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tLo
alized travelling waves to rea
tion-di�usion systems on the real line are inves-tigated. The issue addressed in this work is the transition to instability whi
h ariseswhen the essential spe
trum 
rosses the imaginary axis. In the �rst part of this work,it has been shown that large modulated pulses bifur
ate near the onset of instability;they are a superposition of the primary pulse with spatially-periodi
 Turing patterns ofsmall amplitude. The bifur
ating modulated pulses 
an be parametrized by the wave-length of the Turing patterns. Furthermore, they are time-periodi
 in a moving frame.In this se
ond part, spe
tral stability of the bifur
ating modulated pulses is addressed.It is shown that the modulated pulses are spe
trally stable if, and only if, the smallTuring patterns are spe
trally stable, that is, if their 
ontinuous spe
trum only tou
hesthe imaginary axis at zero. This requires an investigation of the period map asso
iatedwith the time-periodi
 modulated pulses.AMS subje
t 
lassi�
ation. 35B32, 35B35, 35K57.



1. Introdu
tionPattern formation in rea
tion-di�usion equations on unbounded domains has attra
tedmu
h interest. Patterns are often generated at bifur
ation points where a primary patterndestabilizes. The issue is then to determine whi
h patterns arise through the parti
ulardestabilization me
hanism at hand and what their stability might be. If the instability is
aused by point spe
trum, it 
an be investigated utilizing redu
tions to �nite-dimensionalequations. If, on the other hand, parts of the essential spe
trum 
ross the imaginary axis,su
h redu
tions are in general no longer available.Arguably, the simplest s
enario in whi
h the essential spe
trum generates new patterns isthe Turing bifur
ation. Imagine a rea
tion-di�usion system on the real line su
h that u = 0,say, is a homogeneous stationary solution. If the homogeneous steady state destabilizes, itslinearization a

ommodates waves of the form ei(k0x�!0t) for 
ertain values of k0 and !0.Typi
ally, near this transition to instability, small spatially-periodi
 travelling waves arisefor any wavenumber 
lose to k0. Their wave speed is approximately equal to !0=k0. In thisarti
le, we fo
us ex
lusively on the situation where !0 = 0 and k0 6= 0. The bifur
ationwith !0 = 0 and k0 6= 0 is known as the Turing bifur
ation, and the bifur
ating spatially-periodi
 steady patterns are often referred to as Turing patterns. Note, however, thatTuring bifur
ations 
an be analyzed by investigating ordinary di�erential equations sin
ethe bifur
ating Turing patterns are stationary in time. As far as the existen
e of stationarybifur
ating patterns is 
on
erned, there exists therefore a redu
tion to �nite dimensions.Another 
lass of patterns that arise on the real line are lo
alized travelling waves, whi
hwe 
all pulses. Instabilities 
aused by their point spe
trum lead to new lo
alized solutionsthat are periodi
 in time in an appropriate moving frame. They resemble the originalpulse but have a non-uniform wave speed; in addition, their shape 
hanges periodi
ally intime. As mentioned before, this transition 
an be analyzed by means of �nite-dimensional
enter-manifold redu
tions. A more 
ompli
ated situation arises if the lo
alized travelling-wave solution destabilizes due to a Turing bifur
ation of the asymptoti
 homogeneousstate. We 
all this transition to instability an essential instability sin
e, for the linearizedequation about the travelling wave, the essential spe
trum 
rosses the imaginary axis. Inthe �rst part of this work [13℄, we have proved that an essential instability leads to thebifur
ation of modulated travelling waves. These solutions resemble a superposition ofthe small stationary Turing patterns and the lo
alized pulse; they are time-periodi
 in anappropriate moving frame. We refer to Theorem 1. below for more details; see also Figure 1.It should be emphasized that this transition is genuinely in�nite-dimensional.The issue addressed in this work is the spe
tral stability of the bifur
ating modulated pulses.We show that a modulated time-periodi
 pulse is linearly stable provided the asymptoti
small-amplitude periodi
 pattern is linearly stable, i.e. if its 
ontinuous spe
trum onlytou
hes the imaginary axis at zero. In fa
t, if the Turing patterns bifur
ate super
riti
ally,1




�travelling pulse stationary Turing patternFigure 1: A s
hemati
 pi
ture of a modulated pulse. The Turing patterns are stationary while thepulse moves through them with 
onstant velo
ity, leaving behind a re
overy zone. Note that theTuring patterns to the right and left may di�er by a phase.there is an open interval of wavenumbers for whi
h they are stable. At the boundary of theinterval, the Turing patterns destabilize in the so-
alled E
khaus instability [2℄. A

ord-ingly, linearly stable modulated pulses exist for a 
ontinuum of asymptoti
 wavenumberseven though there existed only one stable pulse before bifur
ation.For the stability analysis, we have to understand the linearization of the time-period mapabout a modulated pulse in an appropriate moving frame; re
all that modulated pulsesare time-periodi
 in a moving frame and not stationary. We have to lo
ate the essentialspe
trum of the relevant linear operator and ex
lude the existen
e of unstable isolatedeigenvalues. Su
h isolated eigenvalues 
ould pop out of the essential spe
trum near thebifur
ation point sin
e the essential spe
trum tou
hes the unit 
ir
le. In the 
ontext oftravelling waves that satisfy an ordinary di�erential equation, the Evans fun
tion providesan eÆ
ient te
hnique to deal with su
h eigenvalues; see [3, 7℄ for re
ent advan
es. Theadvantage of su
h an approa
h is that information from the parti
ular bifur
ation s
enario
an be used eÆ
iently in the stability analysis; also, isolated eigenvalues 
an be found assolutions to regular perturbation problems. The analogous approa
h for modulated pulsesleads to an ellipti
 equation in the spatial variable on an appropriate spa
e of time-periodi
fun
tions. In 
ontrast to the situation for ordinary di�erential equations, however, theellipti
 equation is ill-posed as a dynami
al system in the spatial variable; it 
annot be solvedby standard semigroup theory. We utilize re
ent results [12℄ on the existen
e of exponentialdi
hotomies for ellipti
 equations on unbounded 
ylinders to study the ellipti
 eigenvalueproblem. In parti
ular, exponential di
hotomies allow us to �nd two in�nite-dimensionalsubspa
es whi
h 
ontain all solutions to the ellipti
 equation that de
ay in either forwardor ba
kward dire
tion of the spatial variable. Eigenfun
tions are then 
ontained in theinterse
tion of these subspa
es. Besides ill-posedness of the ellipti
 equation, there areother diÆ
ulties whi
h we have to resolve; the eigenvalue problem, for instan
e, is notalways a regular perturbation of the � = 0 limit.Before we 
an state our main result, we shall 
olle
t the hypotheses and results from [13℄.We 
onsider the semilinear paraboli
 equationut = Duxx + f(u; �); x 2 R; (1.1)2



where u 2 Rn , D is a diagonal matrix with positive entries, and f : Rn � R ! Rn is asmooth nonlinearity su
h that f(0; �) = 0 for all �.Equation (1.1) is well-posed on the spa
e X := C0unif(R;Rn) of bounded and uniformly 
on-tinuous fun
tions on R. We 
onsider strong solutions u(t) of (1.1) whi
h are di�erentiableas fun
tions into X, 
ontinuous with values in C2unif and satisfy (1.1) in X.We assume the existen
e of a pulse to (1.1).Hypothesis (TW) Assume that h(x�
0t) is a travelling-wave solution of (1.1) for � = 0and some 
0 6= 0 su
h that h(�) tends to zero exponentially as � ! �1.The next assumption is on the linearization about the equilibrium u = 0. We assumethat the equilibrium is neutrally stable with a 
riti
al eigenvalue at zero and an asso
iatednon-trivial wavenumber k0 6= 0. To be pre
ise, 
onsider the linearized equationwt = L01w;where L01w := Dwxx + �uf(0; 0)w: (1.2)The spe
trum spe
(L01) of the 
onstant-
oeÆ
ient operator L01 
an be 
omputed usingthe Fourier transform. Indeed, � 2 spe
(L01) if, and only if,d0(�; �) := det(�2D + �uf(0; 0) � �) = 0 (1.3)for some purely imaginary � = ik with k 2 R. The dispersion relation �0�(k) is obtained bysolving (1.3).Hypothesis (P1) Assume that spe
(L01)\ iR = f0g, and that there are 
onstants k0 6= 0and Cr > 0 su
h that the following is true: d0(�; ik) = 0 for � 
lose to zero if, and only if,either � = �0�(k) = �Cr(k � k0)2 +O(jk � k0j3); (1.4)for k 
lose to k0, or else � = �0�(�k) for k 
lose to �k0. Finally, we assume that��d0(�; �)j(0;ik0) 6= 0.Quadrati
 tangen
y (1.4) of the dispersion relation is a generi
 assumption. Generi
ally,under the above assumption, small stationary spatially-periodi
 patterns bifur
ate for anywavenumber k 
lose to k0 when the 
riti
al situation is unfolded by the parameter �. Thisis pre
isely the aforementioned Turing bifur
ation.Sin
e we are interested in stable patterns arising through this bifur
ation, we assume su-per
riti
ality. Consider L01 on the spa
e of 2�=k0-periodi
 fun
tions. Note that the zeroof the fun
tion d0(0; ik0) 
orresponds to an isolated double eigenvalue at zero of L01. The3



two eigenve
tors are related by the underlying O(2)-symmetry, generated by translationsand re
e
tion in the spatial variable. We 
an therefore 
ontinue this double eigenvalue toa 
urve �bif(�) of isolated double eigenvalues of D�xx + �uf(0; �) for any � 
lose to zero.If the double eigenvalue 
rosses the imaginary axis transversely upon varying �, it 
anbe shown that spatially periodi
 solutions bifur
ate whi
h are invariant under re
e
tion.Indeed, we 
an restri
t the steady-state equationDuxx + f(u; �) = 0asso
iated with (1.1) to the spa
e of even 2�=k0-periodi
 fun
tions. Lyapunov-S
hmidtredu
tion then leads to a one-dimensional bifur
ation problem with remaining Z2-symmetryindu
ed by the translation of half the period. We expe
t a pit
hfork bifur
ation �z+az3+O(z5) = 0, where the sign of the 
ubi
 
