementioned spatially-periodi
 steadypatterns be
ome time-periodi
 travelling wave-trains with frequen
y ! = 
k. We assumefrom now on that the wave speed 
0 of the pulse is negative, i.e. 
0 < 0. If 
0 > 0, we
hange � 7! �� and obtain 
0 < 0 in the new spatial variable.Sin
e the pulse is not spatially periodi
, we introdu
ed spatial dynami
s on time-periodi
fun
tions. In the next step, we rephrase the aforementioned result on bifur
ation to wavetrains in terms of the spatial dynami
s. Consider the nonlinear ellipti
 problem (3.3)dd��uv� = � vD�1(ut � 
v � f(u; �))�;with (u; v) 2 Y . The linearization of (3.3) at U = 0 is given byA1(
; �) =  0 idD�1(�t � �uf(0; �)) �
D�1 ! :15



The operator A1(
0; 0) has a pair of simple eigenvalues �ik0 with eigenfun
tions ei!0tUHand e�i!0tUH; see Lemma 3.1. As in (3.6), we de�ned(�; �; 
; �) := det(�2D + �
 + �uf(0; �)� �):Note that we have the relationd(�; �; 
; �) = d(�� �(
� 
0); �; 
0; �); (3.24)whi
h follows immediately from the de�nition.For a generi
 Hopf bifur
ation, the eigenvalues �ik0 should 
ross the imaginary axis withnon-zero velo
ity. We assume the following:Hypothesis (P3) Assume that C1 = �Re ��d(i!0; ik0; 
0; 0)��d(i!0; ik0; 
0; 0) > 0.The reader might 
he
k, using (3.24), that the 
ondition C1 6= 0 is equivalent to thetransverse 
rossing of eigenvalues when 
onsidering the temporal dynami
s of 2�k0 -periodi
fun
tions. If C1 < 0, we 
an transform the parameter � 7! �� to a
hieve C1 > 0; see alsoRemark 3.10 below.Note that the denominator ��d(i!0; ik0; 
0; 0) is not equal to zero sin
e ��d ��� = ���d 6= 0by (P1). Upon di�erentiating (3.8) with respe
t to k and using � = ik, it follows that��� = 
0. The eigenvalue ik0 persists as a simple eigenvalue �(�) of the operator A1(
0; �)
onsidered in Y . Using ���d=��d = ��� = 
0, we obtain��� = ���d��d = ���d��d ��d��d = 1
0 ��d��d:Hen
e, owing to (P3), the real part of �(�) is given approximately by ��C1=
0. Therefore,with 
0 < 0 and the sign of C1 as in (P3), the eigenvalues �ik0 
ross the imaginary axisfrom left to right as � be
omes positive. Furthermore, exploiting (P1), (P3) and (3.24),d(�; �; 
; �) vanishes for (�; �) 
lose to (i!0; ik0) if, and only if,� = ik(
� 
0) + i!0 + i
0(k � k0)� Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3)= i!0 + i(
k � !0)� Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3):A

ording to Lemma 3.1, eigenvalues of the linearization A1(
; �) are on the imaginaryaxis pre
isely when Im� = !0 and Re� = 0, that is0 = 
k� !0 (3.25)0 = �Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3):This equation 
an be solved for (�; k). Thus, A1(
; �) has a pair of imaginary eigenvalueswhenever k � k0 = �k0
 (
� 
0) (3.26)� = Crk20C1
20 (
� 
0)2 + O(j
� 
0j3):16



Denoting the fun
tion in the last equation by � = ��(
), we see that (3.3) has a simplepair of imaginary eigenvalues for (
; �) = (
; ��(
)) for any 
 
lose to 
0. We introdu
e newparameters by (
; �) = (
; ��(
) + �̂): (3.27)The Ja
obian of this transformation is equal to the identity at (
; �) = (
0; 0). Also,imaginary eigenvalues o

ur pre
isely for �̂ = 0. Alternatively, we may solve the �rstequation in (3.26) with respe
t to k and obtain(
; �) = (!0=k; ��(k) + �̂);where we again use �� with a slight abuse of notation.Re
all that S1 a
ts on Y via (��U)(t) = U(t + �). We say that a manifold W is invariantunder equation (3.3) for � � 0 (� � 0) if, for any U0 2 W , there is a solution U(�) of (3.3)de�ned for � � 0 (� � 0) with U(0) = U0 and U(�) 2 W for suÆ
iently small �.Lemma 3.5 Assume that Hypothesis (P1) is met. For any (
; �̂) 
lose to (
0; 0), thereexists then a two-dimensional, smooth and S1-invariant 
enter-manifold W 

;�̂(0) � Y that
ontains U = 0 and is tangent to spanfei!0tUH; e�i!0tUHg at U = 0 for (
; �̂) = (
0; 0).Furthermore, W 

;�̂(0) is invariant under (3.3) and smooth in (
; �̂).Proof. The lemma follows from results of Mielke [11℄; see also [22℄. The assumptions inthese referen
es are satis�ed due to Lemma 3.1 and 3.3.Hen
e, the ellipti
 PDE (3.3) near U = 0 is essentially redu
ed to an S1-equivariant ODEon W 

;�̂(0). We assume that the Hopf bifur
ation is super
riti
al.Hypothesis (H) Assume that the ve
tor �eld on W 

