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Abstract. Various instability mechanisms of fronts in reaction-diŒusion systems are

analysed; the emphasis is on instabilities that have the potential to create modulated

(i.e. time-periodic) waves near the primary front. Hopf bifurcations caused by point

spectrum with associated localized eigenfunctions provide an example of such an

instability. A diŒerent kind of instability occurs if one of the asymptotic rest states
destabilizes: these instabilities are caused by essential spectrum. It is demonstrated

that, if the rest state ahead of the front destabilizes, then modulated fronts are created

that connect the rest state behind the front with small spatially periodic patterns

ahead of the front. These modulated fronts are stable provided the spatially periodic

patterns are stable. If, on the other hand, the rest state behind the front destabilizes,

then modulated fronts that leave a spatially periodic pattern behind do not exist.
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1. Introduction

Fronts describe the competition between two diŒerent states of a spatially extended

system. In dissipative partial diŒerential equations (PDEs) posed on the real line

x 2 , fronts occur frequently in situations where the equation admits two diŒerent

spatially homogeneous states, say U¡ and U‡. A front Q…t; x† is a particular solution

of the underlying PDE that preserves its shape while propagating with constant

velocity towards x ˆ ‡ 1, say. In other words, we have Q…t; x† ˆ Q…x ¡ c¤t†
where c¤ > 0 is the speed of propagation, and Q…¹† ! U§ as ¹ ! § 1, see

® gure 1. The direction of propagation singles out a preferred state of the system;

in ® gure 1, the preferred state is U¡ since the front travels to the right. Besides mere

existence of fronts, a natural question is as to their dynamical stability properties.

Only stable fronts describe the competition between the two rest states accurately for

an open set of initial data.

Arguably, the most simple example is the Nagumo equation
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@tU ˆ @xxU ‡ U…1 ¡ U†…U ¡ a†; x 2

for scalar functions U 2 . For every ® xed a 2 …0; 1=2†, there exists a unique, up to
spatial translates, front that connects the stable state U¡ ˆ 1 to the stable state

U‡ ˆ 0. This front is monotone, and its wave speed c¤ is strictly positive. Any sol-

ution with initial data U0…x† that satis® es U0…x† 2 …0; 1† for x 2 with U0…x† ! 0 as

x ! ¡ 1 and U0…x† ! 1 as x ! ‡ 1 converges to the aforementioned front or an

appropriate spatial translate thereof.

Another example is the Gray± Scott model

@tU1 ˆ d1@xxU1 ¡ U1U2
2 ‡ F…1 ¡ U1†;

@tU2 ˆ d2@xxU2 ‡ U1U2
2 ¡ …F ‡ k†U1:

In the parameter regime where ¢ ˆ 1 ¡ 4…F ‡ k†2=F is positive, there are three
diŒerent homogeneous steady states. Two of them are stable with respect to the

reaction kinetics: they are often referred to as the blue and the red state given by

U¡ ˆ 1
2
…1 ¡

����
¢

p
†;

F

2…F ‡ k† …1 ‡
����
¢

p
†

³ ´
; U‡ ˆ …1; 0†:

respectively. Numerical simulations (Mazin et al. 1996) indicate that stable fronts

that connect these two rest states exist for a wide range of parameters in the bistable

regime. An explicit expression of the front for one particular set of parameters

…d1; d2; k; F† has been given by Hale et al. (1999, 2000). Analytical existence or

stability results for fronts in the Gray± Scott model are not known, at least to our
knowledge.

More generally, we concentrate on reaction-diŒusion systems

Ut ˆ DUxx ‡ F…U ; ·†; x 2 …1†

with species U ˆ …U1; . . . ; UN† 2 N and a one-dimensional control parameter

· 2 . The diŒusion matrix D ˆ diag …d1; . . . ; dN† is diagonal with strictly positive
entries dj > 0. We assume the existence of a front Q…x ¡ c¤t† with Q…¹† ! U§ for

¹ ! § 1. We also assume that the wave speed c¤ of the front is not equal to zero.

Without loss of generality, we can then assume that the wave speed c¤ > 0 is positive;

otherwise, replace x by ¡x. We analyse equation (1) in a co-moving frame

¹ ˆ x ¡ c¤t

Ut ˆ DU¹¹ ‡ c¤U¹ ‡ F…U; ·†; ¹ 2 ; …2†

and investigate its linearization about Q…¹†:

LQV :ˆ D@¹¹V ‡ c¤@¹V ‡ @UF…Q…¹†; ·†V ; ¹ 2 :
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Figure 1. A schematic picture of a front.



Stability is determined by the spectrum of LQ. Note that ¶ ˆ 0 is always an eigen-

value of LQ with eigenfunction Q¹…¹† due to translation invariance of equation (2).

In this article, we shall address the following two issues: `How can fronts desta-

bilize, and what patterns are created at the onset to instability?’ We focus on Hopf

bifurcations where LQ ¡ i!¤ is not invertible for some !¤ 6ˆ 0. In such a situation, we

expect that time-periodic waves are created that have a temporal frequency close to

!¤. There are three diŒerent cases that we have to address.

First, suppose that ¶ ˆ i!¤ is an isolated eigenvalue of the linearization LQ about

the front. The associated eigenmode then decays exponentially to zero as ¹ ! § 1,

whence we call such an instability l̀ocalized’ . In this situation, we therefore encoun-

ter a classical Hopf bifurcation with an additional translation symmetry. The analy-
sis is quite standard and essentially goes back to work by Pospiech (1992) and Henry

(1981) who used Lyapunov± Schmidt reduction. For the sake of completeness, we

give an alternative geometric description using the skew-product structure on the

centre manifold (see Sandstede et al. 1997) that exploits the translation symmetry.

Typically, a unique modulated front bifurcates that is time-periodic in an appro-

priate co-moving frame. Stability of the modulated front depends simply on the
direction of branching. The created pattern is a time-periodic, spatially exponentially

localized modulation of the primary front that manifests itself as a temporal

oscillation of the formerly constant wave speed.

The remaining two cases occur if ¶ ˆ i!¤ is not isolated as an element of the

spectrum of LQ. We call such an instability `essential’ since it is caused by the
essential spectrum crossing the imaginary axis. Since the essential spectrum is created

by the asymptotic rest states U§, essential instabilities are not triggered by the front

itself as in the ® rst case considered above but by one of the asymptotic rest states U‡
or U¡. Thus, what distinguishes the two cases mentioned above is which rest state

destabilizes: the rest state U‡ ahead of the front or the rest state U¡ behind the front.

Before we outline our results, we recall what happens near the marginally stable rest

state (without the front being present) near the onset to instability. In a co-moving
frame, the three possible codimension-one instabilities of a homogeneous rest state

that cause spectrum on the imaginary axis are Turing, Hopf and Turing± Hopf

bifurcations. In all these cases, a continuum of temporally and spatially periodic

small-amplitude patterns bifurcates from the homogeneous state. We refer to these
patterns as `basic patterns’ . A Turing instability breaks only translation invariance:

the bifurcating small basic patterns are spatially periodic with a sinusoidal shape and

stationary with respect to time in the steady frame; they exist for any wavenumber k

close to the critical wavenumber k¤ 6ˆ 0. A Hopf bifurcation breaks only time invar-

iance: the resulting basic patterns are time-periodic with frequency ! and spatially

periodic with wavenumber k ¹ 0; they exist for arbitrary temporal frequencies !
close to the critical frequency !¤ 6ˆ 0. In a Turing± Hopf bifurcation, waves travelling
to the left and right as well as standing waves may be created. Both, temporal and

spatial, invariance is broken by the critical mode; see ® gure 2.

In summary, we expect that, at the onset to an essential instability, small basic

patterns are created near the rest state that triggers the instability. Next, we have to

take the presence of the global front into account that connects the marginally
unstable rest state with a diŒerent stable rest state. As mentioned before, we have

to distinguish between the cases where the rest state U‡ ahead of the front or the rest

state U¡ behind the front destabilizes; recall that we assumed that the wave speed c¤
of the front is positive so that the front always travels to the right towards U‡.

3Essential instabilities of fronts



First, assume that the rest state U‡ becomes unstable. Thus, beyond the onset of

instability, the primary front travels towards the unstable rest state U‡, leaving the

stable rest state U¡ behind. We demonstrate that modulated fronts bifurcate near the

primary front. The modulated fronts connect the stable state U¡ at ¹ ˆ ¡ 1 with

one of the basic patterns near U‡ at ¹ ˆ ‡ 1. The bifurcating modulated fronts are

time-periodic in an appropriate moving frame. For any ® xed value of the parameter

·, taken along the direction of branching, there exists a continuum of modulated

fronts parameterized by the wavelength of the asymptotic basic pattern. We prove

that marginal stability of the primary front together with stability of the asymptotic

basic pattern implies spectral stability of the bifurcating modulated front. We

emphasize that there are many other modulated waves that bifurcate near an essen-

tial instability ahead of the front: in addition to the persisting primary front, there is

a continuum of modulated fronts, for each given non-zero minimal temporal period,

that connect the stable state U¡ to the unstable state U‡; all these waves, however,

are unstable. They can be thought of as interpolating between the primary front and

the aforementioned modulated wave that connects to the basic pattern.

