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1 IntrodutionTravelling-wave solutions of paraboli equations on the real line arise in a variety of appli-ations. An important issue is their stability sine it is expeted that only stable travellingwaves an be observed. One stability has been proved over a ertain range of parameters,the dynamis near a travelling wave is preditable: any solution nearby is attrated to thetravelling wave or an appropriate translate of it. In that respet, interesting parametervalues are those at whih a transition to instability ours. Near suh transitions, otherand possibly more ompliated patterns may bifurate from the primary travelling wave.A travelling wave beomes unstable if a subset of the spetrum of the linearization aboutit rosses the imaginary axis. One possibility is that this subset onsists of isolated eigen-values. The resulting bifuration problem an be analyzed using standard enter-manifoldtheory. In this artile, we fous on a qualitatively di�erent mehanism that also leads toinstability, namely that of essential spetrum rossing the imaginary axis. We all this in-stability mehanism an essential instability. This route to instability is onsiderably morediÆult to analyze sine it is genuinely in�nite-dimensional. In fat, to our knowledge,this transition has not been investigated previously exept for small fronts [2℄. Anotherrelated artile is [20℄ where essential instabilities of fronts are studied utilizing numerialsimulations and the analysis of a series of ariature problems. The waves investigatedtherein are of a quite di�erent nature and we refer to Setion 4 for a disussion.We distinguish between several kinds of travelling waves. Pulses are travelling waves thatonverge to the same asymptoti state as the spatial variable x tends to �1. Fronts, on theother hand, onnet di�erent asymptoti states at �1. Periodi wave trains are travellingwaves that are periodi in the spatial variable. In the following, we fous on pulses. Mostof the results presented in this artile apply also to fronts and wave trains, and we disussthese generalizations in Setion 4.Essential instabilities of pulses are aused by an instability of the asymptoti equilibriumstate of the pulse. Suppose that h(x� 0t) is a pulse that moves with speed 0 to the right.Its essential spetrum orresponds to small-amplitude waves of the form eikx+�t that arereated at the asymptoti state of the pulse, that is, at its tails. The wavenumber k andthe eigenvalue � satisfy a ertain dispersion relation. At the onset of instability induedby the essential spetrum, there exist then waves of the form ei(kx+!t). There are fourqualitatively di�erent ases orresponding to all possible ombinations of ! and k beingzero or non-zero. We fous here on the ase of a stationary bifuration, that is ! = 0, fornon-zero k.When both the wavenumber k and the eigenvalue ! are zero, the situation is atually on-siderably simpler sine it orresponds to a homolini bifuration in an ordinary di�erentialequation where the equilibrium undergoes a pithfork bifuration. On the other hand, thease of non-zero ! is similar to the ase ! = 0, and we refer to Setion 4 for a disussion.1



�t �02�k0Figure 1: The superposition of the loalized solitary wave h with small patterns that have a 2�k0 -periodi spatial struture is shown in a frame moving with speed 0 > 0. The small-amplitudepatterns move with speed �0 relative to the pulse h. The solution shown here has period 2�!0 intime in the moving oordinate frame where !0 = 0k0.From now on, we onentrate on situations where ! = 0 and k = k0 are non-zero, thatis, we assume that the dispersion relation is satis�ed by �0 = 0 and some k0 6= 0. Theassoiated loal bifuration lose to the equilibrium state is known as the Turing instability;see Setions 3.2 and 3.4. It generates small patterns of the form eik0x that are oftenreferred to as Turing patterns. These patterns possess a spatially osillating struturewith period 2�k0 . We seek time-periodi modulations of the pulse that are reminisent ofa linear superposition of these small steady patterns and the large loalized pulse. In aoordinate system � = x � 0t moving with the speed 0 of the pulse, the steady patternseik0x beome travelling waves eik0(�+0t) =: ei(k0�+!0t) with !0 := 0k0. They move withspeed �0 relative to the pulse h and have period 2�!0 in time. In this moving frame, themodulated pulse looks roughly like Aei(k0�+!0t) + h(�)for small A; see Figure 1. We remark that Turing patterns bifurate for any wavenum-ber k lose to k0. Correspondingly, we expet to �nd modulated pulses with asymptotiwavenumber k and temporal frequeny ! = 0k for any k lose to k0. For the sake oflarity, we �rst seek modulated pulses with temporal frequeny !0 = 0k0. Only at the endof the analysis, in Setion 3.7, we show how modulated pulses with other temporal periodsan be obtained.To set the sene, onsider ut = Duxx + f(u; �); x 2 R; (1.1)where u 2 Rn and f(0; �) = 0 for all �. Casting (1.1) in a frame � = x� 0t moving with2



(a) (b)i!0 ik0Figure 2: The essential spetrum of the paraboli reation-di�usion system is shown in (a). Piture(b) shows the spetrum of the assoiated ellipti system.speed 0, we obtain ut = Du�� + 0u� + f(u; �); � 2 R; (1.2)whih then has the equilibrium h(�) for � = 0. We are partiularly interested in loalizedwaves satisfying limj�j!1 h(�) = 0. The stability of h is determined by the spetrumspe(L) of the linearizationLw := Dw�� + 0w� + �uf(h(�); 0)w (1.3)of (1.2) about h. The essential spetrum of L is the omplement in spe(L) of the set ofisolated eigenvalues with �nite multipliity. It ontains the spetrum of the linearizationabout the asymptoti state u = 0 that onsists of all points � in the omplex plane suhthat det(�k2D + ik0 + �uf(0; 0)� �) = 0for some k 2 R. This equation is the aforementioned dispersion relation in a oordinateframe moving with the pulse. We assume that the essential spetrum of the asymptotistate for � = 0 has the form depited in Figure 2(a). With the transformation ~� = �� ik0,we reover the dispersion relationdet(�k2D + �uf(0; 0)� ~�) = 0in the original steady oordinate frame. Note that real solutions ~� of this dispersion relationare double zeroes orresponding to wavenumbers �k.Sine the ritial eigenvalues � = �i!0 are not isolated in the spetrum, it is diÆult toredue the dimension by applying Lyapunov-Shmidt redution or enter-manifold theory.Often, modulation equations have been used to desribe the dynamis near homogeneoussteady states. In the aforementioned ontext of bifurations from equilibria, a partial justi-�ation of the approximation by modulation equations, that is Ginzburg-Landau equations,has been ahieved in [7℄; see also [3, 12℄ and the referenes therein. Modulation equationslose to a pulse would have to apture both the dynamis lose to the asymptoti equilib-rium state of the pulse, typially desribed by a Ginzburg-Landau equation, and the global3



interation of the modulation through the pulse. An attempt to derive suh a modulationequation, at least formally, has been made in [1℄. However, the resulting Ginzburg-Landauequation is still diÆult to analyze.We therefore resort to a ompletely di�erent approah and ast the paraboli equation (1.2)as an ellipti equation on the spae of 2�!0 -periodi funtions, namelydd��uv� = � vD�1(ut � 0v � f(u; �))�; t 2 S1 = R=2�!0Z: (1.4)In other words, we antiipate the temporal period 2�!0 and then reverse the role of timeand spae by viewing (1.4) as an evolution equation in �. The restrition to 2�!0 -periodifuntions is very eÆient sine most of the essential spetrum disappears for the initial-value problem (1.4). In fat, the spetrum of the linearization of (1.4) about (u; v) = 0has a pair of isolated imaginary eigenvalues �ik0; see Figure 2(b). Thus, we expet aHopf bifuration leading to spatially periodi solutions with small amplitude. Here, wereover preisely the Turing patterns of the form eik0x = ei(k0�+!0t). On the other hand,the travelling wave h(�) orresponds to a time-independent homolini solution (h; h�)(�) of(1.4). We then seek solutions lose to (h; h�)(�) that are homolini to the aforementionedsmall periodi waves. If (1.4) were an ODE, we ould readily investigate the existene ofsuh onnetions by studying intersetions of suitable global invariant manifolds assoiatedwith the periodi waves. However, the initial-value problem for (1.4) is ill-posed. Indeed,Figure 2(b) indiates that the stable and unstable eigenspaes are both in�nite-dimensional,and semigroup theory fails. Therefore, it is not lear whether global invariant manifoldsexist or whether dynamial-systems tehniques an be used at all to investigate elliptiequations suh as (1.4).In this artile, we onstrut global stable and unstable manifolds near the given pulse(h; h�) and study their intersetions upon hanging the parameter �. We use exponentialdihotomies for ellipti equations to aomplish this onstrution. Exponential dihotomiesare a well-known tehnique for ODEs and paraboli PDEs; see, for instane, [4, 6, 13℄. Forellipti equations, however, there are major tehnial obstales to their global existenethat have been resolved only reently in [14℄.The idea of using spatial dynamis has been introdued in [9℄. Sine then it has been usedextensively in order to investigate bifurations from spatially homogeneous equilibria tosmall steady-state or time-periodi solutions; see, for instane, [2, 7, 15℄. Typially, theresulting ellipti system is redued to a �nite-dimensional equation that desribes small so-lutions near the homogeneous steady-state. The redued equation an then be investigatedusing bifuration theory. The problem analyzed in the present artile, however, involves alarge pulse solution that is not lose to the equilibrium state. A �nite-dimensional redutionto a enter manifold for the spatial dynamis is not known in this ontext.This paper is organized as follows. In the next setion, we present a four-dimensional4