0;0(0), proje
ted onto the 
entereigenspa
e and in polar 
oordinates, is given by r� = �C2r3, '� = k0 up to terms of fourthorder for some C2 > 0.Note that the ve
tor �eld on the 
enter eigenspa
e takes this parti
ularly simple form dueto the equivarian
e with respe
t to the isometri
 a
tion of S1 on the 
enter eigenspa
e. Weremark that the sign of C2 is not important. The arguments given below work also in the
ase where C2 < 0; see Remark 3.10 below.The 
oeÆ
ient C2 may be 
omputed expli
itly following standard pro
edures. The linearpart of the ve
tor �eld on the 
enter manifold is given by the restri
tion of the linearization,A1, to the invariant 
enter eigenspa
e spanfei!0tUH; e�i!0tUHg. By S1-equivarian
e, thequadrati
 terms of the Taylor expansion of the ve
tor �eld proje
ted onto this subspa
evanish. The 
omputation of the 
ubi
 term requires in general the quadrati
 approximationof the 
enter manifold. However, if the nonlinearity f is 
ubi
, the 
omputation of the 
ubi
17



term simpli�es greatly: in this situation, the third-order term of the ve
tor �eld is obtainedby simply evaluating and then proje
ting the nonlinearity onto the 
enter eigenspa
e. Ave
tor in the 
enter eigenspa
e is of the general form zei!0tUH + 
:
: with z 2 C . We writeUH = (uH; vH)t where, due to the se
ond-order stru
ture of the equation, vH = ik0uH.Evaluating f and proje
ting onto the subspa
e spanfei!0tU ; U 2 R2ng, we obtain3�3uf(0; 0)(zei!0tuH; zei!0tuH; zei!0tuH) + 
:
:up to fourth order. In order to 
ompute the equation on the 
enter manifold, we have tomultiply with the left eigenve
tor U�H = (u�H; v�H) whi
h satis�esik0U�H = U�H 0 idD�1(i!0 � �uf(0; 0)) �
0D�1 ! :For 
ubi
 nonlinearities, the 
ubi
 
oeÆ
ient C2 is therefore given byC2 = 12v�H(�3uf(0; 0)(uH; uH; uH) + 
:
:):Hypotheses (P3) and (H) are related to the signs of the 
oeÆ
ients in the Ginzburg-Landauequation At = Axx + �1�A � �2jAj2Aasso
iated with (1.1) near u = 0. Indeed, Hypothesis (P3) implies �1 > 0, while (H)enfor
es �2 > 0. We may now apply the S1-equivariant Hopf bifur
ation theorem andobtain the following lemma.Lemma 3.6 Assume that Hypotheses (P1){(P3) and (H) are satis�ed. There is then afamily �k;�̂(�) 2 Y of periodi
 solutions of (3.3) with (
; �) = (!0=k; ��(k) + �̂) de�ned fork 
lose to k0 and �̂ � 0 small. These solutions are C2 in k uniformly in �̂ � 0. Moreover,they are relative equilibria, that is,�k;�̂(�; t) = �� k�!0 �k;�̂(0)�(t) = �k;�̂�0; t+ k!0 ��:In parti
ular, �k;�̂ has period 2�k in � and 2�!0 in t. Furthermore, �k;�̂ is stable with respe
tto the dynami
s on W 

;�̂(0). Finally, we have the expansion�k;�̂(0; t) = AHp�̂ ei!0tUH +O(jk � k0jp�̂ + j�̂j) (3.28)for some AH 6= 0.Proof. The lemma follows from the standard S1-equivariant Hopf-bifur
ation theorem.We obtain a family �
;�̂ of periodi
 solutions parametrized by (
; �̂). Using the relations(3.25) and (3.27), it is easy to see that we 
an parametrize the periodi
 solutions also by thespatial wavenumber k. The relation 
 = !0=k follows sin
e we deal with steady patterns ofspatial period 2�k 
onsidered in a 
oordinate frame moving with speed 
.18



Of 
ourse, the family of solutions �k;�̂ is pre
isely the family of Turing patterns that wewould have obtained via standard Lyapunov-S
hmidt redu
tion for the temporal dynami
s.The periodi
 solutions �k;�̂(�) of (3.3) 
orrespond to solutions 
k;�(�; t) of (3.2) with � =��(k) + �̂. The Turing patterns 
k;� have period 2�!0 in t and 2�k in �. Furthermore, theysatisfy 
k;�(�; t) = 
k;�(� � 
t; 0). In the original frame (x; t), their wave speed is zero.For any ~
, the fun
tion~�~
;k;�̂(�; t) := �k;�̂(� � ~
t; t) = �k;�̂�0; (1� k~
!0 )t+ k!0 ��satis�es (3.3) with (
; �) = (!0k +~
; ��(k)+ �̂) and has frequen
y ! = !0�k~
 in t. However,�k;�̂;!(�) is not 
ontained in Y but in the spa
e of 2�! -periodi
 fun
tions. Solving theequation for !, we obtain ~
 = !0�!k and we set �k;�̂;!(�) = ~�~
;k;�̂(�).Remark 3.7 The �rst 
omponent 
k;�;!(�; t) of �k;����(k);! satis�es (3.2) for � � ��(k)and 
 = !k . It has period 2�! in t and 2�k in �.3.5 Existen
e of invariant manifoldsWe state existen
e results for the global 
enter-stable manifold W 
s;+
;�̂ (0) of the equilibriumU = 0 and the lo
al unstable manifold W u;lo

