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Abstract

Localized travelling waves to reaction-diffusion systems on the real line are inves-
tigated. The issue addressed in this work is the transition to instability which arises
when the essential spectrum crosses the imaginary axis. In the first part of this work,
it has been shown that large modulated pulses bifurcate near the onset of instability;
they are a superposition of the primary pulse with spatially-periodic Turing patterns of
small amplitude. The bifurcating modulated pulses can be parametrized by the wave-
length of the Turing patterns. Furthermore, they are time-periodic in a moving frame.
In this second part, spectral stability of the bifurcating modulated pulses is addressed.
It is shown that the modulated pulses are spectrally stable if, and only if, the small
Turing patterns are spectrally stable, that is, if their continuous spectrum only touches
the imaginary axis at zero. This requires an investigation of the period map associated
with the time-periodic modulated pulses.
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1. Introduction

Pattern formation in reaction-diffusion equations on unbounded domains has attracted
much interest. Patterns are often generated at bifurcation points where a primary pattern
destabilizes. The issue is then to determine which patterns arise through the particular
destabilization mechanism at hand and what their stability might be. If the instability is
caused by point spectrum, it can be investigated utilizing reductions to finite-dimensional
equations. If, on the other hand, parts of the essential spectrum cross the imaginary axis,

such reductions are in general no longer available.

Arguably, the simplest scenario in which the essential spectrum generates new patterns is
the Turing bifurcation. Imagine a reaction-diffusion system on the real line such that v = 0,
say, is a homogeneous stationary solution. If the homogeneous steady state destabilizes, its

linearization accommodates waves of the form el(koz—wot)

for certain values of ky and wy.
Typically, near this transition to instability, small spatially-periodic travelling waves arise
for any wavenumber close to ky. Their wave speed is approximately equal to wy/ko. In this
article, we focus exclusively on the situation where wy = 0 and ky # 0. The bifurcation
with wg = 0 and kg # 0 is known as the Turing bifurcation, and the bifurcating spatially-
periodic steady patterns are often referred to as Turing patterns. Note, however, that
Turing bifurcations can be analyzed by investigating ordinary differential equations since
the bifurcating Turing patterns are stationary in time. As far as the existence of stationary

bifurcating patterns is concerned, there exists therefore a reduction to finite dimensions.

Another class of patterns that arise on the real line are localized travelling waves, which
we call pulses. Instabilities caused by their point spectrum lead to new localized solutions
that are periodic in time in an appropriate moving frame. They resemble the original
pulse but have a non-uniform wave speed; in addition, their shape changes periodically in
time. As mentioned before, this transition can be analyzed by means of finite-dimensional
center-manifold reductions. A more complicated situation arises if the localized travelling-
wave solution destabilizes due to a Turing bifurcation of the asymptotic homogeneous
state. We call this transition to instability an essential instability since, for the linearized
equation about the travelling wave, the essential spectrum crosses the imaginary axis. In
the first part of this work [13], we have proved that an essential instability leads to the
bifurcation of modulated travelling waves. These solutions resemble a superposition of
the small stationary Turing patterns and the localized pulse; they are time-periodic in an
appropriate moving frame. We refer to Theorem 1. below for more details; see also Figure 1.

It should be emphasized that this transition is genuinely infinite-dimensional.

The issue addressed in this work is the spectral stability of the bifurcating modulated pulses.
We show that a modulated time-periodic pulse is linearly stable provided the asymptotic
small-amplitude periodic pattern is linearly stable, i.e. if its continuous spectrum only

touches the imaginary axis at zero. In fact, if the Turing patterns bifurcate supercritically,
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Figure 1: A schematic picture of a modulated pulse. The Turing patterns are stationary while the
pulse moves through them with constant velocity, leaving behind a recovery zone. Note that the
Turing patterns to the right and left may differ by a phase.

there is an open interval of wavenumbers for which they are stable. At the boundary of the
interval, the Turing patterns destabilize in the so-called Eckhaus instability [2]. Accord-
ingly, linearly stable modulated pulses exist for a continuum of asymptotic wavenumbers

even though there existed only one stable pulse before bifurcation.

For the stability analysis, we have to understand the linearization of the time-period map
about a modulated pulse in an appropriate moving frame; recall that modulated pulses
are time-periodic in a moving frame and not stationary. We have to locate the essential
spectrum of the relevant linear operator and exclude the existence of unstable isolated
eigenvalues. Such isolated eigenvalues could pop out of the essential spectrum near the
bifurcation point since the essential spectrum touches the unit circle. In the context of
travelling waves that satisfy an ordinary differential equation, the Evans function provides
an efficient technique to deal with such eigenvalues; see [3, 7] for recent advances. The
advantage of such an approach is that information from the particular bifurcation scenario
can be used efficiently in the stability analysis; also, isolated eigenvalues can be found as
solutions to regular perturbation problems. The analogous approach for modulated pulses
leads to an elliptic equation in the spatial variable on an appropriate space of time-periodic
functions. In contrast to the situation for ordinary differential equations, however, the
elliptic equation is ill-posed as a dynamical system in the spatial variable; it cannot be solved
by standard semigroup theory. We utilize recent results [12] on the existence of exponential
dichotomies for elliptic equations on unbounded cylinders to study the elliptic eigenvalue
problem. In particular, exponential dichotomies allow us to find two infinite-dimensional
subspaces which contain all solutions to the elliptic equation that decay in either forward
or backward direction of the spatial variable. Eigenfunctions are then contained in the
intersection of these subspaces. Besides ill-posedness of the elliptic equation, there are
other difficulties which we have to resolve; the eigenvalue problem, for instance, is not

always a regular perturbation of the p = 0 limit.

Before we can state our main result, we shall collect the hypotheses and results from [13].

We consider the semilinear parabolic equation

wg = Dugy + f(u,pu), xR (1.1)



where v € R*, D is a diagonal matrix with positive entries, and f : R* x R — R" is a

smooth nonlinearity such that f(0, ) = 0 for all 4.
Equation (1.1) is well-posed on the space X := C? ..(R,R") of bounded and uniformly con-

tinuous functions on R. We consider strong solutions u(¢) of (1.1) which are differentiable

as functions into X, continuous with values in C? .. and satisfy (1.1) in X.

unif

We assume the existence of a pulse to (1.1).

Hypothesis (TW) Assume that h(x —cot) is a travelling-wave solution of (1.1) for u =0
and some ¢y # 0 such that h(§) tends to zero exponentially as & — +oo.

The next assumption is on the linearization about the equilibrium v = 0. We assume
that the equilibrium is neutrally stable with a critical eigenvalue at zero and an associated

non-trivial wavenumber kg # 0. To be precise, consider the linearized equation
wy = L% w,

where

LY w := Dwyy + 9,£(0,0)w. (1.2)

The spectrum spec(LY) of the constant-coefficient operator LY can be computed using

the Fourier transform. Indeed, A € spec(LY,) if, and only if,
d°(\,v) := det(v2D + 0, £(0,0) —\) =0 (1.3)

for some purely imaginary v = ik with k¥ € R. The dispersion relation \(k) is obtained by
solving (1.3).

Hypothesis (P1) Assume that spec(L2 ) NiR = {0}, and that there are constants ko # 0
and C, > 0 such that the following is true: d°(\,ik) = 0 for X close to zero if, and only if,

either
A=2(k) = —Cr(k — ko)? + O(Jk — ko|?), (1.4)

for k close to kg, or else A\ = X(—k) for k close to —ko. Finally, we assume that
A’ (A, v)|(0,ik0) 7 O-

Quadratic tangency (1.4) of the dispersion relation is a generic assumption. Generically,
under the above assumption, small stationary spatially-periodic patterns bifurcate for any
wavenumber k close to ky when the critical situation is unfolded by the parameter y. This

is precisely the aforementioned Turing bifurcation.

Since we are interested in stable patterns arising through this bifurcation, we assume su-
percriticality. Consider L2 on the space of 2m/ko-periodic functions. Note that the zero

of the function d°(0,ikg) corresponds to an isolated double eigenvalue at zero of LY . The
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two eigenvectors are related by the underlying O(2)-symmetry, generated by translations
and reflection in the spatial variable. We can therefore continue this double eigenvalue to
a curve Apir(p) of isolated double eigenvalues of D0y, + 0, f(0,x) for any u close to zero.
If the double eigenvalue crosses the imaginary axis transversely upon varying u, it can
be shown that spatially periodic solutions bifurcate which are invariant under reflection.

Indeed, we can restrict the steady-state equation

associated with (1.1) to the space of even 27/kg-periodic functions. Lyapunov-Schmidt
reduction then leads to a one-dimensional bifurcation problem with remaining Zs-symmetry
induced by the translation of half the period. We expect a pitchfork bifurcation pz + az3 +

O(z°%) = 0, where the sign of the cubic coefficient a determines the bifurcation direction.