oeÆ
ient a determines the bifur
ation dire
tion.Hypothesis (P2) We assume that the double eigenvalue �bif(�) 
rosses the imaginaryaxis transversely with ���bif(0) > 0. Moreover, assume that the bifur
ating steady-statesolutions exist for � > 0, that is, we assume a < 0.Transforming (1.1) into the moving frame (�; t) = (x� 
t; t), we obtainut = Du�� + 
u� + f(u; �); � 2 R; (1.5)whi
h then admits the equilibrium h(�) for (
; �) = (
0; 0). In this moving 
oordinate frame,the stationary spatially-periodi
 patterns des
ribed above be
ome spatially and temporallyperiodi
 wave trains. In other words, the Turing bifur
ation of the origin translates into aHopf bifur
ation. Algebrai
ally, this e�e
t is seen in a modi�ed dispersion relation.Setting (
; �) = (
0; 0), we linearize (1.5) about u = 0 and obtain the linear 
onstant-
oeÆ
ient operator L1w := Dw�� + 
0w� + �uf(0; 0)w:De�ne d(�; �) := det(�2D + �
0 + �uf(0; 0) � �) = d0(�� �
0; �): (1.6)Hypothesis (P1) is then equivalent to the following: assume that spe
(L1) \ iR = f�i!0gwhere !0 = 
0k0 > 0; moreover, assume that d(�; ik) = 0 for � 
lose to i!0 if, and only if,either � = ��(k) = i!0 + i
0(k � k0)� Cr(k � k0)2 +O(jk � k0j3) (1.7)for k 
lose to k0.We remark that ��d(�; �)j(i!0;ik0) 6= 0. To see this observe that ��d = ��d0 � 
0��d0 andd0(�0�(k); ik) = 0. Di�erentiation yields��d0 ��0��k + i��d0 = 0:4



Sin
e ��0��k = 0 at k = k0, we have ��d0 = 0, and therefore��d = �
0��d0 6= 0: (1.8)Next, we linearize (1.5) about the travelling wave h(�)Lw = Dw�� + 
0w� + �uf(h(�); 0)w; (1.9)for w 2 X. The following hypothesis, formulated in the moving 
oordinate frame, is ageneri
 assumption on a marginally stable pulse that undergoes an essential instabilityindu
ed by a Turing bifur
ation at the equilibrium.Hypothesis (S1)(i) � = 0 2 spe
(L) is a simple eigenvalue.(ii) (L � i!0)w = 0 has a unique (up to 
onstant 
omplex multiples) non-zero boundedsolution w
(�), and we have jw
(�)� eik0(�+'�)w�H j ! 0 as � ! �1 for appropriate
onstants '� and non-zero ve
tors w�H 2 C n .(iii) � 2 spe
(L) with Re� � 0 if, and only if, either � = �i!0 or � = 0.In [13℄, we proved the following theorem.Theorem 1. ([13℄) Assume that Hypotheses (P1), (P2), (S1) and (TW) are satis�ed.There is then a smooth fun
tion �bif(!) � 0 with �bif(!0) = �0bif(!0) = 0 and �00bif(!0) > 0su
h that, for any ! 
lose to !0 and any small � > �bif(!), the following is true. For aunique wave speed 
 = 
�(�; !) 
lose to 
0, equation (1.5) has a unique solution h�;!(�; t)with the following properties:(i) h�;!(�; t) is periodi
 in t with period 2�=!. In other words, the bifur
ating pulse istime-periodi
 in the frame moving with speed 
�. The family h�;!(�; �) is 
ontinuousin (�; !) with values in C0(R2 ;Rn) provided with the lo
al topology.(ii) We have 
�(0; !0) = 
0 and h0;!0(�; t) = h(�).(iii) There exist a 
onstant Æ > 0 and fun
tions 
�;k(x), whi
h have amplitude of the orderp�� �bif(!) and period 2�=k in x, su
h that, for 
0 < 0,jh�;!(�; t)� 
�;k�(� + 
�t+ '�)j � Ke��j�j � ! �1jh�;!(�; t)� 
�;k�(� + 
�t+ '+)j � Ke�Æ�j�j � !1:Here, '� = '�(�; !) is independent of � and t, and the spatial wavenumber is givenby k�(�; !) = !=
�(�; !). For 
0 > 0, repla
e � by ��.5
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rit �
rit �
rit
�bif < � < �stab � = �stab � > �stabFigure 2: The left pi
ture shows the (�; !)-plane. For �xed ! 
lose to !0, Turing patterns andmodulated pulses exist for � > �bif(!); they are unstable as long as �bif(!) < � < �stab(!) andstabilize at � = �stab(!). Stable modulated pulses exist inside the shaded area. The three pi
turesto the right show the spe
trum of the modulated pulses in the 
omplex plane 
lose to � = 1 fordi�erent values of �; the verti
al line symbolizes the unit 
ir
le.Note that the solutions 
�;k are stationary in time in the steady 
oordinate frame (x; t).They are pre
isely the small Turing patterns mentioned above. The modulated pulseh�;!(x � 
�t; t) 
an be thought of as a superposition of the steady Turing pattern 
�;k(x)and the primary pulse h(x� 
0t); see Figure 1. It is a relative periodi
 orbit with respe
tto translation in x. We refer to [13℄ for more details about the spatial stru
ture of themodulated pulses.We turn to the stability of the bifur
ating modulated pulses. Spe
tral stability of a modu-lated pulse with time period 2�=! means the following: the spe
trum of the linearizationof the time-2�=! map asso
iated with (1.1), 
onsidered on the spa
e X = C0unif , about themodulated pulse is stri
tly 
ontained inside the unit 
ir
le with the ex
eption of � = 1,whi
h is always in the spe
trum due to translation invarian
e. The main result is then
ontained in the following theorem; see also Figure 2.Theorem 2. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. There existsa smooth 
urve �stab(!) with �stab(!0) = �0stab(!0) = 0 and �00stab(!0) > �00bif(!0) su
h thatthe following holds: the bifur
ating modulated pulses h�;!(�; t) des
ribed in Theorem 1. arespe
trally stable if, and only if, � > �stab(!).The modulated pulses destabilize at � = �stab(!) due to an E
khaus instability of the smallasymptoti
 Turing patterns. Thus, the modulated time-periodi
 pulses are linearly stableprovided the asymptoti
 Turing pattern are linearly stable. More details on the spe
trumof the Turing patterns and the modulated pulses 
an be found in the next se
tion.This paper is organized as follows. Existen
e and stability of Turing patterns in a steadyframe is investigated in Se
tion 3.. In Se
tion 4., we formulate the spe
tral problem forthe modulated pulse as a bifur
ation problem for an appropriate ellipti
 equation. We6



then relate the spe
tra of Turing patterns in a moving and a steady frame in Se
tion 5..Finally, in Se
tion 6., we show that the spe
trum of the modulated pulses 
oin
ides withthe spe
trum of the Turing patterns with the possible ex
eption of a �nite number of stableisolated eigenvalues.2. Spe
tral stabilityLet u(�; t) be any bounded and uniformly 
ontinuous fun
tion with period 2�=! in t. Thelinearized equation about u(�; t) with (
; �) = (
�(�); �) is given byvt = Dv�� + 
v� + �uf(u(�; t); �)v:The evolution operator asso
iated with this equation on the spa
e X = C0unif(R;Rn) is thendenoted by 	u;�(t; s) for t � s � 0. Sin
e the fun
tion u(�; t) is periodi
 in t with periodT = 2�=!, we shall investigate the operatorTu;� = 	u;�(T; 0);that is, the time-T map indu
ed by the linearized equation. We say that a T -periodi
solution u(�; t) of (1.5) is spe
trally stable if the spe
trum spe
(Tu;�) of Tu;� as an operatorin X is stri
tly 
ontained in the unit ball in C with the ex
eption of � = 1. In other words,� 2 spe
(Tu;�) implies j�j < 1 or � = 1.2.1. Stability of Turing patternsConsider the linearization vt = Dvxx + �uf(
�;k(x); �)v:about the Turing patterns in the steady frame. The asso
iated time-T map is denoted byT 0
�;k;�. The same linearization in a moving frame is given byvt = Dv�� + 
v� + �uf(
�;k(� + 
t); �)v:where 
 = !=k. The asso
iated period map is then denoted by T
�;k;�. We have thefollowing result on the relation between the spe
tra of T 0 and T .Proposition 1. The spatially periodi
 patterns 
�;k are spe
trally stable in the steady frameif, and only if, they are spe
trally stable in a moving frame. More pre
isely, there is a unique(up to shifts by 2�) real-valued fun
tion �(�) su
h that, for � 
lose to one,� 2 spe
(T
�;k;�)() �ei�(�) 2 spe
(T 0
�;k;�):7