Second, assume that the rest state U¡ destabilizes. Beyond the onset to instability,

the primary front then travels towards the stable state U‡, leaving the unstable rest

state U¡ behind. In this situation, we prove that modulated fronts that connect one

of the basic patterns at ¹ ˆ ¡ 1 with the rest state U‡ at ¹ ˆ ‡ 1 cannot exist.

In other words, the only modulated wave that exists nearby is the, then unstable,

primary front itself.

Mathematically, the aforementioned three cases can be distinguished by Fredholm

properties of the operator LQ ¡ i!¤. Here, an operator L : X ! Y is a Fredholm

operator if the range R…L† of L is closed in Y and if both the dimension of the null

space N…L† and the codimension of R…L† are ® nite. If L is Fredholm, its index is

de® ned as i…L† :ˆ dim N…L† ¡ codim R…L†. Note that the sign of the index is related

to the solvability properties of the equation Lx ˆ y for given y 2 Y : roughly speak-

ing, if the index i…L† is zero, we expect that we can solve this equation uniquely for

x 2 X for any given y 2 Y ; if i…L† is negative, then the codimension of R…L† is larger

than the dimension of N…L†, and we have more equations than variables so that we

do not expect to have a solution; ® nally, if the index i…L† is positive, then there are

more variables than equations, and we expect to ® nd many solutions. If L is

Fredholm, it is possible to use standard perturbation analysis to solve nonlinear

equations of the form Lx ˆ N…x†; see for instance Golubitsky and SchaeŒer

(1985) for more details.

In the case of a Hopf instability induced by isolated eigenvalues §i!¤, the operator

LQ ¡ i!¤ is a Fredholm operator with index zero. Standard perturbation theory, i.e.

Lyapunov± Schmidt reduction, is then readily applicable. The last two cases men-

tioned above are characterized by the fact that the operator LQ ¡ i!¤ is not a
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Figure 2. A schematic plot of the critical modes for Turing, Hopf, and Turing±

Hopf instabilities.



Fredholm operator; the range of this operator is not closed. As a consequence,

classical perturbation theory fails. The above discussion of our main results shows

that this is not just a purely mathematical artefact. If we had thought of an essential

instability as a continuum of simultaneous Hopf bifurcations that occur separately

for each eigenmode in the essential spectrum, then we would have expected that, for
each ® xed wavenumber, a unique modulated front bifurcates regardless of where the

instability occurs, ahead or behind the front. Instead, many, and not just one,

modulated fronts are created for instabilities ahead of the primary front, but none

occur for instabilities behind the front. Thus, the predictions from a comparison with

Hopf bifurcations are not correct. The behaviour of Fredholm indices, however,

provides us with a clue as to what distinguishes Turing instabilities ahead and
behind the front: for a Turing instability ahead of the front, the Fredholm index

of LQ ¡ ¶ changes from zero to one as ¶ crosses from right to left through the

essential spectrum. Thus, we expect an under-determined system of equations and

therefore the existence of bifurcating solutions. On the other hand, for a Turing

instability behind the front, the Fredholm index of LQ ¡ ¶ changes from zero to
minus one, and we expect an over-determined system of equations for which no

bifurcating solutions exist.

Finally, we brie¯ y outline our approach to analysing essential instabilities. The

key is to take the spatial variable into account which plays a far more important role

than the time variable. To illustrate our approach, suppose ® rst that we seek the
primary travelling front itself. In an appropriate co-moving frame, the front is then a

stationary solution to the reaction-diŒusion system

Ut ˆ DU¹¹ ‡ c¤U¹ ‡ F …U; ·†; ¹ 2 :

In particular, the front satis® es the ordinary diŒerential equation (ODE)

DU¹¹ ‡ c¤U¹ ‡ F…U ; ·† ˆ 0

or, written as a ® rst-order system

U¹

V¹

Á !

ˆ
V

¡D¡1…c¤V ‡ F…U; ·††

Á !

:

We can then use dynamical-system methods to seek fronts as heteroclinic orbits that

connect the equilibria …U¡; 0† and …U‡; 0† with each other. To ® nd modulated fronts,

we adopt the very same approach: we anticipate the temporal period of the modu-

lated waves that we seek, and consider the reaction-diŒusion system as a dynamical
system in the spatial variable. In other words, we consider the equation

U¹

V¹

Á !
ˆ

V

¡D¡1…¡Ut ‡ c¤V ‡ F…U; ·††

Á !

where …U ; V† are time-periodic functions for each ® xed ¹, and seek modulated fronts

as heteroclinic orbits. The main technical obstacle to implementing these ideas is that
the aforementioned equation is not a dynamical system as the initial-value problem

is ill-posed. We have, however, demonstrated how this obstacle can be resolved by

using exponential dichotomies (see Peterhof et al. (1997), Sandstede and Scheel

(1999a, 2000)).
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The plan of this article is as follows. In section 2, we classify the linear stability

problem. Sections 3 and 4 contain the main bifurcation results in the case of localized

and essential instabilities, respectively. Sections 5 and 6 are devoted to the proof of

the main results, namely existence, non-existence, and stability of bifurcating

modulated fronts. Afterwards, we discuss two applications: ® rst an arti® cial model
problem that satis® es all assumptions of our theorems, and second, the Gray± Scott

model for which we have veri® ed the assumptions numerically. We conclude with an

extensive discussion in section 9.

2. Spectra of fronts

We begin by reviewing results on the spectra of fronts. The linearization about the

front Q is given by

LQV ˆ DV¹¹ ‡ c¤V¹ ‡ @UF…Q…¹†; ·†V

with Q…¹† ! U§ as ¹ ! § 1. We consider LQ as an operator de® ned on the space

L2… ; N†. The function spaces C0 or Lp give the same spectra. We say that ¶ is in

the point spectrum of LQ if LQ ¡ ¶ is a Fredholm operator with index zero so that

the null space N…LQ ¡ ¶† is non-trivial. If LQ ¡ ¶ is either not Fredholm or else its
index is non-zero, then we say that ¶ is in the essential spectrum. Palmer (1988) has

characterized the spectrum in terms of the associated ODE

V¹ ˆ W

W¹ ˆ D¡1…¡c¤W ¡ @UF…Q…¹†; ·†V ‡ ¶V†

which we also write as

V¹

W¹

Á !
ˆ A…¹; ¶†

V

W

Á !

where A…¹; ¶† ! A§…¶† for ¹ ! § 1; see also Henry (1981). Palmer proved that
LQ ¡ ¶ is Fredholm if and only if both, A‡…¶† and A¡…¶†, are hyperbolic, i.e. if

neither matrix has a spectrum on the imaginary axis. The Fredholm index i…¶† of LQ

is then given by

i…¶† ˆ i¡…¶† ¡ i‡…¶†

where i § …¶† are the dimensions of the generalized unstable eigenspaces of A§…¶†,
i.e. the dimensions of the eigenspaces associated with eigenvalues of A§…¶† that have

positive real part. In particular, the Fredholm index changes whenever eigenvalues of

A‡…¶† or A¡…¶† cross the imaginary axis. The aforementioned results can be general-
ized to modulated waves, where Q ˆ Q…t; ¹† is time-periodic; see section 6 below.

As an immediate consequence of the above characterization, there are three

diŒerent typical mechanisms that lead to an unstable front:

(I) point spectrum of LQ crosses the imaginary axis, while the essential spectrum

of LQ is uniformly con® ned to the open left half-plane;

(II) essential spectrum associated with U‡ crosses the imaginary axis;

(III) essential spectrum associated with U¡ crosses the imaginary axis.
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Note that, in the ® rst case, point spectrum always corresponds to isolated eigen-

values with ® nite multiplicity since we are to the right of the essential spectrum, a

region which cannot consist entirely of point spectrum.

In addition to the critical spectrum that crosses the imaginary axis, there is always

at least one additional eigenvalue on the imaginary axis, namely ¶ ˆ 0 with eigen-
vector Q¹…¹† induced by translation symmetry.

We conclude this section by classifying instability mechanisms for the asymptotic

spatially homogeneous rest states. We discuss these instabilities in the steady frame x

where re¯ ection symmetry imposes restrictions on what bifurcations arise typically.

Fourier transform (or a reference to Palmer’s results above) allows us to express

critical spectrum in an algebraic dispersion relation. We write ¸…¶; ·† for the critical
eigenvalue, of either A‡…¶; ·† or A¡…¶; ·† depending of which rest state’ s essential

spectrum destabilizes, that is close to the imaginary axis so that ¸…i!¤; 0† ˆ ik¤. The

four possible cases are:

(i) !¤ ˆ 0, k¤ ˆ 0, typically corresponding to a fold in the kinetics;

(ii) !¤ ˆ 0, k¤ 6ˆ 0, the Turing instability;
(iii) !¤ 6ˆ 0, k¤ ˆ 0, a Hopf instability in the kinetics;

(iv) !¤ 6ˆ 0, k¤ 6ˆ 0, the Turing± Hopf instability.

We do not discuss case (i). Plots of the critical modes for cases (ii)± (iv) can be found

in ® gure 2 in section 1.

