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1. IntrodutionPattern formation in reation-di�usion equations on unbounded domains has attratedmuh interest. Patterns are often generated at bifuration points where a primary patterndestabilizes. The issue is then to determine whih patterns arise through the partiulardestabilization mehanism at hand and what their stability might be. If the instability isaused by point spetrum, it an be investigated utilizing redutions to �nite-dimensionalequations. If, on the other hand, parts of the essential spetrum ross the imaginary axis,suh redutions are in general no longer available.Arguably, the simplest senario in whih the essential spetrum generates new patterns isthe Turing bifuration. Imagine a reation-di�usion system on the real line suh that u = 0,say, is a homogeneous stationary solution. If the homogeneous steady state destabilizes, itslinearization aommodates waves of the form ei(k0x�!0t) for ertain values of k0 and !0.Typially, near this transition to instability, small spatially-periodi travelling waves arisefor any wavenumber lose to k0. Their wave speed is approximately equal to !0=k0. In thisartile, we fous exlusively on the situation where !0 = 0 and k0 6= 0. The bifurationwith !0 = 0 and k0 6= 0 is known as the Turing bifuration, and the bifurating spatially-periodi steady patterns are often referred to as Turing patterns. Note, however, thatTuring bifurations an be analyzed by investigating ordinary di�erential equations sinethe bifurating Turing patterns are stationary in time. As far as the existene of stationarybifurating patterns is onerned, there exists therefore a redution to �nite dimensions.Another lass of patterns that arise on the real line are loalized travelling waves, whihwe all pulses. Instabilities aused by their point spetrum lead to new loalized solutionsthat are periodi in time in an appropriate moving frame. They resemble the originalpulse but have a non-uniform wave speed; in addition, their shape hanges periodially intime. As mentioned before, this transition an be analyzed by means of �nite-dimensionalenter-manifold redutions. A more ompliated situation arises if the loalized travelling-wave solution destabilizes due to a Turing bifuration of the asymptoti homogeneousstate. We all this transition to instability an essential instability sine, for the linearizedequation about the travelling wave, the essential spetrum rosses the imaginary axis. Inthe �rst part of this work [13℄, we have proved that an essential instability leads to thebifuration of modulated travelling waves. These solutions resemble a superposition ofthe small stationary Turing patterns and the loalized pulse; they are time-periodi in anappropriate moving frame. We refer to Theorem 1. below for more details; see also Figure 1.It should be emphasized that this transition is genuinely in�nite-dimensional.The issue addressed in this work is the spetral stability of the bifurating modulated pulses.We show that a modulated time-periodi pulse is linearly stable provided the asymptotismall-amplitude periodi pattern is linearly stable, i.e. if its ontinuous spetrum onlytouhes the imaginary axis at zero. In fat, if the Turing patterns bifurate superritially,1



�travelling pulse stationary Turing patternFigure 1: A shemati piture of a modulated pulse. The Turing patterns are stationary while thepulse moves through them with onstant veloity, leaving behind a reovery zone. Note that theTuring patterns to the right and left may di�er by a phase.there is an open interval of wavenumbers for whih they are stable. At the boundary of theinterval, the Turing patterns destabilize in the so-alled Ekhaus instability [2℄. Aord-ingly, linearly stable modulated pulses exist for a ontinuum of asymptoti wavenumberseven though there existed only one stable pulse before bifuration.For the stability analysis, we have to understand the linearization of the time-period mapabout a modulated pulse in an appropriate moving frame; reall that modulated pulsesare time-periodi in a moving frame and not stationary. We have to loate the essentialspetrum of the relevant linear operator and exlude the existene of unstable isolatedeigenvalues. Suh isolated eigenvalues ould pop out of the essential spetrum near thebifuration point sine the essential spetrum touhes the unit irle. In the ontext oftravelling waves that satisfy an ordinary di�erential equation, the Evans funtion providesan eÆient tehnique to deal with suh eigenvalues; see [3, 7℄ for reent advanes. Theadvantage of suh an approah is that information from the partiular bifuration senarioan be used eÆiently in the stability analysis; also, isolated eigenvalues an be found assolutions to regular perturbation problems. The analogous approah for modulated pulsesleads to an ellipti equation in the spatial variable on an appropriate spae of time-periodifuntions. In ontrast to the situation for ordinary di�erential equations, however, theellipti equation is ill-posed as a dynamial system in the spatial variable; it annot be solvedby standard semigroup theory. We utilize reent results [12℄ on the existene of exponentialdihotomies for ellipti equations on unbounded ylinders to study the ellipti eigenvalueproblem. In partiular, exponential dihotomies allow us to �nd two in�nite-dimensionalsubspaes whih ontain all solutions to the ellipti equation that deay in either forwardor bakward diretion of the spatial variable. Eigenfuntions are then ontained in theintersetion of these subspaes. Besides ill-posedness of the ellipti equation, there areother diÆulties whih we have to resolve; the eigenvalue problem, for instane, is notalways a regular perturbation of the � = 0 limit.Before we an state our main result, we shall ollet the hypotheses and results from [13℄.We onsider the semilinear paraboli equationut = Duxx + f(u; �); x 2 R; (1.1)2



where u 2 Rn , D is a diagonal matrix with positive entries, and f : Rn � R ! Rn is asmooth nonlinearity suh that f(0; �) = 0 for all �.Equation (1.1) is well-posed on the spae X := C0unif(R;Rn) of bounded and uniformly on-tinuous funtions on R. We onsider strong solutions u(t) of (1.1) whih are di�erentiableas funtions into X, ontinuous with values in C2unif and satisfy (1.1) in X.We assume the existene of a pulse to (1.1).Hypothesis (TW) Assume that h(x�0t) is a travelling-wave solution of (1.1) for � = 0and some 0 6= 0 suh that h(�) tends to zero exponentially as � ! �1.The next assumption is on the linearization about the equilibrium u = 0. We assumethat the equilibrium is neutrally stable with a ritial eigenvalue at zero and an assoiatednon-trivial wavenumber k0 6= 0. To be preise, onsider the linearized equationwt = L01w;where L01w := Dwxx + �uf(0; 0)w: (1.2)The spetrum spe(L01) of the onstant-oeÆient operator L01 an be omputed usingthe Fourier transform. Indeed, � 2 spe(L01) if, and only if,d0(�; �) := det(�2D + �uf(0; 0) � �) = 0 (1.3)for some purely imaginary � = ik with k 2 R. The dispersion relation �0�(k) is obtained bysolving (1.3).Hypothesis (P1) Assume that spe(L01)\ iR = f0g, and that there are onstants k0 6= 0and Cr > 0 suh that the following is true: d0(�; ik) = 0 for � lose to zero if, and only if,either � = �0�(k) = �Cr(k � k0)2 +O(jk � k0j3); (1.4)for k lose to k0, or else � = �0�(�k) for k lose to �k0. Finally, we assume that��d0(�; �)j(0;ik0) 6= 0.Quadrati tangeny (1.4) of the dispersion relation is a generi assumption. Generially,under the above assumption, small stationary spatially-periodi patterns bifurate for anywavenumber k lose to k0 when the ritial situation is unfolded by the parameter �. Thisis preisely the aforementioned Turing bifuration.Sine we are interested in stable patterns arising through this bifuration, we assume su-perritiality. Consider L01 on the spae of 2�=k0-periodi funtions. Note that the zeroof the funtion d0(0; ik0) orresponds to an isolated double eigenvalue at zero of L01. The3