;�̂ (�
;�̂(0)) of the periodi
 solution �
;�̂(�). Thekey to obtain these manifolds are the exponential di
hotomies derived in Lemma 3.3. Inthis se
tion, we parametrize the periodi
 waves by (
; �̂) rather than using (k; �̂).Proposition 1 Assume that Hypothesis (P1) is satis�ed. Equation (3.3) has then a C2-smooth, lo
ally invariant 
enter-stable manifold W 
s;+
;�̂ (0) whi
h is tangent to E
s+ (0) at(h; h�)(0) for (
; �̂) = (
0; 0). It 
ontains all solutions that stay 
lose to (h; h�)(�) for all� > 0. Moreover, W 
s;+
;�̂ (0) is C2-smooth in (
; �̂).Proof. If we parametrize a neighborhood of (h; h�)(�) by U = (h; h�) + V , we obtain theequationV� =  0 idD�1(�t � �uf(h; 0)) �
0D�1 !V+� 0D�1(�uf(h; 0)V1+ f(h; ��(
) + �̂)� f(h + V1; ��(
) + �̂)� (
� 
0)V2)�for V = (V1; V2) 2 Y . Sin
e Y is a Hilbert spa
e, there exists a smooth 
ut-o� fun
tion��(hV; V iY ). We de�ne the modi�ed nonlinearityG(�; V; 
; �̂) := ��(hV; V iY )�� 0D�1(�uf(h(�); 0)V1+ f(h(�); ��(
) + �̂)� f(h(�) + V1; ��(
) + �̂)� (
� 
0)V2)�:19



The linear equation V� = A(�)V has been solved in Lemma 3.3. For the 
onstant �appearing in Lemma 3.3 and any number Æ with 0 < Æ < �, we de�neZ+Æ := fV 2 C0(R+; Y ); sup��0 e�Æ�jV (�)jY =: jV jÆ <1g:We seek the solutions in the 
enter-stable manifold as �xed points of the equationV (�) = �
s+(�; 0)V 
s0 + Z �0 �
s+(�; �)G(�; V (�); 
; �̂) d� (3.29)+ Z �1 �u+(�; �)G(�; V (�); 
; �̂) d�;where V 
s0 2 E
s+ (0) and V 2 Z+Æ . It follows from the estimates obtained in Lemmata 3.1and 3.3 that the hypotheses in [22℄ are met. The proposition is then a 
onsequen
e ofthe results presented in [22℄. Note that any solution of the integral equation is a
tually asmooth solution; see [14, Lemma 3.1℄.Similarly, we obtain the global 
enter-unstable manifold W 
u;�
;�̂ (0) of U = 0 that enjoysthe analogous properties for � !�1. Finally, we 
onstru
t the lo
al unstable manifold of�
;�̂(0).Proposition 2 Assume that Hypotheses (P1){(P3) and (H) are satis�ed. For any (
; �̂)with j
� 
0j and �̂ � 0 small, equation (3.3) has a C2-smooth, lo
ally invariant unstablemanifold W u;lo

;�̂ (�
;�̂(0)) whi
h is tangent to R(P u) at U = 0 for (
; �̂) = (
0; 0). It 
onsistspre
isely of those solutions U0 that stay in a small neighborhood of U = 0 for � � 0 andsatisfy jU(�)� �
;�̂(�)j � Ke��as � ! �1. Moreover, W u;lo

;�̂ (�
;�̂(0)) is 
ontinuous in �̂ in the C2-topology and C2-smooth in 
.Here, � > 0 and the proje
tion P u have been de�ned in Lemma 3.3 and 3.1, respe
tively.Proof. We use the parametrization U(�) = �
;�̂(�) + V (�) and obtain the equationV� =  0 idD�1(�t � �uf(�
;�̂; ��(
) + �̂)) �
D�1 !V+� 0D�1(�uf(�
;�̂; ��(
) + �̂)V1 + f(�
;�̂; ��(
) + �̂)� f(�
;�̂ + V1; ��(
) + �̂))�for V = (V1; V2) 2 Y . As before, we de�ne the modi�ed nonlinearityG(�; V; 
; �̂) := ��(hV; V iY )�� 0D�1(�uf(�
;�̂(�); ��(
) + �̂)V1 + f(�
;�̂(�); ��(
) + �̂)� f(�
;�̂(�) + V1; ��(
) + �̂))�:20