model problem. The model reets the essential features of the part of the bifuration weare interested in, though we believe that it is inadequate for a omplete desription. Theanalysis of the in�nite-dimensional problem, inluding all neessary hypotheses, is thenarried out in Setion 3. The main result, the bifuration of modulated travelling wavesasymptoti to spatially-periodi steady patterns, is stated in Setion 3.7. We onlude inSetion 4 with a disussion and generalizations of the result.2 A �nite-dimensional model problemIn this setion, we outline the bifuration that ours in the ellipti problem (1.4) whenthe essential spetrum of (1.3) rosses the imaginary axis. For the sake of larity, we utilizea four-dimensional model that mimis preisely the bifuration we are interested in. Let(u0; u1) 2 R2�R2 satisfy the di�erential equationdd� u0 = f0(u0; ; �) (2.1)dd� u1 = f1(u0; u1; ; �):The reader may think of (u0; u1)(x) as the zeroth and �rst Fourier oeÆients of the t-periodi funtion (u; u�)(t; �) de�ned in (1.4); see also equation (3.4) below.We assume that the subspae u1 = 0 is invariant for all values of the parameters, that isf1(u0; 0; ; �) = 0. The dynamis in the subspae u1 = 0 is then governed by the equationdd� u0 = f0(u0; ; �): (2.2)Suppose that (2.2) has a homolini solution to the hyperboli equilibrium u0 = 0 for(; �) = (0; 0). This homolini orbit orresponds to the pulse solution h of equation (1.2).We assume that the homolini orbit of (2.2) is transversely unfolded by the parameter ,that is, stable and unstable manifold of the origin ross eah other with non-zero speed uponvarying  near  = 0. As for the seond equation in (2.1), we assume an S1-equivarianewith respet to the rotations in R2. This symmetry represents the time shift of non-zerosolutions of (1.2). Finally, upon varying the parameter �, suppose that the equilibrium(u0; u1) = 0 undergoes a non-degenerate Hopf bifuration in R4 with ritial eigenspaef(u0; u1); u0 = 0g.Fatoring out the S1-symmetry in the u1-variable, we are left with a three-dimensional ODEhaving a homolini orbit to an equilibrium in a two-dimensional ow-invariant subspae.Moreover, the equilibrium experienes a pithfork bifuration in the diretion transverseto this subspae; see Figure 3. Upon hanging , unstable and enter-stable manifold ofthe origin ross eah other with non-vanishing speed in the three-dimensional spae. Ifthe pithfork bifuration is superritial, the bifurating equilibrium has a one-dimensional5



Figure 3: The piture on the left shows the homolini orbit (h; h�) of the ellipti system at thebifuration point. The vertial axis orresponds to the enter diretion in whih a superritial Hopfbifuration takes plae. The two horizontal diretions oinide with the invariant subspae u1 = 0.The piture on the right shows the homolini solution onneting the bifurating periodi solutionto itself.unstable manifold, whih is lose to the (strong) unstable manifold of the origin. Therefore,upon hanging , the unstable manifold of the bifurating equilibrium also rosses theenter-stable manifold of the origin due to the persistene of transverse rossings underperturbations. The unique intersetion urve orresponds to a homolini orbit to thebifurating equilibrium sine the origin is unstable within the enter manifold; see Figure 3.The main di�erene between the ellipti problem (1.4) and our model problem is that thephase spae for the former equation is in�nite-dimensional, and both the unstable and theenter-stable manifold of the origin are in�nite-dimensional. Even the existene of thesemanifolds far away from the equilibrium is not evident as we do not have a ow to propagateloal invariant manifolds.3 Bifurations of time-periodi travelling waves3.1 The paraboli and ellipti equationWe onsider the semilinear paraboli equationut = Duxx + f(u; �); x 2 R; (3.1)where u 2 Rn, D is a diagonal matrix with positive entries, and f : Rn � R! Rn is asmooth nonlinearity with f(0; �) = 0 for all �.Hypothesis (TW) Assume that h(x�0t) is a travelling-wave solution of (3.1) for � = 0and some 0 6= 0 suh that h(�) tends to zero exponentially as j�j tends to in�nity.6



Transforming (3.1) into the moving frame (�; t) = (x� t; t), we obtainut = Du�� + u� + f(u; �); � 2 R; (3.2)whih then admits the equilibrium h(�) for (; �) = (0; 0). Equation (3.2) is well-posedon the spae X := C0unif(R;Rn) of bounded and uniformly ontinuous funtions on R; see,for instane, [6℄. Here, we onsider strong solutions u(t) of (3.2) that are di�erentiable asfuntions into X , ontinuous with values in C2unif and satisfy (3.2) in X .Next, we ast the paraboli equation (3.2) as an ellipti equationdd��uv� = � vD�1(ut � v � f(u; �))�; (3.3)reversing the role of time and spae. The funtions U = (u; v) are ontained in Y :=H 12per(0; 2�!0 )�L2per(0; 2�!0 ) for some !0 > 0 whih we speify below. The nonlinearity f mapsH 12per into L2per provided it has at most polynomial growth. If f has faster growth, we mayonsider (3.3) on the spae H1per � H 12per. There are then no restritions on f neessaryand the analysis presented below is still valid. We say that (u; v)(�) is a solution of (3.3) if(u; v)(�) is di�erentiable in � as a funtion into Y , ontinuous with values in H1per�H 12per andsatis�es (3.3) in Y . We emphasize that the initial-value problem for (3.3) is not well-posedon Y .On the spae Y , we have the S1-ation(��U)(t) := U(t+ �)with � 2 R=2�!0Z. Note that (h(�); h�(�)) satis�es (3.3) for (; �) = (0; 0). We may thinkof this solution, whih is ontained in the �xed-point spae Fix(S1) of the S1-ation, as ahomolini orbit to the zero equilibrium.Throughout, we utilize the Fourier series of elements (u; v) 2 Y and identify (u; v) with itsFourier oeÆients (u`; v`)`2Zwhere(u(t); v(t)) = �X̀2Zu`ei`!0t;X̀2Zv`ei`!0t�: (3.4)Note that j(u; v)j2Y = juj2H 12 + jvj2L2 = X̀2Z�(1 + j`j)ju`j2 + jv`j2� =: X̀2Zj(u`; v`)j2̀: (3.5)Let Y` = spanu`;v`;u�`;v�`2Rnf(u`; v`)ei`!0t; (u�`; v�`)e�i`!0tgequipped with the norm j � j`. 7



3.2 The linearization about u = 0Setting (; �) = (0; 0), we linearize (3.2) about u = 0 and obtain the linear onstant-oeÆient operator L1w = Dw�� + 0w� + �uf(0; 0)w:First, we alulate the spetrum of L1 on X . De�ned(�; �) := det(�2D + �0 + �uf(0; 0)� �): (3.6)Owing to [6, Theorem A.2℄, we havespe(L1) = f� 2 C ; d(�; ik) = 0 for some k 2 Rg; (3.7)sine w(�) = eik�w0 is then a bounded eigenfuntion assoiated with the eigenvalue � forsome non-zero w0 2 C n .Hypothesis (P1) Assume that spe(L1)\ iR= f�i!0g for some !0 > 0. Furthermore,we assume that d(�; ik) = 0 for � lose to i!0 if, and only if, k is lose to k0 = !00 and� = ��(k) = i!0 + i0(k � k0)� Cr(k � k0)2 + O(jk � k0j3); (3.8)where Cr > 0 is real and 0 6= 0 denotes the wave speed. Finally, we assume that��d(�; �)j(i!0;ik0) 6= 0.Hypothesis (P1) states that the essential spetrum of L1 touhes the imaginary axis at� = �i!0. The orresponding eigenfuntion eik0�wH is unique, up to onstant multiples,and has a non-trivial spatial struture sine k0 6= 0.Note that the partiular form of the dispersion relation (3.8) follows from a generi as-sumption on the bifuration in the steady oordinate frame. Indeed, onsider the operatorL01w := Dw�� + �uf(0; 0)w: (3.9)Its dispersion relation for � = ik isdet(�k2D + �uf(0; 0)� �) = 0: (3.10)Eigenvalues �0� of L01 transform into eigenvalues �� of L1 via ��(k) = �0�(k) + ik0. InHypothesis (P1), we have assumed that only k = �k0 satisfy (3.10) for � = 0. In addition,we assumed in (P1) that the derivative of (3.10) with respet to k evaluated at (�; k) =(0; k0) is not zero. Hene, there are unique solutions �0�(k) satisfying (3.10) for k near �k0with �0�(�k0) = 0. Note that (3.10) is symmetri with respet to k ! �k. Therefore, weonlude that �0�(k) are both real-valued. Summarizing, Hypothesis (P1) is satis�ed byan open set of one-parameter families. Many reation-di�usion systems that satisfy (P1)8



