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Abstract

Motivated by experimental observations in the light-sensitive Belousov–Zhabotinsky reaction and

subsequent numerical works, we discuss period-doubling bifurcations of spiral waves and other coherent

structures. We report on explanations of the observed phenomena which involve a detailed analysis of

spectra, and of the associated eigenfunctions, of defects on bounded and unbounded domains.

1 Introduction

Spiral waves arise in many biological, chemical and physical systems. They rotate rigidly as functions of
time, and a typical spatial profile of a planar spiral wave is shown in Figure 1. The importance of spiral waves
is partly due to the fact that experimentally observed patterns are often organized by interacting spirals.
Upon varying system parameters, spiral waves may destabilize, and the resulting instabilities lead often to
more complex coherent patterns or to spatio-temporally disorganized dynamics. Examples of experimentally
observed instabilities are meander instabilities [14, 17, 21], core [45] and far-field breakup [23], and period-
doubling instabilities [24, 43].

From a classical dynamical-systems viewpoint, we expect that the transition to complicated dynamics is
initiated by a sequence of generic local or global bifurcations: Saddle-node and Hopf bifurcations in the case
of equilibria, and saddle-node, Hopf and period-doubling bifurcations in the case of periodic orbits. Indeed,
chemical reactions can be modelled by reaction-diffusion systems in finite domains for which bifurcations
can be reduced to finite-dimensional center manifolds, and where instabilities are therefore expected to be
of the aforementioned type.

In a first attempt to understand spiral-wave instabilities, we can view spirals as time-periodic solutions whilst
disregarding their spatial structure: note that spirals rotate rigidly as functions of time and that their wave
pattern repeats itself after one period of rotation; see Figure 1. Thus, from this viewpoint, we expect to
see Hopf and period-doubling bifurcations as typical precursors on the route to complicated spatio-temporal
dynamics. Hopf bifurcations have indeed been observed and give rise to meander instabilities [1]. What
appears to be chaotic hypermeander of spiral tips has also been observed for parameter values far beyond
the meandering transition but, to our knowledge, the question whether complicated hypermeander is actually
caused by subsequent secondary bifurcations has not yet been settled.

More recently, a different type of instability has been observed both in experiments [43] and in numerical
simulations [13]. The primary spiral destabilizes as illustrated in Figure 1 and gives rise to a new spiral wave
that emits wave trains with doubled wavelength and temporal period. An additional feature of this transition
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Figure 1: Snap shots of the w-component of 2D spiral waves in the Rössler equation (1.4) are shown for two

different parameter values: The left figure shows a rigidly-rotating spiral wave for C = 2.95 [movie], while

the right figure shows the spiral wave for C = 3.4 after a period doubling bifurcation [movie]. The period-

doubled spiral exhibits a line defect, which emanates from the core and ends at the bottom of the boundary,

in order to accommodate the phase-shifted wave trains to either side.

is the occurrence of a line defect that emerges from the spiral core and which accommodates the necessary
mismatch of the phases of the oscillations that are emitted by the spiral core. The pattern still repeats itself
but only after two rotations of the spiral core. Thus, the spiral wave, regarded as a time-periodic solution,
has undergone a period-doubling bifurcation and, in accordance with the literature, we will refer to this
instability as period doubling of spiral waves.

This apparently straightforward explanation is, however, too simple. Consider, for example, the spiral wave
as a solution in a circular domain. We may then pass to a rigidly corotating coordinate frame in which the
spiral wave becomes an equilibrium. In particular, we can obtain the Floquet multipliers of the spiral wave
in the original laboratory frame simply by exponentiating the eigenvalues of the spiral wave in the corotating
frame where the spiral is an equilibrium. An application of the spectral mapping theorem then shows that
a simple eigenvalue ρ = −1 cannot occur for the exponential of the real linearization in the corotating
frame. In other words, in rotationally symmetric domains, spiral waves are equilibria when considered in a
corotating frame, which generically undergo only saddle-node or Hopf bifurcations. From this perspective,
period doubling ceases to be meaningful as an instability mechanism.

Thus, the only conceivable explanation left is that the instability is a Hopf bifurcation. Since the temporal
period of the bifurcating patterns observed in experiments and numerical simulations is approximately twice
the period of the primary spiral, the Hopf frequency ωH needs to be in a 2:1 resonance with the rotation
frequency ω∗ of the spiral wave so that

ωH =
ω∗
2
.

From a genericity viewpoint, it is therefore important to understand which mechanism enforces this 2:1
resonance of the Hopf frequency of eigenvalues and the rotation frequency of the spiral wave. This natural
question is indeed the central point of this paper.

The seemingly artificial choice of the corotating frame can be put in a slightly more systematic context once
the symmetries of the problem are taken into account. Posing the underlying reaction-diffusion system on
a circular domain, rotations in SO(2) of the domain act on patterns and map solutions of the system to
solutions. Spiral waves are relative equilibria with respect to this group action, that is, their time evolution
is equivalent to the action of the group: Spirals are rigidly rotating. The isotropy of the spiral waves that
we consider is trivial: Only a full rotation by 2π maps the spiral profile onto itself. Consequently, center
manifolds near spiral waves are principal fiber bundles, given as a direct product of the underlying symmetry
group SO(2) and a complement of the tangent space of the group orbit in the center eigenspace [39]. In
particular, the center manifold is a globally trivial bundle, which provides yet another reason for why the
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case of a simple negative Floquet multiplier −1 is precluded for period-doubling bifurcations of spiral waves
as this scenario requires the center manifold to be non-orientable. The structure of the principal fiber bundle
can be understood by first constructing a center manifold in a Poincaré section, which is also a section to
the group orbit, and then transporting the center manifold along the periodic orbit using the group action.

Symmetry is also the key to understanding the meandering patterns that arise at Hopf bifurcations. As first
pointed out by Barkley [1], the meandering motion of spiral waves can be understood if we consider the
spiral wave on the entire plane where, in addition to rotations, spatial translation of patterns maps solutions
to solutions. The full symmetry group is therefore the special Euclidean group SE(2) of translations and
rotations in the plane. Center manifolds near relative equilibria can still be described as principal fiber
bundles SE(2)×V where V corresponds to the Hopf eigenmodes. The dynamics on the center manifold is of
skew-product form: After an appropriate reparametrization of time, the dynamics near onset are governed
[6, 11, 39] by the ordinary differential equations (ODEs)

ȧ = eiϕ[v + O(|v|2)]

ϕ̇ = ω∗ (1.1)

v̇ = [µ+ iωH]v − (1− iα)|v|2v

where ϕ denotes the phase of the spiral, that is, its angle of rotation relative to a fixed reference frame,
a = x + iy is its position, and v ∈ C parametrizes a neighborhood of the origin in the Hopf eigenspace.
Substituting the periodic orbit v∗(t) with frequency ωH + µα of the v-equation and the solution ϕ∗(t) = ω∗t

of the ϕ-equation into the equation for a, and expanding the resulting equation in Fourier modes, we find
that the solution a∗(t) is given by

a∗(t) =
∞∑

k=−∞

ak
ei[ω∗−k(ωH+µα)]t − 1
ω∗ − k(ωH + µα)

(1.2)

so that the spiral tip stays bounded unless ω∗ and ωH are resonant: When

ω∗ = `ωH for some ` ∈ Z, (1.3)

then the tip position a∗(t) = a`t+ . . . is unbounded near µ = 0, and the spiral wave drifts with velocity a`.
The resonance ` = 1 has been observed frequently in experiments [1, 42].

Returning to the period-doubling instability of spiral waves, we have already inferred that period doubling
ought to be a resonant Hopf bifurcation with ` = 2 in (1.3). The drift predicted by (1.2) had not been
observed originally in the experiments [43] or the numerical simulations [13]. Based on the theoretical
predictions outlined above, we observed drift in the Rössler system

ut = 0.4 ∆u− v − w

vt = 0.4 ∆v + u+ 0.2 v (1.4)

wt = 0.4 ∆w + uw − Cw + 0.2,

upon varying C (and report on these results in §6 below). Independently, drift was also observed in [3] for
the system (1.4).

In summary, the supposition of an exact 2:1 resonance of the Hopf frequency of eigenvalues and the rotation
frequency of the spiral wave leads to the prediction that period-doubled spirals should drift which was, in
turn, verified in numerical simulations. Thus, the remaining key question is what enforces this resonance
which seems to be non-generic and should not occur in one-parameter systems such as (1.4).

At this point, it is time to emphasize that the reduction results for planar patterns in the presence of the non-
compact Euclidean group hold only for localized rotating waves. For Archimedean spirals, the presence of
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essential spectrum on the imaginary axis prevents a reduction to a finite-dimensional system. While this issue
may appear to be of purely technical nature for meandering instabilities where theoretical predictions are in
excellent agreement with experimental and numerical results, the situation is different for period-doubling
instabilities. We shall argue that period doubling of spirals is not caused by isolated point spectrum but
instead by the essential spectrum of the asymptotic wave trains.

Specifically, we shall show that ordinary period-doubling bifurcations of wave trains in the travelling-wave
equation create 2:1 resonances of the essential spectra of planar spiral waves that are spatially asymptotic
to these wave trains in their far field. More precisely, period-doubling instabilities of wave trains manifest
themselves for planar spiral waves in the form of curves of essential spectrum that cross the imaginary axis
first at exactly Λ = ±iω∗/2. In particular, robust 2:1 resonances can occur in an open set of one-parameter
families of reaction-diffusion systems. When posed on physically relevant bounded domains such as disks of
radius R, we had shown previously in [31, 37, 38] that spiral spectra accumulate in the limit R → ∞ onto
the so-called absolute spectrum. We show here that absolute spectra of wave trains near period-doubling
bifurcations are symmetric with respect to reflections across Im Λ = iω∗/2: One generic possibility is therefore
that the absolute spectrum lies entirely on the line Im Λ = iω∗/2, leading again to a 2:1 resonance. The
latter case occurs, in fact, for wave trains with small wave numbers near spatially homogeneous oscillations.
Lastly, we shall also investigate the nature of the line defect apparent in Figure 1.

The rest of the paper is organized as follows. We analyse spatio-temporal period doubling of one-dimensional
wave trains in §2 where we also introduce background material on dispersion relations, group velocities, and
absolute and essential spectra. Building upon these results, we investigate in §3 spatio-temporal period-
doubling for one-dimensional sources. In §4, these results are adapted to planar Archimedean spiral waves,
building on our results on spiral spectra in [31, 37, 38]. In §5, we use spatial dynamics to analyse period-
doubling bifurcations near spatially homogeneous oscillations. Lastly, §6 is devoted to an application of these
ideas to the Rössler system (1.4) in which period doubling had been observed previously. We conclude in §7
with a discussion of the limitations of our approach and open problems.