It follows from the roughness theorem for exponential di
hotomies proved in [14℄ that thelinear equation V� =  0 idD�1(�t � �uf(�
;�̂(�); ��(
) + �̂)) �
D�1 !Vhas evolution operators �
s
;�̂(�; �) and �u
;�̂(�; �) de�ned for � � � � 0 provided j
� 
0j and�̂ > 0 are small. The evolution operators satisfy the estimatesk�
s
;�̂(�; �)kL(Y ) � K; k�u
;�̂(�; �)kL(Y ) � Ke��(���)and k�
s
;�̂(�; �)� �
s
0;0(�; �)kL(Y ) + k�u
;�̂(�; �)� �u
0;0(�; �)kL(Y ) � K(j
� 
0j+p�̂)for � � � � 0; see [14℄. For any Æ with 0 < Æ < �, we de�neZ�Æ := fV 2 C0(R�; Y ); sup��0 e�Æ�jV (�)jY =: jV jÆ <1g:We seek the unstable manifold as a �xed point of the equationV (�) = �u
;�̂(�; 0)V u0 + Z �0 �u
;�̂(�; �)G(�; V (�); 
; �̂) d� (3.30)+ Z ��1 �
s
;�̂(�; �)G(�; V (�); 
; �̂) d�;where V u0 2 Eu� and V 2 Z�Æ . Sin
e G(�; V; 
; �̂) = O(jV j2Y ) uniformly in 
 and �̂, the non-linearity G is C2 as a map from Z�Æ into itself. By the uniform-
ontra
tion theorem, thereexists a unique �xed point of (3.30) that depends smoothly on V u0 and 
, and 
ontinuouslyon �̂. This proves the proposition.By the above proof and equation (3.28), W u;lo

;�̂ (�
;�̂(0)) is given byU = �
;�̂(0) + �u
;�̂(0; 0)V u0 + O(jV u0 j2Y ) (3.31)= AHp�̂ ei!0tUH + V u0 + O(j�̂j+p�̂(j
� 
0j+ jV u0 jY ) + jV u0 j2Y );where V u0 2 E
u� .3.6 TransversalityWe seek solutions of (3.3) 
onne
ting the bifur
ating periodi
 solution �
;�̂ with itself.Therefore, we are interested in interse
tions of the lo
al unstable manifold W u;lo

;�̂ (�
;�̂(0))with the global 
enter-stable manifold W 
s;+
;�̂ (0). For (
; �̂) = (
0; 0), the former manifold
oin
ides with W u;lo

0;0 (0). We may then shift the variable � su
h that (h; h�)(0) is 
ontained21



in the lo
al unstable manifold W u;lo

0;0 (0). In parti
ular, W u;lo

0;0 (0) and W 
s;+
0;0 (0) interse
talong the homo
lini
 solution U(�) = (h; h�)(�). In order to �nd interse
tions for �̂ 6= 0,we 
onsider the suspended manifolds~W 
s;+�̂ := f(U; 
); j
� 
0j < Æ; U 2 W 
s;+
;�̂ (0)g~Wu;��̂ := f(U; 
); j
� 
0j < Æ; U 2 W u;lo

;�̂ (�
;�̂(0))gas manifolds in Y �R. Note that they are indeed C2 due to the propositions proved above.For �̂ = 0, these manifolds interse
t along (U; 
) = ((h; h�); 
0).Lemma 3.8 For �̂ = 0, we haveT((h;h�)(0);
0) ~W 
s;+0 \ T((h;h�)(0);
0) ~W u;�0 = spanf((h; h�)�(0); 0)g;T((h;h�)(0);
0) ~W 
s;+0 + T((h;h�)(0);
0) ~W u;�0 = Y �R:In other words, the suspended manifolds interse
t transversely in the extended phase spa
eY �R.Proof. We observe that �
0;0(�) = 0 vanishes identi
ally for all �. The tangent spa
es of~W 
s;+0 and ~W u;�0 are given byT((h;h�)(0);
0) ~W 
s;+0 = (Es+(0)� f0g) + (E
(0)� f0g) + spanf( ~V 
s;+
0;0 (0); 1)g;T((h;h�)(0);
0) ~W u;�0 = (Eu�(0)� f0g) + spanf((h; h�)�(0); 0)g+ spanf( ~V u;�
0;0 (0); 1)g:The tangent ve
tor ~V 
s;+
0;0 (�) of the 
enter-stable manifold in the 
-dire
tion 
an be 
al
u-lated by taking the derivative of (3.29) with respe
t to 
 at V 
s0 = 0. Similarly, ~V u;�
0;0 (�) isthe derivative of (3.30) with respe
t to 
 at V u0 = (h; h�)(0). Computing these derivatives,we obtain the expressions~V u;�
0;0 (0) = Z 0�1 �u�(0; �)� 0�D�1h�(�)� d�;~V 
s;+
0;0 (0) = Z 01 �
s+(0; �)� 0�D�1h�(�)�d�:On a

ount of Lemma 3.4, it suÆ
es to prove thatD 0; ~V 
s;+
0;0 (0)E 6= D 0; ~V u;�
0;0 (0)E;that is,D 0; Z 0�1 �u�(0; �)(0;�D�1h�(�))t d� � Z 01 �
s+(0; �)(0;�D�1h�(�))td�E 6= 0: (3.32)Note that the integrands are a
tually 
ontained in Y0. In parti
ular, the term on theleft-hand side in (3.32) is given byM := Z 1�1h (�); (0;�D�1h�(�))ti d� (3.33)22