are known. One example is the Brusselator; see [5, Ch.VII, x5℄ or, for the �rst referene toTuring instabilities, [21℄.Next, we ompute the spetrum of the linearizationA1 =  0 idD�1(�t � �uf(0; 0)) �0D�1 !of (3.3) at the equilibrium U = 0 onsidered in the spae Y with !0 hosen as in (P1). Weremark that we may onsider the spae Y for any frequeny ! lose to !0; see Setion 3.7.Lemma 3.1 Suppose that (P1) is met. The operator A1 has then two simple eigenvalues�ik0 on the imaginary axis with eigenfuntions ei!0tUH and e�i!0tUH, respetively, forsome non-zero UH 2 C 2n , while the rest of its spetrum is uniformly bounded away from theimaginary axis. The operator A1 has ompat resolvent. Furthermore, there are onstantsÆ 6= 0 small and K > 0 suh thatk(A1 + (Æ � ik) id)�1kL(Y ) � K1 + jkjfor all k 2 R. Finally, there exist spetral projetions P u, P  and P s in L(Y ) orrespondingto eigenvalues of A1 with positive, zero and negative real part, respetively.Proof. Let V = (V1; V2) 2 Y . We have A1V = �V if, and only if, V2 = �V1, and(�2D + �0 + �uf(0; 0)� �t)V1 = 0:Upon exploiting the Fourier series (3.4) of V with oeÆients (a`; b`), we see that � 2spe(A1) if, and only if,det(�2D + �0 + �uf(0; 0)� i`!0) = d(i`!0; �) = 0for some ` 2 Z. It follows from (P1) and (3.7) that � = �ik0 are the only eigenvalues ofA1 on the imaginary axis. These eigenvalues are simple sine the algebrai multipliity ofik0 oinides with the order of ik0 as a zero of the determinant d(i!0; �) with respet to �.By Hypothesis (P1), this order is equal to one.In partiular, A1 is invertible on Y . It is lear that the inverse is ompat sine the domainH1per �H 12per of A1 is ompatly embedded into Y .Next, we onsider the eigenvalue problem for A1. Note that the Fourier subspaes Y` areinvariant under A1. The assoiated eigenvalue problem for the Fourier oeÆients (a`; b`)is given by  �� idD�1(i`!0 � �uf(0; 0)) �� � 0D�1 !�a`b`� = 0: (3.11)9



In order to prove the remaining laims on the resolvent and spetral splittings, it suÆesto investigate (3.11) for ` 2Zwith j`j large. We then salea` = 1pj`j â`; b` = b̂`: (3.12)This resaling aounts for the norm on Y`; see (3.5). In partiular,j(a`; b`)j2̀ = j`j ja`j2 + jb`j2 = jâ`j2 + ĵb`j2 =: j(â`; b̂`)j2:We also resale the eigenvalue � =pj`j�̂ . The eigenvalue problem then reads0� ��̂ idD�1(i!0 sign `� 1j`j�uf(0; 0)) ��̂ � 1pj`j0D�1 1A�â`b̂`� = 0; (3.13)whih has a non-trivial solution if, and only if,det��̂2D + �̂0pj`j + 1j`j�uf(0; 0)� i!0 sign `� = 0: (3.14)Taking the limit j`j ! 1 gives ��̂ idD�1i!0 sign ` ��̂ !�â`b̂`� = 0 (3.15)and det(�̂2D � i!0 sign `) = 0;respetively. The last equation has 2n solutions �̂j whih are not imaginary and independentof `. By Rouhe's Theorem, there are then 2n zeroes of (3.14) near the set f�̂jg. Theresaling � =pj`j�̂ shows that the real parts of the orresponding eigenvalues are atuallyunbounded as j`j ! 1. Similarly, the spetral projetions assoiated with the limitingproblem (3.15) perturb to spetral projetions of (3.13) in Y` that are bounded uniformlyin `. Due to the de�nition of the norms on Y and the resaling (3.12), the lemma is proved.3.3 The linearization about the travelling waveWe onsider the linearizations of (3.2) and (3.3) about the pulse h(�) for (; �) = (0; 0).For the paraboli equation, de�neLw = Dw�� + 0w� + �uf(h(�); 0)wfor w 2 X . The variational equation about the homolini solution (h; h�)(�) of the elliptiequation (3.3) is given byV� = A(�)V =  0 idD�1(�t � �uf(h(�); 0)) �0D�1 !V (3.16)10



with V 2 Y . Note that the Fourier subspaes Y` are invariant under A(�) sine h(�) doesnot depend on t. In Y`, equation (3.16) readsdd��a`b`� =  0 idD�1(i`!0 � �uf(h(�); 0)) �0D�1 !�a`b`�: (3.17)The next lemma haraterizes the set of bounded solutions of (3.16).Lemma 3.2 Assume that Hypothesis (P1) is met. We then have � = i`!0 2 spe(L) forsome ` 2 Zif, and only if, there exists a bounded solution V (�; t) = ei`!0tV0(�) of (3.16)de�ned for � 2 R.Proof. If V (�; t) = ei`!0tV0(�) is a bounded solution of (3.16) on R, then V0(�) =(w;w�)(�), and w(�) lies in the null spae of L� i`!0:Dw�� + w� + �uf(h(�); 0)w = i`!0 w: (3.18)Moreover, w 2 X . Therefore, i`!0 2 spe(L).Next, suppose that � = i`!0 2 spe(L). If j`j 6= 1, then � is not ontained in the essentialspetrum by (P1). Hene, the eigenfuntion assoiated with i`!0 is loalized, and thereforeorresponds to a bounded solution of (3.18).It remains to onsider the ase � = �i!0. We seek bounded solutions of (3.17) with ` = �1,that is, dd��a1b1� =  0 idD�1(i!0 � �uf(h(�); 0)) �0D�1 !�a1b1�: (3.19)Due to Hypothesis (P1), we have � 2 spe(L1). Moreover, Lemma 3.1 shows that thespetrum of the asymptoti matrixA1 :=  0 idD�1(�i!0 � �uf(0; 0)) �0D�1 !de�ned on Y1 has two simple imaginary eigenvalues �ik0, while the other eigenvalues havenon-zero real part. Sine the funtion h(�) onverges to zero exponentially as j�j ! 1,we an now apply ODE results on exponential dihotomies [4, 13℄. Hene, there are twosubspaes Es1 (0) and Eu1 (0) of Y1 suh that solutions of (3.19) with initial values in Es1 (0)or Eu1 (0) are bounded for � !1 or � !�1, respetively. Furthermore,dimEs1 (0) = #f� 2 spe(A1); Re � � 0g; dimEu1 (0) = #f� 2 spe(A1); Re � � 0g;ounted with multipliity; see [4℄. In partiular, dimEs1 (0) + dimEu1 (0) = dim Y1 + 2.Therefore, any solution of (3.19) with initial value in E1(0) := Es1 (0)\ Eu1 (0) is boundedon R. Moreover, dimE1(0) � 2, and therefore E1(0) ontains non-trivial initial values.11



Note that the lemma would be wrong if the limiting matrix A1 were ontaining a non-trivial Jordan blok orresponding to the eigenvalue � = i!0. In this situation, even though� 2 spe(L), there would in general be no bounded solution of (3.16) sine solutions areexpeted to grow linearly in �.Atually, we have proved muh more. Using the notation introdued in the proof above,the set E1(0) of bounded solutions of (3.17) with j`j = 1 is at least two-dimensional. If wemodify the nonlinearity f(u; 0) by adding a small rotation normal to the homolini orbith, we an arrange that E1(0) is two-dimensional. Furthermore, by the same argument,solutions assoiated with initial values in E1(0) do generially not deay exponentially asj�j ! 1 but osillate. In other words, generially in f(�; 0), we have E1(0) \ Es1(0) = f0gand E1(0) \ Eu1 (0) = f0g where Es1(0) and Eu1 (0) are subspaes of Y1 suh that solutionsof (3.19) with initial values in Es1(0) or Eu1 (0) deay exponentially for � !1 or � !�1,respetively.Using similar arguments, � = �i`!0 is generially not in the spetrum of L for j`j > 1.Note that � = 0 2 spe(L) with eigenfuntion h� by translation invariane. This eigenvalueis typially simple. For generi nonlinearities f(u; 0), the following hypothesis is thereforemet.Hypothesis (P2)(i) � = 0 2 spe(L) is a simple eigenvalue.(ii) (L � i!0)w = 0 has a unique, up to onstant omplex multiples, non-zero boundedsolution w(�), and we have jw(�) � eik0�w�H j ! 0 as � ! �1 for appropriatenon-zero vetors w�H 2 Cn .(iii) � = �i`!0 is not in spe(L) for ` > 1.On aount of Hypothesis (P2) and Lemma 3.2, the subspae of initial values in Y assoiatedwith bounded solutions of (3.16) is given byE(0) = spanf(h; h�)�(0); w(0)ei!0t; w(0)e�i!0tg: (3.20)Our next goal is to solve (3.3) using the information gathered so far. Unfortunately, theinitial-value problem for (3.3) is not well-posed on Y . Under ertain irumstanes, how-ever, (3.3) an be solved in forward or bakward �-diretion for initial values in ertain�-depending subspaes of Y . We say that (3.3) has an exponential dihotomy onR+ if thereare projetions P+(�) de�ned for � � 0 with the following property: for any V0 2 R(P+(0)),there exists a unique solution V (�) of (3.3) whih is de�ned for � � 0 suh that V (0) = V0.Moreover, V (�) tends to zero exponentially as � !1, and V (�) 2 R(P+(�)) for all � � 0.Similarly, for any V0 in the null spae of P+(�0), there is a unique solution V (�) of (3.3)12