3. Localized instabilities: Hopf bifurcations with translation symmetry

We brie¯ y discuss case (I) where point spectrum crosses the imaginary axis at

¶ ˆ §i!¤:

Hypothesis 1 (local Hopf bifurcation). For · ˆ 0, the essential spectrum of LQ is

contained in the open left half-plane. Moreover, spec …LQ† \ i ˆ f0; §i!¤g for some

!¤ 6ˆ 0, and these eigenvalues have algebraic multiplicity one. The eigenvalues §i!¤
cross the imaginary axis transversely as · crosses through zero.

We formulate the next theorem for the space C0
unif that consists of bounded, uni-

formly continuous functions.

Theorem 1 (centre manifolds and skew-product structure; Henry 1981, Sandstede et al.

1997). Assume that Hypothesis 1 is met, then there exists a three-dimensiona l centre
manifold for equation …2† in C0

unif that contains the front. The centre manifold is

diVeomorphic to § ˆ £ fz 2 ; jzj µ 1g, and the PDE (2), restricted to the

centre manifold and written in the coordinates …½; z† 2 §, is of skew-product form:

_½ ˆ ½g…z; ·z; ·†; _z ˆ h…z; ·z; ·†

with g…0; 0; 0† ˆ c¤ and h…z; ·z; ·† ˆ i!¤z ‡ ·a1z ‡ a2zjzj2 ‡ O…jzj4 ‡ j·j2z† where

Re a1 6ˆ 0. The set f…½; 0†; ½ 2 g parameterizes the translates of the primary front.

Corollary 1 (bifurcations to modulated waves; Pospiech 1992). Assume that, in addi-

tion to the assumptions of Theorem 1, we have Re a2 6ˆ 0; see Theorem 1. For every ·
with · close to zero and sign …·† ˆ ¡sign …Re a1† sign …Re a2†, there exists a unique (up

to spatial and temporal translations) modulated front Q·…t; x ¡ c…·†t† so that

Q·…t ‡ p…·†; ¢† ˆ Q·…t; ¢† where c…·† and p…·† are continuous functions with

c…0† ˆ c¤ and p…0† ˆ 2º=!¤. If Re a2 < 0, then the set consisting of all spatial and
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temporal translates of the modulated front is exponentially attracting with asymptotic

phase.

We refer to ® gure 3 for a schematic picture of the skew-product dynamics after
bifurcation.

The interpretation of the result stated in the corollary is as follows. Since the

matrices A§…i!¤† are both hyperbolic, the Hopf eigenmodes are exponentially

localized. Periodic oscillations in the z-equation describe exponentially localized

variations of the shape of the front interface. They induce, via g…z; ·z; ·†, a periodic
modulation of the speed of propagation of the modulated front.

An example of a speci® c reaction-diŒusion system where a front destabilizes in a

local Hopf bifurcation has been studied in Pospiech (1992, Theorem 5.24).

4. Essential instabilities: Turing instabilities ahead or behind the front

This section contains our main results. We focus on the case where the rest states

undergo a Turing bifurcation; see case (ii) in section 2. Similar results are true in
cases (iii) and (iv) of Hopf and Turing± Hopf instabilities; they are discussed in

section 9. We begin by stating the genericity assumptions that we shall need below.

Hypothesis 2 (front). We assume that Q…¹† is a travelling front so that, for some

c¤ > 0,

DQ¹¹ ‡ c¤Q¹ ‡ F…Q; 0† ˆ 0

and Q…¹† ! U§ for ¹ ! § 1.

Hypothesis 3 (Turing bifurcation ahead of the front). We assume that the homo-

geneous rest state U‡ undergoes a non-degenerate Turing instability with critical

wave number k¤ 6ˆ 0, while U¡ remains asymptotically stable. More precisely, we

require that, for some k¤ 6ˆ 0:

(i) det …¡Dk2 ‡ @UF…U¡; 0† ¡ ¶† 6ˆ 0 for all ¶ with Re ¶ ¶ 0 and all k 2 ;

(ii) det …¡Dk2 ‡ @UF…U‡; 0† ¡ ¶† 6ˆ 0 for all ¶ 6ˆ 0 with Re ¶ ¶ 0 and all k 2 ;

(iii) det …¡Dk2 ‡ @UF…U‡; 0†† 6ˆ 0 for jkj 6ˆ k¤;

(iv) there are constants C1, Ck and C· with C1 6ˆ 0 and Ck, C· > 0 such that
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Figure 3. The centre manifold with the bifurcating stable periodic orbit in the

z-component.



det …¡Dk2 ‡ @UF…U¡; 0† ¡ ¶† ˆ C1…¶ ¡ Ck…k ¡ k¤†2 ‡ C··†

‡ O…·2 ‡ jk ¡ k¤j j·j ‡ j¶j2 ‡ …j·j ‡ jk ¡ k¤j ‡ j¶j†3†;

see also Wgure 5.

Hypothesis 4 (Turing bifurcation behind the front). We assume that the homogeneous
rest state U¡ undergoes a non-degenerate Turing instability with critical wave number

k¤ 6ˆ 0, while U‡ remains asymptotically stable. The precise assumptions are as in

hypothesis 3 with U‡ and U¡ interchanged.

Hypothesis 5 (supercritical Turing bifurcation). We assume that the Turing bifurca-

tion is supercritical: upon restricting the reaction-diVusion system to the space of even

2º=k¤-periodic functions, the resulting pitchfork bifurcation is supercritical so that the
bifurcating Turing patterns are stable within this class of functions.

The criterion for supercriticality is equivalent to a negative sign of the coe� cient ®2

of the cubic term in the Ginzburg± Landau modulation equation

At ˆ Axx ‡ ®1A ‡ ®2AjAj2

that governs the Turing instability.

Finally, we have to exclude additional spectrum of the front on the imaginary axis

besides the spectrum that is necessarily induced by the Turing instability and by the
translation symmetry. To state this hypothesis, we consider the operator LQ, which

represents the linearization about the front in a co-moving frame, in the exponen-

tially weighted L2-spaces L2
² with norm

kUkL2
²

:ˆ ke²¹U…¹†kL2 :

Hypothesis 6 (stability in weighted spaces). We assume that there is a constant ²¤ > 0
such that, for all 0 < ² < ²¤, we have

specL2
²
…LQ† \ fRe ¶ ¶ 0g ˆ f0g;

and ¶ ˆ 0 is an eigenvalue in the point spectrum with algebraic multiplicity one.

Recall that we have c¤ > 0 so that the Turing patterns, which were stationary in the

steady frame, travel to the left in a co-moving frame. The choice ² > 0 of the weight

allows for patterns that travel to the left. This explains the absence of the essential

spectrum on the imaginary axis in the weighted spaces.
Sandstede and Scheel (1999a) demonstrated that Hypothesis 6 is typically met for

marginally stable pulses that are asymptotic to a rest state undergoing a Turing

instability. The relevant hypothesis in Sandstede and Scheel (1999a) was stated in

a slightly diŒerent way that made use of the geometric information from spatial

dynamics that we explain later in section 5.

First, we state a result on the existence and stability of small Turing patterns close
to the rest state U‡ (or U¡ in the case where Hypothesis 4 is met). We illustrate these

results in ® gure 4.

Theorem 2 (existence and stability of Turing patterns) . Assume that Hypotheses 5

and 3 (or 4) are met. There are functions ·ex…k† and ·st…k† deWned for k close to k¤
with expansions
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·ex…k† ˆ Ck

C·

…k ¡ k¤†2 ‡ O…jk ¡ k¤j3†

and

·st…k† ˆ 3
Ck

C·

…k ¡ k¤†2 ‡ O…jk ¡ k¤j3†;

where the constants Ck, C· are deWned in Hypotheses 3 and 4, so that:

. if · > ·ex…k†, then there exists a unique (up to translation) stationary 2º=k-

periodic pattern T·;k…x† near U‡ (or U¡†;
. if · > ·st…k† > ·ex…k†, then the unique Turing pattern is spectrally stable.

In ® gure 5, we illustrate the typical shape of the dispersion relation near a Turing

bifurcation as well as the existence and stability regions in a parameter-versus-

wavenumber plot.
The question addressed in the next two theorems is the existence of modulated

fronts. If the Turing instability occurs at U‡, then we seek modulated fronts that

connect the stable state U¡ to the Turing patterns created at U‡. If, on the other

hand, the Turing instability occurs at U¡, then stable modulated fronts should

connect the Turing patterns created at U¡ with the stable rest state U‡.

Theorem 3 (Turing instability ahead of the front). Assume that Hypotheses 2, 3, 5 and

6 are met. There are then constants ¯; ~̄ > 0 such that, for any · and k with
j·j ‡ jk ¡ k¤j < ¯ and · > ·ex…k†, there exists a modulated front Q·;k…t; x ¡ c·;kt†
with wave speed c·;k and temporal period p·;k ˆ 2º=…c·;kk†, i.e. Q·;k…t ‡ p·;k; ¢† ˆ
Q·;k…t; ¢†. The front is asymptotic to U¡ at ¹ ˆ ¡ 1 and to the Turing patterns

T·;k…x† at ¹ ˆ ‡ 1. More precisely, there are positive constants C; ²; ³‡ > 0 such that
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Figure 4. A stationary spatially periodic Turing pattern.