two eigenvetors are related by the underlying O(2)-symmetry, generated by translationsand reetion in the spatial variable. We an therefore ontinue this double eigenvalue toa urve �bif(�) of isolated double eigenvalues of D�xx + �uf(0; �) for any � lose to zero.If the double eigenvalue rosses the imaginary axis transversely upon varying �, it anbe shown that spatially periodi solutions bifurate whih are invariant under reetion.Indeed, we an restrit the steady-state equationDuxx + f(u; �) = 0assoiated with (1.1) to the spae of even 2�=k0-periodi funtions. Lyapunov-Shmidtredution then leads to a one-dimensional bifuration problem with remaining Z2-symmetryindued by the translation of half the period. We expet a pithfork bifuration �z+az3+O(z5) = 0, where the sign of the ubi oeÆient a determines the bifuration diretion.Hypothesis (P2) We assume that the double eigenvalue �bif(�) rosses the imaginaryaxis transversely with ���bif(0) > 0. Moreover, assume that the bifurating steady-statesolutions exist for � > 0, that is, we assume a < 0.Transforming (1.1) into the moving frame (�; t) = (x� t; t), we obtainut = Du�� + u� + f(u; �); � 2 R; (1.5)whih then admits the equilibrium h(�) for (; �) = (0; 0). In this moving oordinate frame,the stationary spatially-periodi patterns desribed above beome spatially and temporallyperiodi wave trains. In other words, the Turing bifuration of the origin translates into aHopf bifuration. Algebraially, this e�et is seen in a modi�ed dispersion relation.Setting (; �) = (0; 0), we linearize (1.5) about u = 0 and obtain the linear onstant-oeÆient operator L1w := Dw�� + 0w� + �uf(0; 0)w:De�ne d(�; �) := det(�2D + �0 + �uf(0; 0) � �) = d0(�� �0; �): (1.6)Hypothesis (P1) is then equivalent to the following: assume that spe(L1) \ iR = f�i!0gwhere !0 = 0k0 > 0; moreover, assume that d(�; ik) = 0 for � lose to i!0 if, and only if,either � = ��(k) = i!0 + i0(k � k0)� Cr(k � k0)2 +O(jk � k0j3) (1.7)for k lose to k0.We remark that ��d(�; �)j(i!0;ik0) 6= 0. To see this observe that ��d = ��d0 � 0��d0 andd0(�0�(k); ik) = 0. Di�erentiation yields��d0 ��0��k + i��d0 = 0:4



Sine ��0��k = 0 at k = k0, we have ��d0 = 0, and therefore��d = �0��d0 6= 0: (1.8)Next, we linearize (1.5) about the travelling wave h(�)Lw = Dw�� + 0w� + �uf(h(�); 0)w; (1.9)for w 2 X. The following hypothesis, formulated in the moving oordinate frame, is ageneri assumption on a marginally stable pulse that undergoes an essential instabilityindued by a Turing bifuration at the equilibrium.Hypothesis (S1)(i) � = 0 2 spe(L) is a simple eigenvalue.(ii) (L � i!0)w = 0 has a unique (up to onstant omplex multiples) non-zero boundedsolution w(�), and we have jw(�)� eik0(�+'�)w�H j ! 0 as � ! �1 for appropriateonstants '� and non-zero vetors w�H 2 C n .(iii) � 2 spe(L) with Re� � 0 if, and only if, either � = �i!0 or � = 0.In [13℄, we proved the following theorem.Theorem 1. ([13℄) Assume that Hypotheses (P1), (P2), (S1) and (TW) are satis�ed.There is then a smooth funtion �bif(!) � 0 with �bif(!0) = �0bif(!0) = 0 and �00bif(!0) > 0suh that, for any ! lose to !0 and any small � > �bif(!), the following is true. For aunique wave speed  = �(�; !) lose to 0, equation (1.5) has a unique solution h�;!(�; t)with the following properties:(i) h�;!(�; t) is periodi in t with period 2�=!. In other words, the bifurating pulse istime-periodi in the frame moving with speed �. The family h�;!(�; �) is ontinuousin (�; !) with values in C0(R2 ;Rn) provided with the loal topology.(ii) We have �(0; !0) = 0 and h0;!0(�; t) = h(�).(iii) There exist a onstant Æ > 0 and funtions �;k(x), whih have amplitude of the orderp�� �bif(!) and period 2�=k in x, suh that, for 0 < 0,jh�;!(�; t)� �;k�(� + �t+ '�)j � Ke��j�j � ! �1jh�;!(�; t)� �;k�(� + �t+ '+)j � Ke�Æ�j�j � !1:Here, '� = '�(�; !) is independent of � and t, and the spatial wavenumber is givenby k�(�; !) = !=�(�; !). For 0 > 0, replae � by ��.5
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�bif < � < �stab � = �stab � > �stabFigure 2: The left piture shows the (�; !)-plane. For �xed ! lose to !0, Turing patterns andmodulated pulses exist for � > �bif(!); they are unstable as long as �bif(!) < � < �stab(!) andstabilize at � = �stab(!). Stable modulated pulses exist inside the shaded area. The three pituresto the right show the spetrum of the modulated pulses in the omplex plane lose to � = 1 fordi�erent values of �; the vertial line symbolizes the unit irle.Note that the solutions �;k are stationary in time in the steady oordinate frame (x; t).They are preisely the small Turing patterns mentioned above. The modulated pulseh�;!(x � �t; t) an be thought of as a superposition of the steady Turing pattern �;k(x)and the primary pulse h(x� 0t); see Figure 1. It is a relative periodi orbit with respetto translation in x. We refer to [13℄ for more details about the spatial struture of themodulated pulses.We turn to the stability of the bifurating modulated pulses. Spetral stability of a modu-lated pulse with time period 2�=! means the following: the spetrum of the linearizationof the time-2�=! map assoiated with (1.1), onsidered on the spae X = C0unif , about themodulated pulse is stritly ontained inside the unit irle with the exeption of � = 1,whih is always in the spetrum due to translation invariane. The main result is thenontained in the following theorem; see also Figure 2.Theorem 2. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. There existsa smooth urve �stab(!) with �stab(!0) = �0stab(!0) = 0 and �00stab(!0) > �00bif(!0) suh thatthe following holds: the bifurating modulated pulses h�;!(�; t) desribed in Theorem 1. arespetrally stable if, and only if, � > �stab(!).The modulated pulses destabilize at � = �stab(!) due to an Ekhaus instability of the smallasymptoti Turing patterns. Thus, the modulated time-periodi pulses are linearly stableprovided the asymptoti Turing pattern are linearly stable. More details on the spetrumof the Turing patterns and the modulated pulses an be found in the next setion.This paper is organized as follows. Existene and stability of Turing patterns in a steadyframe is investigated in Setion 3.. In Setion 4., we formulate the spetral problem forthe modulated pulse as a bifuration problem for an appropriate ellipti equation. We6



then relate the spetra of Turing patterns in a moving and a steady frame in Setion 5..Finally, in Setion 6., we show that the spetrum of the modulated pulses oinides withthe spetrum of the Turing patterns with the possible exeption of a �nite number of stableisolated eigenvalues.2. Spetral stabilityLet u(�; t) be any bounded and uniformly ontinuous funtion with period 2�=! in t. Thelinearized equation about u(�; t) with (; �) = (�(�); �) is given byvt = Dv�� + v� + �uf(u(�; t); �)v:The evolution operator assoiated with this equation on the spae X = C0unif(R;Rn) is thendenoted by 	u;�(t; s) for t � s � 0. Sine the funtion u(�; t) is periodi in t with periodT = 2�=!, we shall investigate the operatorTu;� = 	u;�(T; 0);that is, the time-T map indued by the linearized equation. We say that a T -periodisolution u(�; t) of (1.5) is spetrally stable if the spetrum spe(Tu;�) of Tu;� as an operatorin X is stritly ontained in the unit ball in C with the exeption of � = 1. In other words,� 2 spe(Tu;�) implies j�j < 1 or � = 1.2.1. Stability of Turing patternsConsider the linearization vt = Dvxx + �uf(�;k(x); �)v:about the Turing patterns in the steady frame. The assoiated time-T map is denoted byT 0�;k;�. The same linearization in a moving frame is given byvt = Dv�� + v� + �uf(�;k(� + t); �)v:where  = !=k. The assoiated period map is then denoted by T�;k;�. We have thefollowing result on the relation between the spetra of T 0 and T .Proposition 1. The spatially periodi patterns �;k are spetrally stable in the steady frameif, and only if, they are spetrally stable in a moving frame. More preisely, there is a unique(up to shifts by 2�) real-valued funtion �(�) suh that, for � lose to one,� 2 spe(T�;k;�)() �ei�(�) 2 spe(T 0�;k;�):7