whih is de�ned for 0 � � � �0 suh that V (�0) = V0; furthermore, V (�) deays expo-nentially for dereasing � with 0 � � � �0. In other words, for � � 0, there are twoomplementary subspaes, R(P+(�)) and R(id�P+(�)), suh that we an solve the elliptiequation forward and bakward in � for initial values in R(P+(�)) and R(id�P+(�)), re-spetively. Exponential dihotomies on R� are de�ned analogously; solutions in R(P�(0))deay exponentially as � !�1.In the following lemma, we show that equation (3.3) has dihotomies so that we an solveit forward and bakward in � provided the initial values are ontained in appropriatesubspaes. The only di�erene to the situation desribed right above is that solutionsdo not neessarily deay.Lemma 3.3 Assume that Hypothesis (P1) is met. There are bounded operators �s+(�; �),�+(�; �) and �u+(�; �) de�ned on Y for 0 � � � �, 0 � �; � and 0 � � � �, respetively,suh that �s+(�; �)V0, �+(�; �)V0 and �u+(�; �)V0 satisfy (3.16) for � > �, any � and � <�, respetively, and are ontinuous in (�; �) for any V0 2 Y . Furthermore, �s+ satis�esthe evolution property �s+(�; �)�s+(�; �) = �s+(�; �) for any 0 � � � � � �. Analogousproperties hold for �+(�; �) and �u+(�; �). Moreover,�s+(�; �) + �+(�; �) + �u+(�; �) = id; �i+(�; �)�j+(�; �) = 0 for i 6= j;where i; j 2 fs; ; ug. Finally, there are onstants K > 0 and � > 0 suh thatk�s+(�; �)kL(Y ) � e��(���); k�+(�; �)kL(Y ) � K; k�u+(�; �)kL(Y ) � Ke��(���) (3.21)for any 0 � � � �. Similar properties hold for operators �s�(�; �), ��(�; �) and �u�(�; �)de�ned for negative � and �.Proof. The statement of the lemma follows from [14, Theorem 1℄. We give anothersimpler proof that works for the partiular ase studied here. As mentioned above, theFourier subspaes Y` are invariant under A(�) sine h(�) does not depend on t. The FourieroeÆients (a`; b`) satisfy equation (3.17)dd��a`b`� =  0 idD�1(i`!0 � �uf(h(�); 0)) �0D�1 !�a`b`�:We an readily solve this equation for any ` 2Z. Lemma 3.1 shows that the spetrum of theasymptoti operator A1jY` is stritly hyperboli exept when j`j = 1 where it ontains twosimple imaginary eigenvalues. The ase j`j = 1 has been disussed in Lemma 3.2. Hene,we onlude the existene of evolution operators �s+;`, �+;` and �u+;` in eah subspae Y`.In fat, �+;` = 0 exept when j`j = 1. Furthermore, the estimates (3.21) are true in Y` forsome � independent of ` due to Lemma 3.1.13



It is, however, not lear whether the onstant K is independent of ` and whether theresulting evolution operators are bounded on Y . To prove this, it suÆes to estimate thenorm of the evolution operators on the spae Y` for large `. Thus, let j`j > 1. Using thesaling (3.12), that is, a` = 1pj`j â` and b` = b̂`, we obtaindd��â`b̂`� =pj`j0� 0 idD�1(i!0 sign `� 1j`j�uf(h(�); 0)) � 1pj`j0D�1 1A�â`b̂`�:Resaling the �-variable by pj`j� = �̂, we getdd�̂�â`b̂`� = 0� 0 idD�1(i!0 sign `� 1j`j�uf(h(�̂=pj`j); 0)) � 1pj`j0D�1 1A�â`b̂`�: (3.22)Taking the limit j`j ! 1, we obtain the equationdd�̂�â̂b� =  0 idD�1i!0 sign ` 0 !�â̂b�;whih is independent of �̂. The matrix on the right-hand side is hyperboli; see Lemma 3.1.A perturbation argument shows that the evolution operators �̂s+;` and �̂u+;` of (3.22) satisfyk�̂s+;`(�̂; �̂)k � Ke��(�̂��̂); k�̂u+;`(�̂; �̂)k � Ke��(�̂��̂)for 0 � �̂ � �̂, where K and � are independent of `. Due to the de�nition of the norms onY and the resaling of the �-variable, the lemma is proved.With Lemma 3.3 at hand, we an de�ne the subspaesEs+ (0) = R(�s+(0; 0)+ �+(0; 0)); Es+(0) = R(�s+(0; 0));Eu� (0) = R(�u�(0; 0) + ��(0; 0)); Eu�(0) = R(�u�(0; 0)):For any initial value in Es+ (0) or Es+(0), there exists a solution of (3.16), and it is boundedor exponentially deaying, respetively, as � ! 1. An analogous haraterization is truefor Eu� (0) or Eu�(0) as � ! �1. Note that the subspae E(0) de�ned in (3.20) is givenby E(0) = Es+ (0)\Eu� (0).Lemma 3.4 Assume that Hypotheses (P1) and (P2) are true. There exists then a non-zeroelement  0 2 Y0 suh that(Es+(0) +Eu�(0))� spanfw(0)ei!0t; w(0)e�i!0tg � spanf 0g = Y;and Es+(0) \Eu�(0) = spanf(h; h�)�(0)g. 14



Proof. It suÆes to onstrut a omplement of the stable and unstable subspaes in Y0.Note that Y0 = Fix(�) is invariant under the nonlinear ellipti equation (3.3). In fat, onY0, (3.3) oinides with the travelling-wave equationdd��uv� = � v�D�1(v + f(u; �))� (3.23)for u 2 Rn, whih is satis�ed by the wave (h; h�)(�). The equilibrium u = 0 is hyperboli,and the intersetion T(h;h�)(0)W s(0) \ T(h;h�)(0)W u(0) of tangent spaes of the stable andunstable manifolds of (3.23) is one-dimensional by Hypothesis (P2)(i). Otherwise, thegeometri multipliity of � = 0 would be bigger than one. We may hoose  0 as the unitvetor in the one-dimensional orthogonal omplement of T(h;h�)(0)W s(0)+ T(h;h�)(0)Wu(0).3.4 Hopf bifurations near U = 0 in YWe return to the nonlinear reation-di�usion system, �rst onsidered in the original oor-dinate frame ut = Duxx + f(u; �):Under the assumptions on the linearization L01 in the steady oordinate frame, see (3.9),spatially-periodi steady patterns with wavelength 2�k bifurate typially from the zero so-lution for k lose to the ritial wavelength k0. This is usually proved using enter-manifoldtheory or Lyapunov-Shmidt redution in a funtion spae of 2�k -periodi funtions.Next, onsider the nonlinear paraboli equation (3.2)ut = Du�� + u� + f(u; �); � 2 R:In a oordinate frame moving with speed , the aforementioned spatially-periodi steadypatterns beome time-periodi travelling wave-trains with frequeny ! = k. We assumefrom now on that the wave speed 0 of the pulse is negative, i.e. 0 < 0. If 0 > 0, wehange � 7! �� and obtain 0 < 0 in the new spatial variable.Sine the pulse is not spatially periodi, we introdued spatial dynamis on time-periodifuntions. In the next step, we rephrase the aforementioned result on bifuration to wavetrains in terms of the spatial dynamis. Consider the nonlinear ellipti problem (3.3)dd��uv� = � vD�1(ut � v � f(u; �))�;with (u; v) 2 Y . The linearization of (3.3) at U = 0 is given byA1(; �) =  0 idD�1(�t � �uf(0; �)) �D�1 ! :15