Hypothesis (P2) We assume that the double eigenvalue Apig(p) crosses the imaginary
azis transversely with OpAuie(0) > 0. Moreover, assume that the bifurcating steady-state

solutions exist for p > 0, that is, we assume a < 0.

Transforming (1.1) into the moving frame (£,t) = (z — ct, t), we obtain
u; = Duge + cug + f(u,pn), €E€R, (1.5)

which then admits the equilibrium h(€) for (¢, 1) = (¢p,0). In this moving coordinate frame,
the stationary spatially-periodic patterns described above become spatially and temporally
periodic wave trains. In other words, the Turing bifurcation of the origin translates into a

Hopf bifurcation. Algebraically, this effect is seen in a modified dispersion relation.

Setting (c,uu) = (co,0), we linearize (1.5) about u = 0 and obtain the linear constant-

coefficient operator
Loow := Dwge + cowg + 0y f(0, 0)w.

Define
d(\,v) == det(v?D + veo + 0y f(0,0) — X) = d°(\ — veo, v). (1.6)

Hypothesis (P1) is then equivalent to the following: assume that spec(Lq) NiR = {£iwg}
where wy = cpkp > 0; moreover, assume that d(\,ik) = 0 for A close to iwy if, and only if,
either

A = M\(k) = iwp +ico(k — ko) — Cr(k — ko)? + O(|k — ko|?) (1.7)
for k close to kg.
We remark that 9,d(\,v)|(iw,ike) 7 0- To see this observe that d,d = 0,d° — cyOrd® and
d®(\V(k),ik) = 0. Differentiation yields

0
am“% +19,d° = 0.



Since 88);90 =0 at k = ko, we have 0,d° = 0, and therefore

Oyd = —codrd® # 0. (1.8)
Next, we linearize (1.5) about the travelling wave h(&)

Lw = Dwge + cowe + Ouf(h(£),0)w, (1.9)

for w € X. The following hypothesis, formulated in the moving coordinate frame, is a
generic assumption on a marginally stable pulse that undergoes an essential instability

induced by a Turing bifurcation at the equilibrium.

Hypothesis (S1)

(i) A =0 € spec(L) is a simple eigenvalue.

(11) (L —iwp)w = 0 has a unique (up to constant complex multiples) non-zero bounded
solution w®(&), and we have |w°(&) — eiko(“‘pi)wfﬂ — 0 as & — +oo for appropriate
constants @+ and non-zero vectors wfl e C".

(iii) X € spec(L) with Re X > 0 if, and only if, either A = Liwy or A = 0.
In [13], we proved the following theorem.

Theorem 1. ([13]) Assume that Hypotheses (P1), (P2), (S1) and (TW) are satisfied.
There is then a smooth function ppie(w) > 0 with pyie(wo) = pre(wo) = 0 and g (wo) > 0
such that, for any w close to wy and any small p > ppis(w), the following is true. For a
unique wave speed ¢ = ¢, (,w) close to cy, equation (1.5) has a unique solution hy, ., (&,t)

with the following properties:

(i) huw(€,t) is periodic in t with period 2mw/w. In other words, the bifurcating pulse is
time-periodic in the frame moving with speed c,. The family h, ., (-,-) is continuous

in (p,w) with values in C°(R?,R™) provided with the local topology.
(it) We have c.(0,wp) = co and hou,(€,t) = h(§).

(iii) There exist a constant 6 > 0 and functions v, i (x), which have amplitude of the order

p— pvir(w) and period 2 /k in x, such that, for ¢y <0,

i (€,8) = Y. (€ + ext + )| < Ke "l £ — —o0
|hu,W(§at) = Viks E+eat+e) < Ke o4l § — oo.

Here, o1 = pi(pu,w) is independent of & and t, and the spatial wavenumber is given

by ki(p,w) = w/ecs(p,w). For ¢y > 0, replace & by —€.
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Figure 2: The left picture shows the (u,w)-plane. For fixed w close to wy, Turing patterns and
modulated pulses exist for u > ppir(w); they are unstable as long as upir(w) < p < pgeap(w) and
stabilize at u = pgtap(w)- Stable modulated pulses exist inside the shaded area. The three pictures
to the right show the spectrum of the modulated pulses in the complex plane close to A = 1 for

different values of p; the vertical line symbolizes the unit circle.

Note that the solutions 7,  are stationary in time in the steady coordinate frame (z,1).
They are precisely the small Turing patterns mentioned above. The modulated pulse
huw(x — c.t,t) can be thought of as a superposition of the steady Turing pattern vy, ;(x)
and the primary pulse h(z — ¢yt); see Figure 1. It is a relative periodic orbit with respect
to translation in z. We refer to [13] for more details about the spatial structure of the

modulated pulses.

We turn to the stability of the bifurcating modulated pulses. Spectral stability of a modu-
lated pulse with time period 27/w means the following: the spectrum of the linearization
about the

modulated pulse is strictly contained inside the unit circle with the exception of A = 1,

of the time-27/w map associated with (1.1), considered on the space X = C° .,
which is always in the spectrum due to translation invariance. The main result is then

contained in the following theorem; see also Figure 2.

Theorem 2. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. There exists
a smooth curve pigah (W) with psab(wo) = phean (wo) = 0 and pll, (wo) > prie(wo) such that
the following holds: the bifurcating modulated pulses hy, ., (&,t) described in Theorem 1. are

spectrally stable if, and only if, p > pstan(w).

The modulated pulses destabilize at g = pgap(w) due to an Eckhaus instability of the small
asymptotic Turing patterns. Thus, the modulated time-periodic pulses are linearly stable
provided the asymptotic Turing pattern are linearly stable. More details on the spectrum

of the Turing patterns and the modulated pulses can be found in the next section.

This paper is organized as follows. Existence and stability of Turing patterns in a steady
frame is investigated in Section 3.. In Section 4., we formulate the spectral problem for

the modulated pulse as a bifurcation problem for an appropriate elliptic equation. We



then relate the spectra of Turing patterns in a moving and a steady frame in Section 5..
Finally, in Section 6., we show that the spectrum of the modulated pulses coincides with
the spectrum of the Turing patterns with the possible exception of a finite number of stable

isolated eigenvalues.

2. Spectral stability

Let u(¢,t) be any bounded and uniformly continuous function with period 27/w in t. The

linearized equation about u(¢,t) with (¢, ) = (¢ (1), ) is given by
vy = Duvge + cvg + Oy f (u(é, t), p)v.

The evolution operator associated with this equation on the space X = C’Snif(R, R™) is then
denoted by U, ,(t,s) for t > s > 0. Since the function u(¢,t) is periodic in ¢ with period

T = 27 /w, we shall investigate the operator
T = Wuu(T,0),

that is, the time-7" map induced by the linearized equation. We say that a T-periodic
solution u(§,t) of (1.5) is spectrally stable if the spectrum spec(7,,,) of Ty, as an operator
in X is strictly contained in the unit ball in C with the exception of A = 1. In other words,
A € spec(Ty,,) implies |A| <1 or A=1.

2.1. Stability of Turing patterns

Comnsider the linearization

vy = Dvgg + 8uf(7u,k($)a ,U,)U.

about the Turing patterns in the steady frame. The associated time-T" map is denoted by

7’0

o olh” The same linearization in a moving frame is given by
N3

vp = Dvge + cvg + Ouf (Ve (€ + ct), p)v.

where ¢ = w/k. The associated period map is then denoted by 7:,%,““. We have the

following result on the relation between the spectra of 7° and 7.

Proposition 1. The spatially periodic patterns vy, are spectrally stable in the steady frame
if, and only if, they are spectrally stable in a moving frame. More precisely, there is a unique
(up to shifts by 2m) real-valued function O(X) such that, for X close to one,

A € spec(Ty, ,u) < Ael?™) e Spec(m,k,u)-



It suffices therefore to investigate the stability of the spatially-periodic time-independent
solutions which bifurcate from the spatially homogeneous equilibrium. Though the follow-
ing theorem seems to be well known, at least as far as formal computations are concerned,

we were unable to locate a mathematically rigorous derivation; see however [1, 10].

Theorem 3. Assume that Hypotheses (P1) and (P2) are met. For a generic nonlinearity
f = f(u,pn), there are curves py, (k) and peck (k) defined for k close to ko such that

(i) tvur (ko) = preck (ko) = ptur(ko) = ppe (ko) =0,
(i) pag (ko) = 3pgye (ko) >0,

(iii) equation (1.1) has non-trivial spatially-periodic time-independent patterns vy, (x)

with spatial period 2m/k if, and only if, u > pur(k) for p sufficiently small, and

(iv) the patterns vy, are spectrally stable if, and only if, pn > peck (k).

Corollary 1. Under the assumptions of Theorem 3., the Turing pattern with wavenumber

k is nonlinearly stable in the sense of [15, Theorem 1.1] provided p > pieck (k).

We give the proof of Proposition 1. in Section 5.. The proof of Theorem 3. is outlined in

Section 3..