2 Spatio-temporal period-doubling of wave trains

Our interest in this section is to study period-doubling bifurcations of wave trains and how these manifest
themselves on the spectral level in different coordinate frames. We consider reaction-diffusion systems

ut = Duxx + f(u;µ), x ∈ R, (2.1)

for u ∈ Rn and µ ∈ R, where D is a positive diagonal matrix and the nonlinearity f : Rn × R → Rn

is smooth. We assume that (2.1) with µ = 0 has a wave-train solution uwt(kx − ωt) for an appropriate
wave number k and temporal frequency ω, where we assume that uwt is 2π-periodic in its argument so that
uwt(ξ) = uwt(ξ + 2π) for all ξ.

2.1 Spatial and temporal period doubling

If the wave number k vanishes, then u(x, t) = uwt(−ωt) is a spatially homogeneous oscillation which satisfies
the ordinary differential equation

ut = f(u;µ). (2.2)

Period doubling of uwt(−ωt) occurs when ρ = −1 is a temporal Floquet multiplier of the linearization of the
period map associated with (2.2) about uwt. The multiplier ρ = −1 is generically simple, and the resulting
purely temporal period doubling leads to a spatially homogeneous oscillation with frequency close to ω/2.
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Next, assume that k 6= 0. In this case, we can pass from the laboratory frame x to the comoving frame
ξ = kx− ωt in which (2.1) becomes

ut = k2Duξξ + ωuξ + f(u;µ). (2.3)

Note that uwt(ξ) is an equilibrium solution of (2.3) with spatial period 2π, and we focus here on steady-state
bifurcations of (2.3) which are captured by the travelling-wave ODE

k2Duξξ + ωuξ + f(u;µ) = 0. (2.4)

Spatial period doubling of the 2π-periodic orbit uwt(ξ) of (2.4) occurs when

k2Dvξξ + ωvξ + fu(uwt(ξ);µ)v = 0 (2.5)

has a nonzero solution vpd(ξ) with vpd(ξ+2π) = −vpd(ξ) for all ξ, corresponding to a simple spatial Floquet
multiplier at −1. This bifurcation corresponds to a generic pitchfork bifurcation of (2.3) when we pose it on
the spatial interval (0, 4π) with periodic boundary conditions. The Z2-symmetry that turns the steady-state
bifurcation into a pitchfork is generated by the shift ξ 7→ ξ + 2π which also generates the isotropy group
of the equilibrium uwt of spatial period 2π when considered on the interval (0, 4π). Lyapunov–Schmidt
reduction for the nonlinear problem (2.4) on an appropriate function space of 4π-periodic function leads
to a family of spatially period-doubled equilibria that bifurcate from uwt. Center-manifold reduction, or
Lyapunov–Schmidt reduction [16], shows that the principle of exchange of stability holds for the temporal
dynamics of (2.3) on the space of 4π-periodic functions provided the cubic coefficient of the reduced equation
is nonzero. In other words, the bifurcating pattern is stable as a solution to (2.3) if it exists for parameter
values for which the primary pattern uwt is unstable. We refer to [7] for a discussion of the multiplicity of
period-doubling eigenvalues using Evans functions.

Lastly, we interpret these results in the laboratory frame. Assuming that k 6= 0 and ω 6= 0, we consider (2.1)
on the interval (0, 4π/k) with periodic boundary conditions. Equation (2.1) generates a compact semiflow
Φt on H2

per(0,
4π
k ), and the wave train uwt corresponds to a time-periodic solution with period T = 2π/ω.

We refer to eigenvalues ρ of the linearized period map Φ′T (uwt) as Floquet multipliers, which turn out to be
conveniently related to the spectrum of the linearization

λv = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v (2.6)

of (2.3) with 4π-periodic boundary conditions about the equilibrium uwt(ξ). Indeed, any nontrivial solution
v(ξ) to the eigenvalue problem (2.6) gives a solution w(x, ·) of the eigenvalue problem for the period map of
(2.1) in the laboratory frame via

w(x, t) = eλtv(kx− ωt), w(x, T ) = eλT v(kx− 2π)

and vice versa. Spatial period doubling of (2.6) corresponds to λ = 0 and v(ξ) with v(ξ+2π) = −v(ξ) for all
ξ. The resulting solution w(x, t) satisfies w(x, T ) = −w(x, 0), and therefore gives a simple Floquet multiplier
ρ = −1. We refer to the occurrence of a simple Floquet multiplier ρ = −1 of Φ′T (uwt) as spatio-temporal
period doubling.

2.2 Essential spectra of wave trains

More generally, we can consider the linearization on the real line x ∈ R. First, consider the linearization

vt = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v, ξ ∈ R (2.7)
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in the comoving frame together with the associated eigenvalue problem

λv = Dk2vξξ + ωvξ + fu(uwt(ξ); 0)v, ξ ∈ R. (2.8)

We write this equation as the first-order system

vx =

(
0 1

k−2D−1[λ− fu(uwt(ξ); 0)] ωk−2D−1

)
v (2.9)

and denote the associated 2π-period map by Ψ2π(λ). Spatial Floquet exponents ν/k of (2.8) or (2.9) are
determined as roots of the Wronskian

d(λ, ν) := det
[
e2πν/k −Ψ2π(λ)

]
. (2.10)

The Wronskian d(λ, ν) satisfies

d(λ, ν) = d(λ̄, ν̄) complex conjugation
d(λ, ν) = d(λ, ν + ik`) artificial Floquet conjugation

(2.11)

for all integers `. Spatial Floquet exponents can also be found by seeking nontrivial solutions to (2.8) of the
form

v(ξ) = eνξ/kv0(ξ), v0(ξ + 2π) = v0(ξ) ∀ξ (2.12)

where v0 is a 2π-periodic solution of

λv = D(k∂ξ + ν)2v +
ω

k
(k∂ξ + ν)v + fu(uwt(ξ); 0)v. (2.13)

Purely imaginary spatial Floquet exponents ν ∈ iR give eigenvalues λ of (2.8), and each eigenfunction (2.12)
leads to a solution

v(ξ, t) = eλteνξ/kv0(ξ) (2.14)

of (2.7). We record that spatial period doubling as discussed in §2.1 is equivalent to having a nontrivial
solution v of (2.13) for λ = 0 and ν = ik/2.

In the laboratory frame, the relevant linearization is

ut = Duxx + fu(uwt(kx− ωt); 0)u, x ∈ R. (2.15)

Temporal Floquet multipliers ρ and the associated Floquet exponents Λ in the laboratory frame are deter-
mined by bounded nontrivial solutions u(x, t) of (2.15) with

u(x, T ) = ρu(x, 0) = eΛTu(x, 0)

where T = 2π/ω. It turns out that Λ is a temporal Floquet exponent if, and only if, there is a nontrivial
solution of (2.15) of the form

u(x, t) = eΛteνxu0(kx− ωt)

with ν ∈ iR, where u0 is 2π-periodic in its argument. Solutions of this form for arbitrary ν ∈ C are in
one-to-one correspondence with the solutions (2.12) of (2.8) via

u(x, t) = eλteνξ/kv0(ξ) = e[λ−νω/k]teνxv0(kx− ωt) = eΛteνxv0(kx− ωt)

with
Λ = λ− ων

k
= λ− cpν (2.16)

where cp = ω/k is the phase speed of the wave train uwt. Thus, the temporal Floquet exponents Λ in the
laboratory frame are roots of

D(Λ, ν) := d(Λ + cpν, ν). (2.17)
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Using (2.11), we see that D satisfies

D(Λ, ν) = D(Λ̄, ν̄) complex conjugation
D(Λ, ν) = D(Λ− iω`, ν + ik`) Floquet conjugation

(2.18)

for all integers `. Typically, solutions of d(λ, ν) = 0 come in curves λ = λ∗(ν), yielding also Λ = Λ∗(ν). For
ν ∈ iR, we refer to these curves as dispersion curves in the comoving and the laboratory frame, respectively.
We say that a dispersion curve Λ∗(ν) is simple if

∂ΛD(Λ, ν) = ∂λd(λ, ν) 6= 0

at Λ = Λ∗(ν) or λ = λ∗(ν). The derivative

cg := −d Im Λ
d Im ν

is commonly referred to as the group velocity in the laboratory frame. The relation (2.16) can therefore be
viewed as transforming the group velocity from the laboratory to the comoving frame by subtracting the
speed of the frame.

Equation (2.16) implies that spatial period doubling with λ = 0 and ν = ik/2 in the comoving frame becomes
spatio-temporal period doubling with Λ = −iω/2 and ν = ik/2 in the laboratory frame. The observation
that the composition of the two symmetries in (2.18) fixes Im Λ = −iω/2 leads us to the following lemma on
robustness of period doubling.

Lemma 2.1 (Robustness of spatio-temporal period doubling) Assume that there is a simple disper-
sion curve Λ(ν) with

Im Λ(ik/2) = − iω
2
, (2.19)

then the dispersion curve is reflection symmetric about the line Im Λ = −iω/2 for ν close to ik/2. Moreover,
(2.19) is robust under sufficiently small perturbations of the parameter value µ and the coefficients uwt(ξ) in
(2.6).

Proof. From (2.18), we conclude that D(Λ, ν) = 0 if, and only if, D(Λ̄− iω, ν̄ + ik) = 0. Upon substituting
Λ = −iω/2 + l and ν = ik/2 + iγ with γ ∈ R into these identities, we see that D(−iω/2 + l, ik/2 + iγ) = 0 if,
and only if, D(−iω/2+ l̄, ik/2− iγ) = 0. Applying the implicit function theorem to both equations, and using
uniqueness of solutions, we conclude that l(−γ) = l̄(γ) for all γ close to zero, which implies the asserted
symmetry of the dispersion curve about the line Im Λ = −iω/2. Robustness with respect to parameter
variations is again a consequence of the implicit function theorem.