The operator A1(0; 0) has a pair of simple eigenvalues �ik0 with eigenfuntions ei!0tUHand e�i!0tUH; see Lemma 3.1. As in (3.6), we de�ned(�; �; ; �) := det(�2D + � + �uf(0; �)� �):Note that we have the relationd(�; �; ; �) = d(�� �(� 0); �; 0; �); (3.24)whih follows immediately from the de�nition.For a generi Hopf bifuration, the eigenvalues �ik0 should ross the imaginary axis withnon-zero veloity. We assume the following:Hypothesis (P3) Assume that C1 = �Re ��d(i!0; ik0; 0; 0)��d(i!0; ik0; 0; 0) > 0.The reader might hek, using (3.24), that the ondition C1 6= 0 is equivalent to thetransverse rossing of eigenvalues when onsidering the temporal dynamis of 2�k0 -periodifuntions. If C1 < 0, we an transform the parameter � 7! �� to ahieve C1 > 0; see alsoRemark 3.10 below.Note that the denominator ��d(i!0; ik0; 0; 0) is not equal to zero sine ��d ��� = ���d 6= 0by (P1). Upon di�erentiating (3.8) with respet to k and using � = ik, it follows that��� = 0. The eigenvalue ik0 persists as a simple eigenvalue �(�) of the operator A1(0; �)onsidered in Y . Using ���d=��d = ��� = 0, we obtain��� = ���d��d = ���d��d ��d��d = 10 ��d��d:Hene, owing to (P3), the real part of �(�) is given approximately by ��C1=0. Therefore,with 0 < 0 and the sign of C1 as in (P3), the eigenvalues �ik0 ross the imaginary axisfrom left to right as � beomes positive. Furthermore, exploiting (P1), (P3) and (3.24),d(�; �; ; �) vanishes for (�; �) lose to (i!0; ik0) if, and only if,� = ik(� 0) + i!0 + i0(k � k0)� Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3)= i!0 + i(k � !0)� Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3):Aording to Lemma 3.1, eigenvalues of the linearization A1(; �) are on the imaginaryaxis preisely when Im� = !0 and Re� = 0, that is0 = k� !0 (3.25)0 = �Cr(k � k0)2 + C1� +O(j�j2 + jk � k0j3):This equation an be solved for (�; k). Thus, A1(; �) has a pair of imaginary eigenvalueswhenever k � k0 = �k0 (� 0) (3.26)� = Crk20C120 (� 0)2 + O(j� 0j3):16



Denoting the funtion in the last equation by � = ��(), we see that (3.3) has a simplepair of imaginary eigenvalues for (; �) = (; ��()) for any  lose to 0. We introdue newparameters by (; �) = (; ��() + �̂): (3.27)The Jaobian of this transformation is equal to the identity at (; �) = (0; 0). Also,imaginary eigenvalues our preisely for �̂ = 0. Alternatively, we may solve the �rstequation in (3.26) with respet to k and obtain(; �) = (!0=k; ��(k) + �̂);where we again use �� with a slight abuse of notation.Reall that S1 ats on Y via (��U)(t) = U(t + �). We say that a manifold W is invariantunder equation (3.3) for � � 0 (� � 0) if, for any U0 2 W , there is a solution U(�) of (3.3)de�ned for � � 0 (� � 0) with U(0) = U0 and U(�) 2 W for suÆiently small �.Lemma 3.5 Assume that Hypothesis (P1) is met. For any (; �̂) lose to (0; 0), thereexists then a two-dimensional, smooth and S1-invariant enter-manifold W ;�̂(0) � Y thatontains U = 0 and is tangent to spanfei!0tUH; e�i!0tUHg at U = 0 for (; �̂) = (0; 0).Furthermore, W ;�̂(0) is invariant under (3.3) and smooth in (; �̂).Proof. The lemma follows from results of Mielke [11℄; see also [22℄. The assumptions inthese referenes are satis�ed due to Lemma 3.1 and 3.3.Hene, the ellipti PDE (3.3) near U = 0 is essentially redued to an S1-equivariant ODEon W ;�̂(0). We assume that the Hopf bifuration is superritial.Hypothesis (H) Assume that the vetor �eld on W 0;0(0), projeted onto the entereigenspae and in polar oordinates, is given by r� = �C2r3, '� = k0 up to terms of fourthorder for some C2 > 0.Note that the vetor �eld on the enter eigenspae takes this partiularly simple form dueto the equivariane with respet to the isometri ation of S1 on the enter eigenspae. Weremark that the sign of C2 is not important. The arguments given below work also in thease where C2 < 0; see Remark 3.10 below.The oeÆient C2 may be omputed expliitly following standard proedures. The linearpart of the vetor �eld on the enter manifold is given by the restrition of the linearization,A1, to the invariant enter eigenspae spanfei!0tUH; e�i!0tUHg. By S1-equivariane, thequadrati terms of the Taylor expansion of the vetor �eld projeted onto this subspaevanish. The omputation of the ubi term requires in general the quadrati approximationof the enter manifold. However, if the nonlinearity f is ubi, the omputation of the ubi17



term simpli�es greatly: in this situation, the third-order term of the vetor �eld is obtainedby simply evaluating and then projeting the nonlinearity onto the enter eigenspae. Avetor in the enter eigenspae is of the general form zei!0tUH + :: with z 2 C . We writeUH = (uH; vH)t where, due to the seond-order struture of the equation, vH = ik0uH.Evaluating f and projeting onto the subspae spanfei!0tU ; U 2 R2ng, we obtain3�3uf(0; 0)(zei!0tuH; zei!0tuH; zei!0tuH) + ::up to fourth order. In order to ompute the equation on the enter manifold, we have tomultiply with the left eigenvetor U�H = (u�H; v�H) whih satis�esik0U�H = U�H 0 idD�1(i!0 � �uf(0; 0)) �0D�1 ! :For ubi nonlinearities, the ubi oeÆient C2 is therefore given byC2 = 12v�H(�3uf(0; 0)(uH; uH; uH) + ::):Hypotheses (P3) and (H) are related to the signs of the oeÆients in the Ginzburg-Landauequation At = Axx + �1�A � �2jAj2Aassoiated with (1.1) near u = 0. Indeed, Hypothesis (P3) implies �1 > 0, while (H)enfores �2 > 0. We may now apply the S1-equivariant Hopf bifuration theorem andobtain the following lemma.Lemma 3.6 Assume that Hypotheses (P1){(P3) and (H) are satis�ed. There is then afamily �k;�̂(�) 2 Y of periodi solutions of (3.3) with (; �) = (!0=k; ��(k) + �̂) de�ned fork lose to k0 and �̂ � 0 small. These solutions are C2 in k uniformly in �̂ � 0. Moreover,they are relative equilibria, that is,�k;�̂(�; t) = �� k�!0 �k;�̂(0)�(t) = �k;�̂�0; t+ k!0 ��:In partiular, �k;�̂ has period 2�k in � and 2�!0 in t. Furthermore, �k;�̂ is stable with respetto the dynamis on W ;�̂(0). Finally, we have the expansion�k;�̂(0; t) = AHp�̂ ei!0tUH +O(jk � k0jp�̂ + j�̂j) (3.28)for some AH 6= 0.Proof. The lemma follows from the standard S1-equivariant Hopf-bifuration theorem.We obtain a family �;�̂ of periodi solutions parametrized by (; �̂). Using the relations(3.25) and (3.27), it is easy to see that we an parametrize the periodi solutions also by thespatial wavenumber k. The relation  = !0=k follows sine we deal with steady patterns ofspatial period 2�k onsidered in a oordinate frame moving with speed .18



Of ourse, the family of solutions �k;�̂ is preisely the family of Turing patterns that wewould have obtained via standard Lyapunov-Shmidt redution for the temporal dynamis.The periodi solutions �k;�̂(�) of (3.3) orrespond to solutions k;�(�; t) of (3.2) with � =��(k) + �̂. The Turing patterns k;� have period 2�!0 in t and 2�k in �. Furthermore, theysatisfy k;�(�; t) = k;�(� � t; 0). In the original frame (x; t), their wave speed is zero.For any ~, the funtion~�~;k;�̂(�; t) := �k;�̂(� � ~t; t) = �k;�̂�0; (1� k~!0 )t+ k!0 ��satis�es (3.3) with (; �) = (!0k +~; ��(k)+ �̂) and has frequeny ! = !0�k~ in t. However,�k;�̂;!(�) is not ontained in Y but in the spae of 2�! -periodi funtions. Solving theequation for !, we obtain ~ = !0�!k and we set �k;�̂;!(�) = ~�~;k;�̂(�).Remark 3.7 The �rst omponent k;�;!(�; t) of �k;����(k);! satis�es (3.2) for � � ��(k)and  = !k . It has period 2�! in t and 2�k in �.3.5 Existene of invariant manifoldsWe state existene results for the global enter-stable manifold W s;+;�̂ (0) of the equilibriumU = 0 and the loal unstable manifold W u;lo;�̂ (�;�̂(0)) of the periodi solution �;�̂(�). Thekey to obtain these manifolds are the exponential dihotomies derived in Lemma 3.3. Inthis setion, we parametrize the periodi waves by (; �̂) rather than using (k; �̂).Proposition 1 Assume that Hypothesis (P1) is satis�ed. Equation (3.3) has then a C2-smooth, loally invariant enter-stable manifold W s;+;�̂ (0) whih is tangent to Es+ (0) at(h; h�)(0) for (; �̂) = (0; 0). It ontains all solutions that stay lose to (h; h�)(�) for all� > 0. Moreover, W s;+;�̂ (0) is C2-smooth in (; �̂).Proof. If we parametrize a neighborhood of (h; h�)(�) by U = (h; h�) + V , we obtain theequationV� =  0 idD�1(�t � �uf(h; 0)) �0D�1 !V+� 0D�1(�uf(h; 0)V1+ f(h; ��() + �̂)� f(h + V1; ��() + �̂)� (� 0)V2)�for V = (V1; V2) 2 Y . Sine Y is a Hilbert spae, there exists a smooth ut-o� funtion��(hV; V iY ). We de�ne the modi�ed nonlinearityG(�; V; ; �̂) := ��(hV; V iY )�� 0D�1(�uf(h(�); 0)V1+ f(h(�); ��() + �̂)� f(h(�) + V1; ��() + �̂)� (� 0)V2)�:19