Figure 5. In the left ® gure, the eigenvalue ¶ of the linearized operator L is plotted
over the wave number k. The curve is moving upwards with increasing ·. In the

right ® gure, the outer curve denotes the boundary of existence of Turing patterns

·ex…k†, while the inner curve denotes the Eckhaus boundary ·st…k† of stability of

the Turing patterns.



jQ·;k…t; ¹† ¡ T·:k…¹ ‡ c·;kt ‡ ³‡†j µ C e¡²¹ ¹ ¶ 0;

jQ·;k…t; ¹† ¡ U¡j µ C e²¹ ¹ µ 0;

uniformly in t, k, ·. The front is unique in the class of time-periodic solutions in a frame

moving with any speed ~c with jc¤ ¡ ~cj < ~̄ in a …t; ¹†-uniform ¯-neighbourhood of Q…¹†,
up to spatial and temporal translates.

If · > ·st…k† (see Theorem 2 for the deWnition of the Eckhaus boundary ·st…k†), the

modulated front is spectrally stable:

specL2 …©·;k† » fj¶j µ 1g;

where ©·;k denotes the linearization of the period map to the reaction-diVusion system
evaluated at Q·;k.

A schematic picture of the modulated front in the steady frame is shown in ® gure 6.

Thus, if the Turing instability occurs ahead of the front, then the stable stationary
Turing patterns are invaded by the rest state U¡ behind the front. The next result

demonstrates that the case of a Turing instability behind the front is quite diŒerent;

we also refer to ® gure 7 for a schematic snapshot of the dynamics.

Theorem 4 (Turing instability behind the front). Assume that Hypotheses 2, 4, 5 and 6
are satisWed. There is then a constant ¯ > 0 such that, for any ·, k and ~c with

j·j ‡ jk ¡ k¤j ‡ j~c ¡ c¤j < ¯, there is no modulated front Q·;k…t; x ¡ ~ct† with wave

speed ~c that is asymptotic to U‡ for ¹ ! ‡ 1

jQ·;k…t; ¹† ¡ U‡j ! 0 as ¹ ! ‡ 1

uniformly in t, and asymptotic to T·;k for ¹ ! ¡ 1 so that

jQ·;k…t; ¹† ¡ T·;k…¹ ‡ ~ct ‡ ³¡†j ! 0 as ¹ ! ¡ 1

uniformly in t for some ³¡.
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Figure 6. Turing bifurcation ahead of the front. The modulated front that invades a

stable stationary Turing pattern, plotted in the steady frame.

Figure 7. Turing bifurcation behind the front. The primary unstable front in the

case where the Turing patterns are created behind the front, plotted in the steady

frame. Instabilities behind the front eventually propagate with a smaller mean

velocity than the front. Modulated fronts do not bifurcate in this situation.



Existence and non-existence in the above theorems are proved in the next section.

Stability of the modulated fronts in Theorem 3 is established in section 6.

5. Spatial dynamics on time-periodic functions

In this section, we prove the statements concerning existence and non-existence in

Theorems 3 and 4. As mentioned in section 1, the key idea is to regard the PDE as a

dynamical system in the spatial variable, acting upon time-periodic functions. This

approach had been used by Iooss et al. (1989) to investigate local instabilities in ¯ uid
problems and has been extended by Sandstede and Scheel (1999a) to global homo-

clinic bifurcations that correspond to Turing instabilities ahead and behind pulses.

Sandstede and Scheel (1999a) analysed the linearized equation about the homoclinic

orbit using exponential dichotomies for which more subtle robustness theorems are

available. These robustness theorems replace the Fredholm properties that fail at
the moment of bifurcation. In this section, we show how the arguments given in

Sandstede and Scheel (1999a) can be adapted to global heteroclinic bifurcations. We

refer to Sandstede and Scheel (1999a, 2000) for the technical details of the construc-

tion of invariant manifolds and focus instead on the geometric picture of the hetero-
clinic bifurcations.

As outlined in section 1, we begin by rewriting the reaction-diŒusion system

formally as a dynamical system in the spatial variable ¹, allowing for a periodic

time-dependence of the solutions:

u¹ ˆ v; v¹ ˆ D¡1…ut ¡ cv ¡ F…u; ·†† …3†

where …u; v†…¹; ¢† 2 Y ˆ H1=2
per …0; p†N £ L2

per…0; p†N for each ® xed ¹ 2 . We consider

the temporal period p as an additional free parameter. In the next step, we reformu-

late our assumptions in a dynamical-systems language for the ¹-dynamics.

First, the travelling-wave ODE is recovered upon restricting to the subspace

Y0 ˆ 2M µ Y of time-independent functions. In fact, the PDE (2) is invariant
under shifts of the time variable since it is autonomous. Considering the ¹-dynamics,

this invariance becomes an equivariance of the dynamical system (3): the circle group

S1 acts on Y via …u; v†…t†7!…u; v†…t ¡ ³† where ³ 2 S1. The ® xed-point space of this

S1-action is then also dynamically invariant with respect to the ¹-evolution of

equation (3). This ® xed-point space is given by the subspace Y0 of Y that consists

of all time-independent functions.
Equation (3) restricted to Y0 reads

u¹ ˆ v; v¹ ˆ ¡D¡1…cv ‡ F…u; ·††: …4†

For c ˆ c¤, this equation possesses the equilibria …U§; 0† and the heteroclinic orbit
…Q…¹†; Q¹…¹††, which converges to …U§; 0† as ¹ ! § 1. The equilibria …U§; 0† are

hyperbolic within Y0, since any purely imaginary eigenvalue ik0 would result in a

solution of det …¡Dk2 ‡ @UF…U0; 0†† ˆ 0 with U0 ˆ U‡ or U¡ in contradiction to

Hypotheses 3 or 4, respectively. We denote by Wu
0 …U¡† the unstable manifold of (4)

associated with …U¡; 0† and by W s
0…U‡† the stable manifold of (4) associated with

…U‡; 0†. We claim that Wu
0 …U¡† and W s

0…U‡† cross transversely upon varying c near

c ˆ c¤; see ® gure 8. More precisely, the parameter-dependent stable and unstable

manifolds intersect transversely along the heteroclinic orbit in the extended phase

space …c; …u; v†† 2 £ Y0:
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[

c¹c¤

Wu
0 …U¡†

Á !

t
[

c¹c¤

W s
0…U‡†

Á !
ˆ f…Q…¹†; Q¹…¹††; ¹ 2 g

which we also write as W u
0 …U¡† t c W s

0…U‡†. Indeed, the dimensions of Wu
0 …U¡† and

W s
0…U‡† add up to 2N since, by Hypothesis 2, ¶ ˆ 0 is an isolated eigenvalue and the

Fredholm index of the linearization is zero; see section 2. If the two manifolds were

intersecting non-transversely, the eigenvalue zero would have algebraic multiplicity

larger or equal to two; see Sandstede (1998, Lemma 5.5) for more details.

Next, we address the dynamical behaviour near the rest state that undergoes the

Turing instability. In the co-moving frame, the Turing bifurcation is oscillatory, and

the bifurcating stationary Turing patterns become both time and spatially periodic.

Fixing the temporal period p and the wave speed c selects a unique Turing pattern

with wavenumber k ˆ 2º=…cp†. Interpreted in terms of the spatial dynamical system

(3), the Turing bifurcation is nothing other than a generic Hopf bifurcation with S1-

symmetry; recall that the symmetry is induced by the time-shift. We emphasize that

the Turing bifurcation involves time-periodic functions with non-zero minimal

period, and can therefore not be seen in the subspace Y0. The Hopf frequency is

given by the spatial wavenumber k¤. The complete bifurcation can be reduced to a

two-dimensional centre manifold for the ¹-dynamics, and equation (3) restricted to

the centre manifold is automatically in Hopf normal-form due to the non-trivial

action of the S1-symmetry on the critical eigenfunctions. The sign of the cubic

coe� cient is negative. The real part of the spatial eigenvalue crosses the imaginary

axis from right to left as · crosses through zero from left to right. The relevant

computations of these signs are given in Sandstede and Scheel (1999a, 2000). A

heuristic argument goes as follows. Turing patterns exist for · positive. Within the

centre manifold, there exists a small heteroclinic orbit that connects the Turing

patterns with the trivial rest state (U‡ if the Turing instability occurs ahead of the

front and U¡ if it occurs behind the front). This small heteroclinic orbit represents a

modulated front that describes Turing patterns which invade the unstable rest state.

With the convention c¤ > 0; the stable Turing patterns have to be located at

¹ ˆ ¡ 1, and they invade the unstable rest state at ¹ ˆ ‡ 1. The heteroclinic

orbit therefore converges to the Turing patterns as ¹ ! ¡ 1 so that the Turing

patterns have to be unstable, with respect to the ¹-dynamics, within the centre

manifold. Hence, the cubic coe� cient has to be negative. Since the Turing patterns

exist for · positive, the real part of the critical eigenvalue has to cross from right to
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Figure 8. The transverse crossing of Wu
0 …U¡† and W s

0…U‡† in Y0.



left for increasing ·. As before, we denote the Turing patterns by T·;k…¹†, where k

depends on the wave speed c via ck ˆ 2º=p.