It suÆes therefore to investigate the stability of the spatially-periodi time-independentsolutions whih bifurate from the spatially homogeneous equilibrium. Though the follow-ing theorem seems to be well known, at least as far as formal omputations are onerned,we were unable to loate a mathematially rigorous derivation; see however [1, 10℄.Theorem 3. Assume that Hypotheses (P1) and (P2) are met. For a generi nonlinearityf = f(u; �), there are urves �tur(k) and �ek(k) de�ned for k lose to k0 suh that(i) �tur(k0) = �ek(k0) = �0tur(k0) = �0ek(k0) = 0,(ii) �00ek(k0) = 3�00tur(k0) > 0,(iii) equation (1.1) has non-trivial spatially-periodi time-independent patterns �;k(x)with spatial period 2�=k if, and only if, � > �tur(k) for � suÆiently small, and(iv) the patterns �;k are spetrally stable if, and only if, � > �ek(k).Corollary 1. Under the assumptions of Theorem 3., the Turing pattern with wavenumberk is nonlinearly stable in the sense of [15, Theorem 1.1℄ provided � > �ek(k).We give the proof of Proposition 1. in Setion 5.. The proof of Theorem 3. is outlined inSetion 3..2.2. Stability of modulated pulsesThe following sharper version of Theorem 2. shows that spetral stability of the modulatedpulses follows from stability of the asymptoti Turing patterns. It also gives more detailsabout the spetrum of Th�;!;� near � = 1.Theorem 4. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. The bifuratingmodulated pulses h�;!(�; t) desribed in Theorem 1. are spetrally stable if, and only if, theassoiated asymptoti states �;k�(�;!) are spetrally stable. The latter is true if� > �stab(!) = 1220�00ek(k0)(! � !0)2 +O(! � !0)3:Furthermore, � 2 spe(Th�;!;�) with � in a small, possibly �-depending, neighborhood ofone if, and only if, � = �rit(�) for some real � lose to zero, where �rit is de�ned in(5.4) below. In this ase, there exists a funtion v� 2 X suh that Th�;! ;� v� = �v�, and v�behaves like ei(k�+�)� as � ! �1 where k� = k�(�; !). If � 6= 1, the funtion v� is uniqueup to salar multiples; if � = 1, there exists in addition a unique loalized eigenfuntion.8



If we parametrize the modulated pulses by the wavenumber k of the asymptoti patterns,the stability boundary is determined by the Ekhaus urve �ek(k). Hene, the existeneand stability urves �bif(!) and �stab(!), see Theorem 1. and 4., are impliitly de�ned by�bif(!) = �tur(!=�(�bif(!); !)); �stab(!) = �ek(!=�(�stab(!); !)):Sine �!�bif(!0) = 0, we an also parametrize by k = !=�(�; !). Hene, using the impliitrelations, Taylor expansions of �bif and �stab an be derived.3. The spetrum of Turing patterns in a steady frameWe study small spatially-periodi, time-independent solutions of (1.1)ut = Duxx + f(u; �); x 2 R;under the spetral hypothesis (P1) for generi nonlinearities f(u; �). We �rst reall the ex-istene proof [6℄ whih uses enter-manifold redution and normal-form theory. Afterwards,we investigate the linearized equation about the small patterns.3.1. Existene of Turing patternsWe formulate the spetral assumption (P1) in terms of the dynamis of the linear ODEux = v (3.1)vx = �D�1(�uf(0; �)u� �u):For � = 0, bounded solutions of this equation are eigenfuntions of the operator L01 or-responding to the eigenvalue �. Hypothesis (P1) implies that ik0 is a double eigenvalueof the matrix on the right-hand side of (3.1) with � = 0; otherwise, we ould solve thedispersion relation (1.7) for k as a funtion of �. Furthermore, there are no other purelyimaginary eigenvalues. Equivalently, we have that k20 is an eigenvalue of D�1�uf(0; 0) withgeometri multipliity one and algebrai multipliity equal to two. Let u0 be the eigenve-tor of D�1�uf(0; 0) orresponding to the eigenvalue k20 and u1 the assoiated generalizedeigenvetor.We seek periodi solutions of the ordinary di�erential equationux = v (3.2)vx = �D�1f(u; �):Small bounded solutions lie on the four-dimensional enter manifold whih is tangent tothe ritial eigenspae orresponding to the eigenvalues �ik0.9



Vetors (u; v) in the tangent spae of the enter manifold at the origin an be written inthe form (u; v) = (A0u0 +A1u1; B0u0 +B1u1):In these oordinates, the linearized equation at � = 0 isA0;x = B0; A1;x = B1; B0;x = �k20A0 �A1; B1;x = �k20A1:The linear hange of oordinatesA = �2ik20A0 + i(k0 � 1)A1 � 2k0B0 +B1; B = k0A1 � iB1transforms the linear part into omplex Jordan normal formAx = ik0A+B; Bx = ik0B:The reetion symmetry x ! �x of (1.1) translates into reversibility of the equation onthe enter manifold: replaing x by �x and applying (A;B) ! ( �A;� �B) maps orbits intoorbits.Following [6℄, we introdue the invariants R = jAj2 and Q = i(A �B � �AB). After a suitablesmooth nonlinear hange of oordinates, the equation on the enter manifold an be writtenin the following simpler formAx = ik0A+B + iAO(j�j+R+ jQj) + O(jAj+ jBj)m (3.3)Bx = ik0B +A(�q1�+ q2R+ q3Q)(1 + O(j�j+R+ jQj))+iBO(j�j+R+ jQj) + O(jAj+ jBj)m;where m 2 N is arbitrarily large but �xed. We seek periodi solutions with presribedperiod 2�=k for k lose to k0. For the trunated equation, negleting the higher-orderterms, these solutions are expliitly given byA(x) = r0eikx; B(x) = i(k � k0)r0eikxwith r20 = 1q2 (q1�� (k � k0)2);where we should hoose � suh that the right-hand side is positive.Using the reversibility of the equation and the fat that k is lose to k0, it is not diÆultto see that, even for the full equation, there exists a branh of periodi solutions withpresribed period 2�=k. In general, these periodi solution are no longer given as relativeequilibria with respet to the normal-form symmetry de�ned by diagonal omplex rotationsating upon (A;B). Indeed, the Floquet exponents of the periodi solutions are a doubleeigenvalue at zero, assoiated with the trivial time shift and reversibility, respetively, and10



simple eigenvalues at �p2q1� 6= 0. Therefore, the periodi orbits are non-degenerateas reversible periodi solutions and hene persist. We refer to [6℄ for more details. Analternative existene proof would use Lyapunov-Shmidt redution.Summarizing, we have shown the existene of a family of periodi solutions on the entermanifold with expansionA(x;�; k) = r0eikx(1 + O(jk � k0j+ jq1�� (k � k)2j));B(x;�; k) = i(k � k0)r0eikx(1 + O(jk � k0j+ jq1�� (k � k)2j));where r20 = 1q2 (q1�� (k � k0)2):3.2. The normal-form oeÆientsNote that the sign of the normal-form oeÆient q2 determines the bifuration diretion ofthe Turing patterns. If we assume that the quadrati terms of the Taylor expansion of fat the origin vanish at � = 0, q2 an be easily alulated by evaluating and projeting fonto the enter eigenspae. Indeed, the normal-form transformation ats like a projetiononto the spae of ubi polynomials, thereby leaving the image alias the monomials of thenormal form invariant. Assume that P 0 is the spetral projetion of D�1�uf(0; 0) onto theenter eigenspae u = A0u0 +A1u1. Furthermore, assume that f admits the expansion�P 0D�1f(A0u0 +A1u1; 0) =�k20A0u0 �A1u0 � k20A1u1 + 3Xl=0 f0l A3�l0 Al1u0 + 3Xl=0 f1l Al0A3�l1 u1 +O(A40 +A41);then Bx = ik0B � iXl f1l Al0A3�l1 ;where A0 = i(A � �A)=(4k20) + (k0 � 1)(B + �B)=(4k30) and A1 = (B + �B)=(2k0). Hene,q2 = 364k�60 f13 .In order to obtain the oeÆient q1 of the linear unfolding in �, we ompare the determi-nants of the linear part of the original equation and the equation in normal form. Note thatwe have to add the omplex onjugate equation, however, in order to obtain the orretresult. Sine the determinant is invariant under the linear oordinate hanges, we obtainq1 = � 12k20 �� det(D�1�uf(0; �)� k20)�� det(D�1(�uf(0; 0) � �)� k20) :
11



3.3. Linear stability of the Turing patternsIn the following, we assume that q1 > 0 and q2 > 0. This implies that, for � > 0, the originis linearly (neutrally) stable and nonlinearly unstable for the x-dynamis; this orrespondsto the usual piture of a superritial bifuration.Consider the linearized eigenvalue equationux = v (3.4)vx = �D�1(�uf(�; �)� �)uabout the Turing patterns �. In order to put (3.4) into normal form, we apply theaforementioned enter-manifold redution together with the subsequent transformation intonormal-form to the equation ux = vvx = �D�1(f(u; �)� �u):Linearizing the resulting normal-form equation at � = 0 about the Turing pattern withperiod k, we obtainAx = ik0A+B +O(j�j(jAj + jBj)) (3.5)Bx = ik0B +A(�q1�+ 2q2r20) + �Aq2r20e2ikx + q01�A+O(j�j(jAj(j�j + jk � k0j) + jBj));where k is lose to k0. Here, we had to aount for the additional parameter � 2 C . Asa result, an additional term of the form q01� appears in the seond equation of (3.3); theoeÆient q01 is given by q01 = 12k20 :Note that (3.5) is the normal form of (3.4). We now explore (3.5) for various salings of �,k � k0 and � in order to apture all solutions to (3.4).In a o-rotating frame, we resale in � aording toq1� = �2; q01� = �2~�; k � k0 = ~k�; x = ��1�; A = �eikx ~A; B = �2eikx ~B: (3.6)Note that existene of periodi solutions is equivalent to ~k2 < 1. We obtain the perturbedlinear Ginzburg-Landau equation~A� = �i~k ~A+ ~B +O(�) (3.7)~B� = �i~k ~B + ( ~A+ ~A)(1� ~k2)� ~k2 ~A+ ~� ~A+O(�);plus the omplex onjugated equation. The error terms are small rapid osillations withperiod 2��=k; they are linear in ( ~A; ~B). 12