2.2. Stability of modulated pulses

The following sharper version of Theorem 2. shows that spectral stability of the modulated
pulses follows from stability of the asymptotic Turing patterns. It also gives more details

about the spectrum of Ty, , , near A = 1.

Theorem 4. Suppose that Hypotheses (TW), (P1), (P2) and (S1) are met. The bifurcating
modulated pulses hy, ., (&,t) described in Theorem 1. are spectrally stable if, and only if, the

associated asymptotic states ¥, i, (uw) ore spectrally stable. The latter is true if

w,w

1
i> pstab () = 53t (o) (w — wp)? + O(w — wo)®.
0
Furthermore, A € spec(Th, ) with A in a small, possibly p-depending, neighborhood of
one if, and only if, A\ = Auit(p) for some real p close to zero, where Ay is defined in
(5.4) below. In this case, there exists a function v, € X such that Thpw Vo = AVp, and v,
behaves like el(F=1P)E g5 € — +00 where k, = kio(p,w). If X # 1, the function v, is unique

up to scalar multiples; if A =1, there exists in addition a unique localized eigenfunction.



If we parametrize the modulated pulses by the wavenumber k of the asymptotic patterns,
the stability boundary is determined by the Eckhaus curve pe (k). Hence, the existence
and stability curves ppif(w) and pgap(w), see Theorem 1. and 4., are implicitly defined by

tvif (@) = preur(W/ce(pbit (@), W), pstab (W) = peck (W/ex (pstab (W), w)).

Since O, it (wo) = 0, we can also parametrize by k = w/c.(p, w). Hence, using the implicit

relations, Taylor expansions of upir and pgap can be derived.

3. The spectrum of Turing patterns in a steady frame

We study small spatially-periodic, time-independent solutions of (1.1)
Ut:D’U,xm——i-f('U/,/J), .’L‘ER,

under the spectral hypothesis (P1) for generic nonlinearities f(u, x). We first recall the ex-
istence proof [6] which uses center-manifold reduction and normal-form theory. Afterwards,

we investigate the linearized equation about the small patterns.

3.1. Existence of Turing patterns
We formulate the spectral assumption (P1) in terms of the dynamics of the linear ODE

Ug = U (3.1)
vp = —D7H0uf(0,n)u — u),

For ;1 = 0, bounded solutions of this equation are eigenfunctions of the operator LY, cor-
responding to the eigenvalue A. Hypothesis (P1) implies that iky is a double eigenvalue
of the matrix on the right-hand side of (3.1) with A = 0; otherwise, we could solve the
dispersion relation (1.7) for k as a function of A\. Furthermore, there are no other purely
imaginary eigenvalues. Equivalently, we have that k7 is an eigenvalue of D19, f(0,0) with
geometric multiplicity one and algebraic multiplicity equal to two. Let ug be the eigenvec-
tor of D719, f(0,0) corresponding to the eigenvalue k% and u; the associated generalized

eigenvector.

We seek periodic solutions of the ordinary differential equation

Uy = (3.2)
Vg = _D_lf(uau)'

Small bounded solutions lie on the four-dimensional center manifold which is tangent to

the critical eigenspace corresponding to the eigenvalues +ikg.



Vectors (u,v) in the tangent space of the center manifold at the origin can be written in
the form
(u, ’U) = (A[)U[) + Alul, BoUo + Blul).

In these coordinates, the linearized equation at 4 = 0 is

Apy =By, A1x=DB1, Bo.=—kiAy— Ay, Bi,=—kiA,.

)

The linear change of coordinates
A= —2ik3Ag +i(ko — 1)A; — 2koBy + By, B = koA, —iB;
transforms the linear part into complex Jordan normal form
A, =ikgA+ B, B, = ikyB.

The reflection symmetry z — —z of (1.1) translates into reversibility of the equation on
the center manifold: replacing z by —z and applying (A4, B) — (A, —B) maps orbits into
orbits.

Following [6], we introduce the invariants R = |A|? and Q = i(AB — AB). After a suitable

smooth nonlinear change of coordinates, the equation on the center manifold can be written

in the following simpler form

Ay = ikgA+ B+i1AO(u|+ R+ |Q|) + O(J4] + |B)™ (3.3)
B, = ikyB+ A(—qip+ @R+ @Q)(1+O0(ul+R+1Q)))
+HBO(|u|+ R+ Q) + O(|A] + |B)™,

where m € N is arbitrarily large but fixed. We seek periodic solutions with prescribed
period 27/k for k close to k. For the truncated equation, neglecting the higher-order

terms, these solutions are explicitly given by
A(z) = rel*?, B(z) = i(k — ko)roe*®

with

1
o = —(qup — (k — ko)?),
q2

where we should choose p such that the right-hand side is positive.

Using the reversibility of the equation and the fact that &k is close to ko, it is not difficult
to see that, even for the full equation, there exists a branch of periodic solutions with
prescribed period 27 /k. In general, these periodic solution are no longer given as relative
equilibria with respect to the normal-form symmetry defined by diagonal complex rotations
acting upon (A, B). Indeed, the Floquet exponents of the periodic solutions are a double

eigenvalue at zero, associated with the trivial time shift and reversibility, respectively, and
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simple eigenvalues at £+/2q14 # 0. Therefore, the periodic orbits are non-degenerate
as reversible periodic solutions and hence persist. We refer to [6] for more details. An

alternative existence proof would use Lyapunov-Schmidt reduction.

Summarizing, we have shown the existence of a family of periodic solutions on the center

manifold with expansion

Al p k) = o™ (L4 Ok — kol + g1 — (k = ko)),
B(z;p.k) = i(k = ko)roe™ (1 + O(lk — ko| + a1 — (k = ko)),

where

1
o = —(qup — (k — ko)?).
q2

3.2. The normal-form coefficients

Note that the sign of the normal-form coefficient g determines the bifurcation direction of
the Turing patterns. If we assume that the quadratic terms of the Taylor expansion of f
at the origin vanish at y = 0, g2 can be easily calculated by evaluating and projecting f
onto the center eigenspace. Indeed, the normal-form transformation acts like a projection
onto the space of cubic polynomials, thereby leaving the image alias the monomials of the
normal form invariant. Assume that FPf is the spectral projection of D=1, f(0,0) onto the

center eigenspace u = Agup + Aju1. Furthermore, assume that f admits the expansion
—PSD_lf(AOU[) + Ajuq, 0) =
3 3
—k§ Agug — Ayug — kg Ayuy + > fPAT " Aluo + Y fLAGAT Tuy + O(A] + AY),

then
B, =ikoB —1)_ fl A{A} ",
l

where Ay = i(A — A)/(4k¢) + (ko — 1)(B + B)/(4k3) and Ay = (B + B)/(2ky). Hence,
_ ikfﬁ 1

92 = gzko f3-

In order to obtain the coefficient ¢ of the linear unfolding in x4, we compare the determi-

nants of the linear part of the original equation and the equation in normal form. Note that

we have to add the complex conjugate equation, however, in order to obtain the correct

result. Since the determinant is invariant under the linear coordinate changes, we obtain

1 9udet(D'9uf(0,p) — k)
2k3 O det(D=1(0, £(0,0) — A) — k2)’

q1 =

11



3.3. Linear stability of the Turing patterns

In the following, we assume that ¢; > 0 and go > 0. This implies that, for ; > 0, the origin
is linearly (neutrally) stable and nonlinearly unstable for the z-dynamics; this corresponds

to the usual picture of a supercritical bifurcation.

Consider the linearized eigenvalue equation

Uy = (3.4)
Vg = _Dil(auf(')’,unu) - Au
about the Turing patterns 7,. In order to put (3.4) into normal form, we apply the

aforementioned center-manifold reduction together with the subsequent transformation into

normal-form to the equation
Uy = U
vp = =D (u, p) = Au).

Linearizing the resulting normal-form equation at A = 0 about the Turing pattern with

period k, we obtain

Ay = ikgA+ B+ O(|ul(|A] + [B])) (3.5)
B, = ikoB+ A(—qip + 2qor3) + Agorde®*® 4 ¢| XA
+O(|pl(JA[(|u] + [k = ko) + [BI)),

where k is close to kg. Here, we had to account for the additional parameter A\ € C. As
a result, an additional term of the form ¢} \ appears in the second equation of (3.3); the

coefficient ¢} is given by
1
!/

@ = ﬂ-
Note that (3.5) is the normal form of (3.4). We now explore (3.5) for various scalings of ,
k — ko and X in order to capture all solutions to (3.4).

In a co-rotating frame, we rescale in € according to
ap =€, gr= X, k—ky=ke, z=€¢'¢ A=cl*A B=é"B. (3.6)

Note that existence of periodic solutions is equivalent to k% < 1. We obtain the perturbed

linear Ginzburg-Landau equation

A = —ikA+ B+ 0(e) (3.7)
Be = —ikB+ (A+ A)(1 - k) — B2A+ A + 0(e),

plus the complex conjugated equation. The error terms are small rapid oscillations with

period 27e/k; they are linear in (A, B).
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A complex number A is in the spectrum if, and only if, the time-periodic differential equa-
tion (3.7) has purely imaginary Floquet exponents. First, we neglect the error terms and
calculate the Floquet exponents for the resulting truncated equation using the normal-form

symmetry. Afterwards, we comment on the effect of the error terms.