It suÆ
es therefore to investigate the stability of the spatially-periodi
 time-independentsolutions whi
h bifur
ate from the spatially homogeneous equilibrium. Though the follow-ing theorem seems to be well known, at least as far as formal 
omputations are 
on
erned,we were unable to lo
ate a mathemati
ally rigorous derivation; see however [1, 10℄.Theorem 3. Assume that Hypotheses (P1) and (P2) are met. For a generi
 nonlinearityf = f(u; �), there are 
urves �tur(k) and �e
k(k) de�ned for k 
lose to k0 su
h that(i) �tur(k0) = �e
k(k0) = �0tur(k0) = �0e
k(k0) = 0,(ii) �00e
k(k0) = 3�00tur(k0) > 0,(iii) equation (1.1) has non-trivial spatially-periodi
 time-independent patterns 
�;k(x)with spatial period 2�=k if, and only if, � > �tur(k) for � suÆ
iently small, and(iv) the patterns 
�;k are spe
trally stable if, and only if, � > �e
k(k).Corollary 1. Under the assumptions of Theorem 3., the Turing pattern with wavenumberk is nonlinearly stable in the sense of [15, Theorem 1.1℄ provided � > �e
k(k).We give the proof of Proposition 1. in Se
tion 5.. The proof of Theorem 3. is outlined inSe
tion 3..2.2. Stability of modulated pulsesThe following sharper version of Theorem 2. shows that spe
tral stability of the modulatedpulses follows from stability of the asymptoti
 Turing patterns. It also gives more detailsabout the spe
trum of Th�;!;� near � = 1.Theorem 4. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. The bifur
atingmodulated pulses h�;!(�; t) des
ribed in Theorem 1. are spe
trally stable if, and only if, theasso
iated asymptoti
 states 
�;k�(�;!) are spe
trally stable. The latter is true if� > �stab(!) = 12
20�00e
k(k0)(! � !0)2 +O(! � !0)3:Furthermore, � 2 spe
(Th�;!;�) with � in a small, possibly �-depending, neighborhood ofone if, and only if, � = �
rit(�) for some real � 
lose to zero, where �
rit is de�ned in(5.4) below. In this 
ase, there exists a fun
tion v� 2 X su
h that Th�;! ;� v� = �v�, and v�behaves like ei(k�+�)� as � ! �1 where k� = k�(�; !). If � 6= 1, the fun
tion v� is uniqueup to s
alar multiples; if � = 1, there exists in addition a unique lo
alized eigenfun
tion.8



If we parametrize the modulated pulses by the wavenumber k of the asymptoti
 patterns,the stability boundary is determined by the E
khaus 
urve �e
k(k). Hen
e, the existen
eand stability 
urves �bif(!) and �stab(!), see Theorem 1. and 4., are impli
itly de�ned by�bif(!) = �tur(!=
�(�bif(!); !)); �stab(!) = �e
k(!=
�(�stab(!); !)):Sin
e �!�bif(!0) = 0, we 
an also parametrize by k = !=
�(�; !). Hen
e, using the impli
itrelations, Taylor expansions of �bif and �stab 
an be derived.3. The spe
trum of Turing patterns in a steady frameWe study small spatially-periodi
, time-independent solutions of (1.1)ut = Duxx + f(u; �); x 2 R;under the spe
tral hypothesis (P1) for generi
 nonlinearities f(u; �). We �rst re
all the ex-isten
e proof [6℄ whi
h uses 
enter-manifold redu
tion and normal-form theory. Afterwards,we investigate the linearized equation about the small patterns.3.1. Existen
e of Turing patternsWe formulate the spe
tral assumption (P1) in terms of the dynami
s of the linear ODEux = v (3.1)vx = �D�1(�uf(0; �)u� �u):For � = 0, bounded solutions of this equation are eigenfun
tions of the operator L01 
or-responding to the eigenvalue �. Hypothesis (P1) implies that ik0 is a double eigenvalueof the matrix on the right-hand side of (3.1) with � = 0; otherwise, we 
ould solve thedispersion relation (1.7) for k as a fun
tion of �. Furthermore, there are no other purelyimaginary eigenvalues. Equivalently, we have that k20 is an eigenvalue of D�1�uf(0; 0) withgeometri
 multipli
ity one and algebrai
 multipli
ity equal to two. Let u0 be the eigenve
-tor of D�1�uf(0; 0) 
orresponding to the eigenvalue k20 and u1 the asso
iated generalizedeigenve
tor.We seek periodi
 solutions of the ordinary di�erential equationux = v (3.2)vx = �D�1f(u; �):Small bounded solutions lie on the four-dimensional 
enter manifold whi
h is tangent tothe 
riti
al eigenspa
e 
orresponding to the eigenvalues �ik0.9



Ve
tors (u; v) in the tangent spa
e of the 
enter manifold at the origin 
an be written inthe form (u; v) = (A0u0 +A1u1; B0u0 +B1u1):In these 
oordinates, the linearized equation at � = 0 isA0;x = B0; A1;x = B1; B0;x = �k20A0 �A1; B1;x = �k20A1:The linear 
hange of 
oordinatesA = �2ik20A0 + i(k0 � 1)A1 � 2k0B0 +B1; B = k0A1 � iB1transforms the linear part into 
omplex Jordan normal formAx = ik0A+B; Bx = ik0B:The re
e
tion symmetry x ! �x of (1.1) translates into reversibility of the equation onthe 
enter manifold: repla
ing x by �x and applying (A;B) ! ( �A;� �B) maps orbits intoorbits.Following [6℄, we introdu
e the invariants R = jAj2 and Q = i(A �B � �AB). After a suitablesmooth nonlinear 
hange of 
oordinates, the equation on the 
enter manifold 
an be writtenin the following simpler formAx = ik0A+B + iAO(j�j+R+ jQj) + O(jAj+ jBj)m (3.3)Bx = ik0B +A(�q1�+ q2R+ q3Q)(1 + O(j�j+R+ jQj))+iBO(j�j+R+ jQj) + O(jAj+ jBj)m;where m 2 N is arbitrarily large but �xed. We seek periodi
 solutions with pres
ribedperiod 2�=k for k 
lose to k0. For the trun
ated equation, negle
ting the higher-orderterms, these solutions are expli
itly given byA(x) = r0eikx; B(x) = i(k � k0)r0eikxwith r20 = 1q2 (q1�� (k � k0)2);where we should 
hoose � su
h that the right-hand side is positive.Using the reversibility of the equation and the fa
t that k is 
lose to k0, it is not diÆ
ultto see that, even for the full equation, there exists a bran
h of periodi
 solutions withpres
ribed period 2�=k. In general, these periodi
 solution are no longer given as relativeequilibria with respe
t to the normal-form symmetry de�ned by diagonal 
omplex rotationsa
ting upon (A;B). Indeed, the Floquet exponents of the periodi
 solutions are a doubleeigenvalue at zero, asso
iated with the trivial time shift and reversibility, respe
tively, and10



simple eigenvalues at �p2q1� 6= 0. Therefore, the periodi
 orbits are non-degenerateas reversible periodi
 solutions and hen
e persist. We refer to [6℄ for more details. Analternative existen
e proof would use Lyapunov-S
hmidt redu
tion.Summarizing, we have shown the existen
e of a family of periodi
 solutions on the 
entermanifold with expansionA(x;�; k) = r0eikx(1 + O(jk � k0j+ jq1�� (k � k
)2j));B(x;�; k) = i(k � k0)r0eikx(1 + O(jk � k0j+ jq1�� (k � k
)2j));where r20 = 1q2 (q1�� (k � k0)2):3.2. The normal-form 
oeÆ
ientsNote that the sign of the normal-form 
oeÆ
ient q2 determines the bifur
ation dire
tion ofthe Turing patterns. If we assume that the quadrati
 terms of the Taylor expansion of fat the origin vanish at � = 0, q2 
an be easily 
al
ulated by evaluating and proje
ting fonto the 
enter eigenspa
e. Indeed, the normal-form transformation a
ts like a proje
tiononto the spa
e of 
ubi
 polynomials, thereby leaving the image alias the monomials of thenormal form invariant. Assume that P 
0 is the spe
tral proje
tion of D�1�uf(0; 0) onto the
enter eigenspa
e u = A0u0 +A1u1. Furthermore, assume that f admits the expansion�P 
0D�1f(A0u0 +A1u1; 0) =�k20A0u0 �A1u0 � k20A1u1 + 3Xl=0 f0l A3�l0 Al1u0 + 3Xl=0 f1l Al0A3�l1 u1 +O(A40 +A41);then Bx = ik0B � iXl f1l Al0A3�l1 ;where A0 = i(A � �A)=(4k20) + (k0 � 1)(B + �B)=(4k30) and A1 = (B + �B)=(2k0). Hen
e,q2 = 364k�60 f13 .In order to obtain the 
oeÆ
ient q1 of the linear unfolding in �, we 
ompare the determi-nants of the linear part of the original equation and the equation in normal form. Note thatwe have to add the 
omplex 
onjugate equation, however, in order to obtain the 
orre
tresult. Sin
e the determinant is invariant under the linear 
oordinate 
hanges, we obtainq1 = � 12k20 �� det(D�1�uf(0; �)� k20)�� det(D�1(�uf(0; 0) � �)� k20) :
11



3.3. Linear stability of the Turing patternsIn the following, we assume that q1 > 0 and q2 > 0. This implies that, for � > 0, the originis linearly (neutrally) stable and nonlinearly unstable for the x-dynami
s; this 
orrespondsto the usual pi
ture of a super
riti
al bifur
ation.Consider the linearized eigenvalue equationux = v (3.4)vx = �D�1(�uf(
�; �)� �)uabout the Turing patterns 
�. In order to put (3.4) into normal form, we apply theaforementioned 
enter-manifold redu
tion together with the subsequent transformation intonormal-form to the equation ux = vvx = �D�1(f(u; �)� �u):Linearizing the resulting normal-form equation at � = 0 about the Turing pattern withperiod k, we obtainAx = ik0A+B +O(j�j(jAj + jBj)) (3.5)Bx = ik0B +A(�q1�+ 2q2r20) + �Aq2r20e2ikx + q01�A+O(j�j(jAj(j�j + jk � k0j) + jBj));where k is 
lose to k0. Here, we had to a

ount for the additional parameter � 2 C . Asa result, an additional term of the form q01� appears in the se
ond equation of (3.3); the
oeÆ
ient q01 is given by q01 = 12k20 :Note that (3.5) is the normal form of (3.4). We now explore (3.5) for various s
alings of �,k � k0 and � in order to 
apture all solutions to (3.4).In a 
o-rotating frame, we res
ale in � a

ording toq1� = �2; q01� = �2~�; k � k0 = ~k�; x = ��1�; A = �eikx ~A; B = �2eikx ~B: (3.6)Note that existen
e of periodi
 solutions is equivalent to ~k2 < 1. We obtain the perturbedlinear Ginzburg-Landau equation~A� = �i~k ~A+ ~B +O(�) (3.7)~B� = �i~k ~B + ( ~A+ ~A)(1� ~k2)� ~k2 ~A+ ~� ~A+O(�);plus the 
omplex 
onjugated equation. The error terms are small rapid os
illations withperiod 2��=k; they are linear in ( ~A; ~B). 12