A omplex number � is in the spetrum if, and only if, the time-periodi di�erential equa-tion (3.7) has purely imaginary Floquet exponents. First, we neglet the error terms andalulate the Floquet exponents for the resulting trunated equation using the normal-formsymmetry. Afterwards, we omment on the e�et of the error terms.Purely imaginary Floquet exponents orrespond to purely imaginary eigenvalues of thematrix M(~�; ~k) = 0BBBB� �i~k 0 1 00 i~k 0 1~�+ 1� 2~k2 1� ~k2 �i~k 01� ~k2 ~�+ 1� 2~k2 0 i~k 1CCCCA :Calulating the harateristi polynomial, we obtainP (�; ~�; ~k) = det(M(~�; ~k)� i� id) = �4 � 2(3~k2 � ~�� 1)�2 + ~�2 + 2~�(1� ~k2):Solutions of P (�; ~�; ~k) = 0 with � 2 R do not exist for non-real �. If ~k2 < 1, whih isneessary for existene of the Turing patterns, and ~� > 0, the polynomial P is positiveeverywhere if, and only if, ~k2 < 13 .For ~k2 > 13 , zeros appear for real �. This bifuration is referred to as the Ekhaus insta-bility [2℄. Furthermore, for any ~k2 < 13 , � = 0 is possible only if � = 0 and we obtain theasymptoti dispersion relation~�rit(�) = �1� 3~k21� ~k2 �2 +O(�4): (3.8)Similarly, we obtain a seond urve of eigenvalues given by~�stab(�) = �2(1� ~k2)� 5 + 2~k22(1 � ~k2)�2 +O(�4): (3.9)Standard averaging implies stability of the Floquet exponents under time-periodi smallperturbations, i.e., for (3.7) with � small but non-zero; see, for instane, [4℄. Floquetexponents are therefore given as zeros of an �-dependent equation P̂ (�; ~�; ~k; �) = 0 suhthat P̂ = P at � = 0.We laim that eigenvalues lie on two urves ~�rit(�) and ~�stab(�) for � lose to zero, evenfor � > 0. Moreover, ��~�rit = 0 at � = 0. This laim then proves stability for ~k2 < 13 .The representation as urves follows from the impliit funtion theorem sine we have�P�~� ���(�;~�)=(�;~�(�)) 6= 0for � small and ~k2 < 1 along both urves ~�rit and ~�stab. Furthermore,�~��� = h�P�~� i�1 �P�� :13



The seond fator is evaluated at ~� = 0 and orresponds to the original equation without �;zeros orrespond to purely imaginary Floquet exponents. But, due to reversibility, whihis preserved under the perturbation, � = 0 is always double as an exponent and therefore��P j(~�;�)=0 = 0.Finally, we remark that it indeed suÆes to onsider ~� = O(1) in �. This an be seen byresaling with respet to �: let k � k0 = ~kpj�j and replae � by pj�j in the saling (3.6).Substituting this saling into (3.5), dividing by j�j and setting j�j = 0, it an be easily seenthat the resulting equation has only stable eigenvalues orresponding to arg � = �1 for anyvalue of ~k. We omit the details.Nonlinear stability as asserted in Corollary 1. is a onsequene of [15, Theorem 1.1℄; seealso [16℄. The assumptions in [15℄ are met due to the shape of the ritial eigenvalue urve(3.8).4. Ellipti haraterization of the spetrumIn this setion, we onsider the eigenvalue problem for the operators Th0;0 and Th�;� onthe spae X = C0unif(R;Rn). We write h� for h�;! whenever the dependene on ! is notimportant. Similarly, �(�) denotes the assoiated wave speed. Finally, T = 2�=! is thetemporal period of the modulated pulse h�;!.For � = 0, the pulse h0(�; t) = h0(�) is independent of t. The linearization about h0(�) isgiven by vt = Dv�� + 0v� + �uf(h0(�); 0)v:Using the de�nition L = D��� + 0�� + �uf(h0(�); 0);we have Th0;0 = eLT :It follows from the Spetral Theorem and Hypothesis (S1) thatspe(Th0;0) \ f� 2 C ; j�j � 1g = f� = 1g:In other words, the spetrum of Th0;0 touhes the unit irle at � = 1 with the rest ofthe spetrum being stritly ontained inside the unit irle. Sine the spetrum of Th�;�is upper semi-ontinuous with respet to �, it suÆes to onsider a small neighborhood of� = 1 to detet possible instabilities in the spetrum of Th�;�.A omplex number � is in the resolvent set of Th�;� if, and only if, the operator (Th�;���)has a bounded inverse on X. The latter is true if, for any g 2 X, the linearizationvt = Dv�� + �(�)v� + �uf(h�(�; t); �)v14



about h� has a unique solution v(�; t) suh thatv(�; T ) � �v(�; 0) = g(x)and jv(�; 0)jX � C� jgjX . In order to study the spetrum of Th�;� near � = 1, we use thetransformation w(�; t) = e��tv(�; t):In the variable w(�; t), the linearization about h� is given bywt = Dw�� + �(�)w� + �uf(h�(�; t); �)w � �w: (4.1)Therefore, a omplex number � = e�T is in the resolvent set of Th�;� if, and only if, for anyg 2 X, equation (4.1) has a unique solution w(�; t) suh thatw(�; T )� w(�; 0) = e��T g(x)and jw(�; 0)jX � C� jgjX for some onstant C�.In partiular, we see that � = e�T is an eigenvalue of Th�;� if, and only if, the eigenvalueproblem wt = Dw�� + �(�)w� + �uf(h�(�; t); �)w � �w (4.2)w(�; T ) = w(�; 0)has a bounded solution w(�; t). We ast this equation as an ellipti problem in the spatialvariable �. Using the notation W = (w;w�), we obtainW� =  0 idD�1(�t � �uf(h�(�; t); �) + �) D�1�(�) !W = Ah�;�;�(�)W: (4.3)Here, W (�) 2 Y with Y = H 12 (S1) � L2(S1) where S1 = [0; T ℄=�; see [13, Setion 3.1℄.We say that W (�) is a solution of (4.3) if W (�) is di�erentiable in � as a funtion into Y ,ontinuous with values in H1(S1)�H 12 (S1) and satis�es (4.3) in Y . Note that the equationw(�; T ) = w(�; 0)has been taken into aount by the hoie of the Hilbert spae Y .For future referene, we de�neAu;�;�(�) :=  0 idD�1(�t � �uf(u(�; t); �) + �) D�1�(�) ! (4.4)for any funtion u(�; t) whih has period T = 2�=! in t.Note that the initial-value problem for (4.3) is not well-posed on Y . Under ertain ir-umstanes, however, (4.3) an be solved in forward or bakward �-diretion for initial15