Purely imaginary Floquet exponents correspond to purely imaginary eigenvalues of the

matrix ~
—ik 0 1 0
o 0 ik 0 1
MMNE)=| - . . B
(k) A+ 1—2k2 1 — k2 —ik 0
1— k2 A+1-2k2 0 ik

Calculating the characteristic polynomial, we obtain
P(p, A\ k) = det(M(\ k) —ipid) = p* — 2(3k% — X — 1)p? + A2+ 2X(1 — k?).

Solutions of P(p, A, k) = 0 with p € R do not exist for non-real A\. If k2 < 1, which is
necessary for existence of the Turing patterns, and A > 0, the polynomial P is positive

everywhere if, and only if, k< %

For k% > %,

bility [2]. Furthermore, for any k2 < %, A = 0 is possible only if p = 0 and we obtain the

zeros appear for real p. This bifurcation is referred to as the Eckhaus insta-

asymptotic dispersion relation

1-3k% ,

Aerit(p) = — 0t O(p"). (3.8)

Similarly, we obtain a second curve of eigenvalues given by

- 5+ 2k2

Maablp) = =201 = ) = 5=+ 06", (3.9

Standard averaging implies stability of the Floquet exponents under time-periodic small
perturbations, i.e., for (3.7) with e small but non-zero; see, for instance, [4]. Floquet

expounents are therefore given as zeros of an e-dependent equation P(p,j\,fc,e) = 0 such
that P = P at e = 0.

We claim that eigenvalues lie on two curves et (p) and Agap(p) for p close to zero, even

for € > 0. Moreover, 8p5\(;rit =0 at p = 0. This claim then proves stability for k2 < %
The representation as curves follows from the implicit function theorem since we have

op
o\

3 3 0
(P A)=(p:A(p)) 7

for p small and k2 <1 along both curves Aerit and S\Stab' Furthermore,
N _ (98] o
op  Loxl op’
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The second factor is evaluated at A = 0 and corresponds to the original equation without A;
zeros correspond to purely imaginary Floquet exponents. But, due to reversibility, which
is preserved under the perturbation, p = 0 is always double as an exponent and therefore
8,,P|(5\7p):0 =0.

Finally, we remark that it indeed suffices to consider A = O(1) in e. This can be seen by
rescaling with respect to A: let k — kg = l;\/m and replace € by \/W in the scaling (3.6).
Substituting this scaling into (3.5), dividing by |A| and setting |A| = 0, it can be easily seen
that the resulting equation has only stable eigenvalues corresponding to arg A = —1 for any
value of k. We omit the details.

Nonlinear stability as asserted in Corollary 1. is a consequence of [15, Theorem 1.1]; see

also [16]. The assumptions in [15] are met due to the shape of the critical eigenvalue curve
(3.8).

4. Elliptic characterization of the spectrum

In this section, we consider the eigenvalue problem for the operators 75, ¢ and '77%“ on
the space X = C° ..(R,R™). We write h, for h,, whenever the dependence on w is not
important. Similarly, c,(u) denotes the associated wave speed. Finally, T' = 27 /w is the

temporal period of the modulated pulse A, .

For p = 0, the pulse ho(£,t) = ho(€) is independent of ¢. The linearization about hy(€) is
given by
vy = Dvge + cove + Ouf (ho(§), 0)v.

Using the definition
L = DO + co0¢ + Ouf(ho(£),0),

we have

LT
7710,0 =€ .

It follows from the Spectral Theorem and Hypothesis (S1) that
pec(Tho) A€ C N> 1} = (A =1},

In other words, the spectrum of 7, touches the unit circle at A = 1 with the rest of
the spectrum being strictly contained inside the unit circle. Since the spectrum of 7y, ,
is upper semi-continuous with respect to u, it suffices to consider a small neighborhood of

A =1 to detect possible instabilities in the spectrum of Ty, ;.

A complex number A is in the resolvent set of 7y, , if, and only if, the operator (7, , — A)

has a bounded inverse on X. The latter is true if, for any g € X, the linearization

ve = Dvge + ¢ (p)ve + Ouf (hyu(€:1), p)v

14



about h, has a unique solution v(¢,t) such that

v(&,T) = Av(&,0) = g(x)

and |v(-,0)[x < Cxlglx. In order to study the spectrum of 7, , near A = 1, we use the

transformation
w(é,t) = e (£, 1).

In the variable w(¢, t), the linearization about h, is given by

ol

Therefore, a complex number A = e*" is in the resolvent set of 7y, , if, and ouly if, for any

g € X, equation (4.1) has a unique solution w(&,t) such that

w(faT) - w(£7 0) = e—och(x)

and |w(-,0)|x < Cqy|g|x for some constant C,.

T

In particular, we see that A = e** is an eigenvalue of T, , if, and only if, the eigenvalue

problem
wy = Dwee + ci(p)we + O f (hyu(€,1), p)w — aw (4.2)
w(&,T) = w(£,0)
has a bounded solution w(&,t). We cast this equation as an elliptic problem in the spatial
variable {. Using the notation W = (w, w¢), we obtain
0 id

e < D7Y0, — Ouf(hu(€,t),n) + @) D7 ley(p) ) W = Ap, u,a(E)W. (4.3)

Here, W(¢) € Y with Y = H%(Sl) x L%(S') where S = [0,T]/~; see [13, Section 3.1].
We say that W (¢) is a solution of (4.3) if W () is differentiable in ¢ as a function into Y/,
continuous with values in H'(S') x He (S') and satisfies (4.3) in Y. Note that the equation

w(&,T) = w(&,0)
has been taken into account by the choice of the Hilbert space Y.
For future reference, we define

0 id
Aeald) = ( D0~ (e, 1)) + ) D) ) .

for any function u(¢,t) which has period T' = 27 /w in t.

Note that the initial-value problem for (4.3) is not well-posed on Y. Under certain cir-

cumstances, however, (4.3) can be solved in forward or backward ¢-direction for initial
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values in certain {-depending subspaces of Y. We say that (4.3) has an exponential di-
chotomy on RT if there are projections P*(¢) defined for £ > 0 with the following property:
for any Wy € R(P*(0)), there exists a unique solution W () of (4.3) which is defined for
& > 0 such that W(0) = Wy. Moreover, W () tends to zero exponentially as £ — oo, and
W (&) € R(P3(€)) for all £ > 0. Similarly, for any Wy € N(P5(&p)), there is a unique solution
W (&) of (4.3) which is defined for 0 < & < &y such that W (&) = Wy; furthermore, W (¢)
decays exponentially for decreasing 0 > ¢ < &p. In other words, for ¢ > 0, there are two
complementary subspaces, R(P*(£)) and N(P*5(£)), such that we can solve the elliptic equa-
tion forward and backward in ¢ for initial values in R(P5(¢)) and N(P5(¢)), respectively.
Exponential dichotomies on R~ are defined analogously; solutions in R(P"(0)) decay ex-
ponentially as £ — —oo. For elliptic equations, the existence and roughness of dichotomies
has recently been established [12]. The relation between (4.2) and (4.3) is as follows: the
time-T" map Tj, , has an isolated eigenvalue A = el close to one whenever the elliptic

equation (4.3) has a bounded solution. In fact, we have the following lemma.

Lemma 1. The complez number A = exp(al’) = exp(2ra/w) is in the spectrum of the

operator Ty, ,, for A close to one if, and only if, one of the following two conditions is met:

(i) The equation We = A, 1, ()W about the asymptotic Turing pattern does not have

an exponential dichotomy on R.

(i) The equation We = Ap, 1.o(§)W about the modulated pulse has exponential dicho-
tomies P3(£) and P“(£) on RT and R, respectively, but not on R; i.e. we have
R(P(0)) "R(P"(0)) # {0} or R(P*(0)) + R(P"(0)) # Y.

Below, we shall see that if (i) is not met so that Wy = A, ,, »(§)W has an exponential
dichotomy on R, then the equation Wy = Ah“,u,a(é’ )W has exponential dichotomies on R*
and R™.