A 
omplex number � is in the spe
trum if, and only if, the time-periodi
 di�erential equa-tion (3.7) has purely imaginary Floquet exponents. First, we negle
t the error terms and
al
ulate the Floquet exponents for the resulting trun
ated equation using the normal-formsymmetry. Afterwards, we 
omment on the e�e
t of the error terms.Purely imaginary Floquet exponents 
orrespond to purely imaginary eigenvalues of thematrix M(~�; ~k) = 0BBBB� �i~k 0 1 00 i~k 0 1~�+ 1� 2~k2 1� ~k2 �i~k 01� ~k2 ~�+ 1� 2~k2 0 i~k 1CCCCA :Cal
ulating the 
hara
teristi
 polynomial, we obtainP (�; ~�; ~k) = det(M(~�; ~k)� i� id) = �4 � 2(3~k2 � ~�� 1)�2 + ~�2 + 2~�(1� ~k2):Solutions of P (�; ~�; ~k) = 0 with � 2 R do not exist for non-real �. If ~k2 < 1, whi
h isne
essary for existen
e of the Turing patterns, and ~� > 0, the polynomial P is positiveeverywhere if, and only if, ~k2 < 13 .For ~k2 > 13 , zeros appear for real �. This bifur
ation is referred to as the E
khaus insta-bility [2℄. Furthermore, for any ~k2 < 13 , � = 0 is possible only if � = 0 and we obtain theasymptoti
 dispersion relation~�
rit(�) = �1� 3~k21� ~k2 �2 +O(�4): (3.8)Similarly, we obtain a se
ond 
urve of eigenvalues given by~�stab(�) = �2(1� ~k2)� 5 + 2~k22(1 � ~k2)�2 +O(�4): (3.9)Standard averaging implies stability of the Floquet exponents under time-periodi
 smallperturbations, i.e., for (3.7) with � small but non-zero; see, for instan
e, [4℄. Floquetexponents are therefore given as zeros of an �-dependent equation P̂ (�; ~�; ~k; �) = 0 su
hthat P̂ = P at � = 0.We 
laim that eigenvalues lie on two 
urves ~�
rit(�) and ~�stab(�) for � 
lose to zero, evenfor � > 0. Moreover, ��~�
rit = 0 at � = 0. This 
laim then proves stability for ~k2 < 13 .The representation as 
urves follows from the impli
it fun
tion theorem sin
e we have�P�~� ���(�;~�)=(�;~�(�)) 6= 0for � small and ~k2 < 1 along both 
urves ~�
rit and ~�stab. Furthermore,�~��� = h�P�~� i�1 �P�� :13



The se
ond fa
tor is evaluated at ~� = 0 and 
orresponds to the original equation without �;zeros 
orrespond to purely imaginary Floquet exponents. But, due to reversibility, whi
his preserved under the perturbation, � = 0 is always double as an exponent and therefore��P j(~�;�)=0 = 0.Finally, we remark that it indeed suÆ
es to 
onsider ~� = O(1) in �. This 
an be seen byres
aling with respe
t to �: let k � k0 = ~kpj�j and repla
e � by pj�j in the s
aling (3.6).Substituting this s
aling into (3.5), dividing by j�j and setting j�j = 0, it 
an be easily seenthat the resulting equation has only stable eigenvalues 
orresponding to arg � = �1 for anyvalue of ~k. We omit the details.Nonlinear stability as asserted in Corollary 1. is a 
onsequen
e of [15, Theorem 1.1℄; seealso [16℄. The assumptions in [15℄ are met due to the shape of the 
riti
al eigenvalue 
urve(3.8).4. Ellipti
 
hara
terization of the spe
trumIn this se
tion, we 
onsider the eigenvalue problem for the operators Th0;0 and Th�;� onthe spa
e X = C0unif(R;Rn). We write h� for h�;! whenever the dependen
e on ! is notimportant. Similarly, 
�(�) denotes the asso
iated wave speed. Finally, T = 2�=! is thetemporal period of the modulated pulse h�;!.For � = 0, the pulse h0(�; t) = h0(�) is independent of t. The linearization about h0(�) isgiven by vt = Dv�� + 
0v� + �uf(h0(�); 0)v:Using the de�nition L = D��� + 
0�� + �uf(h0(�); 0);we have Th0;0 = eLT :It follows from the Spe
tral Theorem and Hypothesis (S1) thatspe
(Th0;0) \ f� 2 C ; j�j � 1g = f� = 1g:In other words, the spe
trum of Th0;0 tou
hes the unit 
ir
le at � = 1 with the rest ofthe spe
trum being stri
tly 
ontained inside the unit 
ir
le. Sin
e the spe
trum of Th�;�is upper semi-
ontinuous with respe
t to �, it suÆ
es to 
onsider a small neighborhood of� = 1 to dete
t possible instabilities in the spe
trum of Th�;�.A 
omplex number � is in the resolvent set of Th�;� if, and only if, the operator (Th�;���)has a bounded inverse on X. The latter is true if, for any g 2 X, the linearizationvt = Dv�� + 
�(�)v� + �uf(h�(�; t); �)v14



about h� has a unique solution v(�; t) su
h thatv(�; T ) � �v(�; 0) = g(x)and jv(�; 0)jX � C� jgjX . In order to study the spe
trum of Th�;� near � = 1, we use thetransformation w(�; t) = e��tv(�; t):In the variable w(�; t), the linearization about h� is given bywt = Dw�� + 
�(�)w� + �uf(h�(�; t); �)w � �w: (4.1)Therefore, a 
omplex number � = e�T is in the resolvent set of Th�;� if, and only if, for anyg 2 X, equation (4.1) has a unique solution w(�; t) su
h thatw(�; T )� w(�; 0) = e��T g(x)and jw(�; 0)jX � C� jgjX for some 
onstant C�.In parti
ular, we see that � = e�T is an eigenvalue of Th�;� if, and only if, the eigenvalueproblem wt = Dw�� + 
�(�)w� + �uf(h�(�; t); �)w � �w (4.2)w(�; T ) = w(�; 0)has a bounded solution w(�; t). We 
ast this equation as an ellipti
 problem in the spatialvariable �. Using the notation W = (w;w�), we obtainW� =  0 idD�1(�t � �uf(h�(�; t); �) + �) D�1
�(�) !W = Ah�;�;�(�)W: (4.3)Here, W (�) 2 Y with Y = H 12 (S1) � L2(S1) where S1 = [0; T ℄=�; see [13, Se
tion 3.1℄.We say that W (�) is a solution of (4.3) if W (�) is di�erentiable in � as a fun
tion into Y ,
ontinuous with values in H1(S1)�H 12 (S1) and satis�es (4.3) in Y . Note that the equationw(�; T ) = w(�; 0)has been taken into a

ount by the 
hoi
e of the Hilbert spa
e Y .For future referen
e, we de�neAu;�;�(�) :=  0 idD�1(�t � �uf(u(�; t); �) + �) D�1
�(�) ! (4.4)for any fun
tion u(�; t) whi
h has period T = 2�=! in t.Note that the initial-value problem for (4.3) is not well-posed on Y . Under 
ertain 
ir-
umstan
es, however, (4.3) 
an be solved in forward or ba
kward �-dire
tion for initial15



values in 
ertain �-depending subspa
es of Y . We say that (4.3) has an exponential di-
hotomy on R+ if there are proje
tions P s(�) de�ned for � � 0 with the following property:for any W0 2 R(P s(0)), there exists a unique solution W (�) of (4.3) whi
h is de�ned for� > 0 su
h that W (0) = W0. Moreover, W (�) tends to zero exponentially as � ! 1, andW (�) 2 R(P s(�)) for all � > 0. Similarly, for anyW0 2 N(P s(�0)), there is a unique solutionW (�) of (4.3) whi
h is de�ned for 0 < � < �0 su
h that W (�0) = W0; furthermore, W (�)de
ays exponentially for de
reasing 0 � � � �0. In other words, for � � 0, there are two
omplementary subspa
es, R(P s(�)) and N(P s(�)), su
h that we 
an solve the ellipti
 equa-tion forward and ba
kward in � for initial values in R(P s(�)) and N(P s(�)), respe
tively.Exponential di
hotomies on R� are de�ned analogously; solutions in R(P u(0)) de
ay ex-ponentially as � ! �1. For ellipti
 equations, the existen
e and roughness of di
hotomieshas re
ently been established [12℄. The relation between (4.2) and (4.3) is as follows: thetime-T map Th�;� has an isolated eigenvalue � = e�T 
lose to one whenever the ellipti
equation (4.3) has a bounded solution. In fa
t, we have the following lemma.Lemma 1. The 
omplex number � = exp(�T ) = exp(2��=!) is in the spe
trum of theoperator Th�;� for � 
lose to one if, and only if, one of the following two 
onditions is met:(i) The equation W� = A
�;�;�(�)W about the asymptoti
 Turing pattern does not havean exponential di
hotomy on R.(ii) The equation W� = Ah�;�;�(�)W about the modulated pulse has exponential di
ho-tomies P s(�) and P u(�) on R+ and R� , respe
tively, but not on R; i.e. we haveR(P s(0)) \R(P u(0)) 6= f0g or R(P s(0)) + R(P u(0)) 6= Y .Below, we shall see that if (i) is not met so that W� = A
�;�;�(�)W has an exponentialdi
hotomy on R, then the equation W� = Ah�;�;�(�)W has exponential di
hotomies on R+and R� .Proof. First, suppose that (i) and (ii) are not satis�ed for some � 
lose to one. We shallprove that � is in the resolvent set. Sin
e (i) is not met, the equationW� = A
�;�;�(�)W (4.5)about the Turing pattern has exponential di
hotomies on R+ and R� . Using [12, Theo-rem 1℄, these di
hotomies 
an be extended to exponential di
hotomies P s(�) and P u(�),de�ned for � � 0 and � � 0, respe
tively, of the equationW� = Ah�;�;�(�)W: (4.6)In parti
ular, if (i) is not met, then (4.6) has exponential di
hotomies on R+ and R� . Sin
e(ii) is not satis�ed by assumption, (4.6) has an exponential di
hotomy on the real line R16