values in ertain �-depending subspaes of Y . We say that (4.3) has an exponential di-hotomy on R+ if there are projetions P s(�) de�ned for � � 0 with the following property:for any W0 2 R(P s(0)), there exists a unique solution W (�) of (4.3) whih is de�ned for� > 0 suh that W (0) = W0. Moreover, W (�) tends to zero exponentially as � ! 1, andW (�) 2 R(P s(�)) for all � > 0. Similarly, for anyW0 2 N(P s(�0)), there is a unique solutionW (�) of (4.3) whih is de�ned for 0 < � < �0 suh that W (�0) = W0; furthermore, W (�)deays exponentially for dereasing 0 � � � �0. In other words, for � � 0, there are twoomplementary subspaes, R(P s(�)) and N(P s(�)), suh that we an solve the ellipti equa-tion forward and bakward in � for initial values in R(P s(�)) and N(P s(�)), respetively.Exponential dihotomies on R� are de�ned analogously; solutions in R(P u(0)) deay ex-ponentially as � ! �1. For ellipti equations, the existene and roughness of dihotomieshas reently been established [12℄. The relation between (4.2) and (4.3) is as follows: thetime-T map Th�;� has an isolated eigenvalue � = e�T lose to one whenever the elliptiequation (4.3) has a bounded solution. In fat, we have the following lemma.Lemma 1. The omplex number � = exp(�T ) = exp(2��=!) is in the spetrum of theoperator Th�;� for � lose to one if, and only if, one of the following two onditions is met:(i) The equation W� = A�;�;�(�)W about the asymptoti Turing pattern does not havean exponential dihotomy on R.(ii) The equation W� = Ah�;�;�(�)W about the modulated pulse has exponential diho-tomies P s(�) and P u(�) on R+ and R� , respetively, but not on R; i.e. we haveR(P s(0)) \R(P u(0)) 6= f0g or R(P s(0)) + R(P u(0)) 6= Y .Below, we shall see that if (i) is not met so that W� = A�;�;�(�)W has an exponentialdihotomy on R, then the equation W� = Ah�;�;�(�)W has exponential dihotomies on R+and R� .Proof. First, suppose that (i) and (ii) are not satis�ed for some � lose to one. We shallprove that � is in the resolvent set. Sine (i) is not met, the equationW� = A�;�;�(�)W (4.5)about the Turing pattern has exponential dihotomies on R+ and R� . Using [12, Theo-rem 1℄, these dihotomies an be extended to exponential dihotomies P s(�) and P u(�),de�ned for � � 0 and � � 0, respetively, of the equationW� = Ah�;�;�(�)W: (4.6)In partiular, if (i) is not met, then (4.6) has exponential dihotomies on R+ and R� . Sine(ii) is not satis�ed by assumption, (4.6) has an exponential dihotomy on the real line R16



in the Banah spae Y . Therefore, for any ĝ(�) 2 C0unif(R; L2 ([0; T ℄)), we obtain a mildsolution to the ellipti equationdd�W = Ah�;�;�(�)W +� 0ĝ(�; t)� (4.7)given by the standard variation-of-onstant formulaW (�) = Z ��1�u(�; �)Ĝ(�) d� + Z �1 �s(�; �)Ĝ(�) d�with Ĝ(�) = (0; ĝ(�; t)). Here, �s(�; �) and �u(�; �) denote the evolutions of (4.6) on thespaes R(P s(�)) and R(P u(�)), respetively; see [12℄. It follows thatW 2 C0(R;H �+12 �H �2 )for any 0 < � < 1; the proof uses the regularity properties in [5, Theorem 7.1.3℄ whih alsohold for �s(�; �) and �u(�; �) due to [12, Theorem 3℄. Hene, the mild solutionW = (w;w�)satis�es w 2 C0(R; C0(S1)) andjw(�; 0)jC0 � jwjC0(R;C0(S1)) � Const: jĝjC0(R;L2([0;T ℄)): (4.8)After this preparations, we return to the paraboli equation. We have to show that (Th�;���) is invertible, that is, we have to solve the equationvt = Dv�� + v� + �uf(h�(�; t); �)v � �vwith boundary onditions v(�; T ) � v(�; 0) = e��T g(�). First, we solve~gt = D~g�� + ~g� + �uf(h�(�; t); �)~g � �~g �m~g (4.9)~g(�; T )� ~g(�; 0) = e��T g(�) (4.10)for some large onstant m > 0. Note that the time-T map of (4.9) is a ontration providedm is suÆiently large. We therefore obtain a solution ~g to (4.9-4.10) whih satis�es ~g(�; 0) 2C0unif(R) and ~g(�; �) 2 C0unif(R; L2 (S1)). In fat, due to regularity properties of paraboliequations, we have ~g(�; �) 2 Ck(R; Ck (0; T )) for any �nite k. Next, we set v = ~g + w, andseek w as a solution towt = Dw�� + w� + �uf(h�(�; t); �)w � �w +m~g(�; t); w(�; T ) = w(�; 0): (4.11)Substituting ĝ = m~g into (4.7), we obtain a mild solution ~w 2 C0(R; C0(S1)) of (4.7).We laim that ~w is a strong solution of (4.11) whih, using the estimate (4.8), wouldprove that (Th�;� � �) is invertible. In order to prove the laim, it suÆes to show that~w is a mild solution of (4.11) sine it is then automatially a strong solution owing to~g(�; �) 2 Ck(R; Ck (0; T )); see [5℄. By de�nition, mild solutions to (4.11) satisfy the integralequation w(t) = 	h�;�;�(t; 0)w(0) +mZ t0 	h�;�;�(t; s)~g(�; s) ds; (4.12)17



where 	h�;�;�(t; s) denotes the evolution of (4.9) with m = 0. We approximate ~g inC0unif(R; L2 (S1)) by a sequene of funtions ~gn 2 Ck(R; Hk (S1)), substitute ~gn into (4.7)and denote the resulting mild solution of (4.7) by ~wn. Sine ~gn is smooth, it follows that~wn 2 Ck�1(R; Hk�1(S1)); hene, it is a strong solution of (4.11) with ~g replaed by ~gn. Inpartiular, ~wn satis�es (4.12), with ~g replaed by ~gn, for any n. Moreover, ~wn onvergesto ~w in C0unif(R; C0(S1)) as n ! 1 sine ~gn onverges to ~g in C0unif(R; L2 (S1)). Thus, ~wsatis�es (4.12), whih proves the laim.It remains to show that � is in the spetrum if either (i) or (ii) is met.First, we assume that (i) is satis�ed. Thus, suppose that (4.5) does not have an exponentialdihotomy. For � = 0, we have � = 0, and (4.5) is given byW� = A0;0;�W =  0 idD�1(�t � �uf(0; 0) + �) D�10 !W:The operator A0;0;0 has two eigenvalues �ik0 on the imaginary axis, while the rest of itsspetrum is bounded away from the imaginary axis. Therefore, the operator A0;0;� has twoeigenvalues lose to the imaginary axis for � lose to zero with the rest of its spetrumuniformly bounded away from the imaginary axis. On aount of [13℄, there exists atrihotomy, that is, projetions Qs0;�, Q0;� and Qu0;� suh that the equationW� = A0;0;�Wan be solved for initial values W (0) 2 R(Qs0;�), W (0) 2 R(Q0;�) and W (0) 2 R(Qu0;�) onthe intervals R+ , R and R� , respetively. Moreover, R(Qs0;�) � R(Q0;�) � R(Qu0;�) = Y .Initial values in R(Qs0;�) or R(Qu0;�) lead to solutions whih deay exponentially with auniform exponential rate for � !1 or � ! �1, respetively. On the other hand, solutionswith initial values in R(Q0;�) may not deay at all. Using [12, Theorem 1℄, we onludethat the equation W� = A�;�;�W; (4.13)admits projetions Qs�;�(�), Q�;�(�) and Qu�;�(�) de�ned for � suÆiently lose to zero and� 2 R+ , � 2 R and � 2 R� , respetively, whih have the same properties as the projetionsfor � = 0 desribed above. Furthermore, the projetions are 2�=k-periodi in �. Therefore,we may onsider the 2� 2 matrixB�;� : R(Q�;�(0)) �! R(Q�;�(2�k )) = R(Q�;�(0))W (0) 7�! W (2�k ): (4.14)Note that B�;� is ontinuous in � and analyti in �. Due to our assumption of nonexisteneof dihotomies, we onlude that B�;� has spetrum on the unit irle. Thus, there is abounded solution W = (w;w�) of (4.13); sine f is smooth, we have W 2 C1(H3 � H 52 )due to the regularizing properties proved in [12℄. We onlude that w(�; 0) 2 X is a strong18