Proof. First, suppose that (i) and (ii) are not satisfied for some A close to one. We shall

prove that A is in the resolvent set. Since (i) is not met, the equation
Wf = A’Y;L:N:Q(S)W (45)

about the Turing pattern has exponential dichotomies on Rt and R™. Using [12, Theo-
rem 1], these dichotomies can be extended to exponential dichotomies P%(¢) and P"(€),

defined for £ > 0 and & < 0, respectively, of the equation
We = A, pa(§)W. (4.6)

In particular, if (i) is not met, then (4.6) has exponential dichotomies on RT and R™. Since

(ii) is not satisfied by assumption, (4.6) has an exponential dichotomy on the real line R

16



in the Banach space Y. Therefore, for any §(¢) € CY (R, L*([0,T])), we obtain a mild

nif

solution to the elliptic equation

d 0
—W =A4; o (OW + (A ) 4.7
ag" = Al W (g o
given by the standard variation-of-constant formula
3 . & .
WO = [ @ EnGman+ [ Enémd

with G(£) = (0,§(¢,t)). Here, ®5(¢,n) and ®"(¢,7) denote the evolutions of (4.6) on the
spaces R(P3(n)) and R(P"%(n)), respectively; see [12]. It follows that W € C°(R, HY X H?)
for any 0 < e < 1; the proof uses the regularity properties in [5, Theorem 7.1.3] which also
hold for ®%(¢,n) and ®"(&,7) due to [12, Theorem 3]. Hence, the mild solution W = (w, wg)
satisfies w € CO(R, C?(S')) and

[w(-,0)|co < |wloom,co(sty) < Const. [§|cow,L2(o,17))- (4.8)

After this preparations, we return to the parabolic equation. We have to show that (75, , —

A) is invertible, that is, we have to solve the equation
v = Dvge + cve + 0uf(hu(&,t), p)v — av
with boundary conditions v(¢,T) — v(¢,0) = e *T'g(¢). First, we solve

gt = Dgee + cge + Ouf(hu(€,1), 1)g — ag — mg (4.9)
g(Sa T) - 6(57 0) = e—aTg(é-) (410)

for some large constant m > 0. Note that the time-T map of (4.9) is a contraction provided
m is sufficiently large. We therefore obtain a solution g to (4.9-4.10) which satisfies g(-,0) €
CP (R) and §(-,-) € CY (R, L?(S")). In fact, due to regularity properties of parabolic
equations, we have §(-,-) € C*(R, C*(0,T)) for any finite k. Next, we set v = § + w, and

seek w as a solution to

Substituting § = mg into (4.7), we obtain a mild solution @ € C°(R,C°(S')) of (4.7).
We claim that @ is a strong solution of (4.11) which, using the estimate (4.8), would
prove that (7p, , — A) is invertible. In order to prove the claim, it suffices to show that
w is a mild solution of (4.11) since it is then automatically a strong solution owing to
g(-,-) € C*(R,C*(0,T)); see [5]. By definition, mild solutions to (4.11) satisfy the integral

equation

t
w(t) = Up, ot 0)w(0) +m /0 Uy alts )36, ) ds, (4.12)
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where W, «(t,s) denotes the evolution of (4.9) with m = 0. We approximate g in
C0 (R, L%(SY)) by a sequence of functions g, € C¥(R, H*(S')), substitute g, into (4.7)
and denote the resulting mild solution of (4.7) by ,. Since g, is smooth, it follows that
W, € CF1(R, H*~1(S")); hence, it is a strong solution of (4.11) with § replaced by §,. In
particular, w, satisfies (4.12), with g replaced by g, for any n. Moreover, w, converges
to w in C° (R,C°(S')) as n — oo since g, converges to g in CY (R, L*(S1)). Thus, @
satisfies (4.12), which proves the claim.

It remains to show that A is in the spectrum if either (i) or (ii) is met.

First, we assume that (i) is satisfied. Thus, suppose that (4.5) does not have an exponential

dichotomy. For 1 = 0, we have v, = 0, and (4.5) is given by

0 id
We = AgpoW = X o
D~ (8,5 — 8uf(0, 0) + Ol) D™ ¢y

The operator Agppo has two eigenvalues kikg on the imaginary axis, while the rest of its
spectrum is bounded away from the imaginary axis. Therefore, the operator Ay, has two
eigenvalues close to the imaginary axis for « close to zero with the rest of its spectrum
uniformly bounded away from the imaginary axis. On account of [13], there exists a

trichotomy, that is, projections @ ,, Qg , and Qf , such that the equation
Wg = Ao,()’oéW

can be solved for initial values W (0) € R(Q% ), W(0) € R(Q5,) and W(0) € R(Qf ,) on
the intervals R™, R and R™, respectively. Moreover, R(Qj ,) ® R(Qf ) @ R(Qf,) =Y.
Initial values in R(Qj,) or R(Qp,) lead to solutions which decay exponentially with a
uniform exponential rate for £ — oo or & — —o0, respectively. On the other hand, solutions
with initial values in R(Q)§ ,) may not decay at all. Using [12, Theorem 1], we conclude
that the equation

We = Ay, uaW, (4.13)

admits projections @}, ,(£), Q}, o(§) and Q}; ,(£) defined for p sufficiently close to zero and
e R, £ e Rand ¢ € R, respectively, which have the same properties as the projections
for p = 0 described above. Furthermore, the projections are 27/k-periodic in €. Therefore,

we may consider the 2 x 2 matrix

Bua : R(Q54(0) — R(Q[.(F)) =R(Q;(0))

4.14
W(0) — W(2E). (4.14)

Note that B, , is continuous in p and analytic in «. Due to our assumption of nonexistence
of dichotomies, we conclude that B, , has spectrum on the unit circle. Thus, there is a
bounded solution W = (w,w¢) of (4.13); since f is smooth, we have W € C'(H? x H%)
due to the regularizing properties proved in [12]. We conclude that w(¢,0) € X is a strong
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solution of (4.2), with h, replaced by 7,, and A is in the spectrum of the small Turing
pattern. Finally, it follows from [14, Lemma 6.3] and its proof that A is then also in the
spectrum of the modulated pulse. Note that the latter is a relative periodic orbit and the

arguments given in [14] readily apply.

Finally, assume that (ii) is met; it follows that we have R(P*(0)) N R(P"(0)) # {0} or
R(P*%(0)) + R(P"(0)) # Y. In the first case, any non-zero element in the intersection
R(P*(0)) N R(P"(0)) generates an eigenfunction of 7y, ,; see the previous paragraph. It
remains to consider the case where R(P*(0)) + R(P"(0)) # Y. In this case, we apply the
arguments given above to the adjoint operator 7;:;,“ of T, u defined on the dual space
X*. The associated elliptic problem is then still defined on Y since Y is a Hilbert space.
The exponential dichotomies of the adjoint elliptic problem are the adjoints P5(£)* and
Pu(&)* of the projections P5(¢) and P"(¢); see [12, 13]. Hence, their ranges intersect,
R(P5(0)*) N R(P"(0)*) # {0}, and we obtain an eigenfunction of the adjoint operator

E3
h’#«a“.
This proves the lemma. u

Since Tp, , is bounded in X, its spectrum is equal to the spectrum of its adjoint.

Remark 2. It follows from the proof of Lemma 1. that A = exp(aT') is in the spectrum of
the Turing pattern vy, for ca close to zero if, and only if, the equation We = A, o ()W

does not have an exponential dichotomy.

5. The spectrum of the Turing patterns in the moving frame

5.1. Spectra in moving versus steady-state coordinates

In this section, we prove Proposition 1. — and a bit more. Key to the proof is Floquet

theory. As we shall see, the function #(\) is characterized by Floquet exponents.

We consider small spatially-periodic steady-state solutions -, x(z) of (1.1)
ur = Dugg + f(u, p).
The functions v, 1 (£ + ct) then satisfy
ug = Duge + cug + f(u, p);

they have temporal period T' = 27 /ck. In this section, we fix the wavenumber k and omit

the corresponding index k.

Linearizing the nonlinear PDE (1.1) about a Turing pattern, we obtain the linear equation

vy = Dugy + 8uf(7u($)aﬂ)v (5'1)

in a steady coordinate frame and

wy = Dwge + cwe + Oy f (7 (€ + ct), p)w (5.2)
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in the moving frame. We compare the spectra of the time-T" maps '7:2‘# and 7, ,, of these
two equations. Since the equation in the steady frame is autonomous and the generator
LY of the semigroup is sectorial, the Spectral Mapping theorem holds, and the spectrum of

the time-7" map T

0 . .
Yt = el T is determined by L°:

0 0
spec(eL T) — espec(L )T‘

oT+if

First suppose that « € spec(L"); we shall prove that e is in the spectrum of the time-T'

map 7, , in the moving frame for a suitable number 6 € R. It follows from Floquet theory

that, for any such eigenvalue o of L°, there exist a p € R and a bounded solution v of

av = Dvgg + Ouf (yu(2), p)v

such that v(z +27/k) = ePv(x). Let w(&,t) = v(€ +ct) exp(at). A straightforward compu-
tation shows that w satisfies the linearized equation (5.1) in the moving coordinate frame
and

W(E.T) = v(€ + D) = v(E)e™ ¥ = (€, 0)eT .
Therefore, w is an eigenfunction to the eigenvalue exp(aT’ + ip), and 6 = p.