We are now in a position to explain the existence and non-existence results stated

in Theorems 3 and 4. We begin by considering Turing instabilities ahead of the front.

5.1. Turing instabilities ahead of the front

Summarizing the discussion above, the primary front Q corresponds to a heteroclinic

orbit …Q; Q¹† that connects the rest state …U¡; 0† to the rest state …U‡; 0† that under-

goes a Hopf bifurcation when considered for the spatial dynamical system. We seek
heteroclinic orbits of the spatial dynamical system (3) that connect the rest state

…U¡; 0† to the Turing pattern T·;k…¹† that bifurcates at the Hopf bifurcation point. In

other words, we seek intersections of the unstable manifold Wu…U¡† of …U¡; 0† and

the strong stable manifold W ss…T·;k† of the Turing pattern. Global existence and

smooth dependence on parameters of these invariant manifolds for equation (3) in a

neighbourhood of the primary heteroclinic orbit …Q; Q¹† have been established by
Sandstede and Scheel (1999a) using exponential dichotomies. Though local existence

near the rest state and the Turing pattern can be established by the variation-of-

constants formula as for ODEs, global existence is a non-trivial problem: since the

initial-value problem for equation (3) is ill-posed, there is no ¯ ow or semi¯ ow avail-

able to transport the local invariant manifolds forward or backward in ¹.

We illustrate the resulting bifurcation scenario in ® gure 9 where we plotted certain

particular trajectories as well as the invariant manifolds for the spatial dynamics (3).
We identi® ed S1-group orbits, i.e. time-shifted solutions, so that we actually consider

solutions in the quotient space Y=S1. In Y=S1, the Hopf instability reduces to a

pitchfork-type bifurcation.
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Figure 9. Turing instabilities ahead of the front. The heteroclinic bifurcation in

Y=S1 that corresponds to a Turing instability ahead of the primary front. The

modulated front Q·;k arises as the intersection of the unstable manifold of U¡
and the strong stable manifold of the Turing pattern T·;k.



First, we claim that the extended unstable manifold of U¡ intersects the extended

strong stable manifold of U‡ transversely in the full space Y at · ˆ 0: Wu…U¡† t c

W ss…U‡†. Note that we consider the strong stable manifold of U‡ so that the centre

direction along which the Turing pattern bifurcates is not taken into account. The

above claim of transversality follows once again from the spectral Hypothesis 6.
Otherwise, we would obtain a solution in Y to the linearized equation

u¹ ˆ v; v¹ ˆ D¡1…ut ¡ cv ¡ @UF…Q…¹†; 0†u†

that decays exponentially to zero in Y as ¹ ! § 1. Any such solution corresponds

to an exponentially decaying eigenfunction of LQ associated with a purely imaginary
eigenvalue. This contradicts Hypothesis 6 which precludes the existence of such

eigenmodes.

Next, consider the strong stable manifold W ss…T·;k† of an arbitrarily chosen point

on T·;k. Since T·;k is close to …U‡; 0†, their strong stable manifolds are close to each

other by continuous dependence. Hence, since Wu…U¡† and W ss…U‡† intersect trans-
versally as c varies near c¤, so do Wu…U¡† and W ss…T·;k†. Thus, by transversality,

there is a locally unique intersection curve of these two manifolds for every · > 0

su� ciently small and some wave speed c close to c¤. This proves the existence part of

theorem 3. The details of the aforementioned arguments are similar to those given in

Sandstede and Scheel (1999a) for the case of homoclinic bifurcations.

We discuss the spectral stability of the bifurcating modulated fronts in section 6.
We remark that, for each given minimal temporal period chosen as above, there is

also a continuum of modulated waves that connect U¡ with U‡. These additional

waves are diŒerent from the persisting primary travelling wave. They arise as inter-

sections of the unstable manifold Wu…U¡† with the stable manifold W s…U‡†; see

® gure 9. Note that W s…U‡† also contains the weak stable direction that coincides
with the centre direction at the bifurcation point. Thus, there is a continuum of

diŒerent intersections between Wu…U¡† and W s…U‡† that can be parameterized by

their amplitude, taken in the centre direction, measured in a certain ® xed cross-

section that is transverse in Y to the primary front.

5.2. Turing instabilities behind the front

Finally, we demonstrate the non-existence of modulated fronts if the Turing instabil-

ity occurs behind the front. The geometry of the relevant heteroclinic bifurcation is

illustrated in ® gure 10. Hypothesis 6 implies that W cu…U¡† t c W s…U‡† in Y where

W cu…U¡† denotes the centre-unstable manifold of U¡ that consists of all solutions
with weak exponential growth as ¹ ! ¡ 1. Upon varying ·, the unique intersection

persists by transversality. One such intersection, however, is given by the heteroclinic

orbit between U¡ and U‡ that persists within Y0. By uniqueness, there are then no

other intersections. On the other hand, any modulated wave connecting T·;k to

…U‡; 0† would have to lie in the aforementioned intersection. This proves Theorem 4.

6. Spectra of modulated waves
In this section, we investigate the stability properties of the modulated fronts that

invade a stable Turing pattern. We consider the linearization

Vt ˆ DV¹¹ ‡ cV¹ ‡ @UF…Q·;k…t; ¹†; ·†V ; …5†

15Essential instabilities of fronts



which is a linear parabolic equation with time-periodic coe� cients. We denote the
associated temporal period map by © : L2… ; N† ! L2… ; N†, omitting the depen-

dence on ·; k. We shall prove that f¶; j¶j ¶ 1, ¶ 6ˆ 1g belongs to the resolvent set of

the bounded operator ©. With ¬ ˆ p log ¶, we de® ne ~V ˆ e¡¬tV . Upon substituting

this expression into equation (5), we get

~Vt ˆ D ~V¹¹ ‡ c ~V ‡ @UF…Q·;k…t; ¹†; ·† ~V ‡ ¬ ~V :

The key is to again write the parabolic equation as an ill-posed dynamical system in

the spatial variable ¹:

~v¹ ˆ ~w; ~w¹ ˆ D¡1…~vt ¡ c ~w ¡ @UF…Q·;k…t; ¹†; ·†~v ¡ ¬~v† …6†

on Y . In Sandstede and Scheel (1999c, Theorem 3), we proved Palmer’s theorem for

modulated waves. We demonstrated that invertibility of © ¡ ¶ is equivalent to the

existence of exponential dichotomies for equation (6) on ; see Peterhof et al. (1997)

for a de® nition of exponential dichotomies in the case of ill-posed problems.

Roughly speaking, an exponential dichotomy is a decomposition of the phase

space Y into stable subspaces Es…¹† and unstable subspaces Eu…¹† such that, for
any initial value in Es…¹0†, there exists a solution on ‰¹0; ‡1† that decays exponen-

tially as ¹ ! 1. Similarly, for any initial condition in Eu…¹0†, there exists a solution

on …¡1; ¹0Š that decays exponentially as ¹ ! ¡ 1. We also consider exponential

dichotomies on ‡ and ¡ where the above decomposition and the solutions are

only required to exist for ¹ 2 ‡ and ¹ 2 ¡, respectively. Dichotomies on ‡ and

¡ imply the existence of a dichotomy on the entire real line if, and only if, they

intersect transversely at ¹ ˆ 0 so that Es
‡…¹ ˆ 0† © Eu

¡…¹ ˆ 0† ˆ Y .

We begin by investigating the asymptotic equations that account for the essential

spectrum of ©. For ¹ ! ¡ 1, we obtain

~v¹ ˆ ~w; ~w¹ ˆ D¡1…~vt ¡ c ~w ¡ @UF…U¡; ·†~v ¡ ¬~v†:
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Figure 10. Turing instabilities behind the front. The heteroclinic bifurcation in
Y=S1 that corresponds to a Turing instability behind the primary front. The

unstable manifold of the Turing pattern cannot intersect the stable manifold of

the rest state U‡.



Since we assumed that U¡ is a stable rest state for the parabolic equation, the above

equation has an exponential dichotomy for all ¬ with Re ¬ ¶ ¡ ¯ for some small

positive ¯. Note that the stable and unstable subspaces are independent of ¹ since the

equation does not depend upon ¹. The dichotomy for the asymptotic equation

persists as a dichotomy on ¡ for the full equation (6) by the roughness theorem
for exponential dichotomies proved by Peterhof et al. (1997). We denote the associ-

ated stable and unstable subspaces by Es
¡…¹; ·; ¬† and Eu

¡…¹; ·; ¬†, respectively. The

exponential decay rates of the associated solutions are uniformly bounded away

from zero for ¬ with Re ¬ > ¡ ¯. In particular, any bounded solution to equation

(6) lies in Eu…¹0† at spatial time ¹ ˆ ¹0.