solution of (4.2), with h� replaed by �, and � is in the spetrum of the small Turingpattern. Finally, it follows from [14, Lemma 6.3℄ and its proof that � is then also in thespetrum of the modulated pulse. Note that the latter is a relative periodi orbit and thearguments given in [14℄ readily apply.Finally, assume that (ii) is met; it follows that we have R(P s(0)) \ R(P u(0)) 6= f0g orR(P s(0)) + R(P u(0)) 6= Y . In the �rst ase, any non-zero element in the intersetionR(P s(0)) \ R(P u(0)) generates an eigenfuntion of Th�;�; see the previous paragraph. Itremains to onsider the ase where R(P s(0)) + R(P u(0)) 6= Y . In this ase, we apply thearguments given above to the adjoint operator T �h�;� of Th�;� de�ned on the dual spaeX�. The assoiated ellipti problem is then still de�ned on Y sine Y is a Hilbert spae.The exponential dihotomies of the adjoint ellipti problem are the adjoints P s(�)� andP u(�)� of the projetions P s(�) and P u(�); see [12, 13℄. Hene, their ranges interset,R(P s(0)�) \ R(P u(0)�) 6= f0g, and we obtain an eigenfuntion of the adjoint operatorT �h�;�. Sine Th�;� is bounded in X, its spetrum is equal to the spetrum of its adjoint.This proves the lemma.Remark 2. It follows from the proof of Lemma 1. that � = exp(�T ) is in the spetrum ofthe Turing pattern � for � lose to zero if, and only if, the equation W� = A�;�;�(�)Wdoes not have an exponential dihotomy.5. The spetrum of the Turing patterns in the moving frame5.1. Spetra in moving versus steady-state oordinatesIn this setion, we prove Proposition 1. { and a bit more. Key to the proof is Floquettheory. As we shall see, the funtion �(�) is haraterized by Floquet exponents.We onsider small spatially-periodi steady-state solutions �;k(x) of (1.1)ut = Duxx + f(u; �):The funtions �;k(� + t) then satisfyut = Du�� + u� + f(u; �);they have temporal period T = 2�=k. In this setion, we �x the wavenumber k and omitthe orresponding index k.Linearizing the nonlinear PDE (1.1) about a Turing pattern, we obtain the linear equationvt = Dvxx + �uf(�(x); �)v (5.1)in a steady oordinate frame andwt = Dw�� + w� + �uf(�(� + t); �)w (5.2)19



in the moving frame. We ompare the spetra of the time-T maps T 0�;� and T�;� of thesetwo equations. Sine the equation in the steady frame is autonomous and the generatorL0 of the semigroup is setorial, the Spetral Mapping theorem holds, and the spetrum ofthe time-T map T 0�;� = eL0T is determined by L0:spe(eL0T ) = espe(L0)T :First suppose that � 2 spe(L0); we shall prove that e�T+i� is in the spetrum of the time-Tmap T�;� in the moving frame for a suitable number � 2 R. It follows from Floquet theorythat, for any suh eigenvalue � of L0, there exist a � 2 R and a bounded solution v of�v = Dvxx + �uf(�(x); �)vsuh that v(x+2�=k) = ei�v(x). Let w(�; t) = v(�+ t) exp(�t): A straightforward ompu-tation shows that w satis�es the linearized equation (5.1) in the moving oordinate frameand w(�; T ) = v(� + T )e�T = v(�)e�T+i� = w(�; 0)e�T+i�:Therefore, w is an eigenfuntion to the eigenvalue exp(�T + i�), and � = �.Conversely, suppose that e�T belong to the spetrum of T�;�. Due to Lemma 1. andRemark 2., we know that there exists an eigenfuntion whih satis�eswt = Dw�� + w� + �uf(�(� + t); �)w � �wwith boundary onditions w(x; T ) = w(x; 0). Exploiting Floquet theory on R(Q�;�(0)), .f.(4.14), we see that w(�+2�=k; t) = w(�; t) exp(i�) for some � 2 R. Let ~w(x; t) := w(x�t; t),whih then satis�es ~wt = D ~wxx + �uf(�(x); �) ~w � � ~wand ~w(x; T ) = w(x� T; T ) = w(x� T; 0) = e�i�w(x; 0) = e�i� ~w(x; 0);where we used T = 2�=k. Hene, exp(�t) ~w(x; t) is the desired eigenfuntion of exp(L0T ).This proves Proposition 1..5.2. The dispersion relation in the moving frameIn Setion 3., we derived the dispersion relations�rit(�) = �q1�(q1�� 3(k � k0)2)q01(q1�� (k � k0)2) �2 +O(�2(j�j 32 + �2))�stab(�) = � 2q01 (q1�� (k � k0)2)� q1�(5q1�+ 2(k � k0)2)2q01(q1�� (k � k0)2) �2 (5.3)+O(j�j 32 + �2(j�j 32 + �2))20
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Proof. Consider the linearized operator A0;�;� about the homogeneous trivial equilibrium;see (4.4). For � = 0 and � = 0, it has preisely two eigenvalues given by � = �ik0 on theimaginary axis. These eigenvalues are simple zeros of the dispersion relation d(i!0; �) = 0.Hene, they persist as zeros � = �(�) for non-zero �, and we have��� = ���d��d = � ��d��d0 ��d0��d = ���d��d ��d0��d = �C10 =: ~C1;where we used (1.8) and the de�nitionC1 := ���d��d > 0;the onstant C1 is positive due to Hypothesis (P2); see [13, Set. 3.4℄. Therefore, ~C1 > 0sine 0 < 0 by assumption. In [13℄, we applied the ellipti enter-manifold theory developedin [9℄ and redued the ellipti system�w1w2�� = � w2D�1(�tw1 + w2 � �uf(w1; �))�near (w1; w2) = 0 to a two-dimensional enter manifold. The vetor �eld on the entermanifold is given by U� = ( ~C1�+ ik0)U � C2jU j2Uupon omitting higher-order terms. The small Turing patterns are of the formU(�) =s ~C1�C2 ei(k0�+')for arbitrary ' 2 R, and the linearization about them is given byV� = (� ~C1�+ ik0)V � ~C1�e2i(k0�+') �V :Next, we aount for the parameter � in the linearization. For the linearization at U = 0,we obtain ��� = ���d��d = 10sine the dependene on � and � is the same. Hene, we getV� = ( 10�� ~C1�+ ik0)V � ~C1�e2i(k0�+') �V :for the linearization about the wave train. Upon introduing V = ei(k0�+') ~V and droppingthe tilde, we obtain the systemV� = ( 10�� ~C1�)V � ~C1� �V :Separating into real and imaginary part, and using ~C1 = �C1=0, we getdd� Vr = 10 (�+ 2C1�)Vr; dd� Vi = 10�Vi:22



Reall that C1 > 0 and 0 < 0. The ontinuous spetrum orresponds to the lines Re� = 0and Re� = �2C1�. The Floquet exponents are negative for � > 0 and positive for� < �2C1�. For �2C1� < � < 0, one exponent is positive, the other one is negative.Using the results obtained in Setion 3.3., it is straightforward to show that the situationdoes not hange if the higher-order terms are taken into aount.6. Absene of point spetrumIn this setion, we onsider the spetrum of the modulated pulses. The spetrum of theTuring patterns near � = 1 is ontained in the two urves �rit and �stab. It follows from [14,Lemma 6.3℄ and its proof that any point in the spetrum of the Turing patterns is also inthe spetrum of the modulated pulse. Here, we prove that the regions in the omplex planebounded by the essential spetrum of the Turing patterns are not �lled with spetrum.Furthermore, it is shown that there are no isolated unstable eigenvalues near � = 1 in thespetrum of the modulated pulses. Throughout this setion, we assume that 0 < 0. Thease where 0 > 0 an be redued to 0 < 0 by setting � ! ��.6.1. Floquet exponents in the set 
r.Let � 2 
r. Hene, due to Lemma 1., the operator A�;�;� has its ritial multipliers insidethe unit irle. We have to identify any points � 2 �r in the spetrum of Th�;�. First,we prove that any suh � is an isolated eigenvalue. We then use the ellipti formulationto detet isolated eigenvalues. Note that suh eigenvalues ould pop out of the essentialspetrum at � = 0; we refer to [7℄ for travelling-wave solutions to the Ginzburg-Landauequation whose spetrum exhibit this behavior.Lemma 1. If � 2 
r orresponds to an element � in the spetrum of the modulated pulse,then � is an isolated eigenvalue (with �nite multipliity).Proof. Consider the linearized reation-di�usion equationvt = Dv�� + �(�)v� + �uf(~�(�; t); �)v;where ~�(�; t) := ( �(� + �t+ '�) for � � 0�(� + �t+ '+) for � > 0:Sine h�(�; t) onverges to ~�(�; t) as � ! �1 uniformly in t, see Theorem 1., it follows asin [5, Ex. A.2, p. 137℄ that�uf(h�(�; t); �) � �uf(~�(�; t); �) : C2unif �! C0unif23