where  (�) is the unique, up to 
onstant multiples, bounded solution of the adjoint varia-tional equation dd��uv� = � 0 id�D�1�uf(h(�); 0) �
0D�1 !t�uv�for (u; v) 2 Rn�Rn. Sin
e zero is a simple eigenvalue by (P2)(i), we 
an 
on
lude thatM ,de�ned in (3.33), is non-zero; see [16, Lemma 5.5℄. A similar argument, and more details,
an be found in [17, Se
tion 5℄.Therefore, for any �̂ > 0, the manifolds ~W 
s;+�̂ and ~W u;��̂ interse
t along a unique line(U�̂(�); 
(�̂)) that depends on �̂. The asso
iated solution U�̂(�) of (3.3) with 
 = 
(�̂)
onverges exponentially to �
(�̂);�̂ as � ! �1 by de�nition. It is also 
ontained in the
enter-stable manifold W 
s;+
(�̂);�̂(0).Lemma 3.9 We have the estimate j
(�̂)� 
0j � Kj�̂j.Proof. We 
onsider the suspended lo
al 
enter-unstable manifold~W 
u;��̂ := f(U; 
); j
� 
0j < Æ; U 2 W 
u;lo

;�̂ (0)g;see the 
omment after Proposition 1. Sin
e the manifolds ~W 
u;��̂ and ~W 
s;+�̂ are smooth in�̂, we 
an parametrize them lo
ally near ((h; h�)(0); 
0) a

ording to~W 
u;��̂ = ((h; h�)(0); 
0) + (V 
u� ; 0)+ (
� 
0)( ~V 
u
0;0(0); 1)+ O(j
� 
0j2 + jV 
u� j2Y + j�̂j)~W 
s;+�̂ = ((h; h�)(0); 
0) + (V 
s+ ; 0) + (
� 
0)( ~V 
s
0;0(0); 1)+ O(j
� 
0j2 + jV 
s+ j2Y + j�̂j);where V 
u� 2 E
u� (0) and V 
s+ 2 E
s+ (0). Proje
ting the di�eren
e of elements (U 
u� ; 
) and(U 
s+ ; 
) in ~W 
u;��̂ and ~W 
s;+�̂ , respe
tively, onto spanf( 0; 0)g, we obtainh( 0; 0); (U 
u� ; 
)� (U 
s+ ; 
)i = (
� 
0)M + O(j
� 
0j2 + jV 
u� j2Y + jV 
s+ j2Y + j�̂j):Upon inserting the interse
tion point, the left-hand side vanishes. On the other hand, thedistan
e between the interse
tion point and (h; h�)(0) is of the order p�̂. This proves thelemma.It remains to show that U�̂(�) 
annot 
onverge to zero as � ! 1 but approa
hes theperiodi
 solution �
(�̂);�̂. Sin
e it already 
onverges to �
(�̂);�̂ for � !�1 by 
onstru
tion,it is then a homo
lini
 orbit to �
(�̂);�̂. On a

ount of Lemma 3.6, it suÆ
es to show thatU�̂(0) is not 
ontained in the stable manifold of the origin W s;+
(�̂);�̂(0). Firstly, we shift timesu
h that (h; h�)(0) is 
ontained in the lo
al unstable manifold of zero and has distan
er > 0 small from zero. We shall now estimate the distan
e between W u;lo

(�̂);�̂(�
;�̂(0)) and23



W u;lo

(�̂);�̂(0), measured near (h; h�)(0). Using the expansion (3.31) and Lemma 3.9, we 
anestimate this distan
e from below byp�̂ jAHj jUHj �Kp�̂(jV u0 jY + j
(�̂)� 
0j) �p�̂ jAHj jUHj �Kp�̂(r + �̂):Note that we do not have to a

ount for the quadrati
 terms O(jV u0 jY ) in (3.31) sin
e they
orrespond to the lo
al unstable manifold for �̂ = 0. Hen
e, they disappear when 
omputingthe distan
e. After 
hoosing r suÆ
iently small, we 
on
lude from the above estimate thatthe aforementioned distan
e between W u;lo

(�̂);�̂(�
;�̂(0)) and W u;lo

(�̂);�̂(0) is bigger than Æp�̂for some Æ > 0. On the other hand, the distan
e between W s;+
(�̂);�̂(0) and W u;lo

(�̂);�̂(0) is ofthe order �̂ sin
e both are smooth in �̂. Therefore, W s;+
(�̂);�̂(0) and W u;lo

(�̂);�̂(�
;�̂(0)) 
annotinterse
t near (h; h�)(0).3.7 The homo
lini
 bifur
ationWe summarize our �ndings in the following existen
e theorem.Theorem 1 Assume that Hypotheses (H), (P1){(P3) and (TW) are satis�ed. There isthen a smooth fun
tion ��(!) � 0 with ��(!0) = �0�(!0) = 0 and �00�(!0) > 0 su
h that,for any ! 
lose to !0 and any small � > ��(!), the following is true. For a unique wavespeed 
 = 
�(�; !) 
lose to 
0, equation (3.2) has a solution h�;!(�; t) with the followingproperties.(i) h�;!(�; t) is periodi
 in t with period 2�! . In other words, the bifur
ating pulse is time-periodi
 in an appropriate moving frame. The family h�;!(�; �) is 
ontinuous in (�; !)with values in C0(R2;Rn) provided with the lo
al topology.(ii) We have 
�(0; !0) = 
0 and h0;!0(�; t) = h(�).(iii) There exists a 
onstant Æ > 0 su
h that, for 
0 < 0,jh�;!(�; t)� 
k�(�;!);�;!(� + '+; t)j � Ke�Æ�� � !1jh�;!(�; t)� 
k�(�;!);�;!(� + '�; t)j � Ke��j�j � !�1for some '� = '�(�; !) independent of � and t, where k�(��(!); !) = !
�(�;!). If
0 > 0, repla
e � by �� in the above expressions.(iv) The fun
tions 
k�(�;!);�;!(�; t) have amplitude of the order p� � ��(!), spatial period2�k�(��(!);!) in � and temporal period 2�! ; see Remark 3.7.Proof. For ! = !0, the 
laims in the theorem have been proved in the previous se
tions. Itis straightforward to see that these proofs remain valid for any �xed ! 
lose to !0. Indeed,24