In preparation for the analysis in the following two sections, we examine the linearization in exponentially
weighted spaces

L2
η := {u ∈ L2

loc; |u|L2
η
<∞}, |u|2L2

η
:=
∫

R
|u(x)|2e−2ηx dx. (2.20)

The spectra in L2
η can be computed in the same way as for η = 0 by solving (2.13) with ν ∈ η + iR, which

yields an η-dependent family of dispersion curves Λ(ν) with Re ν = η. The real part of these curves depends
on η according to

dRe Λ
dη

=
dRe Λ
dRe ν

=
d Im Λ
d Im ν

= −cg, (2.21)

where we used the Cauchy–Riemann equations for the complex analytic function Λ(ν) in the second equality.
In particular, if the group velocity cg is positive, then positive weight rates η > 0, which predominantly
measure mass accumulating at x → −∞, push dispersion curves Λ(ν) towards the stable direction since
d Re Λ

dη < 0. This can in fact be viewed as a justification of the terminology for cg in the sense that the group
velocity measures transport from negative to positive x.

From now on, we shall always denote the temporal Floquet exponents of wave trains in the comoving frame
by λ and in the laboratory frame by Λ.
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2.3 Absolute spectra of wave trains

When we pass to large bounded domains with separated boundary conditions, exponential weights generate
equivalent topologies for each finite domain size L. In [30], we showed that the spectrum of the linearized
period map, considered on large but finite domains with typical separated boundary conditions, converges
in the limit of infinite domain size. We proved that this limit is given generically by the absolute spectrum
which can be computed using only the Wronskian D(Λ, ν) and which typically consists of a locally finite
collection of semi-algebraic curves.

Since the absolute spectrum is related to separated boundary conditions, it depends crucially on the frame
in which the boundary conditions are imposed. As we are primarily interested in 1D sources and 2D spiral
waves for which only the laboratory frame is relevant, we shall compute the absolute spectrum of wave trains
in this frame. To define absolute spectra in the laboratory frame, we fix a point Λ ∈ C and collect all roots
ν of the Wronskian D(Λ, ν) subject to 0 ≤ Im ν < k. As shown in [34, §3.4], these roots form a countable
set {νj}j∈Z which depends on the choice of Λ ∈ C. Taking the restriction on the imaginary part of the νj
into account, we conclude from [20] that there are only finitely many roots νj , counted with multiplicity
as solutions to an analytic equation, in any bounded region of the complex plane. Furthermore, [34, §3.4]
implies that there are infinitely many roots with negative real parts and infinitely many roots with positive
real part. We may therefore order the roots νj , repeated with multiplicity, according to their real part

. . . ≤ Re ν−k ≤ Re ν−k+1 ≤ . . . ≤ Re ν−1 ≤ Re ν0 ≤ Re ν1 ≤ . . . ≤ Re νk ≤ Re νk+1 ≤ . . . (2.22)

which gives a well defined labelling up to shifts in the indices and up to the ambiguity of labelling roots with
equal real part. For Re Λ � 1, each νj has nonzero real part since the essential spectrum would otherwise
extend arbitrarily far to the right in the complex plane. We may therefore choose the labelling in (2.22) so
that Re ν0 < 0 < Re ν1 for Re Λ � 1. We then define the absolute spectrum in the laboratory frame as the
set

Σabs = {Λ ∈ C; Re ν0 = Re ν1}. (2.23)

We say that the absolute spectrum is simple if Re ν−1 < Re ν0,1 < Re ν2 and call points where ν0 = ν1 edges
of the absolute spectrum. Edges in simple absolute spectrum are called simple edges, and it is straightforward
to see that a unique curve of absolute spectrum emerges from each simple edge. More generally, the absolute
spectrum comes in curves, being defined by a single real condition for the complex parameter Λ, and we may
naturally parametrize these curves using the parameter

s = (Im ν1 − Im ν0)2

so that edges correspond to s = 0.

Inspecting (2.23) shows that the absolute spectrum also respects the symmetries (2.18) of the essential
spectrum, namely complex conjugation and the artificial Floquet covering symmetry Λ 7→ Λ + iω. In
particular, we have the following analogue of Lemma 2.1.

Lemma 2.2 (Robustness of absolute spatio-temporal period doubling) Suppose that a simple edge
of the absolute spectrum Λ(0) is located at Im Λ(0) = −ω/2 for Im ν0 = k/2, then the unique dispersion curve
emanating from Λ(0) is horizontal, that is, Im Λ(s) = −ω/2 for s ≈ 0. Moreover, the same conclusion holds
for sufficiently small perturbations of the parameter value µ and the coefficients uwt(ξ) in (2.6). In particular,
the absolute spectrum crosses at the sharp resonance −iω/2 for an open subset of one-parameter families of
reaction-diffusion systems.

Proof. The proof is similar to the proof of Lemma 2.1 and will be omitted.
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We emphasize that the crossing of the essential spectrum at ±iω/2 does not necessarily enforce the absolute
spectrum to cross at resonance. The other generic possibility is that the absolute spectrum consists locally
of two curves which are symmetric about Im Λ = ±ω/2 but do not contains any points with Im Λ = ±ω/2.

2.4 Spatially homogeneous oscillations

We show here that the hypotheses stated in Lemma 2.1 and 2.2 are met for wave trains with small wave
numbers that accompany spatially homogeneous oscillations. Indeed, assume that (2.2) admits a solution
uwt(−ωt) which undergoes a generic temporal period-doubling bifurcation at µ = 0. Moreover, assume
that the Floquet spectrum of the linearized period map Φ′T (uwt) of (2.1) is contained in the open left half-
plane except for simple edges at Λ = 0, Λ = ±iω/2 and their Floquet conjugates (note that the absolute
and essential spectra of homogeneous oscillations coincide since these waves are invariant under the spatial
reflections x 7→ −x).

Lemma 2.3 Under the assumptions stated above, there exists a family of wave trains, parametrized by their
wave number k with k ≈ 0, each of which undergoes a spatio-temporal period doubling which satisfies the
hypotheses of Lemma 2.1 and 2.2.

We remark that the statement of the preceding lemma will be further extended in §5.

Proof. The existence problem and the eigenvalue problem of wave trains with wave number k = ε ≈ 0 yield
the singularly perturbed boundary-value problems

ε2D∂2
ξu+ ω∂ξu+ f(u) = 0, D(ε∂ξ + ν)2v + ω(∂ξ + ν/ε)v + f ′(u)v = λv,

respectively, with 2π-periodic boundary conditions in ξ = εx. The eigenvalue problem can be rewritten in
the form

D(ε∂ξ + ν)2v + ω∂ξv + f ′(u)v = Λv,

using the definition (2.16) of Λ. Writing these second-order equations as first-order equations and reducing
the dynamics to a slow manifold using geometric singular perturbation theory as in [34, §3.3] shows that
bounded solutions lie on the slow manifold and that the evolution on the slow manifold is obtained to leading
order by formally setting ε = 0 in the system above. The reduced system therefore consists of a regular
perturbation of a generic period-doubling bifurcation with simple Floquet multiplier which proves the claim
about existence. The spectral problem with simple edges at Λ = 0 and Λ = −iω/2 for ν = 0 and ν = ik/2,
respectively, is robust as well and yields the same spectral picture for ε ≈ 0 with a possible offset in the real
part of the period-doubling eigenvalue.

3 Period doubling of sources in one space dimension

Two-dimensional spirals are defects in the sense that, far away from the location of the spiral tip, the
medium resembles locally the essentially one-dimensional planar wave trains that we encountered in the
previous section. An additional property of two-dimensional spirals is the active emission of wave trains in
the sense that the group velocity of the planar wave trains that are observed in the far field points in the
radial direction away from the center of the spiral.

Sources are 1D analogues of spiral waves, and we discuss in this section the 1D analogue, see Figure 2, of
the period-doubling instability of 2D spiral waves. We are particularly interested in investigating whether
Floquet multipliers cross exactly at ρ = −1 or only nearby.
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Figure 2: From left to right: Plotted are space-time plots (time upwards, space horizontal) of 1d-spirals and

1d-targets of the Brusselator with parameters as in [34, Appendix B], and 1d-spirals and moving period-

doubled sources of the Rössler system (6.1) with C = 3.0 and C = 4.2, respectively.

3.1 Sources

Recall the reaction-diffusion system

ut = Duxx + f(u;µ), x ∈ R. (3.1)

Standing sources u∗(x, t) are time-periodic solutions of (3.1) which converge to wave trains u±wt in the far
field as x→ ±∞ whose group velocities c±g , computed in the laboratory frame, point away from the interface
so that c−g < 0 and c+g > 0. More precisely, we have

u∗(x, t) = u∗(x, t+ T ), |u∗(x, t)− u±wt(k±x− ω±t− θ±; k±)| → 0 as x→ ±∞ (3.2)

where uwt(ξ; k) denotes a family of wave trains which are 2π-periodic in the argument ξ with temporal
frequencies ω±, spatial wave numbers k± and phase corrections θ± at ±∞, respectively. Characteristic for
sources is the requirement that the group velocities, computed in the laboratory frame, are directed away
from the defect so that c−g < 0 and c+g > 0. As before, we let ω = 2π/T denote the temporal frequency of
the source. We showed in [34] that sources occur for open, nonempty classes of reaction-diffusion systems
and generically for discrete sets of asymptotic wave numbers k±.

We focus here exclusively on 1d-targets and 1d-spirals which are standing sources that are reflectionally
symmetric so that

u∗(x, t) = u∗(−x, t) (1d-target) or u∗(x, t) = u∗(−x, t+ T/2) (1d-spiral) (3.3)

for all (x, t). Thus, 1d-target patterns are even in x for each t, while 1d-spirals are invariant when simulta-
neously reflecting the pattern and shifting in time by half the temporal period; see Figure 2. Reflectional
symmetry implies in both cases that k+ = −k− 6= 0.

3.2 Spectra of sources on R

Dynamic properties such as robustness, stability and interaction with other defects are largely determined
by spectral properties of the linearization Φ′T of the time-T map of (3.1) about the defect. Throughout this
section, we will switch forth and back between Floquet exponents Λ and Floquet multipliers ρ = eΛT in the
spectrum of Φ′T . We distinguish between the point spectrum, which consists of all ρ ∈ C for which Φ′T − ρ is
not invertible but still Fredholm of index zero, and the essential spectrum, which is the complement of the
point spectrum in the spectrum. We showed in [34] that the Fredholm index of Φ′T jumps precisely at the
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dispersion curves of the asymptotic one-dimensional wave trains, computed in the frame of the defect. In
particular, the essential spectrum of sources inherits the symmetry properties of the essential spectrum of
the one-dimensional wave trains.

Corollary 3.1 (Robust period-doubling of sources) There exists an open class of one-parameter fam-
ilies of reaction-diffusion systems where the spectrum of the linearization crosses the imaginary axis first at
Λ = ±iω/2.