The situation at ¹ ˆ ‡ 1 is slightly more complicated since hyperbolicity fails at
the moment of bifurcation. We then cite the results in Sandstede and Scheel (2000,

sections 5.1 and 5.2) where a similar problem has been considered in the context of

spectral stability of a modulated pulse that is asymptotic to a Turing pattern. We

outline the arguments, and refer to Sandstede and Scheel (2000) for a more thorough

discussion. In a steady frame, centre-manifold reductions and normal-form argu-
ments for the spatial x-dynamics on the space of time-independent functions reduce

the reaction-diŒusion problem to a complex Ginzburg± Landau equation with real

coe� cients in an appropriate scaling. For the Ginzburg± Landau equation, the spec-

trum can be computed explicitly. We write T·;k…x† for the Turing patterns and study

the linearization LT·;k
¡ ¶ of the reaction-diŒusion system linearized about T·;k.

Associated with LT·;k
¡ ¶ is the linearized equation

ux ˆ v; vx ˆ D¡1…¡@UF…T·;k…x†; ·†u ‡ ¶u†: …7†

A complex number ¶ is in the spectrum of LT·;k
if, and only if, equation (7) has a

purely imaginary Floquet exponent. There exist two curves, ¶cr…»; ·; k† and

¶st…»; ·; k†, such that, in a neighbourhood of » ˆ 0 and ¶ ˆ 0, we have

(i) ¶cr…»; ·; k† > ¶st…»; ·; u† for · > 0;

(ii) ¶cr…»; 0; k¤† ˆ ¶st…»; 0:k¤† is the dispersion relation at the bifurcation point,

parameterized over the spatial wavenumber » ‡ k¤;

(iii) ¶ 0
cr…0; ·; k† ˆ 0, and ¶ 00

cr…0; ·; k† is positive for · < ·st…k† and negative for

· > ·st…k†;
(iv) ® ˆ i» is a purely imaginary Floquet exponent of equation (7) if, and only if,

¶ ˆ ¶cr…»; ·; k† or ¶ ˆ ¶st…»; ·; k†.

Transforming into the moving coordinate frame, spatial oscillations measured by the

imaginary part of the spatial Floquet exponent ® translate into temporal oscillations

measured by the imaginary part of the temporal Floquet exponent ¬. Using these

ideas, Sandstede and Scheel (2000) deduced from the above information about

the spatial Floquet exponents that there are two critical curves, ¬cr…»; ·; k† and

¬st…»; ·; k†, so that the ill-posed equation (7) has purely imaginary Floquet exponents

precisely for ¬ on one of the aforementioned two curves. Furthermore, the curves are

explicitly given in terms of the dispersion relations in the steady frame:

¬cr…»; ·; k† ˆ 2º

ck
¶cr…»; ·; k† ‡ i»

¬st…»; ·; k† ˆ 2º

ck
¶st…»; ·; k† ‡ i»:
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In particular, the two curves ¬st and ¬cr divide a neighbourhood of the origin in the

complex ¬-plane into three connected components «1, «c and «r. The critical spatial
Floquet exponents move from left to right as Re ¬ increases. The ® rst Floquet

exponent crosses the axis at ¬ ˆ ¬st, the second at ¬ ˆ ¬cr; see ® gure 11. It is then

a consequence of Sandstede and Scheel (1999c, Proposition 1) that the essential

spectrum of the modulated fronts is contained in the closed left half-plane if, and

only if, the spectrum of the asymptotic Turing pattern is contained in the closed left
half-plane. More precisely, the essential spectrum is bounded by the curve

¶…»† ˆ exp …¬cr…»†T†. On this curve, the Fredholm index of © ¡ ¶ changes from

zero in «r to one in «c since the dimension of the stable subspace increases by

one so that, in the formula i ˆ i¡ ¡ i‡ for the Fredholm index, the relative unstable

dimension i‡ decreases by one.

Since the essential spectrum is therefore stable, it su� ces to exclude unstable point
spectrum. For Re ¬ > 0, bounded solution to the asymptotic equation lie in the

strong stable subspace Ess…¹†, where we exclude decay with the rate of the two critical

spatial Floquet exponents. We can continue this subspace in a neighbourhood of

¬ ˆ 0 and construct the ¬ and ¹-dependent strong stable subspace Ess
‡…¹; ·; ¬† of the

full linearization about the travelling wave. We investigate the intersections of
Ess

‡…¹; ·; ¬† and Eu
¡…¹; ·; ¬†, and demonstrate that there are no such intersections

for Re ¬ > 0. At · ˆ 0, there is a unique intersection at ¬ ˆ 0 where the two sub-

spaces cross with non-vanishing speed in ¬. This is again a consequence of

Hypothesis 6. The unique intersection corresponds to the derivative of the primary

front. For · > 0, this unique intersection persists in a neighbourhood of ¬ ˆ 0. In
fact, it is given by the time-derivative of the modulated wave with respect to

x ˆ ¹ ‡ ct which is a solution to equation (6) for ¬ ˆ 0 that decays exponentially

as ¹ ! ‡ 1 with a rate that is uniform in ·. Thus, the unique intersection is located

in Re ¬ µ 0, and there cannot be any additional unstable eigenvalues near ¬ ˆ 0.

This proves spectral stability of the modulated fronts. As mentioned above, more

details for modulated pulses can be found in Sandstede and Scheel (2000, Section
5.3).

7. A model problem

We investigate a three-component reaction-diŒusion system for which the assump-

tions of our theorems can be veri® ed explicitly. Consider
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Figure 11. Upon varying ¬ 2 near zero, two critical spatial Floquet exponents
cross the imaginary axis. Plotted are the real parts of the critical exponents and

the two curves ¬cr…»† and ¬st…»†.



@tU1 ˆ @xxU1 ‡ f …U1† ‡ U2;

@tU2 ˆ @xxU2 ¡ U2 ‡ 2U3

@tU3 ˆ 1
6
@xxU3 ¡ 1

3
U2 ‡ 1

2
U3 ‡ ·U3 ¡ …U3†3 ¡ "U1U3; …8†

where f …u† ˆ u…1 ¡ u†…u ¡ a†. In the invariant subspace U2 ˆ U3 ˆ 0, we recover the

classical bistable scalar reaction-diŒusion equation with cubic kinetics that we dis-

cussed in section 1. For 0 < a < 1=2, it exhibits a front solution Q1…¹† that connects

U1 ˆ 1 at ¹ ˆ ¡ 1 to U1 ˆ 0 at ¹ ˆ ‡ 1 where ¹ ˆ x ¡ c¤t and c¤ > 0. For

1=2 < a < 1, the front connects U1 ˆ 0 to U1 ˆ 1 again with positive wave speed.

The equilibrium U ˆ …1; 0; 0† is exponentially stable at · ˆ 0 for any ® xed positive

" > 0. The equilibrium U ˆ …0; 0; 0† undergoes a non-degenerate supercritical Turing

bifurcation upon varying · close to zero. It is straightforward to verify that
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Figure 12. (Turing instabilities ahead of the front) A space± time plot of the modu-

lated front to equation (8) that invades a Turing pattern. The parameters are

a ˆ 0:2, " ˆ 0:2 and · ˆ 0:002.

Figure 13. (Turing instabilities behind the front) A space± time plot of the front to

equation (8) that leaves a Turing pattern behind. The parameters are a ˆ 0:8,

" ˆ 0:2 and · ˆ 0:002. The resulting pattern is not time-periodic in any co-
moving frame.



Hypotheses 2, 3 and 5 are satis® ed for 0 < a < 1=2, while Hypotheses 2, 4 and 5 are

met for 1=2 < a < 1.

It remains to prove that Hypothesis 6 is satis® ed. The linearization about

U ˆ …Q1…¹†; 0; 0† in a moving frame reads:

@tV1 ˆ @¹¹V1 ‡ c@¹V1 ‡ @U1
f …Q1…¹††V1 ‡ V2;

@tV2 ˆ @¹¹V2 ‡ c@¹V2 ¡ V2 ‡ 2V3;

@tV3 ˆ 1
6 @¹¹V3 ‡ c@¹V3 ¡ 1

3
V2 ‡ 1

2
V3 ‡ ·V3 ¡ "Q1…¹†V3:

With a small exponential weight V ˆ e²¹ W , we obtain the eigenvalue problem

¶W1 ˆ @¹¹W1 ‡ …c ¡ 2²†@¹W1 ‡ …²2 ¡ c²†W1 ‡ @U1
f …Q1…¹††W1 ‡ W2;

¶W2 ˆ @¹¹W2 ‡ …c ¡ 2²†@¹W2 ‡ …²2 ¡ c²†W2 ¡ W2 ‡ 2W3;

¶W3 ˆ 1
6@¹¹W3 ‡ c ¡ ²

3

± ²
@¹W3 ‡ ²2

6
¡ c²

Á !
W3 ¡ 1

3
W2

‡ 1
2
W3 ‡ ·W3 ¡ "Q1…¹†W3: …9†

This equation is of skew-product form. Upon setting W2 ˆ 0, the ® rst equation has

precisely one eigenvalue in Re ¶ ¶ 0, namely ¶ ˆ 0, which is algebrically simple, with

the eigenmode @¹Q1…¹†. For all ² > 0 small, the linear system (9) is hyperbolic for
Re ¶ > 0 at ¹ ˆ § 1, eigenvalues are zeros of the Evans function E…¶; "; ²†. For

" ˆ 0, the …W2; W3†-components of equation (9) are autonomous. Using the

results by Gardner and Zumbrun (1998) and Kapitula and Sandstede (1998), it is

not hard to see that E can be extended smoothly up to and including " ˆ 0 and

² ˆ 0. For …"; ²† ˆ 0, however, the Evans function is non-zero since the equation is

autonomous. By continuity, the Evans function remains non-zero for all small posi-
tive values of …"; ²†. This proves the absence of critical or unstable point spectrum

according to Hypothesis 6. We conclude this section with some numerical snapshots

of the dynamics for small ·; " > 0.