all hypotheses are open 
onditions. In order to show that the estimates and existen
edomains are uniform in !, we 
hange the time and spa
e variables in (3.1) a

ording to(�; �) = �!0! t;r!0! ��:Equation (3.1) then reads u� = Du�� + !!0 f(u; �): (3.34)In parti
ular, the nonlinearity depends smoothly on the parameter !. Any solution of (3.34)with period 2�!0 in t 
orresponds to a solution of (3.1) with period 2�! in t. We may now 
ast(3.34) in a moving frame as an ellipti
 problem on the spa
e Y and apply the analysis ofthe previous se
tions to this problem with the additional parameter !. The 
ru
ial pointis that only the nonlinearity depends on the parameter !, and in fa
t smoothly. A puretime-res
aling would result in an operator !0! ddt in the ellipti
 problem; the dependen
e on! is then more deli
ate.The solutions h�;! are relative periodi
 orbits with respe
t to the group of translationsa
ting on the fun
tion spa
e X = C0unif(R;Rn). At the tails, they have small spatialos
illations of period 2�k0 that move with speed of about �
0 = �!0k0 relative to the restinglarge pulse pro�le; see Figure 1. Their temporal period is 
lose to 2�!0 .Remark 3.10 In Hypotheses (P3) and (H), we assumed that C1 > 0 and C2 > 0 are bothpositive. As mentioned earlier, these 
onditions are not really ne
essary. In fa
t, Theorem 1holds provided C1 6= 0 and C2 6= 0. We expe
t, however, that the modulated pulses arestable only if the Hopf bifur
ation, whi
h generates the Turing patterns, is super
riti
al; seeSe
tion 4.1 below.3.8 Other modulated wavesThere are many more qualitatively di�erent modulated waves that bifur
ate near an essen-tial instability. For instan
e, it is straightforward to prove the following. Suppose that theassumptions of Theorem 1 are met. Also, without loss of generality, assume that 
0 < 0.Then, for any ! near !0 and any �xed � > ��(!), there exists a one-parameter family ofmodulated waves that 
onne
t the trivial asymptoti
 state u = 0 at � ! �1 to a Tur-ing pattern at � ! 1. These waves 
an be parametrized by their distan
e, measured at� = ��0 for some large �0, from the invariant subspa
e of time-independent fun
tions. Theproof is very similar to the one given above and we shall omit it.25



4 Dis
ussionThe approa
h presented here is a natural generalization of deriving ODEs des
ribing trav-elling waves. It allows us to investigate the lo
al Turing bifur
ation to patterns with smallamplitude and the global bifur
ation involving the pulse separately. The method is appli-
able to a variety of other instability phenomena. We restri
ted ourselves to the 
ase of aninstability from a primary pulse only in order to make our strategy more transparent. Themost general framework would be a bifur
ation from a hetero
lini
 orbit for the spatialdynami
s, that is, a travelling-wave solution of a paraboli
 equation posed on an in�nite
ylinder that approa
hes stationary states at both ends of the 
ylinder.4.1 Modulated waves bifur
ating from pulsesIn this se
tion, we dis
uss some other issues related to bifur
ations from pulses as 
onsideredin Se
tion 3.Modulated waves 
onne
ting di�erent Turing patternsThe modulated waves we des
ribed in Theorem 1 
onverge to the same Turing pattern as� !�1. One might expe
t that, near an essential instability, generalized modulated wavesarise that 
onne
t two Turing patterns with di�erent wavenumbers. These generalizedmodulated waves would be quasi-periodi
 in time with two frequen
ies that are asso
iatedwith the temporal periods of the asymptoti
 Turing patterns. The approa
h pursued heredoes not work when investigating waves that are quasi-periodi
 in time. It is naturaland tempting to 
onsider the ellipti
 equation on the spa
e of quasi-periodi
 fun
tions.Unfortunately, this pro
edure leads to small-divisor problems that are diÆ
ult to resolveeven on the linear level.Shape of the modulated pulsesAn interesting aspe
t of our analysis are the rates of 
onvergen
e of the pulse towards theos
illatory patterns. A 
omputation shows that in the moving 
oordinate frame, for � > 0,the origin is unstable in the 
enter manifold for the �-dynami
s when 
 < 0 and stable if
 > 0. Suppose that 
 < 0. This is the situation we dis
ussed in Se
tion 3.7; the other 
aseis obtained by reversing � ! ��. For � ! �1, the time-periodi
 pulse that bifur
atesfrom the original pulse h(�) 
onverges to the periodi
 pattern �k;� exponentially with rate� = O(1) with respe
t to �̂ as it lies in the strong unstable manifold of the periodi
 orbit.For � !1, however, it approa
hes �rst the 
enter manifold with exponential rate O(1) ata point with distan
e O(�) to the periodi
 pattern �k;�. It then approa
hes the periodi
pattern, whi
h is of amplitude O(p�), with exponential rate O(�).26