in the Bana
h spa
e Y . Therefore, for any ĝ(�) 2 C0unif(R; L2 ([0; T ℄)), we obtain a mildsolution to the ellipti
 equationdd�W = Ah�;�;�(�)W +� 0ĝ(�; t)� (4.7)given by the standard variation-of-
onstant formulaW (�) = Z ��1�u(�; �)Ĝ(�) d� + Z �1 �s(�; �)Ĝ(�) d�with Ĝ(�) = (0; ĝ(�; t)). Here, �s(�; �) and �u(�; �) denote the evolutions of (4.6) on thespa
es R(P s(�)) and R(P u(�)), respe
tively; see [12℄. It follows thatW 2 C0(R;H �+12 �H �2 )for any 0 < � < 1; the proof uses the regularity properties in [5, Theorem 7.1.3℄ whi
h alsohold for �s(�; �) and �u(�; �) due to [12, Theorem 3℄. Hen
e, the mild solutionW = (w;w�)satis�es w 2 C0(R; C0(S1)) andjw(�; 0)jC0 � jwjC0(R;C0(S1)) � Const: jĝjC0(R;L2([0;T ℄)): (4.8)After this preparations, we return to the paraboli
 equation. We have to show that (Th�;���) is invertible, that is, we have to solve the equationvt = Dv�� + 
v� + �uf(h�(�; t); �)v � �vwith boundary 
onditions v(�; T ) � v(�; 0) = e��T g(�). First, we solve~gt = D~g�� + 
~g� + �uf(h�(�; t); �)~g � �~g �m~g (4.9)~g(�; T )� ~g(�; 0) = e��T g(�) (4.10)for some large 
onstant m > 0. Note that the time-T map of (4.9) is a 
ontra
tion providedm is suÆ
iently large. We therefore obtain a solution ~g to (4.9-4.10) whi
h satis�es ~g(�; 0) 2C0unif(R) and ~g(�; �) 2 C0unif(R; L2 (S1)). In fa
t, due to regularity properties of paraboli
equations, we have ~g(�; �) 2 Ck(R; Ck (0; T )) for any �nite k. Next, we set v = ~g + w, andseek w as a solution towt = Dw�� + 
w� + �uf(h�(�; t); �)w � �w +m~g(�; t); w(�; T ) = w(�; 0): (4.11)Substituting ĝ = m~g into (4.7), we obtain a mild solution ~w 2 C0(R; C0(S1)) of (4.7).We 
laim that ~w is a strong solution of (4.11) whi
h, using the estimate (4.8), wouldprove that (Th�;� � �) is invertible. In order to prove the 
laim, it suÆ
es to show that~w is a mild solution of (4.11) sin
e it is then automati
ally a strong solution owing to~g(�; �) 2 Ck(R; Ck (0; T )); see [5℄. By de�nition, mild solutions to (4.11) satisfy the integralequation w(t) = 	h�;�;�(t; 0)w(0) +mZ t0 	h�;�;�(t; s)~g(�; s) ds; (4.12)17



where 	h�;�;�(t; s) denotes the evolution of (4.9) with m = 0. We approximate ~g inC0unif(R; L2 (S1)) by a sequen
e of fun
tions ~gn 2 Ck(R; Hk (S1)), substitute ~gn into (4.7)and denote the resulting mild solution of (4.7) by ~wn. Sin
e ~gn is smooth, it follows that~wn 2 Ck�1(R; Hk�1(S1)); hen
e, it is a strong solution of (4.11) with ~g repla
ed by ~gn. Inparti
ular, ~wn satis�es (4.12), with ~g repla
ed by ~gn, for any n. Moreover, ~wn 
onvergesto ~w in C0unif(R; C0(S1)) as n ! 1 sin
e ~gn 
onverges to ~g in C0unif(R; L2 (S1)). Thus, ~wsatis�es (4.12), whi
h proves the 
laim.It remains to show that � is in the spe
trum if either (i) or (ii) is met.First, we assume that (i) is satis�ed. Thus, suppose that (4.5) does not have an exponentialdi
hotomy. For � = 0, we have 
� = 0, and (4.5) is given byW� = A0;0;�W =  0 idD�1(�t � �uf(0; 0) + �) D�1
0 !W:The operator A0;0;0 has two eigenvalues �ik0 on the imaginary axis, while the rest of itsspe
trum is bounded away from the imaginary axis. Therefore, the operator A0;0;� has twoeigenvalues 
lose to the imaginary axis for � 
lose to zero with the rest of its spe
trumuniformly bounded away from the imaginary axis. On a

ount of [13℄, there exists atri
hotomy, that is, proje
tions Qs0;�, Q
0;� and Qu0;� su
h that the equationW� = A0;0;�W
an be solved for initial values W (0) 2 R(Qs0;�), W (0) 2 R(Q
0;�) and W (0) 2 R(Qu0;�) onthe intervals R+ , R and R� , respe
tively. Moreover, R(Qs0;�) � R(Q
0;�) � R(Qu0;�) = Y .Initial values in R(Qs0;�) or R(Qu0;�) lead to solutions whi
h de
ay exponentially with auniform exponential rate for � !1 or � ! �1, respe
tively. On the other hand, solutionswith initial values in R(Q
0;�) may not de
ay at all. Using [12, Theorem 1℄, we 
on
ludethat the equation W� = A
�;�;�W; (4.13)admits proje
tions Qs�;�(�), Q
�;�(�) and Qu�;�(�) de�ned for � suÆ
iently 
lose to zero and� 2 R+ , � 2 R and � 2 R� , respe
tively, whi
h have the same properties as the proje
tionsfor � = 0 des
ribed above. Furthermore, the proje
tions are 2�=k-periodi
 in �. Therefore,we may 
onsider the 2� 2 matrixB�;� : R(Q
�;�(0)) �! R(Q
�;�(2�k )) = R(Q
�;�(0))W (0) 7�! W (2�k ): (4.14)Note that B�;� is 
ontinuous in � and analyti
 in �. Due to our assumption of nonexisten
eof di
hotomies, we 
on
lude that B�;� has spe
trum on the unit 
ir
le. Thus, there is abounded solution W = (w;w�) of (4.13); sin
e f is smooth, we have W 2 C1(H3 � H 52 )due to the regularizing properties proved in [12℄. We 
on
lude that w(�; 0) 2 X is a strong18



solution of (4.2), with h� repla
ed by 
�, and � is in the spe
trum of the small Turingpattern. Finally, it follows from [14, Lemma 6.3℄ and its proof that � is then also in thespe
trum of the modulated pulse. Note that the latter is a relative periodi
 orbit and thearguments given in [14℄ readily apply.Finally, assume that (ii) is met; it follows that we have R(P s(0)) \ R(P u(0)) 6= f0g orR(P s(0)) + R(P u(0)) 6= Y . In the �rst 
ase, any non-zero element in the interse
tionR(P s(0)) \ R(P u(0)) generates an eigenfun
tion of Th�;�; see the previous paragraph. Itremains to 
onsider the 
ase where R(P s(0)) + R(P u(0)) 6= Y . In this 
ase, we apply thearguments given above to the adjoint operator T �h�;� of Th�;� de�ned on the dual spa
eX�. The asso
iated ellipti
 problem is then still de�ned on Y sin
e Y is a Hilbert spa
e.The exponential di
hotomies of the adjoint ellipti
 problem are the adjoints P s(�)� andP u(�)� of the proje
tions P s(�) and P u(�); see [12, 13℄. Hen
e, their ranges interse
t,R(P s(0)�) \ R(P u(0)�) 6= f0g, and we obtain an eigenfun
tion of the adjoint operatorT �h�;�. Sin
e Th�;� is bounded in X, its spe
trum is equal to the spe
trum of its adjoint.This proves the lemma.Remark 2. It follows from the proof of Lemma 1. that � = exp(�T ) is in the spe
trum ofthe Turing pattern 
� for � 
lose to zero if, and only if, the equation W� = A
�;�;�(�)Wdoes not have an exponential di
hotomy.5. The spe
trum of the Turing patterns in the moving frame5.1. Spe
tra in moving versus steady-state 
oordinatesIn this se
tion, we prove Proposition 1. { and a bit more. Key to the proof is Floquettheory. As we shall see, the fun
tion �(�) is 
hara
terized by Floquet exponents.We 
onsider small spatially-periodi
 steady-state solutions 
�;k(x) of (1.1)ut = Duxx + f(u; �):The fun
tions 
�;k(� + 
t) then satisfyut = Du�� + 
u� + f(u; �);they have temporal period T = 2�=
k. In this se
tion, we �x the wavenumber k and omitthe 
orresponding index k.Linearizing the nonlinear PDE (1.1) about a Turing pattern, we obtain the linear equationvt = Dvxx + �uf(
�(x); �)v (5.1)in a steady 
oordinate frame andwt = Dw�� + 
w� + �uf(
�(� + 
t); �)w (5.2)19