The linear equation V� = A(�)V has been solved in Lemma 3.3. For the onstant �appearing in Lemma 3.3 and any number Æ with 0 < Æ < �, we de�neZ+Æ := fV 2 C0(R+; Y ); sup��0 e�Æ�jV (�)jY =: jV jÆ <1g:We seek the solutions in the enter-stable manifold as �xed points of the equationV (�) = �s+(�; 0)V s0 + Z �0 �s+(�; �)G(�; V (�); ; �̂) d� (3.29)+ Z �1 �u+(�; �)G(�; V (�); ; �̂) d�;where V s0 2 Es+ (0) and V 2 Z+Æ . It follows from the estimates obtained in Lemmata 3.1and 3.3 that the hypotheses in [22℄ are met. The proposition is then a onsequene ofthe results presented in [22℄. Note that any solution of the integral equation is atually asmooth solution; see [14, Lemma 3.1℄.Similarly, we obtain the global enter-unstable manifold W u;�;�̂ (0) of U = 0 that enjoysthe analogous properties for � !�1. Finally, we onstrut the loal unstable manifold of�;�̂(0).Proposition 2 Assume that Hypotheses (P1){(P3) and (H) are satis�ed. For any (; �̂)with j� 0j and �̂ � 0 small, equation (3.3) has a C2-smooth, loally invariant unstablemanifold W u;lo;�̂ (�;�̂(0)) whih is tangent to R(P u) at U = 0 for (; �̂) = (0; 0). It onsistspreisely of those solutions U0 that stay in a small neighborhood of U = 0 for � � 0 andsatisfy jU(�)� �;�̂(�)j � Ke��as � ! �1. Moreover, W u;lo;�̂ (�;�̂(0)) is ontinuous in �̂ in the C2-topology and C2-smooth in .Here, � > 0 and the projetion P u have been de�ned in Lemma 3.3 and 3.1, respetively.Proof. We use the parametrization U(�) = �;�̂(�) + V (�) and obtain the equationV� =  0 idD�1(�t � �uf(�;�̂; ��() + �̂)) �D�1 !V+� 0D�1(�uf(�;�̂; ��() + �̂)V1 + f(�;�̂; ��() + �̂)� f(�;�̂ + V1; ��() + �̂))�for V = (V1; V2) 2 Y . As before, we de�ne the modi�ed nonlinearityG(�; V; ; �̂) := ��(hV; V iY )�� 0D�1(�uf(�;�̂(�); ��() + �̂)V1 + f(�;�̂(�); ��() + �̂)� f(�;�̂(�) + V1; ��() + �̂))�:20



It follows from the roughness theorem for exponential dihotomies proved in [14℄ that thelinear equation V� =  0 idD�1(�t � �uf(�;�̂(�); ��() + �̂)) �D�1 !Vhas evolution operators �s;�̂(�; �) and �u;�̂(�; �) de�ned for � � � � 0 provided j� 0j and�̂ > 0 are small. The evolution operators satisfy the estimatesk�s;�̂(�; �)kL(Y ) � K; k�u;�̂(�; �)kL(Y ) � Ke��(���)and k�s;�̂(�; �)� �s0;0(�; �)kL(Y ) + k�u;�̂(�; �)� �u0;0(�; �)kL(Y ) � K(j� 0j+p�̂)for � � � � 0; see [14℄. For any Æ with 0 < Æ < �, we de�neZ�Æ := fV 2 C0(R�; Y ); sup��0 e�Æ�jV (�)jY =: jV jÆ <1g:We seek the unstable manifold as a �xed point of the equationV (�) = �u;�̂(�; 0)V u0 + Z �0 �u;�̂(�; �)G(�; V (�); ; �̂) d� (3.30)+ Z ��1 �s;�̂(�; �)G(�; V (�); ; �̂) d�;where V u0 2 Eu� and V 2 Z�Æ . Sine G(�; V; ; �̂) = O(jV j2Y ) uniformly in  and �̂, the non-linearity G is C2 as a map from Z�Æ into itself. By the uniform-ontration theorem, thereexists a unique �xed point of (3.30) that depends smoothly on V u0 and , and ontinuouslyon �̂. This proves the proposition.By the above proof and equation (3.28), W u;lo;�̂ (�;�̂(0)) is given byU = �;�̂(0) + �u;�̂(0; 0)V u0 + O(jV u0 j2Y ) (3.31)= AHp�̂ ei!0tUH + V u0 + O(j�̂j+p�̂(j� 0j+ jV u0 jY ) + jV u0 j2Y );where V u0 2 Eu� .3.6 TransversalityWe seek solutions of (3.3) onneting the bifurating periodi solution �;�̂ with itself.Therefore, we are interested in intersetions of the loal unstable manifold W u;lo;�̂ (�;�̂(0))with the global enter-stable manifold W s;+;�̂ (0). For (; �̂) = (0; 0), the former manifoldoinides with W u;lo0;0 (0). We may then shift the variable � suh that (h; h�)(0) is ontained21



in the loal unstable manifold W u;lo0;0 (0). In partiular, W u;lo0;0 (0) and W s;+0;0 (0) intersetalong the homolini solution U(�) = (h; h�)(�). In order to �nd intersetions for �̂ 6= 0,we onsider the suspended manifolds~W s;+�̂ := f(U; ); j� 0j < Æ; U 2 W s;+;�̂ (0)g~Wu;��̂ := f(U; ); j� 0j < Æ; U 2 W u;lo;�̂ (�;�̂(0))gas manifolds in Y �R. Note that they are indeed C2 due to the propositions proved above.For �̂ = 0, these manifolds interset along (U; ) = ((h; h�); 0).Lemma 3.8 For �̂ = 0, we haveT((h;h�)(0);0) ~W s;+0 \ T((h;h�)(0);0) ~W u;�0 = spanf((h; h�)�(0); 0)g;T((h;h�)(0);0) ~W s;+0 + T((h;h�)(0);0) ~W u;�0 = Y �R:In other words, the suspended manifolds interset transversely in the extended phase spaeY �R.Proof. We observe that �0;0(�) = 0 vanishes identially for all �. The tangent spaes of~W s;+0 and ~W u;�0 are given byT((h;h�)(0);0) ~W s;+0 = (Es+(0)� f0g) + (E(0)� f0g) + spanf( ~V s;+0;0 (0); 1)g;T((h;h�)(0);0) ~W u;�0 = (Eu�(0)� f0g) + spanf((h; h�)�(0); 0)g+ spanf( ~V u;�0;0 (0); 1)g:The tangent vetor ~V s;+0;0 (�) of the enter-stable manifold in the -diretion an be alu-lated by taking the derivative of (3.29) with respet to  at V s0 = 0. Similarly, ~V u;�0;0 (�) isthe derivative of (3.30) with respet to  at V u0 = (h; h�)(0). Computing these derivatives,we obtain the expressions~V u;�0;0 (0) = Z 0�1 �u�(0; �)� 0�D�1h�(�)� d�;~V s;+0;0 (0) = Z 01 �s+(0; �)� 0�D�1h�(�)�d�:On aount of Lemma 3.4, it suÆes to prove thatD 0; ~V s;+0;0 (0)E 6= D 0; ~V u;�0;0 (0)E;that is,D 0; Z 0�1 �u�(0; �)(0;�D�1h�(�))t d� � Z 01 �s+(0; �)(0;�D�1h�(�))td�E 6= 0: (3.32)Note that the integrands are atually ontained in Y0. In partiular, the term on theleft-hand side in (3.32) is given byM := Z 1�1h (�); (0;�D�1h�(�))ti d� (3.33)22