The multiplicity of the essential spectrum depends on whether the underlying source is reversible in the
sense of (3.3) or not: Since the asymptotic wave trains at x = ±∞ of 1d-targets and 1d-spirals are related
by reflection symmetry, the essential spectra of both wave trains cross the imaginary axis simultaneously.
Thus, the essential spectrum of reversible sources has geometric multiplicity two, which has implications for
the actual bifurcation scenario which we will discuss in §3.4.

We now discuss point spectrum. There are no structural reasons that prevent 1d-targets from having a simple
point Floquet multiplier at ρ = −1 that crosses the imaginary axis, thus leading to a generic period-doubling
bifurcation of time-periodic solutions of (3.1). Since 1d-targets are symmetric under the spatial reflections
defined by

(Ru)(x) := u(−x),

the linearized period map leaves the spaces Fix(R) and Fix(−R) of even and odd functions invariant [12].
The eigenfunction belonging to a simple multiplier ρ = −1 is therefore either even or odd: the bifurcating
sources are 1d-targets in the first case and 1d-spirals in the second case, and they have approximately twice
the temporal period in both cases.

Floquet multipliers of 1d-spirals at ρ = −1 must, however, have geometric multiplicity two since the linearized
period-T map Φ′T (u∗) can be written as a square: Indeed, Φt(u) is equivariant with respect to the spatial
reflection R so that Φt(Ru) = RΦt(u) and therefore Φ′T/2(Ru) = RΦ′T/2(u)R. Using that ΦT/2(u∗) = Ru∗
for the 1d-spiral u∗, we obtain

Φ′T (u∗) = Φ′T/2(ΦT/2(u∗))Φ
′
T/2(u∗) = RΦ′T/2(u∗)RΦ′T/2(u∗) = [RΦ′T/2(u∗)]

2.

We first focus on the center subspace associated with critical point spectrum of RΦ′T/2(u∗). Clearly this
subspace is invariant under Φ′T (u∗). An eigenvalue −1 of Φ′T (u∗) can only be generated by eigenvalues
±i of RΦ′T/2(u∗) which come necessarily in complex conjugated pairs so that the eigenvalue −1 cannot be
simple. If the essential spectrum of RΦ′T/2(u∗) is bounded away from ±i, then the essential spectrum of
Φ′T (u∗) is bounded away from −1 by Fredholm algebra properties, and the spectral projection P belonging
to eigenvalues near −1 can be obtained by factoring

Φ′T (u∗)− ρ = [RΦ′T/2(u∗)−
√
ρ] [RΦ′T/2(u∗) +

√
ρ]

for ρ on a small circle Γ around −1, and computing

P =
∫

Γ

[ρ− Φ′T (u∗)]−1 dρ

=
∫

Γ

[RΦ′T/2(u∗)−
√
ρ]−1[RΦ′T/2(u∗) +

√
ρ]−1 dρ

=
∫
√

Γ

(
[RΦ′T/2(u∗)−

√
ρ]−1 − [RΦ′T/2(u∗) +

√
ρ]−1

)
d
√
ρ.

In particular, the spectral projection of ΦT (u∗) associated with ρ = −1 is given by the sums of the spectral
projections of RΦ′T/2 associated with ρ = ±i. This shows that classical period doubling in the form of a
simple Floquet multiplier at −1 in the point spectrum cannot occur for 1d-spirals.
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Remark 3.2 The preceding analysis also shows that the double Floquet multiplier at ρ = −1 for 1d-spirals
will generically split into two non-real, complex conjugate multipliers since there is no structural reason which
prevents the eigenvalues ±i of RΦ′T/2(u∗) from moving off the imaginary axis, thus moving the multipliers
of the square Φ′T (u∗) off the negative real axis.

In preparation for the discussion in §3.3, we collect some properties of the spectra of symmetric sources in
the exponentially weighted spaces

L̂2
η := {u ∈ L2

loc; |u|L̂2
η
<∞}, |u|2

L̂2
η

:=
∫

R
|u(x)|2e−2η|x| dx. (3.4)

The essential spectrum of the linearized period-T map of a symmetric source (3.3) on the space L̂2
η is

determined by the dispersion curves of the asymptotic wave trains in the spaces L2
η from (2.20). Exploiting

that the wave trains u±wt(x; k±) are related by symmetry,

u+
wt(x; k+) = u−wt(−x; k−), k+ = −k−,

it follows that the spatial Floquet exponents ν±j (Λ) that appear in the definition (2.23) of the absolute
spectra of wave trains are related via

ν+
j (Λ) = −ν−1−j(Λ) ∀j. (3.5)

In particular, we have ν+
0 (Λ) = −ν−1 (Λ) and ν+

1 (Λ) = −ν−0 (Λ) so that the absolute spectra of the asymptotic
wave trains coincide and so that, for each Λ /∈ Σabs, we can find a weight η with ν+

0 < η < ν+
1 such that the

linearized period map Φ′T (u∗) − eΛT is Fredholm with index zero in L̂2
η. Note also that we can choose the

weight η to be constant locally in Λ. We define the extended point spectrum to be the set of Λ /∈ Σabs such
that the linearized period map is not invertible in the space L̂2

η with η chosen as described above. We can
then also define geometric and algebraic multiplicities for elements of the extended point spectrum.

3.3 Spectra of sources on finite intervals

The resonant crossing of essential spectra of sources provides some evidence for why period doubling can
occur in a robust fashion. Experiments and numerical simulations are, however, posed on large but finite
domains, typically with separated boundary conditions. The linearized period map on bounded domains
is a compact operator, and the essential Floquet spectrum therefore empty: Instead, the absolute spectra
of the asymptotic wave trains become relevant. For simplicity, we restrict ourselves to Neumann boundary
conditions, thus considering

ut = Duxx + f(u;µ), x ∈ (−L,L) (3.6)

0 = ux(±L, t),

which are realistic for the experimental setup and which are also a standard choice for numerical simulations.

We shall focus exclusively on 1d-targets and 1d-spirals. We assume that there exists a symmetric source uso

such that Λ = 0 belongs to the extended point spectrum with algebraic and geometric multiplicity two. We
showed in [34] that this assumption is satisfied for an open and nonempty set of reaction-diffusion systems
and called this type of source elementary. To describe the influence of the boundary, we need an assumption
on the boundary layer between wave trains and the boundary. We assume that (3.1) admits a symmetric
sink usi, that is, a solution of the form (3.2) which is even in x, with asymptotic wave numbers k±si := k∓so. In
particular, the group velocities of the sink point towards the center of the sink. We assume that Λ = 0 does
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not belong to either the absolute or the extended point spectrum of the linearization Φ′T (usi) of the period
map. Again, this assumption is robust [34]. Since the sink is even, it gives solutions u±si of the system

ut = Duxx + f(u;µ), x ∈ R± (3.7)

0 = ux(0, t)

on the half-spaces R+ and R− which satisfy Neumann boundary conditions at x = 0, and we refer to these
two solutions on R+ and R− as boundary sinks [34]. In this setup, we proved the following result on the
existence and spectral properties of solutions on large bounded intervals.

Theorem 1 ([34, §6.8]) Under the above assumptions, the reaction-diffusion system (3.6) has, for each
L� 1, a unique time-periodic solution u∗(x, t;L) which is close to the symmetric source uso on (−L/2, L/2)
and to the appropriately translated boundary sinks u+

si and u−si on (−L,−L/2) and (L/2, L), respectively.

The assumption on the existence of a symmetric sink can be verified in the special case of nearly homogeneous
oscillations (see also §5.4). Recall that a homogeneous oscillation with a simple Floquet exponent Λ = 0 is
accompanied by a family of wave trains uwt(kx− ω(k)t) for small wave numbers k ≈ 0.

Theorem 2 ([5]) Assume that there is a spatially homogeneous oscillation uwt(−ω(0)t) such that the Flo-
quet multiplier Λ = 0 is a simple edge. For each k ≈ 0, there exists a unique symmetric sink which is spatially
asymptotic to the wave trains uwt(±kx− ω(±k)t) at x = ±∞.

Next, we investigate the spectrum of the linearized period map near the truncated sources that we described
in Theorem 1. An outline of the proof of the following theorem will be given in Appendix A.

Theorem 3 Assume that the extended point spectrum of the sources uso on R is discrete, then the spectrum
of the period map of the truncated sources described in Theorem 1 converges locally uniformly in the symmetric
Hausdorff distance to the disjoint union of the absolute spectrum Σabs of the wave trains uwt, computed in
the laboratory frame, and a discrete set of isolated points.

The convergence towards the absolute spectrum is algebraic of order O(1/L), and the number of eigenvalues
in any small neighborhood of any element of the absolute spectrum converges to infinity as L → ∞. The
discrete part of the limiting spectrum is the union of the extended point spectrum of the source uso on R
and the extended point spectra of the two symmetric boundary sinks u±si on R± with Neumann boundary
conditions. The convergence towards the discrete part is exponential in L, and the multiplicity of eigenvalues
in any small neighborhood of the discrete part is finite and stabilizes as L→∞.

We remark that the absolute spectrum is close to the essential spectrum if the wave number of the asymptotic
wave trains is sufficiently close to zero; see Lemma 2.3 and also §5 below. We now discuss the implications
of Theorem 3 for period doubling of symmetric sources of (3.6).

We begin with 1d-targets. Floquet exponents ρ = −1 in the Floquet point spectrum of a 1d-target uso on R
will generically have multiplicity one and therefore persist as a simple multiplier ρ ∈ R− near −1 for (3.6),
with the eigenfunction lying again in the space of even or odd functions. Next, assume that the boundary
sink u+

si on R− with Neumann conditions has a simple Floquet multiplier ρ = −1 in its point spectrum.
Since the sinks u+

si and u−si are related by reflection x 7→ −x, the reflected sink u−si also has a simple Floquet
multiplier ρ = −1, and Theorem 3 shows that the truncated source u∗ has two Floquet multipliers near
ρ = −1. Since 1d-targets are symmetric under spatial reflections, the linearized period map leaves the spaces
of even and odd functions invariant. The Floquet eigenfunctions of the boundary sinks on R± yield one even
and one odd eigenfunction of the truncated 1d-target of (3.6), which can be seen via transversality arguments
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in a spatial-dynamics formulation of the eigenvalue problem. In particular, the two Floquet multipliers of
the persisting source on the bounded interval are both real and close to −1 but may split on the negative
real line. Thus, two period-doubling bifurcations will take place, both with multipliers at ρ = −1, one with
an even and the other one with an odd eigenfunction. In summary, period doubling of 1d-targets for (3.1)
via point eigenvalues persists with a sharp resonance at ρ = −1 for (3.6), and the resulting bifurcation leads
to 1d-targets and/or 1d-spirals depending on the symmetries of the associated eigenfunctions.