in the moving frame. We 
ompare the spe
tra of the time-T maps T 0
�;� and T
�;� of thesetwo equations. Sin
e the equation in the steady frame is autonomous and the generatorL0 of the semigroup is se
torial, the Spe
tral Mapping theorem holds, and the spe
trum ofthe time-T map T 0
�;� = eL0T is determined by L0:spe
(eL0T ) = espe
(L0)T :First suppose that � 2 spe
(L0); we shall prove that e�T+i� is in the spe
trum of the time-Tmap T
�;� in the moving frame for a suitable number � 2 R. It follows from Floquet theorythat, for any su
h eigenvalue � of L0, there exist a � 2 R and a bounded solution v of�v = Dvxx + �uf(
�(x); �)vsu
h that v(x+2�=k) = ei�v(x). Let w(�; t) = v(�+ 
t) exp(�t): A straightforward 
ompu-tation shows that w satis�es the linearized equation (5.1) in the moving 
oordinate frameand w(�; T ) = v(� + 
T )e�T = v(�)e�T+i� = w(�; 0)e�T+i�:Therefore, w is an eigenfun
tion to the eigenvalue exp(�T + i�), and � = �.Conversely, suppose that e�T belong to the spe
trum of T
�;�. Due to Lemma 1. andRemark 2., we know that there exists an eigenfun
tion whi
h satis�eswt = Dw�� + 
w� + �uf(
�(� + 
t); �)w � �wwith boundary 
onditions w(x; T ) = w(x; 0). Exploiting Floquet theory on R(Q
�;�(0)), 
.f.(4.14), we see that w(�+2�=k; t) = w(�; t) exp(i�) for some � 2 R. Let ~w(x; t) := w(x�
t; t),whi
h then satis�es ~wt = D ~wxx + �uf(
�(x); �) ~w � � ~wand ~w(x; T ) = w(x� 
T; T ) = w(x� 
T; 0) = e�i�w(x; 0) = e�i� ~w(x; 0);where we used T = 2�=
k. Hen
e, exp(�t) ~w(x; t) is the desired eigenfun
tion of exp(L0T ).This proves Proposition 1..5.2. The dispersion relation in the moving frameIn Se
tion 3., we derived the dispersion relations�
rit(�) = �q1�(q1�� 3(k � k0)2)q01(q1�� (k � k0)2) �2 +O(�2(j�j 32 + �2))�stab(�) = � 2q01 (q1�� (k � k0)2)� q1�(5q1�+ 2(k � k0)2)2q01(q1�� (k � k0)2) �2 (5.3)+O(j�j 32 + �2(j�j 32 + �2))20
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r � 2 
l � 2 

 � 2 
rFigure 3: The left pi
ture shows the regions 
l, 

, and 
r in the 
omplex plane; the three pi
turesto the right show the 
riti
al Floquet multipliers for � in the aforementioned regions in the 
asewhere 
0 < 0. The verti
al axis symbolizes the unit 
ir
le.for the essential spe
trum of the Turing patterns 
�;k in the steady 
oordinate frame; see(3.8) and (3.9). As before, k is the wavenumber of the Turing pattern 
�;k. Using theresults of the last se
tion, we obtain the dispersion relations�
rit(�) = exp�2��
rit(�)
k + i�� (5.4)�stab(�) = exp�2��stab(�)
k + i��of the Turing patterns 
�;k in a frame moving with speed 
.We 
an therefore distinguish between three di�erent regions asso
iated with the spe
trumof the Turing patterns in the 
omplex plane near � = 1. The region �r is the 
onne
ted
omponents of the spe
trum to the right of the 
urve �
rit(�); The set �
 denotes the
onne
ted 
omponent of the area between the 
urves �
rit(�) and �stab(�); and �nally, �l isthe 
onne
ted 
omponent to the left of the 
urve �stab(�). Using the relation � = exp(�T ),we see that the sets �j for j = r; 
; l 
orrespond to sets 
j for the Floquet exponents �with � near zero where j = r; 
; l; see Figure 3. In the following, we use these latter sets.A

ording to Remark 2., the ellipti
 equationW� = A
�;�;�(�)W (5.5)has no Floquet multipliers on the unit 
ir
le for � in any of the regions 
r, 

 or 
l. Itfollows from the proof of Lemma 1. that the redu
ed operator B�;�, see (4.14), has twoFloquet multipliers 
lose to one for any � 
lose to zero. The next lemma gives the lo
ationof these 
riti
al multipliers of (5.5) for any � in one of the three regions de�ned above.Lemma 1. Suppose that 
0 < 0. The two 
riti
al multipliers of (5.5) are then both insidethe unit 
ir
le for � 2 
r; if � 2 

, then one of the 
riti
al multipliers is inside and theother one is outside the unit 
ir
le; �nally, if � 2 
l, then both multipliers are outside theunit 
ir
le. See Figure 3.If 
0 > 0, we 
hange � ! �� and 
an then apply the lemma.21



Proof. Consider the linearized operator A0;�;� about the homogeneous trivial equilibrium;see (4.4). For � = 0 and � = 0, it has pre
isely two eigenvalues given by � = �ik0 on theimaginary axis. These eigenvalues are simple zeros of the dispersion relation d(i!0; �) = 0.Hen
e, they persist as zeros � = �(�) for non-zero �, and we have��� = ���d��d = � ��d��d0 ��d0��d = ���d��d ��d0��d = �C1
0 =: ~C1;where we used (1.8) and the de�nitionC1 := ���d��d > 0;the 
onstant C1 is positive due to Hypothesis (P2); see [13, Se
t. 3.4℄. Therefore, ~C1 > 0sin
e 
0 < 0 by assumption. In [13℄, we applied the ellipti
 
enter-manifold theory developedin [9℄ and redu
ed the ellipti
 system�w1w2�� = � w2D�1(�tw1 + 
w2 � �uf(w1; �))�near (w1; w2) = 0 to a two-dimensional 
enter manifold. The ve
tor �eld on the 
entermanifold is given by U� = ( ~C1�+ ik0)U � C2jU j2Uupon omitting higher-order terms. The small Turing patterns are of the formU(�) =s ~C1�C2 ei(k0�+')for arbitrary ' 2 R, and the linearization about them is given byV� = (� ~C1�+ ik0)V � ~C1�e2i(k0�+') �V :Next, we a

ount for the parameter � in the linearization. For the linearization at U = 0,we obtain ��� = ���d��d = 1
0sin
e the dependen
e on � and � is the same. Hen
e, we getV� = ( 1
0�� ~C1�+ ik0)V � ~C1�e2i(k0�+') �V :for the linearization about the wave train. Upon introdu
ing V = ei(k0�+') ~V and droppingthe tilde, we obtain the systemV� = ( 1
0�� ~C1�)V � ~C1� �V :Separating into real and imaginary part, and using ~C1 = �C1=
0, we getdd� Vr = 1
0 (�+ 2C1�)Vr; dd� Vi = 1
0�Vi:22



Re
all that C1 > 0 and 
0 < 0. The 
ontinuous spe
trum 
orresponds to the lines Re� = 0and Re� = �2C1�. The Floquet exponents are negative for � > 0 and positive for� < �2C1�. For �2C1� < � < 0, one exponent is positive, the other one is negative.Using the results obtained in Se
tion 3.3., it is straightforward to show that the situationdoes not 
hange if the higher-order terms are taken into a

ount.6. Absen
e of point spe
trumIn this se
tion, we 
onsider the spe
trum of the modulated pulses. The spe
trum of theTuring patterns near � = 1 is 
ontained in the two 
urves �
rit and �stab. It follows from [14,Lemma 6.3℄ and its proof that any point in the spe
trum of the Turing patterns is also inthe spe
trum of the modulated pulse. Here, we prove that the regions in the 
omplex planebounded by the essential spe
trum of the Turing patterns are not �lled with spe
trum.Furthermore, it is shown that there are no isolated unstable eigenvalues near � = 1 in thespe
trum of the modulated pulses. Throughout this se
tion, we assume that 
0 < 0. The
ase where 
0 > 0 
an be redu
ed to 
0 < 0 by setting � ! ��.6.1. Floquet exponents in the set 
r.Let � 2 
r. Hen
e, due to Lemma 1., the operator A
�;�;� has its 
riti
al multipliers insidethe unit 
ir
le. We have to identify any points � 2 �r in the spe
trum of Th�;�. First,we prove that any su
h � is an isolated eigenvalue. We then use the ellipti
 formulationto dete
t isolated eigenvalues. Note that su
h eigenvalues 
ould pop out of the essentialspe
trum at � = 0; we refer to [7℄ for travelling-wave solutions to the Ginzburg-Landauequation whose spe
trum exhibit this behavior.Lemma 1. If � 2 
r 
orresponds to an element � in the spe
trum of the modulated pulse,then � is an isolated eigenvalue (with �nite multipli
ity).Proof. Consider the linearized rea
tion-di�usion equationvt = Dv�� + 
�(�)v� + �uf(~
�(�; t); �)v;where ~
�(�; t) := ( 
�(� + 
�t+ '�) for � � 0
�(� + 
�t+ '+) for � > 0:Sin
e h�(�; t) 
onverges to ~
�(�; t) as � ! �1 uniformly in t, see Theorem 1., it follows asin [5, Ex
. A.2, p. 137℄ that�uf(h�(�; t); �) � �uf(~
�(�; t); �) : C2unif �! C0unif23