where  (�) is the unique, up to onstant multiples, bounded solution of the adjoint varia-tional equation dd��uv� = � 0 id�D�1�uf(h(�); 0) �0D�1 !t�uv�for (u; v) 2 Rn�Rn. Sine zero is a simple eigenvalue by (P2)(i), we an onlude thatM ,de�ned in (3.33), is non-zero; see [16, Lemma 5.5℄. A similar argument, and more details,an be found in [17, Setion 5℄.Therefore, for any �̂ > 0, the manifolds ~W s;+�̂ and ~W u;��̂ interset along a unique line(U�̂(�); (�̂)) that depends on �̂. The assoiated solution U�̂(�) of (3.3) with  = (�̂)onverges exponentially to �(�̂);�̂ as � ! �1 by de�nition. It is also ontained in theenter-stable manifold W s;+(�̂);�̂(0).Lemma 3.9 We have the estimate j(�̂)� 0j � Kj�̂j.Proof. We onsider the suspended loal enter-unstable manifold~W u;��̂ := f(U; ); j� 0j < Æ; U 2 W u;lo;�̂ (0)g;see the omment after Proposition 1. Sine the manifolds ~W u;��̂ and ~W s;+�̂ are smooth in�̂, we an parametrize them loally near ((h; h�)(0); 0) aording to~W u;��̂ = ((h; h�)(0); 0) + (V u� ; 0)+ (� 0)( ~V u0;0(0); 1)+ O(j� 0j2 + jV u� j2Y + j�̂j)~W s;+�̂ = ((h; h�)(0); 0) + (V s+ ; 0) + (� 0)( ~V s0;0(0); 1)+ O(j� 0j2 + jV s+ j2Y + j�̂j);where V u� 2 Eu� (0) and V s+ 2 Es+ (0). Projeting the di�erene of elements (U u� ; ) and(U s+ ; ) in ~W u;��̂ and ~W s;+�̂ , respetively, onto spanf( 0; 0)g, we obtainh( 0; 0); (U u� ; )� (U s+ ; )i = (� 0)M + O(j� 0j2 + jV u� j2Y + jV s+ j2Y + j�̂j):Upon inserting the intersetion point, the left-hand side vanishes. On the other hand, thedistane between the intersetion point and (h; h�)(0) is of the order p�̂. This proves thelemma.It remains to show that U�̂(�) annot onverge to zero as � ! 1 but approahes theperiodi solution �(�̂);�̂. Sine it already onverges to �(�̂);�̂ for � !�1 by onstrution,it is then a homolini orbit to �(�̂);�̂. On aount of Lemma 3.6, it suÆes to show thatU�̂(0) is not ontained in the stable manifold of the origin W s;+(�̂);�̂(0). Firstly, we shift timesuh that (h; h�)(0) is ontained in the loal unstable manifold of zero and has distaner > 0 small from zero. We shall now estimate the distane between W u;lo(�̂);�̂(�;�̂(0)) and23



W u;lo(�̂);�̂(0), measured near (h; h�)(0). Using the expansion (3.31) and Lemma 3.9, we anestimate this distane from below byp�̂ jAHj jUHj �Kp�̂(jV u0 jY + j(�̂)� 0j) �p�̂ jAHj jUHj �Kp�̂(r + �̂):Note that we do not have to aount for the quadrati terms O(jV u0 jY ) in (3.31) sine theyorrespond to the loal unstable manifold for �̂ = 0. Hene, they disappear when omputingthe distane. After hoosing r suÆiently small, we onlude from the above estimate thatthe aforementioned distane between W u;lo(�̂);�̂(�;�̂(0)) and W u;lo(�̂);�̂(0) is bigger than Æp�̂for some Æ > 0. On the other hand, the distane between W s;+(�̂);�̂(0) and W u;lo(�̂);�̂(0) is ofthe order �̂ sine both are smooth in �̂. Therefore, W s;+(�̂);�̂(0) and W u;lo(�̂);�̂(�;�̂(0)) annotinterset near (h; h�)(0).3.7 The homolini bifurationWe summarize our �ndings in the following existene theorem.Theorem 1 Assume that Hypotheses (H), (P1){(P3) and (TW) are satis�ed. There isthen a smooth funtion ��(!) � 0 with ��(!0) = �0�(!0) = 0 and �00�(!0) > 0 suh that,for any ! lose to !0 and any small � > ��(!), the following is true. For a unique wavespeed  = �(�; !) lose to 0, equation (3.2) has a solution h�;!(�; t) with the followingproperties.(i) h�;!(�; t) is periodi in t with period 2�! . In other words, the bifurating pulse is time-periodi in an appropriate moving frame. The family h�;!(�; �) is ontinuous in (�; !)with values in C0(R2;Rn) provided with the loal topology.(ii) We have �(0; !0) = 0 and h0;!0(�; t) = h(�).(iii) There exists a onstant Æ > 0 suh that, for 0 < 0,jh�;!(�; t)� k�(�;!);�;!(� + '+; t)j � Ke�Æ�� � !1jh�;!(�; t)� k�(�;!);�;!(� + '�; t)j � Ke��j�j � !�1for some '� = '�(�; !) independent of � and t, where k�(��(!); !) = !�(�;!). If0 > 0, replae � by �� in the above expressions.(iv) The funtions k�(�;!);�;!(�; t) have amplitude of the order p� � ��(!), spatial period2�k�(��(!);!) in � and temporal period 2�! ; see Remark 3.7.Proof. For ! = !0, the laims in the theorem have been proved in the previous setions. Itis straightforward to see that these proofs remain valid for any �xed ! lose to !0. Indeed,24



all hypotheses are open onditions. In order to show that the estimates and existenedomains are uniform in !, we hange the time and spae variables in (3.1) aording to(�; �) = �!0! t;r!0! ��:Equation (3.1) then reads u� = Du�� + !!0 f(u; �): (3.34)In partiular, the nonlinearity depends smoothly on the parameter !. Any solution of (3.34)with period 2�!0 in t orresponds to a solution of (3.1) with period 2�! in t. We may now ast(3.34) in a moving frame as an ellipti problem on the spae Y and apply the analysis ofthe previous setions to this problem with the additional parameter !. The ruial pointis that only the nonlinearity depends on the parameter !, and in fat smoothly. A puretime-resaling would result in an operator !0! ddt in the ellipti problem; the dependene on! is then more deliate.The solutions h�;! are relative periodi orbits with respet to the group of translationsating on the funtion spae X = C0unif(R;Rn). At the tails, they have small spatialosillations of period 2�k0 that move with speed of about �0 = �!0k0 relative to the restinglarge pulse pro�le; see Figure 1. Their temporal period is lose to 2�!0 .Remark 3.10 In Hypotheses (P3) and (H), we assumed that C1 > 0 and C2 > 0 are bothpositive. As mentioned earlier, these onditions are not really neessary. In fat, Theorem 1holds provided C1 6= 0 and C2 6= 0. We expet, however, that the modulated pulses arestable only if the Hopf bifuration, whih generates the Turing patterns, is superritial; seeSetion 4.1 below.3.8 Other modulated wavesThere are many more qualitatively di�erent modulated waves that bifurate near an essen-tial instability. For instane, it is straightforward to prove the following. Suppose that theassumptions of Theorem 1 are met. Also, without loss of generality, assume that 0 < 0.Then, for any ! near !0 and any �xed � > ��(!), there exists a one-parameter family ofmodulated waves that onnet the trivial asymptoti state u = 0 at � ! �1 to a Tur-ing pattern at � ! 1. These waves an be parametrized by their distane, measured at� = ��0 for some large �0, from the invariant subspae of time-independent funtions. Theproof is very similar to the one given above and we shall omit it.25



4 DisussionThe approah presented here is a natural generalization of deriving ODEs desribing trav-elling waves. It allows us to investigate the loal Turing bifuration to patterns with smallamplitude and the global bifuration involving the pulse separately. The method is appli-able to a variety of other instability phenomena. We restrited ourselves to the ase of aninstability from a primary pulse only in order to make our strategy more transparent. Themost general framework would be a bifuration from a heterolini orbit for the spatialdynamis, that is, a travelling-wave solution of a paraboli equation posed on an in�niteylinder that approahes stationary states at both ends of the ylinder.4.1 Modulated waves bifurating from pulsesIn this setion, we disuss some other issues related to bifurations from pulses as onsideredin Setion 3.Modulated waves onneting di�erent Turing patternsThe modulated waves we desribed in Theorem 1 onverge to the same Turing pattern as� !�1. One might expet that, near an essential instability, generalized modulated wavesarise that onnet two Turing patterns with di�erent wavenumbers. These generalizedmodulated waves would be quasi-periodi in time with two frequenies that are assoiatedwith the temporal periods of the asymptoti Turing patterns. The approah pursued heredoes not work when investigating waves that are quasi-periodi in time. It is naturaland tempting to onsider the ellipti equation on the spae of quasi-periodi funtions.Unfortunately, this proedure leads to small-divisor problems that are diÆult to resolveeven on the linear level.Shape of the modulated pulsesAn interesting aspet of our analysis are the rates of onvergene of the pulse towards theosillatory patterns. A omputation shows that in the moving oordinate frame, for � > 0,the origin is unstable in the enter manifold for the �-dynamis when  < 0 and stable if > 0. Suppose that  < 0. This is the situation we disussed in Setion 3.7; the other aseis obtained by reversing � ! ��. For � ! �1, the time-periodi pulse that bifuratesfrom the original pulse h(�) onverges to the periodi pattern �k;� exponentially with rate� = O(1) with respet to �̂ as it lies in the strong unstable manifold of the periodi orbit.For � !1, however, it approahes �rst the enter manifold with exponential rate O(1) ata point with distane O(�) to the periodi pattern �k;�. It then approahes the periodipattern, whih is of amplitude O(p�), with exponential rate O(�).26