8. The Gray± Scott model

The Gray± Scott model

@tU1 ˆ d1@xxU1 ¡ U1U2
2 ‡ F…1 ¡ U1†

@tU2 ˆ d2@xxU2 ‡ U1U2
2 ¡ …F ‡ k†U1

is a model for an autocatalyti c chemical reaction; it supports oscillations in the

kinetics. A rich variety of dynamical phenomena have been discovered in this reac-

tion-diŒusion model; we refer to the comprehensive list of references in Mazin et al.
(1996). In particular, localized stable pulses have been observed that can undergo

various kinds of bifurcations including a self-replicating mechanism which has

recently received much attention. In the region of bistability, there exist fronts

that travel to either one of the two stable patterns given by
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U¡ ˆ 1
2
…1 ¡

����
¢

p
†;

F

2…F ‡ k† …1 ‡
����
¢

p
†

³ ´
; U‡ ˆ …1; 0†

where ¢ ˆ 1 ¡ 4…F ‡ k†2=F . The rest state U¡ can undergo a Turing instability that

is either subcritical or supercritical depending on the parameters. We produce

numerical evidence for a line in …F ; k†-parameter space, where the system undergoes

an instability of the type considered in Theorem 4.

To illustrate these numerical ® ndings, we ® x the parameters

d1 ˆ 1:0 £ 10¡5; d2 ˆ 6:0 £ 10¡5:

We have then numerically computed a curve in the …F ; k†-parameter space where the

system undergoes a supercritical Turing instability. We have also numerically com-
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Figure 14. We solved the Gray± Scott model on the ® nite interval ‰0; 30Š with

Neumann boundary conditions. The parameter values are k ˆ 0:04 and

F ˆ 0:021. The ® gure shows a space± time plot of the U1-component of the
front that leaves a Turing pattern behind.

Figure 15. We solved the Gray± Scott model for the same parameter values as in
® gure 14. Initially, the small Turing front has a larger velocity than the primary

front. As the Turing pattern approaches the primary front, however, the Turing

pattern is pushed back by the front and eventually left behind.



puted the front which appears to be stable as long as the parameters do not cross the

aforementioned Turing-instability curve. It appears as if the Turing instability is

supercritical only in the regime where the front moves away from the destabilizing

rest state; this precludes the existence of the stable modulated fronts since only

Theorem 4 applies. We present space± time plots of direct numerical simulations
that con® rm the predicted blocking of the Turing patterns by the front. In particular,

it appears as if modulated fronts do not exist as predicted by Theorem 4.

In the case of a subcritical Turing instability, a standing interface between stand-

ing large-amplitude Turing patterns and the homogeneous zero rest state is formed

from small perturbations of the primary unstable front. We suspect that this large

interface is connected, in the parameter space, to an unstable modulated front that is
close to the primary front and leaves unstable Turing patterns behind; see the dis-

cussion of subcritical bifurcations in section 9.

9. Discussion

In this section, we discuss various extensions of the results presented above as well as

some open problems.

9.1. Subcritical Turing instabilities ahead or behind a front

We begin by discussing subcritical Turing bifurcations. A subcritical Turing instabil-

ity ahead of the front creates a continuum of modulated fronts that invade an

unstable Turing pattern of ® xed wavelength; see ® gure 16. Since the Turing pattern
is unstable, so are the modulated fronts. If, on the other hand, the subcritical Turing

instability occurs behind the front, then modulated fronts cannot exist; see ® gure 17.

An interesting case is the degenerate Turing instability where the cubic coe� cient

vanishes. An unfolding of the degeneracy requires two parameters. It is then possible

that a stable rest state and a stable Turing pattern coexist; in the phase space Y , they
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Figure 16. Subcritical Turing bifurcation ahead of the front. The heteroclinic bifur-

cation in Y=S1 that is associated with a subcritical Turing instability ahead of
the primary front. One of the heteroclinic orbits that connect U¡ with the

temporally unstable Turing pattern near U‡ is plotted. Note that there is a

continuum of such modulated fronts; we plotted the heteroclinic orbit that lies

in the strong stable manifold of the Turing pattern.



are separated by an unstable Turing pattern. The additional stable Turing pattern

can be invaded by the front, but not left behind. The proof is the same as for the

supercritical Turing instability.

9.2. Fronts that connect stable and unstable rest states

We may also consider fronts that connect a stable and an unstable rest state with

each other. We are then interested in the situation where the stable rest state under-

goes a supercritical Turing instability. There are then quite a number of diŒerent

cases that have to be analysed.

First, suppose that the Turing instability occurs behind the front. The bifurcation

scenario depends then crucially on the essential spectrum of the unstable rest state

U‡ ahead of the frontÐ recall that we assumed that the front connects the rest

state U¡ that undergoes the Turing instability with a diŒerent, already unstable,

rest state U‡ ahead.

If the essential spectrum of the unstable state U‡ does not involve the temporal

frequency of the Turing instability at the state U¡, everything computed in the co-

moving frame of the front, then we expect to encounter the same situation that we

consider in section 5; in particular, modulated fronts do not bifurcate. For rest state

U‡ that destabilize inside the space Y0 of time-independent functions, this claim is

illustrated in ® gure 18.

Sherratt (1998) investigated a series of certain caricature problems numerically

and analytically for Turing instabilities behind the front. He observed several modu-

lated waves of diŒerent wave speed that are glued together. This is in accordance

with our predictions as he implicitly assumed that the unstable rest state has no

unstable eigenmodes with the same temporal frequency as the critical modes of U¡.

If, on the other hand, the unstable state U‡ had already undergone a single Turing

instability with the same temporal frequency as the state U¡, then a continuum of

modulated fronts that connect the Turing pattern near U¡ with the unstable rest

state U‡ bifurcate. The reason for this behaviour is that, in the relevant ® gure 10, the

unstable vertical direction at U‡ is stable in the situation considered here.
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Figure 17. Subcritical Turing bifurcation behind the front. The heteroclinic bifurca-

tion in Y=S1 that is associated with a subcritical Turing instability behind the

primary front. This demonstrates the non-existence of heteroclinic orbits that
connect one of the temporally unstable Turing patterns behind the front with the

rest state U‡ ahead.



Second, suppose that the Turing instability occurs ahead the front. The expected

results are then similar to those given above, and we omit the details.

9.3. Hopf and Turing± Hopf instabilities ahead or behind a front

We have discussed the eŒects that a Turing instability of a homogeneous rest state

has on a front that connects this rest state to a diŒerent stable rest state. There are

two other interesting cases that lead to essential instabilities, namely Hopf and

Turing± Hopf instabilities in the steady frame. The basic patterns that are created

near the unstable U0 are of the form T·;k…t; x† ˆ U0 ‡ A…·; k† ei…kx‡!…k†t† ‡ c:c: where

!…k† denotes the linear dispersion relation and A…·; k† is small nonlinear complex

amplitude. We have k ¹ 0 for Hopf instabilities and k ¹ k¤ 6ˆ 0 for Turing± Hopf

instabilities. In a moving frame, the patterns are of the form T·;k…¹† ˆ U0 ‡
A…·; k† ei…k¹‡…!…k†‡ck†t†. Hence, they are time-periodic with period

p ˆ 2º=…!…k† ‡ ck† where we excluded the resonance case when ck¤ ˆ !…k¤†; these

resonances are similar to the case c ˆ 0 for Turing instabilities. The local bifurcation

near the unstable state, in a moving frame and again considered for the spatial ¹-

dynamics on p-periodic functions, is a Hopf bifurcation with S1-symmetry. Stability

of the bifurcating pattern in spatial dynamics within the two-dimensional centre

manifold depends on c and the group velocity of the bifurcating basic patterns

cgr ˆ d!=dk. Fronts may leave basic patterns with positive relative group velocity

cgr ¡ c > 0 behind and may invade basic patterns with negative relative group

velocity cgr ¡ c < 0. Other modulated fronts do not exist.

The stability of the modulated fronts is again a consequence of the stability of the

primary front in weighted spaces together with the stability of the basic state.

Stability properties of the basic state in a moving frame are inherited from the

stability properties in the steady frame. The stability criteria in the steady frame,

however, are slightly diŒerent compared to Turing instabilities, and the Eckhaus

boundary depends crucially on the nonlinear dispersion.