is ompat. Following the arguments in [14, Lemma 6.2℄, we see that the di�erene ofthe operators T~�;� and Th�;� is ompat. We an then apply [5, Theorem A.1℄; as aonsequene, any onneted omponent of the resolvent set of T~�;� onsists either entirelyof spetrum of Th�;� or else onsists of points in the resolvent set of Th�;� with the possibleexeption of at most �nitely many isolated eigenvalues with �nite multipliity.Next, we alulate the spetrum of T~�;�. Consider the eigenvalue problemW� = A�;�;�(�)Wfor the small patterns. This equation admits a trihotomy given by projetions Qs�;�(�),Q�;�(�) and Qu�;�(�) de�ned for � suÆiently lose to zero and � 2 R+ , � 2 R and � 2 R� ,respetively. Note that the eigenvalues of the matrixB�;� : R(Q�;�(0)) �! R(Q�;�(2�k )) = R(Q�;�(0))W (0) 7�! W (2�k )are stritly ontained inside the unit irle by Lemma 1.. We onlude that solutions withinitial values in R(Q�;�(�)) deay for � !1. Therefore, for � 2 
r, the equationW� = A�;�;�(�)Whas an exponential dihotomy given by the projetions Qs�;�(�) := Q�;�(�) + Qs�;�(�) andQu�;�(�) de�ned for � 2 R+ and � 2 R� , respetively. These projetions are lose in norm,uniformly in �, to the projetions Qs0;0 and Qu0;0 for the equationW� = A0;0;0W:Furthermore, on aount of [13, Lemma 3.4℄, the projetions Qs0;0 and Qu0;0 satisfyR(Qs0;0)�R(Qu0;0) = Y:Hene, the projetions Qs�;�(�) and Qu�;�(�) satisfyR(Qs�;�(�))�R(Qu�;�(� + ')) = Yfor arbitrary � and '. Using the arguments in the proof of Lemma 1., we onlude that theonneted set 
r is ontained in the resolvent set of T~�;�. Realling the disussion above,we onlude that 
r onsists either entirely of spetrum of Th�;� or else onsists of pointsin the resolvent set of Th�;� together with at most �nitely many isolated eigenvalues. The�rst possibility, however, has been exluded in Setion 4.. This proves the lemma.It suÆes therefore to alulate isolated eigenvalues. First, we show that the eigenvalueproblem for the modulated pulse in the ellipti formulation an be onsidered as a regularperturbation of the eigenvalue problem for the original pulse at � = 0. We then investigatethe eigenvalue problem for the original pulse and arry out the perturbation analysis.24



The relevant eigenvalue problem for the modulated wave ast as an ellipti equation isgiven by W� = Ah�;�;�(�)Wwhere � 2 
r. We laim that this equation has exponential dihotomies on R+ and R�given by projetions P s�;�(�) and P u�;�(�) de�ned for � 2 R+ and � 2 R� , respetively.Indeed, the limiting problem W� = A�;�;�(�)Whas an exponential dihotomy, see Lemma 1. and the proof of Lemma 1., and the laimfollows from [12℄. Isolated eigenvalues orrespond to values of � suh thatY r�;� := R(P s�;�(0)) \R(P u�;�(0)) 6= f0g: (6.1)We are interested in obtaining information from the limit �! 0.Notie that the projetions P s�;�(�) and P u�;�(�) are atually de�ned for all � near zero, andnot just for � 2 
r. Indeed, this follows from [12℄ by seeking those initial values leading tosolutions of W� = Ah�;�;�(�)Wwhih grow not faster than e�� as � ! 1 for some small but �xed � > 0 and whihdeay exponentially with rate larger than � for � ! �1. Moreover, as � ! 0, it theprojetions P s�;�(�) and P u�;�(�) onverge to projetions P s0;�(�) and P u�;�(�) whih onstitutedihotomies for the eigenvalue problemW� = Ah0;0;�(�)W (6.2)of the original travelling pulse h0 at � = 0. In fat, solutions to (6.2) assoiated with initialvalues in R(P s0;�(0)) exist for � � 0 and grow not faster that e�� as � !1 for some smallbut �xed � > 0; similarly, solutions with initial values in R(P u0;�(0)) exist for � � 0 anddeay exponentially with rate larger than � for � ! �1.Upon setting � = 0 in (6.1), we obtain the limiting subspaeY r0;� = R(P s0;�(0)) \R(P u0;�(0))whih we have to alulate. It follows from [13, Lemma 3.4℄ thatY r0;� = spanfW0(0)g;where W0(�) = �h0(�); dd�h0(�)�:Moreover, on aount of [13, Lemma 3.8℄, the spaes R(P s0;�(0)) and R(P u0;�(0)) ross trans-versely upon perturbing to � 6= 0. Sine the projetions depend ontinuously upon � and25



are smooth with respet to �, we an onlude that, for any � > 0 suÆiently small, thereis a unique value � = �(�) lose to zero suh thatR(P s�;�(0)) \R(P u�;�(0)) 6= f0g:Hene, there is the possibility of an instability ourring if �(�) 2 
r. We show that infat �(�) = 0 for all �.For � > 0, two bounded solutions ofvt = Dv�� + �(�)v� + �uf(h�(�; t); �)vare given by v0(�; t) = dd� h�(�; t); v1(�; t) = ddth�(�; t):This follows readily by di�erentiating the equationut = Du�� + �(�)u� + f(u; �);whih is satis�ed by u(�; t) = h�(�; t), with respet to � and t. These solutions orrespondto the translation symmetries in � and t. Note that we have v1(�; t) = �th0(�; t) = 0 at� = 0 sine h0(�) does not depend on t.On aount of Theorem 1., we havejh�(�; t)� �(� + t+ '�)j � Ke��j�j for � ! �1jh�(�; t)� �(� + t+ '+)j � Ke�Æ�j�j for � !1:Hene, upon using the di�erential equation and the regularity properties of the solutions,we see that v0(�; t)! 0�(� + t+ '�); v1(�; t)! 0�(� + t+ '�)as � ! �1 exponentially in � and uniformly in t with rates as above. Therefore, weonlude that jv1(�; �) � v0(�; �)j � ( Ke��j�j for � ! �1Ke�Æ�j�j for � !1:Note that the funtion vlo = v1�v0 is not equal to zero; at � = 0, we have v0(0; t) � h00(0)while v1(0; t) is of the order p�.Thus, the funtion Wlo(�) = �vlo(�; �); dd� vlo(�; �)� 2 Yassoiated with v(�; t) onverges to zero exponentially as � ! �1 andspanfWlo(0)g = R(P s�;0(0)) \R(P u�;0(0)); (6.3)26