Next, we consider 1d-spirals. Symmetry enforces that Floquet multipliers ρ ∈ R− of 1d-spirals on R are
double. This symmetry is also present for (3.6), and Remark 3.2 shows that a Floquet multiplier ρ = −1
therefore persists either as a double multiplier ρ ∈ R− near −1 or will split into two complex conjugate
multipliers. The same conclusion is true for the two multipliers near ρ = −1 that arise when the two
boundary sinks undergo period doubling with simple multipliers at ρ = −1. We expect that the two
multipliers near −1 will generically split, so that there is no sharp resonance at ρ = −1 for the truncated
1d-spiral of (3.6).

Lastly, we consider the absolute spectrum. The following corollary is a straightforward consequence of
Theorem 3.

Corollary 3.3 (Generic absolute period doubling) Resonant crossing of eigenvalues near the absolute
spectrum at Λ = ±iω/2 + O(1/L) occurs in an open subset of 1-parameter families of reaction-diffusion
systems.

For 1d-spirals, we expect that, generically, the eigenvalues near the absolute spectrum will indeed move
off the lines Im Λ = ±ω/2. For 1d-targets, we can, however, apply the same symmetry-based arguments
as above which yield that the absolute eigenmodes decompose again into odd and even functions: This
precludes movement of the associated Floquet multipliers off the lines Im Λ = ±ω/2, and we therefore obtain
a sharp resonance with multipliers on these lines.

3.4 Nonlinear bifurcations of 1D sources, and the role of group velocity

We now analyse the period-doubling instability of 1d-targets and 1d-spirals on the unbounded real line x ∈ R
that arises when essential spectrum crosses the imaginary axis. We are interested in constructing coherent
structures which are periodic in time and spatially asymptotic to period-doubled wave trains in the far
field as shown in Figure 2. Our goal is to derive bifurcation and bifurcation failure results which are valid
uniformly in the size of the domain. Our approach will also allow us to gain insight into the role of transport
as represented by the group velocity of the linear period-doubling modes.

Throughout this section, we assume the existence of a family of wave trains with nonzero group velocity cg
which undergo a period-doubling instability with dispersion curve Λpd(ν) which satisfies

Λpd(ik∗/2) = −iω∗/2, cpd
g = −Λ′pd(ik∗/2) 6= 0, Re Λpd(ν) < 0 for all ν 6= ik∗/2.

Furthermore, we assume that the period-doubling bifurcation is supercritical (more precisely, that the period-
doubling bifurcation in the space of spatially periodic functions is a supercritical pitchfork bifurcation). We
will now state three theorems on period-doubling bifurcations from defects on R which we shall prove later
in this section.

Theorem 4 (Bifurcation from 1d-targets on R) Assume that there exists a 1d-target with Σext ∩ iR =
{0} where Λ = 0 has multiplicity two, whose asymptotic wave trains undergo period doubling at µ = 0. If
cpd
g < 0, then there exists a unique branch of bifurcating 1d-target patterns and a unique branch of 1d-spirals

which are asymptotic to the period-doubled wave trains. If cpd
g > 0, then 1d-target patterns and 1d-spirals

that are asymptotic to the period-doubled wave trains do not exist near onset.
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Theorem 5 (Bifurcation from 1d-spirals on R) Assume that there exists a 1d-spiral with temporal fre-
quency ω∗ and with Σext∩ iR = {0} where Λ = 0 has multiplicity two, whose asymptotic wave trains undergo
period doubling at µ = 0. If cpd

g < 0, then there exists a unique branch, up to spatial reflection, of bifurcating
solutions which are asymptotic to the period-doubled wave trains. The wave speed c∗ of the bifurcating solu-
tions is close to zero with |c∗| ≤ K|µ| for some constant K, and their temporal frequency is close to ω∗/2 in
the comoving frame ξ = x − c∗t. If cpd

g > 0, then standing or moving 1d-target patterns or 1d-spirals that
are asymptotic to the period-doubled wave trains do not exist near onset.

We have observed the bifurcation from 1d-spirals to moving period-doubled sources described in Theorem 5
in numerical simulations of the Rössler system; see the two rightmost plots in Figure 2.

While bifurcations from sources to period-doubled sources occur on R if, and only if, the group velocity
of the period doubling modes is directed towards the center of the defect, the following result shows that
bifurcations from boundary sinks to period-doubled boundary sinks take place if, and only if, the group
velocity is directed towards the boundary.

Theorem 6 (Bifurcation of boundary layers on R−) Assume that there exists a 1d-boundary sink of
(3.7) on R− such that Σext ∩ iR = ∅. If cpd

g > 0, then there exists a unique branch of bifurcating boundary
sinks which are asymptotic to the period-doubled wave trains. If cpd

g < 0, then boundary sinks that are
asymptotic to the bifurcating period-doubled wave trains do not exist near onset.

Combining the statements on the bifurcation of coherent structures and boundary sinks, we see that we
cannot expect the simultaneous bifurcation to both coherent structures on R and boundary layers on R−

near the onset of an essential instability. In particular, if period-doubled sources bifurcate on R, then period-
doubled boundary sinks will not be present, and consequently the period-doubled sources will not persist on
large bounded domains with Neumann boundary conditions. We refer to §5.4 for the analysis of a scenario
where sources on R persist on bounded domains due to instabilities of boundary sinks caused by point
spectrum.

The results stated above reflect an intuitive heuristic picture of transport. The linear group velocity of
eigenmodes encodes the direction towards which a localized perturbation constructed from the eigenmode
will propagate. Thus, if we begin with a source on R, then the group velocities cpd

g of the period-doubling
modes at x = ±∞ determine whether period-doubling modes can propagate towards the core of the source or
not: If the group velocity cpd

g at x = ∞ is positive, then the period-doubling modes cannot propagate towards
the core, and a nonlinear bifurcation to a period-doubled pattern is not possible. The same arguments apply
to boundary sinks provided we interpret the boundary as the core of the coherent structure. Since transport
occurs either away from the boundary towards the core, or else away from the core towards the boundary,
we cannot expect the simultaneous bifurcation of sources and boundary sinks.

In the remainder of this section, we sketch the proofs of Theorems 4-6. The arguments are similar to those
given in [32], and we will therefore refer to [32] for the more technical aspects of the proofs. Since we are
only interested in time-periodic solutions, we rewrite the reaction-diffusion equation as a first-order evolution
equation in the spatial variable x,

ux = v (3.8)

vx = D−1[ωuτ − cv − f(u;µ)],

where (u, v)(·) ∈ H1(S1,Rn)×H1/2(S1,Rn) are 2π-periodic in τ for each fixed x. We showed in [26, 32, 33]
that coherent structures can be found as intersections of stable and unstable manifolds of the periodic
orbits (in the evolution variable x) that correspond to the asymptotic wave trains. Essential instabilities
of the wave trains correspond to pitchfork bifurcations of the corresponding periodic orbits. Although
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(3.8) is ill-posed, the aforementioned stable and unstable manifolds exist, and the standard arguments for
bifurcations in dynamical systems can be made rigorous [32, 33, 34, 35]. Equation (3.8) is invariant under
the action of the symmetry group SO(2) via the time shift action Sθ : (u, v)(τ) 7→ (u, v)(τ + θ) for each
fixed θ ∈ SO(2) ∼= R/2πZ. In particular, the subspace of solutions which are invariant under the shift
Sπ : τ 7→ τ + π by half the period is invariant under the x-evolution. If we choose ω ≈ ω∗/2, where ω∗ is the
temporal frequency of the primary source, then the primary wave trains and coherent structures lie in this
fixed-point space, and we expect the period-doubled structures to bifurcate out of this subspace.

For the sake of clarity, we shall pretend in the rest of this section that the dynamics of (3.8) can be reduced
to an appropriate six-dimensional invariant subspace, for instance by using a suitable combination of Fourier
modes in the periodic variable τ . We assume that this subspace intersects the fixed-point subspace of the shift
by half a period in a four-dimensional subspace. Since all solutions truly depend on τ , we may furthermore
factor out the free action of SO(2)/Z2. We will now describe the dynamics of the reduced spatial dynamical
system

Ux = F (U ;µ), U ∈ R3 × R2 (3.9)

in the reduced phase space which we assume is given by R3 × R2. As mentioned above, the technical
tools necessary to extend the analysis of this ”toy problem” to the full system (3.8) have been described in
[32, 33, 34, 35] to which we refer for details.

The primary wave trains uwt(kx− τ) correspond to relative periodic orbits of (3.8) with respect to the shift
symmetry Sθ and therefore, upon factoring out the shift, to equilibria of the reduced spatial system (3.9)
in R3 × {0}. Any neutral Floquet exponent Λ ∈ iωZ of the dispersion curve Λ∗(iγ) of the linearization of
the reaction-diffusion system (2.1) about the asymptotic wave train uwt gives a neutral Floquet exponent
ν = iγ ∈ iR of the corresponding relative periodic orbit of (3.8). By assumption, there are precisely two such
neutral eigenvalues, namely the phase eigenvalue Λ = 0 at ν = 0 and the period-doubling mode Λ = −iω∗/2
at ν = ik∗/2. Upon factoring out the shift symmetry SO(2)/Z2, we see that the eigenvalue Λ = 0, which
corresponds to shifts, is removed, while the period-doubling eigenvalue gives a Floquet exponent at ν = 0
with eigenvector contained in {0}×R2. Inside the invariant subspace R3×{0}, the equilibrium is hyperbolic
with one unstable eigenvalue if cg < 0 and two unstable eigenvalues if cg > 0; see [34]. Similarly, besides the
neutral eigenvalue ν = 0, the equilibrium has one unstable eigenvalue on {0} ×R2 if cpd

g > 0 and one stable
eigenvalue if cpd

g < 0.

The reversers R0 : (u, v) 7→ (u,−v) and Rπ := R0Sπ each fix a three-dimensional subspace in R6 which is
invariant under the action of SO(2), thus yielding a two-dimensional subspace in R5 whose intersection with
the isotropy subspace FixSπ is one-dimensional. Similarly, the space {(u, v); v = 0} of functions that satisfy
Neumann boundary conditions corresponds to a two-dimensional subspace in R5 which intersects FixSπ in
a line.