In physi
al spa
e, in a steady 
oordinate frame, we 
an interpret this as follows. In frontof the pulse, we see the possibly stable periodi
 pattern with amplitude O(p�). We thenobserve the pulse that passes by and moves exponentially fast away from the os
illatorypattern. Behind the pulse, there is some kind of re
overy zone where the amplitude of theos
illations grows or de
ays exponentially towards the same value as ahead of the wave,but on the large spatial s
ale � � 1=�.StabilityHaving established the existen
e of modulated pulses, an important issue is their stability.We say that a time-periodi
 solution is spe
trally stable if the spe
trum of the linearizationof the time-period map about the wave is 
ontained stri
tly inside the unit 
ir
le with theex
eption of the point � = 1. Note that � = 1 is always 
ontained in the essential spe
trumof modulated pulses on a

ount of translation and time invarian
e.The bifur
ating time-periodi
 pulses are spe
trally stable in the moving 
oordinate frameif the small-amplitude periodi
 patterns are spe
trally stable and the point spe
trum ofthe primary pulse is stri
tly 
ontained in the left half-plane with the ex
eption of a simpleeigenvalue at zero. This statement is proved in the se
ond part [18℄ of this work. Assumethat the Hopf bifur
ation leading to Turing patterns is super
riti
al. It then follows that,for � > 0 �xed, there is an open interval of wavenumbers k and an open set of temporalfrequen
ies ! su
h that the modulated pulses with asymptoti
 wavenumber k and temporalperiod 2�! des
ribed in Theorem 1 are spe
trally stable; see [18℄.Genuine Hopf bifur
ationsSimilar dynami
al problems arise when genuine Hopf bifur
ations are 
onsidered. We againrestri
t ourselves to pulse solutions that de
ay to the zero equilibrium at both ends of thereal axis. Suppose that this equilibrium be
omes unstable in the non-moving 
oordinateframe with essential spe
trum 
rossing the imaginary axis at �i!0 for some non-zero !0.The asso
iated 
riti
al wave ve
tor k may again be zero or non-zero. If k = 0, spatiallyhomogeneous os
illations ei!0t are 
reated. Reversing spa
e and time, these 
orrespond toequilibria of the ellipti
 system (1.4). Due to the time-shift symmetry, there is a whole grouporbit of equilibria bifur
ating from zero in a two-dimensional 
enter-manifold for (1.4).Arguing again as in Se
tion 3.7, we obtain the following result: there exists a homo
lini
traje
tory to this 
ir
le of 'equilibria'. It 
orresponds to a pulse solution where both tailsexperien
e a spatially homogeneous time-periodi
 os
illation.The 
ase of a Hopf bifur
ation with non-zero wavenumber involves non-resonan
e 
ondi-tions. Small-amplitude waves of the form ei(!0t�k0x) 
orrespond to waves moving withspeed �!0k0 � 
 relative to the pulse. In addition, we expe
t the 
reation of standing waves27



ei(!0t+k0x) � ei(!0t�k0x). However, in a moving 
oordinate frame and �xing the temporalfrequen
y !0 + 
k0 (or !0 � 
k0), only one of the linear waves ei(!0t�k0x) yields a boundedsolution of the linearized ellipti
 operator A1 de�ned in Se
tion 3.2 { provided 
 is non-resonant, that is, 
 6= �n�1n+1 � !0k0 (or 
 6= n�1n+1 � !0k0 ). The 
enter manifold is again two-dimensional with the time shift a
ting as rotational symmetry, and we re
over pre
isely thesame setting as in the stationary bifur
ation. We obtain time-periodi
 modulated pulses
onverging at both tails to travelling-wave patterns moving with speed �!0k0 � 
 relative tothe pulse.Standing pulsesIf the wave speed vanishes so that 
0 = 0, then the bifur
ation problem redu
es to an ODEsin
e the Turing patterns and the primary pulse are stationary. Note, however, that the
enter manifold is four-dimensional due to the reversibility; see [8℄ or [18℄. It is then notobvious whether standing pulses bifur
ate that 
onverge to one of the stationary Turingpatterns as x!�1.Numeri
al 
omputation of the time-periodi
 pulsesWe mention that the analysis presented here also indi
ates how the bifur
ating periodi
pulses might be 
omputed numeri
ally. Indeed, we sought and found them as homo
lini
orbits towards a periodi
 orbit for the ellipti
 equation (3.3). In parti
ular, a Galerkinapproximation of (3.3) in time and the subsequent 
omputation of a homo
lini
 
onne
tionto the small-amplitude patterns should provide a robust method of 
omputing modulatedpulses; we refer to [10℄ for details and more referen
es of su
h methods for ellipti
 equations.The only diÆ
ulty here is the start-o� near the bifur
ation point. Also, an additional phase
ondition has to be in
orporated to fa
tor the S1-symmetry indu
ed by the shift in time.4.2 Modulated waves bifur
ating from fronts or wave trainsHetero
lini
 