is 
ompa
t. Following the arguments in [14, Lemma 6.2℄, we see that the di�eren
e ofthe operators T~
�;� and Th�;� is 
ompa
t. We 
an then apply [5, Theorem A.1℄; as a
onsequen
e, any 
onne
ted 
omponent of the resolvent set of T~
�;� 
onsists either entirelyof spe
trum of Th�;� or else 
onsists of points in the resolvent set of Th�;� with the possibleex
eption of at most �nitely many isolated eigenvalues with �nite multipli
ity.Next, we 
al
ulate the spe
trum of T~
�;�. Consider the eigenvalue problemW� = A
�;�;�(�)Wfor the small patterns. This equation admits a tri
hotomy given by proje
tions Qs�;�(�),Q
�;�(�) and Qu�;�(�) de�ned for � suÆ
iently 
lose to zero and � 2 R+ , � 2 R and � 2 R� ,respe
tively. Note that the eigenvalues of the matrixB�;� : R(Q
�;�(0)) �! R(Q
�;�(2�k )) = R(Q
�;�(0))W (0) 7�! W (2�k )are stri
tly 
ontained inside the unit 
ir
le by Lemma 1.. We 
on
lude that solutions withinitial values in R(Q
�;�(�)) de
ay for � !1. Therefore, for � 2 
r, the equationW� = A
�;�;�(�)Whas an exponential di
hotomy given by the proje
tions Q
s�;�(�) := Q
�;�(�) + Qs�;�(�) andQu�;�(�) de�ned for � 2 R+ and � 2 R� , respe
tively. These proje
tions are 
lose in norm,uniformly in �, to the proje
tions Q
s0;0 and Qu0;0 for the equationW� = A0;0;0W:Furthermore, on a

ount of [13, Lemma 3.4℄, the proje
tions Q
s0;0 and Qu0;0 satisfyR(Q
s0;0)�R(Qu0;0) = Y:Hen
e, the proje
tions Q
s�;�(�) and Qu�;�(�) satisfyR(Q
s�;�(�))�R(Qu�;�(� + ')) = Yfor arbitrary � and '. Using the arguments in the proof of Lemma 1., we 
on
lude that the
onne
ted set 
r is 
ontained in the resolvent set of T~
�;�. Re
alling the dis
ussion above,we 
on
lude that 
r 
onsists either entirely of spe
trum of Th�;� or else 
onsists of pointsin the resolvent set of Th�;� together with at most �nitely many isolated eigenvalues. The�rst possibility, however, has been ex
luded in Se
tion 4.. This proves the lemma.It suÆ
es therefore to 
al
ulate isolated eigenvalues. First, we show that the eigenvalueproblem for the modulated pulse in the ellipti
 formulation 
an be 
onsidered as a regularperturbation of the eigenvalue problem for the original pulse at � = 0. We then investigatethe eigenvalue problem for the original pulse and 
arry out the perturbation analysis.24



The relevant eigenvalue problem for the modulated wave 
ast as an ellipti
 equation isgiven by W� = Ah�;�;�(�)Wwhere � 2 
r. We 
laim that this equation has exponential di
hotomies on R+ and R�given by proje
tions P 
s�;�(�) and P u�;�(�) de�ned for � 2 R+ and � 2 R� , respe
tively.Indeed, the limiting problem W� = A
�;�;�(�)Whas an exponential di
hotomy, see Lemma 1. and the proof of Lemma 1., and the 
laimfollows from [12℄. Isolated eigenvalues 
orrespond to values of � su
h thatY r�;� := R(P 
s�;�(0)) \R(P u�;�(0)) 6= f0g: (6.1)We are interested in obtaining information from the limit �! 0.Noti
e that the proje
tions P 
s�;�(�) and P u�;�(�) are a
tually de�ned for all � near zero, andnot just for � 2 
r. Indeed, this follows from [12℄ by seeking those initial values leading tosolutions of W� = Ah�;�;�(�)Wwhi
h grow not faster than e�� as � ! 1 for some small but �xed � > 0 and whi
hde
ay exponentially with rate larger than � for � ! �1. Moreover, as � ! 0, it theproje
tions P 
s�;�(�) and P u�;�(�) 
onverge to proje
tions P 
s0;�(�) and P u�;�(�) whi
h 
onstitutedi
hotomies for the eigenvalue problemW� = Ah0;0;�(�)W (6.2)of the original travelling pulse h0 at � = 0. In fa
t, solutions to (6.2) asso
iated with initialvalues in R(P 
s0;�(0)) exist for � � 0 and grow not faster that e�� as � !1 for some smallbut �xed � > 0; similarly, solutions with initial values in R(P u0;�(0)) exist for � � 0 andde
ay exponentially with rate larger than � for � ! �1.Upon setting � = 0 in (6.1), we obtain the limiting subspa
eY r0;� = R(P 
s0;�(0)) \R(P u0;�(0))whi
h we have to 
al
ulate. It follows from [13, Lemma 3.4℄ thatY r0;� = spanfW0(0)g;where W0(�) = �h0(�); dd�h0(�)�:Moreover, on a

ount of [13, Lemma 3.8℄, the spa
es R(P 
s0;�(0)) and R(P u0;�(0)) 
ross trans-versely upon perturbing to � 6= 0. Sin
e the proje
tions depend 
ontinuously upon � and25



are smooth with respe
t to �, we 
an 
on
lude that, for any � > 0 suÆ
iently small, thereis a unique value � = �(�) 
lose to zero su
h thatR(P 
s�;�(0)) \R(P u�;�(0)) 6= f0g:Hen
e, there is the possibility of an instability o

urring if �(�) 2 
r. We show that infa
t �(�) = 0 for all �.For � > 0, two bounded solutions ofvt = Dv�� + 
�(�)v� + �uf(h�(�; t); �)vare given by v0(�; t) = dd� h�(�; t); v1(�; t) = ddth�(�; t):This follows readily by di�erentiating the equationut = Du�� + 
�(�)u� + f(u; �);whi
h is satis�ed by u(�; t) = h�(�; t), with respe
t to � and t. These solutions 
orrespondto the translation symmetries in � and t. Note that we have v1(�; t) = �th0(�; t) = 0 at� = 0 sin
e h0(�) does not depend on t.On a

ount of Theorem 1., we havejh�(�; t)� 
�(� + 
t+ '�)j � Ke��j�j for � ! �1jh�(�; t)� 
�(� + 
t+ '+)j � Ke�Æ�j�j for � !1:Hen
e, upon using the di�erential equation and the regularity properties of the solutions,we see that v0(�; t)! 
0�(� + 
t+ '�); v1(�; t)! 

0�(� + 
t+ '�)as � ! �1 exponentially in � and uniformly in t with rates as above. Therefore, we
on
lude that jv1(�; �) � 
v0(�; �)j � ( Ke��j�j for � ! �1Ke�Æ�j�j for � !1:Note that the fun
tion vlo
 = v1�
v0 is not equal to zero; at � = 0, we have v0(0; t) � h00(0)while v1(0; t) is of the order p�.Thus, the fun
tion Wlo
(�) = �vlo
(�; �); dd� vlo
(�; �)� 2 Yasso
iated with v(�; t) 
onverges to zero exponentially as � ! �1 andspanfWlo
(0)g = R(P 
s�;0(0)) \R(P u�;0(0)); (6.3)26



leading to a non-trivial interse
tion. Hen
e, we obtain �(�) = 0 for all � 
lose to zero.The lo
alized eigenfun
tion Wlo
(�) has the following interpretation: 
onsider the rea
tion-di�usion equation in a frame whi
h moves with the velo
ity of the asymptoti
 Turingpatterns. In this frame, the Turing patterns are stationary. The modulated pulse evolvesin time as follows: it 
onsists of a lo
alized pulse that resembles the original travellingwave and moves through the Turing pattern with a 
ertain velo
ity. The derivative of themodulated pulse with respe
t to time is then lo
alized and 
orresponds to the eigenfun
tionvlo
(�; t). In formulas, we have that h�(x�
t; t) 
onverges to the time-independent patterns
�(x + '�) as x ! �1; thus, the time derivative of h�(x � 
t; t) 
onverges to zero asx! �1.Summarizing, we have proved that there are no isolated eigenvalues in the region �r, thatis, in the 
onne
ted 
omponent of the resolvent set to the right of the essential spe
trum.6.2. Floquet exponents in the set 

.In this se
tion, we take � 2 

. We shall show that there exists an � 2 

 su
h that� = exp(�T ) 2 �
 is not in the spe
trum of Th�;�. The strategy is similar to the onepursued in the previous se
tion. One additional diÆ
ulty is that the eigenvalue problem isnot a regular perturbation of the � = 0 limit sin
e the modulated pulses do not 
onvergeto zero with uniform exponential rate.Consider the eigenvalue equation W� = A
�;�;�(�)Wabout the Turing patterns. Due to Lemma 1., for � 2 

 and � > 0, the operator A
�;�;�has one of its 
riti
al multipliers inside and the other one outside the unit 
ir
le. We denotethe asso
iated stable and unstable 
riti
al Floquet exponents by �s�;� and �u�;�, respe
tively.It also follows from Lemma 1. that Re �s�;0 < 0 and �u�;0 = 0 for any � > 0. In parti
ular,there exist real numbers ~�s�;� < 0 and ~�u�;� su
h thatRe �s�;� < ~�s�;� < ~�u�;� < Re �u�;�for all � > 0 and any � in a small possibly �-dependent neighborhood of zero. For su
hvalues of (�; �), we 
an then 
onstru
t exponential di
hotomies ~Qs�;�(�) and ~Qu�;�(�) de�nedfor � 2 R+ and � 2 R� , respe
tively, su
h that the following is true: solutions with initialvalues in R( ~Qs�;�(0)) exist for positive � and de
ay exponentially to zero with rate ~�s�;� as� ! 1; analogously, solutions with initial values in R( ~Qu�;�(0)) exist for negative � andgrow at most with the exponential rate ~�u�;� as � ! �1. In fa
t, for � 2 