We now prove Theorem 4 for target patterns on R. Before bifurcation for µ < 0, 1d-targets are found as
intersections in R5 of the two-dimensional space FixR0 with the two-dimensional stable manifold of the
equilibrium corresponding to the wave train with positive group velocity cg > 0. The assumption that the
extended point spectrum in the origin has multiplicity two means that the intersection of the tangent spaces
of the stable manifold and FixR0 is trivial and is broken with non-vanishing speed when we vary ω near
ω∗/2 [34].

First, assume cpd
g > 0. From the preceding discussion of the dispersion relation, we see that the wave train is

stable inside the one-dimensional center manifold for µ < 0 before the onset of period doubling. The stable
manifold of the asymptotic wave train can therefore be continued smoothly through the bifurcation as a
center-stable manifold. The assumption of minimal extended point spectrum implies that the intersection
between FixR0 and the center-stable manifold of the equilibrium is transverse in the parameter ω at µ = 0,
and we conclude that the unique intersection persists through the bifurcation. Since this unique intersection is
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given by the primary 1d-target pattern and therefore located inside FixSπ, we conclude that period-doubled
target patterns cannot bifurcate.

Next, assume that cpd
g < 0. The wave train is then unstable inside the center manifold for µ < 0 before

bifurcation, which means that the stable manifold continues continuously through the bifurcation as the
strong stable fibre. At µ = 0, the strong stable fibre of the primary wave train crosses FixR0 transversely
upon varying ω, and we conclude that the primary 1d-target persists. On the other hand, the strong stable
fibre of the bifurcating period-doubled wave trains is

√
µ-close to the strong stable fibre of the primary wave

train, and it therefore also crosses FixR0 transversely for ω̃ = ω + O(
√
µ).

The same arguments apply when we replace FixR0 by FixRπ, which completes the proof of Theorem 4.

The case of 1d-spirals is similar. The primary 1d-spirals are transverse intersection of the stable manifold
of the wave train and the fixed-point space of the operator R0Sπ/2, which acts as a reverser in FixSπ
but not in the entire phase space: Indeed, the flip symmetry of the shift Sπ/2 by half a period has order
four after doubling the period and therefore cannot act as an involution when composed with the reverser
R0 : (u, v) 7→ (u,−v). We therefore cannot expect to obtain period-doubled patterns as intersections with
reversibility fixed-point spaces, instead the bifurcating patterns should drift. Thus, we transform into a
comoving frame, include the wave speed c ≈ 0 as an additional parameter, and seek intersections of the
unstable manifold of the primary wave train with negative group velocity at x = −∞ with the stable
manifold of the primary wave train with positive group velocity at x = ∞. Since the intersection now
occurs along flow lines of the differential equation, we lose one dimension for transversality, which is however
compensated for by the additional parameter c. The existence and non-existence proofs for period-doubled
sources proceeds now as before, and [29, Lemma 3.9] shows that the speed c of the bifurcating sources will
be of the order O(µ). We omit the straightforward adaptation of the arguments.

It remains to discuss boundary sinks on R−, which we seek as transverse intersections of the unstable manifold
of the wave trains at x = −∞ with positive group velocity and the boundary subspace. Since cg > 0 at
x = −∞, we have transversality of the intersection for fixed ω, and we consequently find a family of boundary
sinks, parametrized by their temporal frequency ω. For cpd

g > 0, we find a family of period-doubled boundary
sinks by continuing the strong unstable manifold of the wave trains continuously through the bifurcation as
the strong unstable manifold of the period-doubled wave trains after bifurcation. For cpd

g < 0, period-doubled
boundary sinks can bifurcate only near certain discrete values of ω where the transversality conditions are
violated, and additional extended point spectrum occurs in the origin: An example where this can occur is
near k = 0, and we refer to §5.4 for an analysis of the resulting scenario.

3.5 Nonlinear bifurcations of 1D sources on finite intervals

We now describe bifurcations on large bounded domains induced by the crossing of the absolute spectrum.
Theorem 3 shows that there will be a large number of eigenvalues near each point of the absolute spectrum.
Thus, for large domain diameters L� 1, we expect a sequence of bifurcations with a delayed onset µ∗(L) =
µ∞∗ + O(1/L2) of the instability compared with the crossing of the absolute spectrum at µ = µ∞∗ . The
small-amplitude regime of this bifurcation sequence can be analysed using the methods described in [36]
for the analogous case of a pitchfork bifurcation (matching with the reversibility lines here is equivalent to
matching with the boundary conditions described there). As in [36], we expect that the amplitude of the
bifurcating pattern in the far field scales with

√
µ− µ∗(L)L3/2. Instead of carrying out the analysis of the

entire bifurcation sequence, we focus here on the first bifurcation.

We start with the case of a 1d-target pattern. If the absolute spectrum crosses the axis at ρ = −1, then
§3.3 shows that clusters of Floquet multipliers pass through ρ = −1 on the real axis. From the expansion at
the edge of the absolute spectrum [30, §5.4], we conclude that the first instability induced by the absolute
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spectrum occurs on a two-dimensional center-eigenspace, with multipliers passing through −1 within O(1/L)
of each other as functions of the bifurcation parameter µ, where the reflection symmetry acts trivially in one
direction and nontrivial in the other direction. In physical space, this can be interpreted as synchronizing
the instability in the far field without phase shift or with a phase shift of π. The resulting bifurcation
can be analysed using Lyapunov-Schmidt reduction (for finite large L) and exploiting the symmetry. We
find again that 1d-target patterns bifurcate in the space of symmetric functions, while 1d-spirals, which
are invariant under the flip symmetry (x, t) 7→ (−x, t + T ), bifurcate in the space on which the symmetry
acts nontrivially. We remark that the actual bifurcation is guaranteed on both spaces by degree arguments
and the fact that the leading multipliers actually cross the imaginary axis. The absolute period-doubling of
a 1d-target pattern already shows ’non-genericity’ in the sense that we would typically expect the leading
multipliers to be simple at resonance ρ = −1. The bifurcation analysis as described above remains valid only
in a very small range of parameter values since the spectral gap to the next multiplier is only of order 1/L2.

Next, we consider 1d-spirals. For 1d-spirals, we cannot eliminate the translation symmetry by restricting
to an appropriate fixed-point space since the isotropy of a 1d-spiral is trivial for each fixed time t, and
instead need to consider the entire center manifold at once. Near a period-doubling bifurcation induced by
the absolute spectrum, the linearization Φ′T (u∗) has four Floquet multipliers in an O(1/L2)-neighborhood
of the unit circle given by ρ = 1 from temporal translation, ρ = O(e−δL) for the translation eigenvalue, and
ρ = −1 − µ + O(1/L) for the period-doubling multiplier, which has geometric multiplicity two as shown in
§3.3. The associated generalized eigenspace is therefore four-dimensional and can be parametrized by ∂tu∗,
∂xu∗ and the two period-doubling eigenfunctions vpd and v̄pd. If we denote the associated coordinates by
(τ, ξ, v) ∈ S1×R×C for the temporal phase τ , the spatial translation ξ, and the complex Hopf amplitude v,
then we see upon using [40, Theorem 2.9] that the vector field on the center manifold for L� 1 is given by

τ̇ = ωL(τ, ξ, v, µ)

ξ̇ = gL(τ, ξ, v, µ) (3.10)

v̇ = hL(τ, ξ, v, µ),

where

ωL(τ, ξ, 0, 0) = ω∗ + O(e−δL), gL(τ, ξ, 0, 0) = O(e−δL), g(τ + 2π, ξ, v, µ) = gL(τ, ξ, v, µ)

hL(τ, ξ, v, µ) = [iω∗/2 + O(µ+ e−δL)]v + γL(τ, µ)|v|2v + O(|v|5).

We do not know whether the center manifold exists in a uniform neighborhood of the source or whether the
Taylor expansion on the center manifold converges as L → ∞. If we assume that the temporal average of
γL(τ, 0) is strictly negative uniformly in L� 1, then we obtain ξ̇ ≈ αLµ for a constant αL due to resonant
terms of the form g1eiτ v̄2 in gL(τ, ξ, v, µ) as in the analysis in the introduction or in [40, §7]. If αL is not zero,
the bifurcating 1d-spirals should therefore drift on (−L,L) and eventually leave the local center manifold.
We believe that this drift can be followed on a global group-invariant center manifold until the effects of the
boundary become of the order of the drift speed µ.

4 Period doubling of spiral waves

The spectral analysis of planar spiral waves is in many respects analogous to that of 1d-spirals. We consider
the reaction-diffusion equation (2.1)

ut = D∆u+ f(u;µ), (x, y) ∈ R2 (4.1)

first on the plane, and subsequently on large disks BR(0) of radius R� 1 together with appropriate boundary
conditions. An Archimedean spiral wave is a rigidly rotating solution of the form

u(x, y, t) = u∗(r, ϕ− ωt), (x, y) = (r cosϕ, r sinϕ),
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which converges to 1D wave trains uwt,

|u∗(r, · − ω∗t)− uwt(k∗r + θ(r) + · − ω∗t)|C1(S1) → 0 as r →∞,

as r →∞, where k∗ 6= 0 denotes the asymptotic wave number of the wave trains, and θ(r) is a smooth phase
correction with θ′(r) → 0 as r → ∞. We shall assume that the essential spectrum of the asymptotic one-
dimensional wave train is simple at Λ = 0, and that the group velocity cg of the wave train uwt, computed
in the laboratory frame, is positive.

Spiral waves are equilibria in the corotating frame ψ = ϕ− ω∗t, where they satisfy the elliptic system

D

[
urr +

1
r
ur +

1
r2
uψψ

]
+ ω∗uψ + f(u(r, ψ);µ) = 0 (4.2)

with
|u∗(r, ·)− uwt(k∗r + θ(r) + ·)|C1(S1) → 0 as r →∞. (4.3)

The convergence assumed in (4.3) implies that the asymptotic shape of the spiral u∗ is indeed given by the
one-dimensional wave-train solution uwt, while the asymptotic wave number k∗ and the temporal frequency
ω∗ are related via ω∗ = ωnl(k∗).