onne
tions and frontsIn this se
tion, we 
onsider travelling waves u(�) of (1.1) with wave speed 
0 that 
onvergeto two di�erent equilibria p� as � !�1. The asymptoti
 states p� 
ould be either stableor unstable.First, suppose that the travelling wave 
onne
ts a stable with an unstable equilibrium orvi
e versa. Su
h waves are often 
alled fronts. Fronts exist typi
ally for a 
ontinuumof wave speeds and move towards the unstable state. The stability of a front is re
overedupon 
hoosing a suitable weighted norm in the relevant fun
tion spa
e. We may investigatethe situation when the stable asymptoti
 state be
omes unstable. Whether this route to28



instability produ
es modulated waves depends 
ru
ially on 
ertain Fredholm properties ofthe linearization about the primary front. If a 
ertain Fredholm index be
omes positive, theapproa
h introdu
ed in Se
tion 3 is appli
able under 
onditions as in Hypothesis (P1). Theresulting pattern is a time-periodi
 front that 
onne
ts the spatially homogeneous unstablestate to a spatially os
illatory pattern; see [2℄ for an example of su
h a phenomenon. Werefer to [19℄ for a more thorough dis
ussion. Sherratt [20℄ investigated a series of 
ertain
ari
ature problems numeri
ally and analyti
ally for fronts with negative Fredholm index.He observed several modulated waves of di�erent wave speed that are glued together.Following the approa
h presented in this paper, we 
an show that modulated fronts 
annotbifur
ate in this situation.The se
ond possibility is that the travelling wave 
onne
ts two stable equilibria. In this 
ase,one of the stable equilibria may destabilize. Whether or not modulated waves bifur
atedepends again on the sign of a 
ertain Fredholm index. The details 
an be found in [19℄.Periodi
 wave trainsAnother interesting example are periodi
 wave trains that destabilize due to essential spe
-trum that 
rosses the imaginary axis. The di�eren
e to the previous 
ases is that there areno asymptoti
 states involved. Suppose that the linearized operator about the wave trainhas two bounded eigenfun
tions asso
iated with the essential instability. Investigating thespatial dynami
s in an appropriate moving frame, we obtain a tri
hotomy that 
hara
terizessolutions that de
ay for either forward or ba
kward �-dire
tion, or are bounded for � 2 R.The bifur
ation problem 
an then be redu
ed to equations that live on the two-dimensionalspa
e of bounded solutions. The resulting bifur
ation is similar to a Hopf bifur
ation toan invariant 
ir
le for the Poin
are map asso
iated with periodi
 orbits in ODEs. Thebifur
ation dire
tion depends upon higher-order terms of the equation restri
ted to thespa
e of bounded fun
tions at the bifur
ation point. Generi
ally, modulated wave trainsbifur
ate that are periodi
 in time. Their spatial stru
ture is given by a superposition ofthe bounded eigenfun
tions and the primary wave train.Cylindri
al domainsGeneralizations to travelling-wave problems posed on 
ylinders R� 
 require some morete
hni
al preparation. Consider, for example,ut = D�x;yu+ f(u); (x; y) 2 R� 
;with, say, Diri
hlet or Neumann boundary 
onditions on R� �
. Here, 
 is a boundeddomain in Rm. Travelling waves are of the form u = u(x � 
t; y) and satisfy the ellipti
system of partial di�erential equations
u� = D��;yu+ f(u; �); (x; y) 2 R� 
: (4.1)29



Again, there is a dynami
al interpretation for solutions of this ellipti
 equation indu
ed bythe shift of solutions along the 
ylinder. If u(�; y) ! p�(y) as � ! �1, then D�yp� +f(p�) = 0 and p�(y) are 'equilibria' of (4.1). In this sense, a travelling wave u 
an beinterpreted as a hetero
lini
 orbit of the dynami
al system asso
iated with the ellipti
system (4.1). A generi
 
hoi
e for the phase spa
e would then be (u; u�) 2 H10(
)n �L2(
)n if, for example, Diri
hlet boundary 
onditions were 
hosen. The bifur
ation analysis
an now be 
arried out as in Se
tion 3 making extensive use of the results in [14℄. Inparti
ular, the existen
e of global invariant manifolds and a Fredholm property for theresulting bifur
ation equation has been proved there.4.3 Appli
ationsNishiura [personal 
ommuni
ation℄ has re
ently observed modulated fronts of the form de-s
ribed in this paper in numeri
al simulations of rea
tion-di�usion systems. Modulatedwave trains have been observed numeri
ally by Ogawa [personal 
ommuni
ation℄ in dissi-patively perturbed generalized KdV equation. The appearan
e of these wave trains 
anprobably be explained rigorously by essential instabilities of periodi
 wave trains; this iswork in progress. As mentioned earlier, Sherratt [20℄ investigated, numeri
ally and other-wise, fronts that destabilize in an essential instability. The rea
tion-di�usion systems heused are predator-prey models. The patterns he observed, however, are not modulatedfronts but are 
omposed of several modulated waves with di�erent wave speeds.A
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