leading to a non-trivial intersetion. Hene, we obtain �(�) = 0 for all � lose to zero.The loalized eigenfuntion Wlo(�) has the following interpretation: onsider the reation-di�usion equation in a frame whih moves with the veloity of the asymptoti Turingpatterns. In this frame, the Turing patterns are stationary. The modulated pulse evolvesin time as follows: it onsists of a loalized pulse that resembles the original travellingwave and moves through the Turing pattern with a ertain veloity. The derivative of themodulated pulse with respet to time is then loalized and orresponds to the eigenfuntionvlo(�; t). In formulas, we have that h�(x�t; t) onverges to the time-independent patterns�(x + '�) as x ! �1; thus, the time derivative of h�(x � t; t) onverges to zero asx! �1.Summarizing, we have proved that there are no isolated eigenvalues in the region �r, thatis, in the onneted omponent of the resolvent set to the right of the essential spetrum.6.2. Floquet exponents in the set 
.In this setion, we take � 2 
. We shall show that there exists an � 2 
 suh that� = exp(�T ) 2 � is not in the spetrum of Th�;�. The strategy is similar to the onepursued in the previous setion. One additional diÆulty is that the eigenvalue problem isnot a regular perturbation of the � = 0 limit sine the modulated pulses do not onvergeto zero with uniform exponential rate.Consider the eigenvalue equation W� = A�;�;�(�)Wabout the Turing patterns. Due to Lemma 1., for � 2 
 and � > 0, the operator A�;�;�has one of its ritial multipliers inside and the other one outside the unit irle. We denotethe assoiated stable and unstable ritial Floquet exponents by �s�;� and �u�;�, respetively.It also follows from Lemma 1. that Re �s�;0 < 0 and �u�;0 = 0 for any � > 0. In partiular,there exist real numbers ~�s�;� < 0 and ~�u�;� suh thatRe �s�;� < ~�s�;� < ~�u�;� < Re �u�;�for all � > 0 and any � in a small possibly �-dependent neighborhood of zero. For suhvalues of (�; �), we an then onstrut exponential dihotomies ~Qs�;�(�) and ~Qu�;�(�) de�nedfor � 2 R+ and � 2 R� , respetively, suh that the following is true: solutions with initialvalues in R( ~Qs�;�(0)) exist for positive � and deay exponentially to zero with rate ~�s�;� as� ! 1; analogously, solutions with initial values in R( ~Qu�;�(0)) exist for negative � andgrow at most with the exponential rate ~�u�;� as � ! �1. In fat, for � 2 
, solutions inR( ~Qu�;�(0)) deay exponentially as � ! �1 sine then Re �u�;� > 0. Also, the projetionsdepend ontinuously upon � and smoothly upon �. We refer to Figure 4 for a summary ofthe deay rates assoiated with the various projetions.27
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 � = 0 � 2 
rFigure 4: The pitures show the real part of the Floquet exponents of the eigenvalue problemassoiated with the asymptoti Turing pattern and the modulated pulse as well as the deay ratesassoiated with the exponential dihotomies. The projetions ~P s and ~P u assoiated with the eigen-value problem of the modulated pulse admit the same deay rates as ~Qs and ~Qu, respetively.As in the last setion, the exponential dihotomies de�ned for the linearization about theTuring patterns an be extended to dihotomies ~P s�;�(�) and ~P u�;�(�) for the eigenvalueequation W� = Ah�;�;�(�)W (6.4)about the modulated travelling wave. The exponential dihotomies ~P s�;� and ~P u�;� enjoythe same properties as ~Qs�;� and ~Qu�;�. Therefore, on aount of Lemma 1., it follows that� = exp(�T ) with � 2 
 is in the spetrum of Th�;� if, and only if,Y �;� := R( ~P s�;�(0)) \R( ~P u�;�(0)) 6= f0g (6.5)or R( ~P s�;�(0)) + R( ~P u�;�(0)) 6= Y:Our strategy is as follows. First, we show that the spae Y �;0 appearing in (6.5) is one-dimensional for � = 0 and any small � > 0. Afterwards, we prove that the dimensionof Y �;� dereases to zero upon varying �. It follows from the proof given below thatR( ~P s�;�(0))+R( ~P u�;�(0)) = Y whenever Y �;� = f0g. We an then onlude that any � 2 
lose to zero orresponds to an element in the resolvent set.Lemma 2. For any small � > 0, we have dimY �;0 = 1.Proof. Let � = 0 and onsiderY �;0 = R( ~P s�;0(0)) \R( ~P u�;0(0)):This intersetion onsists of all solutions of (6.4) whih deay exponentially as � !1 andare bounded as � ! �1. We onlude that the funtion Wlo de�ned in the last setion isontained in Y �;0, sine it atually deays to zero exponentially for � ! �1.28



Let W0(�) = (h�; h��)(�); (6.6)and note that W0(0) is not ontained in Y �;0 sine it does not deay to zero as � !1 for� > 0. However, W0(0) 2 R( ~P u�;0(0)) sine it is bounded as � ! �1. Note that W0(�)does not onverge to zero as � ! �1. Therefore, we haveR( ~P u�;0(0)) = spanfW0(0)g �R(P u�;0(0));reall from the last setion that R(P u�;0(0)) ontains those solutions whih deay to zeroexponentially as � ! �1 with some rate � > 0 independent of �; see Figure 4. It followsthat any element W (0) of R( ~P u�;0(0)) an be written asW (0) = aW0(0) +Wu(0)for some number a where Wu(0) 2 R(P u�;0(0)). Next, suppose thatW (0) = aW0(0) +Wu(0) � R(P s�;0(0)) \R( ~P u�;0(0)):Sine W0(0) 2 R(P s�;0(0)) \R( ~P u�;0(0));we onlude that Wu(0) 2 R(P s�;0(0)) \R( ~P u�;0(0)):However, we had seen above that Wu(0) 2 R(P u�;0(0)). Thus,Wu(0) 2 R(P s�;0(0)) \R(P u�;0(0));and it follows that Wu(0) 2 spanfWlo(0)g on aount of the results of the last setion; see(6.3). Sine Y �;0 � R(P s�;0(0)) \R( ~P u�;0(0)) = spanfW0(0);Wlo(0)g;this shows that Y �;0 = spanfWlo(0)g, and therefore dimY �;0 = 1.The previous lemma shows that the spae Y �;0 is spanned by the loalized eigenfuntionWlo. In the next step, we prove that the spae Y �;� has dimension zero for � 6= 0. Infat, we shall see that the spae Y �;0 disappears in the same fashion as the spae Y r�;0 uponvarying �; the latter spae has already been investigated in the previous setion.Lemma 3. For any small � > 0, and any � 2 
 in a small neighborhood of zero whihmay depend upon �, we have dimY �;� = 0 and R( ~P s�;�(0)) + R( ~P u�;�(0)) = Y .
29



Proof. As mentioned before, for � > 0, the projetions ~P s�;�(0)) and ~P u�;�(0) dependontinuously on � and smoothly upon �, and we havedim [R( ~P s�;0(0)) \R( ~P u�;0(0))℄ = 1:First, we onsider the adjoint eigenvalue equationW� = �Ah�;�;�(�)�W: (6.7)Note that we an regard the adjoint operator Ah�;�;�(�)� as a losed operator de�ned in theHilbert spae Y ; see [8℄. In partiular, the adjoint equation has well-de�ned exponentialdihotomies given by the adjoint projetions ~P s�;�(�)� and ~P u�;�(�)� for � � 0 and � � 0,respetively; see [12℄. It follows thatY ;��;0 := [R( ~P s�;0(0)) + R( ~P u�;0(0))℄?is �nite-dimensional sine[R( ~P s�;0(0)) + R( ~P u�;0(0))℄? � [R(P s�;0(0)) + R(P u�;0(0))℄? �= R3 ;see [13, Lemma 3.4℄ and Setion 6.1.. In fat, any element  0 2 Y ;��;0 leads to a boundedsolution  (�) of the adjoint eigenvalue equation (6.7) whih satis�es  (0) =  0 and deaysexponentially to zero as � ! �1. Any suh solution satis�es (�) ? [R( ~P s�;0(�)) + R( ~P u�;0(�))℄for all �.Before we ontinue with the proof, we investigate the asymptoti behavior of the solutions (�) in more detail. We laim that, for any suh  (�), (�) ? [R(P s�;0(�)) + R(P u�;0(�))℄ (6.8)for all �. In order to prove this laim, reall thatR( ~P u�;0(0)) = spanfW0(0)g �R(P u�;0(0)):Similarly, we have R(P s�;0(0)) = spanfW0(0)g �R( ~P s�;0(0))sine W0(�) does not deay to zero as � !1. By de�nition, any  (0) 2 Y ;��;0 satis�es (0) ?W0(0)sine  (0) ? R( ~P u�;0(0)). Hene, we onlude that (0) ? R(P s�;0(0))30



whih proves (6.8). In the last setion, see (6.3), we proved thatdim [R(P s�;0(�)) + R(P u�;0(�))℄? = 1:Thus, there exists a unique (up to salar multiples) solution  (�) of (6.7) with  (0) 2 Y ;��;0 .We return to the proof of the lemma. Using Lyapunov-Shmidt redution, see for instane[11℄ or [13, Lemma 3.8℄, we see thatdimY �;� � 1 or dimY ;��;� � 1for � > 0 if, and only if,E(�; �) = �Z 1�1h (�); BWlo(�)iY d� +O(�2) = 0; (6.9)where B =  0 01 0 ! :Note that the integral exists due to the onvergene properties of  (�) and Wlo(�).It suÆes therefore to prove that the integral appearing in (6.9) is non-zero. In the lastsetion, we have onsidered the intersetionY r�;� = R(P s�;�(0)) \R(P u�;�(0)):For � = 0, this intersetion was spanned by Wlo(0). Using Lyapunov-Shmidt redution,it an be shown that the subspae Y r�;� is non-trivial if, and only if, the funtionEr(�; �) = �Z 1�1h (�); BWlo(�)iY d� +O(�2) = 0 (6.10)vanishes. Indeed, the fat that the integrands in (6.9) and (6.10) oinide follows from(6.8). Note that the funtion Er(�; �) is ontinuous in � and smooth in �. Moreover,it is well-de�ned for � = 0 where it measures the distane of the spaes R(P s0;�(0)) andR(P u0;�(0)). It has been shown in [13, Proof of Lemma 3.8℄ thatEr(0; �) = �M +O(�2);for some non-zero onstant M . Exploiting ontinuity in � and di�erentiability in �, we antherefore onlude that the integral appearing in (6.9) is non-zero.Summarizing the results we have obtained in this setion, we are able to onlude thatthere is a small, possibly �-dependent, neighborhood of zero suh that none of the � 2 
in this neighborhood is a Floquet exponent for the operator Th�;�.31
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