Conversely, suppose that e belong to the spectrum of Ty, Due to Lemma 1. and

Remark 2., we know that there exists an eigenfunction which satisfies
wy = Dweg + cwe + Op f (7 (€ + ct), p)w — cw

with boundary conditions w(z,T) = w(z,0). Exploiting Floquet theory on R(QY, ,(0)), c.f.
(4.14), we see that w(é+27/k,t) = w(E,t) exp(ip) for some p € R. Let w(z,t) := w(z—ct, t),
which then satisfies

U~)t = Dﬁ)xx + 8uf(7u($)uu*)u~) —aw

and
w(z,T) = w(z — T, T) = w(z — T,0) = e Pw(z,0) = e Pi(z,0),

where we used T' = 27 /ck. Hence, exp(at) w(z,t) is the desired eigenfunction of exp(LT).
This proves Proposition 1..
5.2. The dispersion relation in the moving frame

In Section 3., we derived the dispersion relations

oy aplap = 3(k — ko)®) 21 1% 4 2
aerit(p) = =k —Fo)?) " +O0(p*(|p| 2 + p7))
12
aunlp) = ol (b ko) - GERIETEE R 2 o

3 3
+0(|ul + p*(lul? + p?))
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Figure 3: The left picture shows the regions €y, Q¢, and Q, in the complex plane; the three pictures

to the right show the critical Floquet multipliers for « in the aforementioned regions in the case
where ¢g < 0. The vertical axis symbolizes the unit circle.

for the essential spectrum of the Turing patterns 7, in the steady coordinate frame; see
(3.8) and (3.9). As before, k is the wavenumber of the Turing pattern 7, ;. Using the

results of the last section, we obtain the dispersion relations

2T .

Acit(p) = exp (27]:(/0) + 1p> (5.4)
2T .

Astab(p) = exp (27210(/)) + 1,0)

of the Turing patterns v, in a frame moving with speed c.

We can therefore distinguish between three different regions associated with the spectrum
of the Turing patterns in the complex plane near A = 1. The region A, is the connected
components of the spectrum to the right of the curve A is(p); The set A, denotes the
connected component of the area between the curves Acpit (p) and Agap (p); and finally, A is
the connected component to the left of the curve Agian(p). Using the relation A = exp(aT'),
we see that the sets A; for j = r,c,1 correspond to sets €2; for the Floquet exponents o
with « near zero where j = r,c,1; see Figure 3. In the following, we use these latter sets.

According to Remark 2., the elliptic equation
We = Ay, paO)W (5.5)

has no Floquet multipliers on the unit circle for « in any of the regions Q,, Q. or Q. It
follows from the proof of Lemma 1. that the reduced operator B, o, see (4.14), has two
Floquet multipliers close to one for any « close to zero. The next lemma gives the location

of these critical multipliers of (5.5) for any « in one of the three regions defined above.

Lemma 1. Suppose that ¢y < 0. The two critical multipliers of (5.5) are then both inside
the unit circle for a € Qy; if a € Q, then one of the critical multipliers is inside and the
other one is outside the unit circle; finally, if a € 4, then both multipliers are outside the

unit circle. See Figure 3.

If ¢p > 0, we change ¢ — —¢ and can then apply the lemma.
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Proof. Consider the linearized operator Ay, o about the homogeneous trivial equilibrium;
see (4.4). For 4 = 0 and a = 0, it has precisely two eigenvalues given by v = +iky on the
imaginary axis. These eigenvalues are simple zeros of the dispersion relation d(iwy,v) = 0.
Hence, they persist as zeros v = v(u) for non-zero p, and we have
_Oud _M@Ado B _M@Ado _ G &

d,d  hd 9d  9hd dd o "

Ouv =

where we used (1.8) and the definition

O,d
Cl = _ﬂ > 0,

the constant C) is positive due to Hypothesis (P2); see [13, Sect. 3.4]. Therefore, C; > 0
since ¢y < 0 by assumption. In [13], we applied the elliptic center-manifold theory developed
in [9] and reduced the elliptic system

w1 . w2
<w2>g B <D1(8tw1 + cwy — 8uf(w1,u))>

near (wy,wz) = 0 to a two-dimensional center manifold. The vector field on the center
manifold is given by
Ue = (Crp + iko)U — Co|U|PU

upon omitting higher-order terms. The small Turing patterns are of the form

U(E) = || Dl ethoe )
2

for arbitrary ¢ € R, and the linearization about them is given by
Ve = (—=Cip + iko)V — Crpe?ikos o)y,

Next, we account for the parameter « in the linearization. For the linearization at U = 0,
we obtain
OqV = —% = i
8yd Cp
since the dependence on a and ) is the same. Hence, we get

1 - - . _
Ve = (—a — Cip+ k) V — Cy peikot )y,
Co

for the linearization about the wave train. Upon introducing V = el(k0¢+9)V and dropping

the tilde, we obtain the system

1 . o
Ve = (C—Oa —Cip)V = CuV.

Separating into real and imaginary part, and using C,=-C /co, we get
d 1 d 1
—Vi=— 2C1 )V, —Vi=—aV;.
ae"r = ROV V= C el
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Recall that C; > 0 and ¢y < 0. The continuous spectrum corresponds to the lines Rea =0
and Rea = —2Ciu. The Floquet exponents are negative for @« > 0 and positive for
a < —2C1p. For —2C1u < a < 0, one exponent is positive, the other one is negative.
Using the results obtained in Section 3.3., it is straightforward to show that the situation

does not change if the higher-order terms are taken into account. |

6. Absence of point spectrum

In this section, we consider the spectrum of the modulated pulses. The spectrum of the
Turing patterns near A = 1 is contained in the two curves Acpjt and Aggap. It follows from [14,
Lemma 6.3] and its proof that any point in the spectrum of the Turing patterns is also in
the spectrum of the modulated pulse. Here, we prove that the regions in the complex plane
bounded by the essential spectrum of the Turing patterns are not filled with spectrum.
Furthermore, it is shown that there are no isolated unstable eigenvalues near A =1 in the
spectrum of the modulated pulses. Throughout this section, we assume that ¢y < 0. The

case where ¢y > 0 can be reduced to ¢y < 0 by setting £ — —¢£.

6.1. Floquet exponents in the set (2,.

Let o« € Q. Hence, due to Lemma 1., the operator A,, ,, o has its critical multipliers inside
the unit circle. We have to identify any points A € A; in the spectrum of 7, ,. First,
we prove that any such X is an isolated eigenvalue. We then use the elliptic formulation
to detect isolated eigenvalues. Note that such eigenvalues could pop out of the essential
spectrum at p = 0; we refer to [7] for travelling-wave solutions to the Ginzburg-Landau

equation whose spectrum exhibit this behavior.

Lemma 1. If o € Q; corresponds to an element A in the spectrum of the modulated pulse,

then X is an isolated eigenvalue (with finite multiplicity).

Proof. Counsider the linearized reaction-diffusion equation

Uy = DU§§ +Cy (M)Ui + auf(f?u(gat)au)va

where
- Yu(€ + et + for £ <0
Fule, )= { )
Yu(€ + et + @y) for £ > 0.

Since h,(&,t) converges to ¥, (¢, t) as £ — Fo0o uniformly in ¢, see Theorem 1., it follows as
in [5, Exc. A.2, p. 137] that

8uf(hu(fat),ﬂ) - 8uf(;yu(€7t)au) : CYl%nif — Cl(l)nif
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is compact. Following the arguments in [14, Lemma 6.2], we see that the difference of
the operators 75, , and Ty, , is compact. We can then apply [5, Theorem A.1]; as a
consequence, any connected component of the resolvent set of 75, , consists either entirely
of spectrum of Ty, , or else consists of points in the resolvent set of 7y, , with the possible

exception of at most finitely many isolated eigenvalues with finite multiplicity.

Next, we calculate the spectrum of 75, ,. Consider the eigenvalue problem
W§ = A"/lJ«zp‘za (S)W

for the small patterns. This equation admits a trichotomy given by projections Qz,a(é’),
¢.a(§) and Q) ,(§) defined for p sufficiently close to zero and £ € RY, £ € Rand { e R,
respectively. Note that the eigenvalues of the matrix

a1 R(Q5,(0) — R(QS.(3)) = R(Q5 ,(0))
W (0) — W(ZE)

B

are strictly contained inside the unit circle by Lemma 1.. We conclude that solutions with

initial values in R(Qj, ,(£)) decay for £ — oo. Therefore, for a € €2, the equation

W§ = A"/u:ll:a (S)W

has an exponential dichotomy given by the projections Qf,(§) := Qf, ,(§) + Q7 ,(§) and
E,a(é’ ) defined for ¢ € RT and £ € R, respectively. These projections are close in norm,

uniformly in ¢, to the projections Q) and Qg for the equation
We = Agp,oW.
Furthermore, on account of [13, Lemma 3.4], the projections Qg and Qg satisfy
R(Qpo) ® R(Qpp) =Y.