Next, we linearize (4.1) about the spiral wave in the corotating frame, which is equivalent to linearizing (4.2)
about u∗(r, ψ). The resulting operator L∗ is given by

L∗u = D

[
urr +

1
r
ur +

1
r2
uψψ

]
+ ω∗uψ + fu(u∗(r, ψ);µ)u

which is a closed operator on L2(R2,Rn). If we take the formal limit r →∞ in the eigenvalue equation

D

[
urr +

1
r
ur +

1
r2
uψψ

]
+ ω∗uψ + fu(u∗(r, ψ);µ)u = Λu, (4.4)

we obtain the limiting equation

Durr + ω∗uψ + fu(uwt(k∗r + ψ);µ)u = Λu (4.5)

with 2π-periodic boundary conditions in ψ. If we set ψ 7→ −ω∗t, we recover the Floquet eigenvalue problem
(2.15) of the one-dimensional wave trains which we discussed in §2.2. The Floquet symmetry of the Floquet
eigenvalue problem (2.15) is reflected in the invariance of the asymptotic spiral eigenvalue problem (4.5)
under the substitution

u(r, ψ) 7−→ u(r, ψ)ei`ψ, Λ 7−→ Λ + iω∗` (4.6)

for each ` ∈ Z. We emphasize that the transformation (4.6) for the essential spectrum will generate new
curves of spectrum for (4.4): The new eigenvalues are generated by the asymptotic SO(2)-symmetry of (4.4)
and not by an artificial Floquet symmetry as for the wave trains: Indeed, the spiral wave is an equilibrium,
and each Λ obtained from (4.6) belongs to a different eigenfunction.

We proved in [38] that these formal considerations can be made precise in the following sense. The operator
L∗ − Λ is Fredholm if, and only if, Λ does not belong to the Floquet spectrum of the linearized period map
of the asymptotic wave trains in the laboratory frame, that is, if e2πΛ/ω∗ is not in the spectrum of the period
map of

ut = Duxx + fu(uwt(k∗x− ω∗t);µ)u.

In particular, the essential spectrum is vertically periodic in the complex plane with period iω∗. Moreover,
for spirals emitting wave trains, which by definition have cg > 0 at ν = 0, the essential spectrum of the
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spiral wave in a neighborhood of the origin, and consequently all its vertical translates, moves into the left
half-plane when L∗ is posed on the spaces with exponentially weighted norms

|u|2L2
η

=
∫

R2

∣∣∣u(x, y)e−η√x2+y2
∣∣∣2 dxdy

for sufficiently small positive rates η > 0. We may therefore define the geometric and algebraic multiplicity
of Λ = 0 and Λ = ±iω∗ as eigenvalues of L∗ posed on L2

η for small η > 0: On this space, ∂ψu∗ provides an
eigenfunction of L∗ with Λ = 0, while ∂xu∗ and ∂yu∗ generate eigenfunctions belonging to Λ = ±iω∗. We
proved in [38] that spiral waves are robust provided these eigenvalues are algebraically simple as eigenvalues
in L2

η.

The preceding characterization of the essential spectrum of spiral waves by the spectrum of the asymptotic
wave trains shows that essential spatio-temporal period-doubling of spiral waves is a robust phenomenon.

Corollary 4.1 (Robust period-doubling of planar spirals) There exists an open class of one-param-
eter families of reaction-diffusion systems such that the essential spectrum of L∗ crosses the imaginary axis
first at Λ = ±iω∗/2 + iω∗`.

In preparation for a discussion of the spectra of spirals under truncation to large bounded disks, we record
that the absolute spectrum of (4.4) coincides with the absolute spectrum of the asymptotic wave trains,
computed in the laboratory frame, which is again vertically periodic in the complex plane with period iω∗.
In [38], we showed that for each Λ /∈ Σabs there exists an exponential weight η such that L∗−Λ is Fredholm
with index zero on the space L2

η. We define the extended point spectrum as the set of Λ /∈ Σabs for which
the kernel of L∗−Λ is nontrivial on L2

η, with η chosen as above. It is not difficult to see that the kernel does
not depend on the choice of the weight [38].

The persistence of period doubling on large bounded disks of radius R � 1 with Neumann boundary
conditions is now very similar in spirit to the situation in one space dimension. First, we address the
persistence of the spiral wave on disks BR(0) for R � 1. Similarly to Theorem 1, we assume the existence
of a 1D boundary sink that connects the asymptotic wave trains at x = −∞ with Neumann conditions at
x = 0 such that Λ = 0 does not belong to its extended point spectrum. Moreover, we assume robustness of
the spiral on the plane, that is, we require that Λ = 0 is algebraically simple in L2

η for η > 0 small. Under
these conditions, the spiral wave persists as a rigidly rotating solution of the reaction-diffusion system for
all sufficiently large R [38].

Next, we consider the spectrum of the linearization (4.4) about the truncated spiral wave on BR(0) with
Neumann conditions at r = R, for which a result completely analogous to Theorem 3 holds.

Theorem 7 ([38]) Assume that the extended point spectrum of the spiral wave is discrete, then the spectrum
of the truncated 2D spiral converges locally uniformly in the symmetric Hausdorff distance to the disjoint
union of the absolute spectrum Σabs of the asymptotic wave trains, computed in the laboratory frame, and a
discrete set of isolated eigenvalues with finite multiplicity. Convergence to the absolute spectrum is algebraic
of order O(1/R), and the number of eigenvalues inside any small disk that contains a point in the absolute
spectrum converges to infinity as R → ∞. The discrete part of the limiting spectrum is the union of the
extended point spectrum of the spiral and the extended point spectrum of the boundary sink on R−. Conver-
gence towards elements of the discrete part of the limiting spectrum is exponential in R, and the multiplicity
of eigenvalues in a sufficiently small disk about an element of the extended point spectra converges to the
sum of the multiplicities in the extended point spectra of planar spiral and boundary sink.

Remark 4.2 We remark that it has recently been shown numerically [41] and analytically [37] that infinitely
many discrete eigenvalues in the extended point spectrum of spiral waves can accumulate at edges of the
absolute spectrum.
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Corollary 4.3 (Absolute period-doubling on bounded domains) Resonant crossing of eigenvalues at
Λ = ±iω∗/2 + iω∗` + O(1/R) of spiral waves on disks of radius R � 1 occurs in an open subset of one-
parameter families of reaction-diffusion systems.

An interesting feature of period doubling of spiral waves is the shape of its period-doubling eigenfunctions.
We first describe the shape of eigenfunctions for the essential spectrum (although this is somewhat irrelevant
to bifurcations taking place on large disks). Consider the eigenvalue problem (2.8) of the wave train uwt in
the one-dimensional comoving frame and assume that it has period-doubling eigenvalues given by

λ(ν) = −(cpd
g − cp)(ν − ik∗/2) + d(ν − ik∗/2)2 + O(|ν − ik∗/2|3), cp =

ω∗
k∗

for ν ≈ ik∗/2 with associated eigenfunctions given by

v(y) = eνyupd(k∗y; ν), upd(k∗y; ν) = upd(k∗y + 2π; ν) ∀y

when written in the variable y = ξ/k∗. In the laboratory frame x = y+ cpt, we obtain the critical dispersion
curve

Λ(ν) = − iω∗
2
− cpd

g (ν − ik∗/2) + d(ν − ik∗/2)2 + O(|ν − ik∗/2|3) (4.7)

with eigenfunctions
v(x, t) = eΛ(ν)teνxupd(k∗(x− cpt); ν).

The eigenfunction for the spiral is now obtained as in [31] by substituting t = −ψ/ω∗ and x = r, which gives

u(r, ψ) = e−Λ(ν)ψ/ω∗eνrupd(k∗r + ψ; ν)

for the solution of (4.4). We evaluate this expression at the critical wave number ν = ik∗/2 to get

u0(r, ψ) = ei(k∗r−ψ)/2upd(k∗r + ψ) = e−iψ/2vpd(k∗r + ψ) (4.8)

where we substituted the real-valued function

vpd(ξ) := eiξ/2upd(ξ)

with vpd(ξ + 2π) = −vpd(ξ) for all ξ, which corresponds to the period-doubling solution of (2.5). Exploiting
the Floquet symmetry (4.6), we find the additional eigenfunctions

u`(r, ψ) = eiψ(`−1/2)vpd(k∗r + ψ) (4.9)

belonging to Λ = −iω∗/2 + iω∗` for ` ∈ Z, and in particular the complex conjugate

u1(r, ψ) = eiψ/2vpd(k∗r + ψ) (4.10)

of u0(r, ψ). To get real-valued solutions, we add up u0 and u1 and solve the time-dependent linearized
problem with initial data u0 + u1 to get

u(r, ψ, t) = e−iω∗t/2e−iψ/2vpd(k∗r + ψ) + eiω∗t/2eiψ/2vpd(k∗r + ψ) = cos
(
ψ + ω∗t

2

)
vpd(k∗r + ψ).

In the laboratory frame ϕ = ψ + ω∗t, we finally obtain the real perturbation

u(r, ϕ, t) = cos
(ϕ

2

)
vpd(k∗r + ϕ− ω∗t). (4.11)

If we formally add the solution (4.11) multiplied by a small amplitude
√
ε to the original spiral wave, we

obtain
u∗(r, ϕ− ω∗t) +

√
ε cos

(ϕ
2

)
vpd(k∗r + ϕ− ω∗t) (4.12)
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in the spiral far field. In particular, the amplitude of the period-doubling mode vanishes along the stationary
line ϕ = π, whilst the spiral is rotating. The temporal frequency of the perturbation is ω∗/2 since vpd has
period 4π. The pattern described by (4.12) looks exactly like those observed experimentally in [24, 25, 43]
and numerically in [13] and here in Figure 1.

Although this computation is formal, the shape of eigenfunctions resulting from the absolute spectrum on
large bounded domains can be computed similarly: Assume therefore that |cpd

g | � 1 as is the case, for
instance, near spatially homogeneous oscillations. In this case, the absolute spectrum has a branch point
Λbp close to the tip of the period-doubling instability at Λ = iω∗/2 + µ. This branch point corresponds to a
root of the equation dΛ/dν = 0, with Λ(ν) as in (4.7), and is therefore given by

Λbp =
iω∗
2
−

[cpd
g ]2

4
+ µ, with νbp =

cpd
g

2d
.

Following the above computation gives

cos(ϕ/2)eνbprvpd(k∗r + ϕ− ω∗t)

for the perturbation of the primary spiral-wave profile. In particular, we observe the stationary line of
vanishing amplitude for the period-doubling mode, and in addition an exponential decay or growth of the
eigenfunction depending on whether the group velocity of the period-doubling mode is negative or positive,
respectively.

At the onset of the absolute instability on large disks, there are five eigenvalues in the vicinity of the
imaginary axis, namely Λ = 0 induced by rotation, Λ = ±iω∗ + O(e−δL) induced by translation, and
Λpd = ±iω∗/2 + O(1/L2) near the branch point of the absolute spectrum that induces the period doubling
of the wave trains. In [39], we showed that resonant Hopf bifurcations of this type will typically lead to a
slow drift of the spiral wave with drift speed O(µ) (see also the discussion in the introduction §1). Based on
this prediction, we verified that drift indeed occurs in the Rössler system and report on these computations
in §6. Independently, drift was also observed numerically in [3].