24 B. Sandstede and A. Scheel

Figure 18. Turing instability behind the front. The front connects the rest state U¡
that just underwent a supercritical Turing instability, with the unstable rest state

U‡ that destabilized inside the subspace Y0. Modulated fronts do not exist near

such an instability.



9.4. Vanishing wave speed c ˆ 0

As mentioned above, there are two other interesting cases that we did not analyse in

this paper.

First, we may consider Turing or Hopf instabilities of standing pulses that have

wave speed zero. This bifurcation is of codimension-one since the reaction-diŒusion

system is reversible for c ˆ 0. We expect that stable pulses bifurcate that converge to
a basic pattern as ¹ ! § 1.

Second, in the case of fronts or pulses, it is of interest to understand the case when

the wave speed c¤ passes through zero (or through !¤=k¤ for Turing± Hopf instabil-

ities). Unfolding the instability of the asymptotic state and the crossing of the wave

speed through zero requires two parameters. For Turing bifurcations, we expect
locking phenomena, while we believe that the speed of the bifurcating waves

passes through zero transversely for Hopf instabilities. We discuss these two cases

in more detail.

In the Turing case, a standing interface between a family of Turing patterns and a

homogeneous state is of codimension-zero and therefore robust. A physical descrip-

tion of this pinning eŒect has been given by Pomeau (1986) . Geometrically, in spatial
dynamics, the heteroclinic orbit between the normally hyperbolic two-dimensional

family of periodic orbits and a hyperbolic equilibrium is transverse and persists upon

perturbation. For instance, upon considering the spatial dynamics of a two-

component reaction-diŒusion system, the stable homogeneous state has a two-

dimensional stable manifold while each Turing pattern admits one unstable
Floquet exponent in addition to the two trivial neutral exponents associated with

the derivative of the pattern and the derivative with respect to the spatial period. The

intersection of the three-dimensional unstable manifold of the family of Turing

patterns and the two-dimensional stable manifold of the homogeneous state is typi-

cally transverse. In contrast, varying the parameters (such as a in the above example)

would typically force an interface between homogeneous rest states to move with

wave speed c…a† where c 0…a† 6ˆ 0. Here, however, the standing interface between rest
state and Turing patterns persists with wave speed zero, while the homogeneous rest

state selects phase and wave number of the coexisting Turing pattern. Using a ¶-

lemma type argument, Coullet et al. (2000) established that transversality of the

aforementioned intersection implies the existence of steady patterns that resemble
Turing patterns over a large bounded spatial interval, but are localized so that the

spatially homogeneous state dominates at § 1.

On the other hand, we expect that the interval of parameter values for which such

a standing interface exists is exponentially small in the amplitude of the overall

system. For example, if both, homogeneous state and Turing pattern, emerge in a

local degenerate Turing instability, normal-form transformations would add an

additional imperfect S1-symmetry to the system which makes the heteroclinic
orbits discussed above non-transverse . Only ¯ at terms, beyond normal form, can

render a transverse heteroclinic orbit. Only for interfaces that connect small-ampli-

tude Turing patterns to a large-amplitude homogeneous state do we expect a locking

region with width of ® nite order in the amplitude of the Turing pattern.

The situation for Hopf instabilities is diŒerent. Heteroclinic orbits between time-
periodic basic pattern, travelling wave trains, and homogeneous rest states are of

codimension-one. Since we consider the spatial dynamics on time-periodic functions,

the unstable dimension is in® nite. Still, we can count relative unstable dimensions

(see Sandstede and Scheel 1999c). If we set the relative unstable dimension of the
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stable homogeneous state to zero, the relative unstable dimension of the time-

periodic pattern depends again on the group velocity. For a stable wave with nega-

tive group velocity, the relative unstable dimension is ¡1. If we include the phase of

the periodic pattern, we end up with a centre-unstable manifold of the periodic

pattern and a stable manifold of the homogeneous state so that the dimensions of
their tangent spaces add up to the dimension of the entire space. Intersections are

necessarily two-dimensional due to temporal and spatial shift symmetries. We have

only one additional parameter, the temporal period, so that heteroclinic intersections

are of codimension-one: we expect that the wave speed is generically non-zero, in

contrast to the situation for Turing patterns. For a stable wave with positive group

velocity, the relative unstable dimension is 0, by reversibility. Heteroclinic intersec-
tions are of codimension-zero. Still diŒerent are standing waves which are spatially

and temporally periodic and also symmetric with respect to spatial re¯ ections. They

are typically parameterized by the spatial wave number k. Each standing wave

possesses a double zero eigenvalue corresponding to space- and time-shift symmetry.

The relative unstable dimension is therefore ¡1, due to re¯ ection symmetry, and the
relative centre-unstable dimension is ‡1. Heteroclinic intersections with the stable

manifold of the homogeneous state are at least two-dimensional due to time- and

space-shift symmetry. Together with the parameter k, we may therefore get trans-

verse intersections so that standing waves and homogeneous states typically coexist.

Using similar arguments as in Coullet et al. (2000), we expect that localized time-
periodic standing waves may occur as well.

9.5. Beyond modulated fronts

As implicitly mentioned in Hypothesis 6, the Turing instability is of convective

nature in a moving frame so that perturbations decay pointwise. In exponentially

weighted spaces, the instability disappears.

Hence, a primary front that invades a Turing-unstable homogeneous rest state is
therefore stable in an exponential weight of the form 1 ‡ e²¹ for any ² > 0 small. As

in Sattinger (1976) , the primary front beyond the Turing instability is also non-

linearly stable in the aforementioned exponentially weighted space. The nonlinear

stability of the bifurcating modulated fronts that invade the Turing patterns is a

more subtle issue. Nonlinear stability of the Turing patterns follows from the spec-

tral information derived here using the method of diŒusive stability (see Eckmann
et al. 1997, Schneider 1998). Nonlinear stability of the modulated front, however, is

an open problem.

More interesting is the case of a Turing instability behind the front. We demon-

strated that modulated fronts do not bifurcate near such an instability. Beyond the

Turing instability, the primary front is again linearly (convectively) stable in an
exponentially weighted space. This time, however, the weight is exponentially

decreasing. Therefore, nonlinear stability does not immediately follow from linear

stability since the nonlinearity is not diŒerentiable in the function spaces of expo-

nentially growing functions; see, however, Pego and Weinstein (1994) for a situation

where this di� culty could be resolved. We continue to discuss Turing instabilities
behind the primary front and comment separately on sub- and supercritical bifurca-

tions.

In the subcritical case, where the nonlinearity ampli® es linear growth, the primary

front is nonlinearly unstable, and the system typically leaves a small neighbourhood
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of the primary front. In numerical simulations of the Gray± Scott model, a standing

interface between the rest state and a large-amplitude Turing pattern appears to be

the typical ® nal state.

In the supercritical case, numerical simulations of the Gray± Scott model provide

evidence that the front of the Gray± Scott model is nonlinearly convectively stable

beyond the onset to instability as it pushes the Turing pattern away; see ® gures 14

and 15. After a su� ciently long time, the dynamics behind the front appears to

decouple from the primary front. Small modulated fronts of Turing patterns that

invade the unstable rest state govern the dynamics; the existence of such small Turing

fronts has been established by HaÆraÆgusË -Courcelle and Schneider (1999). The velocity

of the small Turing fronts depends on decay properties of the initial perturbation;

eventually, the small Turing fronts pick up the critical wave speed given by the linear

dispersion relation.

The results presented in this article should be considered as a ® rst step towards a

more complete understanding of the dynamics near an essential instability. The

approach that we adopted here captures only those solutions that have a `nice’

well-de® ned temporal behaviour. In particular, we were able to describe all solutions

that are modulated, i.e. time-periodic in an appropriate moving frame.

9.6. The numerical computation of essential instabilities and modulated fronts

Finally, we comment brie¯ y on some numerical aspects.

To locate essential instabilities, we have to compute the essential spectrum of a

front. The most e� cient way to compute this set is to calculate the spectra of the

asymptotic homogeneous rest states. Using Fourier transform, this calculation

reduces to solving an algebraic problem. We emphasize that it is in general not

possible to compute the essential spectrum by truncating the real line to some

large but bounded interval with Neumann or Dirichlet boundary conditions, say,

and to then compute the spectrum of the linearization about the front numerically

utilizing some discretization scheme: Sandstede and Scheel (1999b) proved that this

procedure does not reproduce the essential spectrum of the front. Point spectrum,

however, can be computed using truncation to a bounded intervalÐ we remark that

the boundary conditions can sometimes introduce additional eigenvalues that are

not present for the full problem on the real line.

In some of the cases that we studied, the bifurcating modulated fronts are

unstable, and can therefore not be computed using direct simulations. The approach

we had adopted to show their existence, however, gives a clue as to how to compute

such fronts numerically: they can be found by seeking heteroclinic orbits in the space

of time-periodic functions. This requires to set up an appropriate boundary-value

problem formulation in the in® nite-dimensional space of time-periodic functions

combined with a subsequent Galerkin approximation to reduce to a boundary-

value problem posed on a ® nite-dimensional space. Afterwards, packages such as

auto97 can be used to solve the resulting boundary-value problem. We refer to Lord

et al. (2000) for more details as well as convergence and stability proofs for this

approach.
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