, solutions inR( ~Qu�;�(0)) de
ay exponentially as � ! �1 sin
e then Re �u�;� > 0. Also, the proje
tionsdepend 
ontinuously upon � and smoothly upon �. We refer to Figure 4 for a summary ofthe de
ay rates asso
iated with the various proje
tions.27
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 � = 0 � 2 
rFigure 4: The pi
tures show the real part of the Floquet exponents of the eigenvalue problemasso
iated with the asymptoti
 Turing pattern and the modulated pulse as well as the de
ay ratesasso
iated with the exponential di
hotomies. The proje
tions ~P s and ~P u asso
iated with the eigen-value problem of the modulated pulse admit the same de
ay rates as ~Qs and ~Qu, respe
tively.As in the last se
tion, the exponential di
hotomies de�ned for the linearization about theTuring patterns 
an be extended to di
hotomies ~P s�;�(�) and ~P u�;�(�) for the eigenvalueequation W� = Ah�;�;�(�)W (6.4)about the modulated travelling wave. The exponential di
hotomies ~P s�;� and ~P u�;� enjoythe same properties as ~Qs�;� and ~Qu�;�. Therefore, on a

ount of Lemma 1., it follows that� = exp(�T ) with � 2 

 is in the spe
trum of Th�;� if, and only if,Y 
�;� := R( ~P s�;�(0)) \R( ~P u�;�(0)) 6= f0g (6.5)or R( ~P s�;�(0)) + R( ~P u�;�(0)) 6= Y:Our strategy is as follows. First, we show that the spa
e Y 
�;0 appearing in (6.5) is one-dimensional for � = 0 and any small � > 0. Afterwards, we prove that the dimensionof Y 
�;� de
reases to zero upon varying �. It follows from the proof given below thatR( ~P s�;�(0))+R( ~P u�;�(0)) = Y whenever Y 
�;� = f0g. We 
an then 
on
lude that any � 2 


lose to zero 
orresponds to an element in the resolvent set.Lemma 2. For any small � > 0, we have dimY 
�;0 = 1.Proof. Let � = 0 and 
onsiderY 
�;0 = R( ~P s�;0(0)) \R( ~P u�;0(0)):This interse
tion 
onsists of all solutions of (6.4) whi
h de
ay exponentially as � !1 andare bounded as � ! �1. We 
on
lude that the fun
tion Wlo
 de�ned in the last se
tion is
ontained in Y 
�;0, sin
e it a
tually de
ays to zero exponentially for � ! �1.28



Let W0(�) = (h�; h��)(�); (6.6)and note that W0(0) is not 
ontained in Y 
�;0 sin
e it does not de
ay to zero as � !1 for� > 0. However, W0(0) 2 R( ~P u�;0(0)) sin
e it is bounded as � ! �1. Note that W0(�)does not 
onverge to zero as � ! �1. Therefore, we haveR( ~P u�;0(0)) = spanfW0(0)g �R(P u�;0(0));re
all from the last se
tion that R(P u�;0(0)) 
ontains those solutions whi
h de
ay to zeroexponentially as � ! �1 with some rate � > 0 independent of �; see Figure 4. It followsthat any element W (0) of R( ~P u�;0(0)) 
an be written asW (0) = aW0(0) +Wu(0)for some number a where Wu(0) 2 R(P u�;0(0)). Next, suppose thatW (0) = aW0(0) +Wu(0) � R(P 
s�;0(0)) \R( ~P u�;0(0)):Sin
e W0(0) 2 R(P 
s�;0(0)) \R( ~P u�;0(0));we 
on
lude that Wu(0) 2 R(P 
s�;0(0)) \R( ~P u�;0(0)):However, we had seen above that Wu(0) 2 R(P u�;0(0)). Thus,Wu(0) 2 R(P 
s�;0(0)) \R(P u�;0(0));and it follows that Wu(0) 2 spanfWlo
(0)g on a

ount of the results of the last se
tion; see(6.3). Sin
e Y 
�;0 � R(P 
s�;0(0)) \R( ~P u�;0(0)) = spanfW0(0);Wlo
(0)g;this shows that Y 
�;0 = spanfWlo
(0)g, and therefore dimY 
�;0 = 1.The previous lemma shows that the spa
e Y 
�;0 is spanned by the lo
alized eigenfun
tionWlo
. In the next step, we prove that the spa
e Y 
�;� has dimension zero for � 6= 0. Infa
t, we shall see that the spa
e Y 
�;0 disappears in the same fashion as the spa
e Y r�;0 uponvarying �; the latter spa
e has already been investigated in the previous se
tion.Lemma 3. For any small � > 0, and any � 2 

 in a small neighborhood of zero whi
hmay depend upon �, we have dimY 
�;� = 0 and R( ~P s�;�(0)) + R( ~P u�;�(0)) = Y .
29



Proof. As mentioned before, for � > 0, the proje
tions ~P s�;�(0)) and ~P u�;�(0) depend
ontinuously on � and smoothly upon �, and we havedim [R( ~P s�;0(0)) \R( ~P u�;0(0))℄ = 1:First, we 
onsider the adjoint eigenvalue equationW� = �Ah�;�;�(�)�W: (6.7)Note that we 
an regard the adjoint operator Ah�;�;�(�)� as a 
losed operator de�ned in theHilbert spa
e Y ; see [8℄. In parti
ular, the adjoint equation has well-de�ned exponentialdi
hotomies given by the adjoint proje
tions ~P s�;�(�)� and ~P u�;�(�)� for � � 0 and � � 0,respe
tively; see [12℄. It follows thatY 
;��;0 := [R( ~P s�;0(0)) + R( ~P u�;0(0))℄?is �nite-dimensional sin
e[R( ~P s�;0(0)) + R( ~P u�;0(0))℄? � [R(P s�;0(0)) + R(P u�;0(0))℄? �= R3 ;see [13, Lemma 3.4℄ and Se
tion 6.1.. In fa
t, any element  0 2 Y 
;��;0 leads to a boundedsolution  (�) of the adjoint eigenvalue equation (6.7) whi
h satis�es  (0) =  0 and de
aysexponentially to zero as � ! �1. Any su
h solution satis�es (�) ? [R( ~P s�;0(�)) + R( ~P u�;0(�))℄for all �.Before we 
ontinue with the proof, we investigate the asymptoti
 behavior of the solutions (�) in more detail. We 
laim that, for any su
h  (�), (�) ? [R(P 
s�;0(�)) + R(P u�;0(�))℄ (6.8)for all �. In order to prove this 
laim, re
all thatR( ~P u�;0(0)) = spanfW0(0)g �R(P u�;0(0)):Similarly, we have R(P 
s�;0(0)) = spanfW0(0)g �R( ~P s�;0(0))sin
e W0(�) does not de
ay to zero as � !1. By de�nition, any  (0) 2 Y 
;��;0 satis�es (0) ?W0(0)sin
e  (0) ? R( ~P u�;0(0)). Hen
e, we 
on
lude that (0) ? R(P 
s�;0(0))30



whi
h proves (6.8). In the last se
tion, see (6.3), we proved thatdim [R(P 
s�;0(�)) + R(P u�;0(�))℄? = 1:Thus, there exists a unique (up to s
alar multiples) solution  (�) of (6.7) with  (0) 2 Y 
;��;0 .We return to the proof of the lemma. Using Lyapunov-S
hmidt redu
tion, see for instan
e[11℄ or [13, Lemma 3.8℄, we see thatdimY 
�;� � 1 or dimY 
;��;� � 1for � > 0 if, and only if,E
(�; �) = �Z 1�1h (�); BWlo
(�)iY d� +O(�2) = 0; (6.9)where B =  0 01 0 ! :Note that the integral exists due to the 
onvergen
e properties of  (�) and Wlo
(�).It suÆ
es therefore to prove that the integral appearing in (6.9) is non-zero. In the lastse
tion, we have 
onsidered the interse
tionY r�;� = R(P 
s�;�(0)) \R(P u�;�(0)):For � = 0, this interse
tion was spanned by Wlo
(0). Using Lyapunov-S
hmidt redu
tion,it 
an be shown that the subspa
e Y r�;� is non-trivial if, and only if, the fun
tionEr(�; �) = �Z 1�1h (�); BWlo
(�)iY d� +O(�2) = 0 (6.10)vanishes. Indeed, the fa
t that the integrands in (6.9) and (6.10) 
oin
ide follows from(6.8). Note that the fun
tion Er(�; �) is 
ontinuous in � and smooth in �. Moreover,it is well-de�ned for � = 0 where it measures the distan
e of the spa
es R(P 
s0;�(0)) andR(P u0;�(0)). It has been shown in [13, Proof of Lemma 3.8℄ thatEr(0; �) = �M +O(�2);for some non-zero 
onstant M . Exploiting 
ontinuity in � and di�erentiability in �, we 
antherefore 
on
lude that the integral appearing in (6.9) is non-zero.Summarizing the results we have obtained in this se
tion, we are able to 
on
lude thatthere is a small, possibly �-dependent, neighborhood of zero su
h that none of the � 2 

in this neighborhood is a Floquet exponent for the operator Th�;�.31



6.3. Proof of Theorem 4.We 
olle
t the arguments presented in the pre
eding se
tions. In Se
tion 5., we 
al
ulatedthe spe
trum of the Turing patterns in the moving frame. The spe
trum of the Turingpatterns near � = 1 is 
ontained in the two 
urves �
rit and �stab. Moreover, any pointin the spe
trum of the Turing patterns is also in the spe
trum of the modulated pulse. InSe
tion 6.1., we proved that any point to the right of the spe
trum of the Turing patterns,in the moving frame, is not in the spe
trum of the modulated pulse. We then showed thatany point 
lose to � = 1 whi
h is in the region �
 between the two 
urves 
onstituting thespe
trum of the Turing patterns is 
ontained in the resolvent set of the modulated pulse.The remaining statements in Theorem 4. follow easily using the results established in theprevious two se
tions. This 
ompletes the proof of Theorem 4..Referen
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