In physial spae, in a steady oordinate frame, we an interpret this as follows. In frontof the pulse, we see the possibly stable periodi pattern with amplitude O(p�). We thenobserve the pulse that passes by and moves exponentially fast away from the osillatorypattern. Behind the pulse, there is some kind of reovery zone where the amplitude of theosillations grows or deays exponentially towards the same value as ahead of the wave,but on the large spatial sale � � 1=�.StabilityHaving established the existene of modulated pulses, an important issue is their stability.We say that a time-periodi solution is spetrally stable if the spetrum of the linearizationof the time-period map about the wave is ontained stritly inside the unit irle with theexeption of the point � = 1. Note that � = 1 is always ontained in the essential spetrumof modulated pulses on aount of translation and time invariane.The bifurating time-periodi pulses are spetrally stable in the moving oordinate frameif the small-amplitude periodi patterns are spetrally stable and the point spetrum ofthe primary pulse is stritly ontained in the left half-plane with the exeption of a simpleeigenvalue at zero. This statement is proved in the seond part [18℄ of this work. Assumethat the Hopf bifuration leading to Turing patterns is superritial. It then follows that,for � > 0 �xed, there is an open interval of wavenumbers k and an open set of temporalfrequenies ! suh that the modulated pulses with asymptoti wavenumber k and temporalperiod 2�! desribed in Theorem 1 are spetrally stable; see [18℄.Genuine Hopf bifurationsSimilar dynamial problems arise when genuine Hopf bifurations are onsidered. We againrestrit ourselves to pulse solutions that deay to the zero equilibrium at both ends of thereal axis. Suppose that this equilibrium beomes unstable in the non-moving oordinateframe with essential spetrum rossing the imaginary axis at �i!0 for some non-zero !0.The assoiated ritial wave vetor k may again be zero or non-zero. If k = 0, spatiallyhomogeneous osillations ei!0t are reated. Reversing spae and time, these orrespond toequilibria of the ellipti system (1.4). Due to the time-shift symmetry, there is a whole grouporbit of equilibria bifurating from zero in a two-dimensional enter-manifold for (1.4).Arguing again as in Setion 3.7, we obtain the following result: there exists a homolinitrajetory to this irle of 'equilibria'. It orresponds to a pulse solution where both tailsexperiene a spatially homogeneous time-periodi osillation.The ase of a Hopf bifuration with non-zero wavenumber involves non-resonane ondi-tions. Small-amplitude waves of the form ei(!0t�k0x) orrespond to waves moving withspeed �!0k0 �  relative to the pulse. In addition, we expet the reation of standing waves27



ei(!0t+k0x) � ei(!0t�k0x). However, in a moving oordinate frame and �xing the temporalfrequeny !0 + k0 (or !0 � k0), only one of the linear waves ei(!0t�k0x) yields a boundedsolution of the linearized ellipti operator A1 de�ned in Setion 3.2 { provided  is non-resonant, that is,  6= �n�1n+1 � !0k0 (or  6= n�1n+1 � !0k0 ). The enter manifold is again two-dimensional with the time shift ating as rotational symmetry, and we reover preisely thesame setting as in the stationary bifuration. We obtain time-periodi modulated pulsesonverging at both tails to travelling-wave patterns moving with speed �!0k0 �  relative tothe pulse.Standing pulsesIf the wave speed vanishes so that 0 = 0, then the bifuration problem redues to an ODEsine the Turing patterns and the primary pulse are stationary. Note, however, that theenter manifold is four-dimensional due to the reversibility; see [8℄ or [18℄. It is then notobvious whether standing pulses bifurate that onverge to one of the stationary Turingpatterns as x!�1.Numerial omputation of the time-periodi pulsesWe mention that the analysis presented here also indiates how the bifurating periodipulses might be omputed numerially. Indeed, we sought and found them as homoliniorbits towards a periodi orbit for the ellipti equation (3.3). In partiular, a Galerkinapproximation of (3.3) in time and the subsequent omputation of a homolini onnetionto the small-amplitude patterns should provide a robust method of omputing modulatedpulses; we refer to [10℄ for details and more referenes of suh methods for ellipti equations.The only diÆulty here is the start-o� near the bifuration point. Also, an additional phaseondition has to be inorporated to fator the S1-symmetry indued by the shift in time.4.2 Modulated waves bifurating from fronts or wave trainsHeterolini onnetions and frontsIn this setion, we onsider travelling waves u(�) of (1.1) with wave speed 0 that onvergeto two di�erent equilibria p� as � !�1. The asymptoti states p� ould be either stableor unstable.First, suppose that the travelling wave onnets a stable with an unstable equilibrium orvie versa. Suh waves are often alled fronts. Fronts exist typially for a ontinuumof wave speeds and move towards the unstable state. The stability of a front is reoveredupon hoosing a suitable weighted norm in the relevant funtion spae. We may investigatethe situation when the stable asymptoti state beomes unstable. Whether this route to28



instability produes modulated waves depends ruially on ertain Fredholm properties ofthe linearization about the primary front. If a ertain Fredholm index beomes positive, theapproah introdued in Setion 3 is appliable under onditions as in Hypothesis (P1). Theresulting pattern is a time-periodi front that onnets the spatially homogeneous unstablestate to a spatially osillatory pattern; see [2℄ for an example of suh a phenomenon. Werefer to [19℄ for a more thorough disussion. Sherratt [20℄ investigated a series of ertainariature problems numerially and analytially for fronts with negative Fredholm index.He observed several modulated waves of di�erent wave speed that are glued together.Following the approah presented in this paper, we an show that modulated fronts annotbifurate in this situation.The seond possibility is that the travelling wave onnets two stable equilibria. In this ase,one of the stable equilibria may destabilize. Whether or not modulated waves bifuratedepends again on the sign of a ertain Fredholm index. The details an be found in [19℄.Periodi wave trainsAnother interesting example are periodi wave trains that destabilize due to essential spe-trum that rosses the imaginary axis. The di�erene to the previous ases is that there areno asymptoti states involved. Suppose that the linearized operator about the wave trainhas two bounded eigenfuntions assoiated with the essential instability. Investigating thespatial dynamis in an appropriate moving frame, we obtain a trihotomy that haraterizessolutions that deay for either forward or bakward �-diretion, or are bounded for � 2 R.The bifuration problem an then be redued to equations that live on the two-dimensionalspae of bounded solutions. The resulting bifuration is similar to a Hopf bifuration toan invariant irle for the Poinare map assoiated with periodi orbits in ODEs. Thebifuration diretion depends upon higher-order terms of the equation restrited to thespae of bounded funtions at the bifuration point. Generially, modulated wave trainsbifurate that are periodi in time. Their spatial struture is given by a superposition ofthe bounded eigenfuntions and the primary wave train.Cylindrial domainsGeneralizations to travelling-wave problems posed on ylinders R� 
 require some moretehnial preparation. Consider, for example,ut = D�x;yu+ f(u); (x; y) 2 R� 
;with, say, Dirihlet or Neumann boundary onditions on R� �
. Here, 
 is a boundeddomain in Rm. Travelling waves are of the form u = u(x � t; y) and satisfy the elliptisystem of partial di�erential equationsu� = D��;yu+ f(u; �); (x; y) 2 R� 
: (4.1)29



Again, there is a dynamial interpretation for solutions of this ellipti equation indued bythe shift of solutions along the ylinder. If u(�; y) ! p�(y) as � ! �1, then D�yp� +f(p�) = 0 and p�(y) are 'equilibria' of (4.1). In this sense, a travelling wave u an beinterpreted as a heterolini orbit of the dynamial system assoiated with the elliptisystem (4.1). A generi hoie for the phase spae would then be (u; u�) 2 H10(
)n �L2(
)n if, for example, Dirihlet boundary onditions were hosen. The bifuration analysisan now be arried out as in Setion 3 making extensive use of the results in [14℄. Inpartiular, the existene of global invariant manifolds and a Fredholm property for theresulting bifuration equation has been proved there.4.3 AppliationsNishiura [personal ommuniation℄ has reently observed modulated fronts of the form de-sribed in this paper in numerial simulations of reation-di�usion systems. Modulatedwave trains have been observed numerially by Ogawa [personal ommuniation℄ in dissi-patively perturbed generalized KdV equation. The appearane of these wave trains anprobably be explained rigorously by essential instabilities of periodi wave trains; this iswork in progress. As mentioned earlier, Sherratt [20℄ investigated, numerially and other-wise, fronts that destabilize in an essential instability. The reation-di�usion systems heused are predator-prey models. The patterns he observed, however, are not modulatedfronts but are omposed of several modulated waves with di�erent wave speeds.Aknowledgement The main part of this work was done while we were visiting theInstitute of Mathematis and its Appliations (Minneapolis, USA). We thank the IMA forproviding a stimulating atmosphere and for the �nanial support with funds provided bythe National Siene Foundation.Referenes[1℄ N.J. Balmforth, G.R. Ierley, and R. Worthing. Pulse dynamis in an unstable medium.SIAM J. Appl. Math. 57 (1997), 205{251.[2℄ P. Collet and J.-P. Ekmann. The existene of dendriti fronts. Comm. Math. Phys.107 (1986), 39{92.[3℄ P. Collet and J.-P. Ekmann. The time dependent amplitude equation for the Swift-Hohenberg problem. Comm. Math. Phys. 132 (1990), 139{153.[4℄ W.A. Coppel. Dihotomies in stability theory (Berlin: Springer, 1978).[5℄ M. Golubitsky and D.G. Shae�er. Singularities and groups in bifuration theory(Berlin: Springer, 1985). 30
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