Hence, the projections Q{7 (§) and @}, ,(§) satisty

R(Q5(6) @ R(QLL(E+9) = Y

for arbitrary ¢ and ¢. Using the arguments in the proof of Lemma 1., we conclude that the
connected set €2, is contained in the resolvent set of 75, ,. Recalling the discussion above,
we conclude that €, consists either entirely of spectrum of 7y, , or else consists of points
in the resolvent set of 7y, ,, together with at most finitely many isolated eigenvalues. The

first possibility, however, has been excluded in Section 4.. This proves the lemma. [ |

It suffices therefore to calculate isolated eigenvalues. First, we show that the eigenvalue
problem for the modulated pulse in the elliptic formulation can be considered as a regular
perturbation of the eigenvalue problem for the original pulse at u = 0. We then investigate

the eigenvalue problem for the original pulse and carry out the perturbation analysis.
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The relevant eigenvalue problem for the modulated wave cast as an elliptic equation is
given by
W& = Ahu:ll:a (g)W

where a € Q,. We claim that this equation has exponential dichotomies on RT and R~
given by projections P%, (£) and Py ,(£) defined for § € Rt and ¢ € R™, respectively.
Indeed, the limiting problem

We = Ay, oW

has an exponential dichotomy, see Lemma 1. and the proof of Lemma 1., and the claim

follows from [12]. Isolated eigenvalues correspond to values of « such that
Yo =R (0)) NR(P,(0)) # {0} (6.1)

We are interested in obtaining information from the limit p — 0.

Notice that the projections P, (§) and P} () are actually defined for all o near zero, and
not just for a € ;. Indeed, this follows from [12] by seeking those initial values leading to
solutions of

W& = Ahu:ll:a (g)W

which grow not faster than e” as ¢ — oo for some small but fixed > 0 and which
decay exponentially with rate larger than 7 for ¢ — —oo. Moreover, as p — 0, it the
projections P7%, (§) and Py, (£) converge to projections 7%, (€) and Py, (€) which constitute

dichotomies for the eigenvalue problem
We = Ang0,a(E)W (6.2)

of the original travelling pulse hy at 4 = 0. In fact, solutions to (6.2) associated with initial
values in R(Fg%,(0)) exist for § > 0 and grow not faster that e as & — oo for some small
but fixed n > 0; similarly, solutions with initial values in R(Fg,,(0)) exist for £ < 0 and

decay exponentially with rate larger than n for £ — —oco.

Upon setting = 0 in (6.1), we obtain the limiting subspace
Yoo = R(F5(0)) NR(£,(0))
which we have to calculate. It follows from [13, Lemma 3.4] that

YOr,a = Spa‘n{WU (0)}7

where d
Wo(6) = (hol€) gghol©)).
Moreover, on account of [13, Lemma 3.8], the spaces R(F7%,(0)) and R(Fg, (0)) cross trans-

versely upon perturbing to a # 0. Since the projections depend continuously upon p and
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are smooth with respect to «, we can conclude that, for any p > 0 sufficiently small, there

is a unique value a = a(p) close to zero such that

R(P;%(0)) NR(P,4(0)) # {0}.

Hence, there is the possibility of an instability occurring if a(u) € Q,. We show that in
fact a(p) = 0 for all p.

For > 0, two bounded solutions of

ve = Dvge + ¢ (p)ve + Ouf (hyu(€51), p)v

are given by
d d
d_shu(gat)a 'Ul(gat) = &hu(gat)

This follows readily by differentiating the equation

U0(£7 t) =

which is satisfied by w(§,t) = h, (€, t), with respect to £ and ¢. These solutions correspond
to the translation symmetries in & and ¢. Note that we have vi(&,t) = dho(€,t) = 0 at
p = 0 since ho(€) does not depend on .

On account of Theorem 1., we have

hu(€t) —yu(E+ct+o )] < Ke ™l for ¢ - —o0
hu(€t) —vu(E+ et + )| < Ke Ml for ¢ - oo

Hence, upon using the differential equation and the regularity properties of the solutions,

we see that

vo(€,t) = Y€+ ct+ox),  vi(&t) > ey (E+ct+ o)

as £ — +oo exponentially in & and uniformly in ¢ with rates as above. Therefore, we

conclude that

Ke "¢l for ¢ - —o0
Ke0ulg] for £ — oo.

|1)1(§, ) - CUU(& )| < {

Note that the function vj. = v1 —cvg is not equal to zero; at & = 0, we have vy (0, ) ~ hy(0)
while vy (0,%) is of the order /.

Thus, the function 1
Wloc(g) = (Uloc(ga ')a d_gvloc(ga )) ey

associated with v(£,t) converges to zero exponentially as £ — +oo and
span{Wioc(0)} = R(F,4(0)) NR(F,,(0)), (6.3)
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leading to a non-trivial intersection. Hence, we obtain a(u) = 0 for all u close to zero.

The localized eigenfunction Wi,.(€) has the following interpretation: consider the reaction-
diffusion equation in a frame which moves with the velocity of the asymptotic Turing
patterns. In this frame, the Turing patterns are stationary. The modulated pulse evolves
in time as follows: it consists of a localized pulse that resembles the original travelling
wave and moves through the Turing pattern with a certain velocity. The derivative of the
modulated pulse with respect to time is then localized and corresponds to the eigenfunction
Vioc (&, ). In formulas, we have that h,(z—ct,t) converges to the time-independent patterns
Yu(x + @+) as x — Foo; thus, the time derivative of h,(z — ct,t) converges to zero as

r — Foo.

Summarizing, we have proved that there are no isolated eigenvalues in the region A, that

is, in the connected component of the resolvent set to the right of the essential spectrum.

6.2. Floquet exponents in the set (2.

In this section, we take a € .. We shall show that there exists an « € 2. such that
A = exp(aTl’) € A¢ is not in the spectrum of 7, ,. The strategy is similar to the one
pursued in the previous section. One additional difficulty is that the eigenvalue problem is
not a regular perturbation of the 4 = 0 limit since the modulated pulses do not converge

to zero with uniform exponential rate.

Consider the eigenvalue equation
W§ = A"/lJ«zp‘za (S)W

about the Turing patterns. Due to Lemma 1., for « € )¢ and p > 0, the operator A,, ;o
has one of its critical multipliers inside and the other one outside the unit circle. We denote
the associated stable and unstable critical Floquet exponents by v}, , and v, ,, respectively.

It also follows from Lemma 1. that Rev), o <0 and v, = 0 for any p > 0. In particular,

there exist real numbers 7, , <0 and 7}, , such that
S ~S ~Uu u
Revyo <Vua <Vua <Rev,,

for all 4 > 0 and any « in a small possibly p-dependent neighborhood of zero. For such
values of (i, @), we can then construct exponential dichotomies Qz,a(f ) and sza(f ) defined

for £ € RT and &€ € R™, respectively, such that the following is true: solutions with initial
Z:a
¢ — o0; analogously, solutions with initial values in R(

(0)) exist for positive { and decay exponentially to zero with rate 7, , as

(0)) exist for negative ¢ and

values in R(
u
Ly

grow at most with the exponential rate v, , as { — —oo. In fact, for a € €, solutions in

R( ~E,a(0)) decay exponentially as £ — —oo since then Revy , > 0. Also, the projections

depend continuously upon g and smoothly upon a. We refer to Figure 4 for a summary of

the decay rates associated with the various projections.
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a € Q. a=0 a € Q,

Figure 4: The pictures show the real part of the Floquet exponents of the eigenvalue problem
associated with the asymptotic Turing pattern and the modulated pulse as well as the decay rates
associated with the exponential dichotomies. The projections P® and P! associated with the eigen-
value problem of the modulated pulse admit the same decay rates as Q° and Q", respectively.

As in the last section, the exponential dichotomies defined for the linearization about the
Turing patterns can be extended to dichotomies Pﬁ,a(é’) and P;,a(é’) for the eigenvalue
equation

We = Ap, pa(E)W (6.4)

about the modulated travelling wave. The exponential dichotomies Ps,a and Pﬁ,a enjoy
the same properties as Qfm and Qz,a. Therefore, on account of Lemma, 1., it follows that

A = exp(aT’) with a € ¢ is in the spectrum of T}, ,, if, and only if,
Yo = R(E; ,(0)) NR(P,,(0)) # {0} (6.5)

or

R(P; ,(0)) + R(P! ,(0)) #Y.

Our strategy is as follows. First, we show that the space Y, appearing in (6.5) is one-
dimensional for &« = 0 and any small g > 0. Afterwards, we prove that the dimension
of Y, decreases to zero upon varying . It follows from the proof given below that
R(P; ,(0)) + R(P},(0)) =Y whenever Y7, = {0}. We can then conclude that any o € Q.

close to zero corresponds to an element in the resolvent set.
Lemma 2. For any small p > 0, we have dimYlf,0 =1.

Proof. Let o =0 and consider
Yo = R(P55(0)) NR(F5(0)).

This intersection consists of all solutions of (6.4) which decay exponentially as £ — oo and
are bounded as £ -+ —oo. We conclude that the function Wy, defined in the last section is

contained in Y/, since it actually decays to zero exponentially for £ — +oo.
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Let
Wo(€) = (he, hee) (6), (6.6)

and note that Wy(0) is not contained in Y7 since it does not decay to zero as { — oo for
pw > 0. However, Wy(0) € R(P“io(O)) since it is bounded as £ — —oo. Note that Wy(&)

does not converge to zero as £ — —oo. Therefore, we have

R(Py(0)) = span{Wy(0)} & R(Py(0));

recall from the last section that R(P,(0)) contains those solutions which decay to zero
exponentially as £ -+ —oo with some rate x > 0 independent of u; see Figure 4. It follows
that any element W (0) of R(P“io(O)) can be written as

W(0) = aWo(0) + W (0)
for some number a where W, (0) € R(P;}((0)). Next, suppose that
W (0) = aWy(0) + Wu(0) C R(F;%(0)) NR(F}4(0)).

Since

Wo(0) € R(P55(0)) NR(PL(0)),

we conclude that
Wyu(0) € R(P;5(0)) NR(P,5(0)).

However, we had seen above that W, (0) € R(P}((0)). Thus,
Wu(0) € R(P;5(0)) NR(F,;(0)),

and it follows that W, (0) € span{W,:(0)} on account of the results of the last section; see
(6.3). Since
Yo CR(P6(0)) NR(F,;(0)) = span{Wp(0), Wioc(0)},

this shows that Y[, = span{W,.(0)}, and therefore dim Yio=1 [ |
The previous lemma shows that the space Y‘fyo is spanned by the localized eigenfunction
Wioc- In the next step, we prove that the space Y, has dimension zero for a # 0. In

fact, we shall see that the space Y/, disappears in the same fashion as the space Y, ; upon

varying «; the latter space has already been investigated in the previous section.

Lemma 3. For any small p > 0, and any o € Q¢ in a small neighborhood of zero which
may depend upon p, we have dimYy, =0 and R(Pj,a(O)) + R(Pﬁya(O)) =Y.
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Proof. As mentioned before, for ;1 > 0, the projections 155706(0)) and ]5;,&(0) depend

continuously on p and smoothly upon «, and we have
dim [R(} (0)) NR(P(0))] = 1.
First, we consider the adjoint eigenvalue equation
We = —An, ()" W. (6.7)

Note that we can regard the adjoint operator Ay, ;.o (£)* as a closed operator defined in the
Hilbert space Y; see [8]. In particular, the adjoint equation has well-defined exponential
dichotomies given by the adjoint projections 155706(5)* and 15;}706(5)* for £ > 0 and ¢ < 0,
respectively; see [12]. It follows that

Yo = [R(P5(0)) + R(Byo(0)]

is finite-dimensional since
[R(P54(0)) + R(P(0))] C [R(P50(0) + R(PLo(0)] " = R;

see [13, Lemma 3.4] and Section 6.1.. In fact, any element 1y € Yuc,’g leads to a bounded
solution 1 (§) of the adjoint eigenvalue equation (6.7) which satisfies 1(0) = 1y and decays

exponentially to zero as & — —oo. Any such solution satisfies

$(€) L R(PS(€)) + R(PLo(£))]

for all €.

Before we continue with the proof, we investigate the asymptotic behavior of the solutions
1(€) in more detail. We claim that, for any such 1 (¢),

P(&) L [R(PLH(8)) + R(PLo(£))] (6.8)
for all £. In order to prove this claim, recall that
R(Fy1(0)) = span{Wy(0)} & R(P}1(0)).

Similarly, we have
R(P0(0)) = span{W(0)} ® R(F};(0))

since Wy (&) does not decay to zero as & — oco. By definition, any (0) € Y:,’g satisfies
$(0) L Wo(0)
since 9(0) L R(PL‘}O(O)). Hence, we conclude that
$(0) L R(PE(0)
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which proves (6.8). In the last section, see (6.3), we proved that

dim [R(PS5(8)) + R(PLo ()] = L.

Thus, there exists a unique (up to scalar multiples) solution () of (6.7) with ¢ (0) € Y;,’g .

We return to the proof of the lemma. Using Lyapunov-Schmidt reduction, see for instance
[11] or [13, Lemma 3.8], we see that

dimY;,>1 or dimY;, >1

for o > 0 if, and only if,

o0

E(u0) = a / ((6), BWino(€))y dé + O(0?) = 0, (6.9)

— 00

B:(gg).

Note that the integral exists due to the convergence properties of (&) and Wi, ().

where

It suffices therefore to prove that the integral appearing in (6.9) is non-zero. In the last

section, we have considered the intersection
Yia = R(F(0) NR(P;,(0)).

For a = 0, this intersection was spanned by W,.(0). Using Lyapunov-Schmidt reduction,

it can be shown that the subspace Y} , is non-trivial if, and only if, the function

o0

E(j,0) = o / ((6), BWioe(©))y dé + O(a?) = 0 (6.10)

—0o0

vanishes. Indeed, the fact that the integrands in (6.9) and (6.10) coincide follows from
(6.8). Note that the function E"(u,«) is continuous in g and smooth in «. Moreover,
it is well-defined for 4 = 0 where it measures the distance of the spaces R(F§%,(0)) and
R(Fg',(0)). It has been shown in [13, Proof of Lemma 3.8] that

E™(0,0) = aM + O(c?),

for some non-zero constant M. Exploiting continuity in p and differentiability in o, we can

therefore conclude that the integral appearing in (6.9) is non-zero. n

Summarizing the results we have obtained in this section, we are able to conclude that
there is a small, possibly u-dependent, neighborhood of zero such that none of the o € €2,

in this neighborhood is a Floquet exponent for the operator Tj,, ;.
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6.3. Proof of Theorem 4.

We collect the arguments presented in the preceding sections. In Section 5., we calculated
the spectrum of the Turing patterns in the moving frame. The spectrum of the Turing
patterns near A = 1 is contained in the two curves Aqiy and Agap. Moreover, any point
in the spectrum of the Turing patterns is also in the spectrum of the modulated pulse. In
Section 6.1., we proved that any point to the right of the spectrum of the Turing patterns,
in the moving frame, is not in the spectrum of the modulated pulse. We then showed that
any point close to A = 1 which is in the region A, between the two curves constituting the
spectrum of the Turing patterns is contained in the resolvent set of the modulated pulse.
The remaining statements in Theorem 4. follow easily using the results established in the

previous two sections. This completes the proof of Theorem 4..

References

[1] T. Bridges and A. Mielke. A proof of the Benjamin-Feir instability. Arch. Rat. Mech.
Anal. 113 (1995), 145-198.

[2] W. Eckhaus. Studies in nonlinear stability theory. Springer Tracts. in Nat. Phil. 6,
Springer, 1965.

[3] R. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of
viscous shock profiles. Comm. Pure Appl. Math. 51 (1998), 797-855.

[4] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and bi-

furcations of vector fields. Springer, New York, Berlin, Heidelberg, 1986.

[5] D. Henry. Geometric theory of semilinear parabolic equations. Lect. Notes Math. 804,
Springer, New York, Berlin, Heidelberg, 1981.

[6] G. Iooss, A. Mielke, and Y. Demay. Theory of steady Ginzburg-Landau equation, in
hydrodynamic stability problems. Europ. J. Mech. B/Fluids 8 (1989), 229-268.

[7] T. Kapitula and B. Sandstede. Stability of bright solitary wave solutions to perturbed
nonlinear Schrodinger equations. Physica D 124 (1998), 58-103.

[8] T. Kato. Perturbation theory for linear operators. Springer, New York, 1966.

[9] A. Mielke. A reduction principle for nonautonomous systems in infinite-dimensional
spaces. J. Diff. Eqns. 65 (1986), 68-88.

[10] A. Mielke. Instability and stability of rolls in the Swift-Hohenberg equation. Comm.
Math. Phys. 189 (1997), 829-853.

32



[11]

[12]

K. Palmer. Exponential dichotomies and transversal homoclinic points. J. Diff. Eqns.
55 (1984), 225-256.

D. Peterhof, B. Sandstede, and A. Scheel. Exponential dichotomies for solitary-wave
solutions of semilinear elliptic equations on infinite cylinders. J. Diff. Eqns. 140 (1997),
266-308.

B. Sandstede and A. Scheel. Essential instability of pulses, and bifurcations to modu-

lated travelling waves. Proceedings of the Royal Society of Edinburgh A, accepted.

B. Sandstede, A. Scheel, and C. Wulff. Bifurcation and dynamics of spiral waves. J.

Nonlinear Sci., in press.

G. Schneider. Nonlinear stability of Taylor-vortices in infinite cylinders. Habilitations-

schrift, University of Hannover, 1997.

G. Schneider. Nonlinear diffusive stability of spatially periodic solutions — abstract
theorem and higher space dimensions. In ”Proceedings of the international conference
on asymptotics in nonlinear diffusive systems (Sendai, 1997)”, Tohoku Math. Publ., 8
(1998), 159-167.

33