We remark that the region of validity of our drift analysis is very small in parameter space since the eigenvalue
at the edge of the absolute spectrum is O(1/L2)-close to other eigenvalues that subsequently cross the
imaginary axis.

Lastly, we comment on the role played by the other eigenfunctions u`(r, ψ) given in (4.9). Proceeding as
above, we see that the sum of the eigenfunctions u`+1 and u−` for positive integers ` generates patterns of
the form

u∗(r, ϕ− ω∗t) +
√
ε cos

(
(2`+ 1)ϕ

2

)
vpd(k∗r + ϕ− ω∗t) (4.13)

which exhibit 2` + 1 stationary line defects at ϕ = 2n+1
2`+1 π for n = 0, . . . , 2`. Interestingly, none of the

associated eigenvalues at Λ = iω∗(` + 1/2) affects the expected drift in any way as the resulting Hopf
frequencies ωH := ω∗(`+1/2) cannot satisfy the required resonance condition (1.3), except when ` = 0 which
is therefore solely responsible for the occurrence of drift.

5 Defects near period doubling of homogeneous oscillations

In this section, we study patterns that are created near the onset of period doubling of a family of wave
trains. We restrict ourselves to the onset of period doubling at homogeneous oscillations where k ≈ 0 and
therefore cg = cpd

g = 0.
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5.1 Derivation of amplitude equations

We shall assume that u0(τ) has minimal period 2π and satisfies

ω0uτ = f(u;µ) (5.1)

for µ = 0 and some ω0 6= 0. Furthermore, we assume that ρ = 1 and ρ = −1 are geometrically and
algebraically simple Floquet multipliers of the linearization

ω0uτ = fu(u0(τ); 0)u

of (5.1) about u0(τ); the associated nontrivial solutions of the linearization are given by u′0(τ) and upd(τ),
respectively. The associated solutions to the adjoint equation

ω0wτ = −fu(u0(τ); 0)∗w

will be denoted by ψ0(τ) and ψpd(τ), respectively.

Simplicity of ρ = 1 implies that the periodic orbit u0(τ) persists for all µ close to zero with temporal frequency
ω = ω0(µ), and we assume that the unique Floquet multiplier ρpd(µ) near ρ = −1 of the persisting wave
train satisfies ρ′pd(0) < 0. The simplicity of ρ = 1 also implies that the partial differential equation (PDE)

ut = Duxx + f(u;µ) (5.2)

with µ = 0 has a one-parameter family of travelling waves u(x, t) = u0(ωt − kx; k), defined for |k| � 1,
near u0 where ω = ωnl(k) with ωnl(0) = ω0 is a smooth, even function of k [34, §3.3]. We assume that the
nonlinear dispersion relation ωnl(k) is nondegenerate so that ω′′nl(0) 6= 0. Lastly, the linearization

ut = Duxx + fu(u0(ω0t); 0)u

of (5.2) about u0(ω0t) can be reduced, via spatial Fourier transform, to the ODE

ut = [Dν2 + fu(u0(ω0t); 0)]u. (5.3)

The simplicity of the multipliers ρ = ±1 implies that (5.3) has unique Floquet exponents, given by λ0 =
d0ν

2+O(ν4) and λpd = πi+d1ν
2+O(ν4) for appropriate constants d0, d1 ∈ R, for |ν| � 1, which correspond

to ρ = ±1. We assume that d0, d1 > 0.

We are interested in coherent structures near the homogeneous oscillations. Thus, for ω close to ω0, we
introduce the new time variable τ = ωt and seek solutions u(x, τ) of the PDE

ωuτ = Duxx + f(u;µ) (5.4)

that are 4π-periodic in τ .

Theorem 8 Under the above hypotheses, the following is true for all µ sufficiently close to zero and ω close
to ω0: Solutions u(x, τ) of (5.4) with period 4π in τ whose time slices u(x, ·) are, for each x ∈ R, close to an
appropriate τ -translate of u0(·) are in one-to-one correspondence with small bounded solutions of the ODE

φx = κ

κx =
1
d0

[
−ω̄ +

1
2
ω′′nl(0)κ2 + b0A

2

]
+ O(|A|3 + |κ|3 +B2 + ω̄2) (5.5)

Ax = B

Bx =
1
d1

[
(−ρ′pd(0)µ+ b1ω̄ + b2κ

2 + b3A
2)A+ b4κB

]
+O(|A|(A4 +A2|κ|+ µ2 + ω̄2) + |B|κ2 +B2(|κ|+ |A|))
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where ω = ω0(µ)+ω̄. The right-hand side of (5.5) does not depend on φ and is equivariant under the reflection
(φ, κ,A,B) 7→ (φ, κ,−A,−B), which corresponds to the time shift by 2π, and reversible under x 7→ −x with
reverser (φ, κ,A,B) 7→ (φ,−κ,A,−B). The solution of (5.4) associated with a solution (φ, κ,A,B) of (5.5)
has temporal period 2π if, and only if, (A,B) = 0.

Equation (5.5) is the steady-state equation associated with the formal amplitude equation1

φt = d0φxx −
1
2
ω′′nl(0)φ2

x + b0A
2 (5.6)

At = d1Axx +
[
ρ′pd(0)µ− b̂1φxx + b̂2φ

2
x + b̂3A

2)
]
A+ b4φxAx

for the phase φ and the period-doubling mode A. A similar complex version of (5.6) has been analysed in
[8, 9, 10] where it was derived from a combustion model using formal multi-scale expansions to describe the
interaction of Burgers and Hopf modes. We also refer to [19] for the derivation of other amplitude equations
for systems with conservation laws.

Before embarking on the proof of the preceding theorem, we consider spectral PDE stability of the bounded
solutions u∗(x, τ) of (5.4) described by Theorem 8. A complex number λ is a Floquet exponent of u∗(x, τ)
if, and only if, there exists a nontrivial 4π-periodic solution u(x, τ) of

λu+ ωuτ = Duxx + fu(u∗(x, τ);µ)u. (5.7)

Floquet exponents of u∗(x, τ) near the origin are captured by the following result.

Theorem 9 Under the hypotheses of Theorem 8, assume that U∗(x) = (κ∗, A∗, B∗)(x) is a small bounded
solution of (5.5) corresponding to a 4π-periodic solution u∗(x, τ) of (5.4). If we write (5.5) as(

d0φxx
d1Axx

)
= G(φx, A,Ax, µ, ω̄),

then Floquet exponents λ of (5.7) near the origin are in one-to-one correspondence, counting multiplicity,
with solutions λ near the origin of the reduced PDE eigenvalue problem

(
d0φxx

d1Axx

)
= D(κ,A,B)G(κ∗(x), A∗(x), B∗(x), µ, ω̄)

 φx

A

Ax

+ λ

(
1 0

b1A∗(x) 1

)(
φ

A

)
(5.8)

+λ

O(|λ|+ |µ|+ |ω̄|)


φ

φx

A

Ax

+ O(‖U∗‖)

 φx

A

Ax

+

(
O(‖U∗‖)

O(‖κ∗‖2 + ‖A∗‖2 + ‖B∗‖)

)
Φ

 .
Furthermore, u∗(x, τ) does not have any Floquet exponents in the right half-plane other than those captured
by (5.8) (or those obtained from the trivial Floquet symmetry).

Proof of Theorems 8 and 9. We proceed using spatial dynamics as in [5, §8.1], and therefore write (5.4)
as

ux = v (5.9)

vx = D−1[ωuτ − f(u;µ)]

1The coefficients b̂j can be obtained from the bj ’s upon solving the equation for κ in (5.5) for ω̄ and substituting into the

equation for A.
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on the space X := H1
per(0, 4π) × H

1/2
per (0, 4π). Thus, we regard (5.9) as a dynamical system in the spatial

evolution variable x, acting on 4π-periodic functions u = (u, v) ∈ X of the rescaled temporal variable τ .
Important features of (5.9) are its equivariance under the shifts

Sφ : X −→ X , u(·) 7−→ u(· − φ)

for each fixed φ ∈ [0, 4π]/∼ and reversibility in x with reverser R : (u, v) 7→ (u,−v).

Equation (5.9) has, for µ = 0 and ω = ω0, an S1-group orbit of stationary solutions given by Sφu0 where

u0 :=
(
u0

0

)
.

Each of these solutions has isotropy Z2 generated by S2π. We first concentrate on a neighborhood of u0 and
write u = u0 + v so that v ∈ X satisfies

vx = B0v + (ω − ω0)N (u0 + v) + G(v;µ) (5.10)

with

B0 =

(
0 1

D−1[ω0∂τ − fu(u0(·); 0)] 0

)
, N =

(
0 0

D−1∂τ 0

)

G(v;µ) =

(
0

−D−1[f(u+ u0(·);µ)− f(u0(·); 0)− fu(u0(·); 0)u]

)

for v = (u, v). This is the system considered in [5, §8.1]: Here, we have the additional simplification that
both the wave number k0 and the group velocity cg vanish. As in [5, §8.1], the operator B0 is closed and
densely defined on X and has only discrete spectrum. Exploiting our hypotheses, we see that B0 has, in
contrast to [5, §8.1], two geometrically simple eigenvalues at ν = 0 with eigenfunctions (u′0, 0) and (upd, 0)
(compared with a unique geometrically simple eigenvalue in [5, §8.1]). Each of these eigenvalues has algebraic
multiplicity two with generalized eigenfunctions given by (0, u′0) and (0, upd), respectively. The associated
eigenfunctions of the adjoint operator B∗0 are given by

ψ0 =
(

0
−Dψ0

)
, ψ1 =

(
−Dψ0

0

)
, ψpd

0 =
(

0
Dψpd

)
, ψpd

1 =
(
Dψpd

0

)
, (5.11)

where ψ0 and ψpd have been defined at the beginning of §5.1. The remaining spectrum of B0 on X is bounded
away from the imaginary axis.

Using spatial center-manifold theory as in [5, §8.1], we conclude that there exists a four-dimensional center
manifold associated with (5.9) which contains all solutions of (5.9) that stay near the S1-orbit {Sφu0; φ ∈
[0, 4π]/ ∼} of equilibria for all x. The center manifold can be constructed so that it is invariant under
the shifts Sθ and the reverser R. In particular, the vector field on the center manifold is reversible and
equivariant under shifts. Upon inspecting the operator B0 and exploiting the invariance under shifts in τ ,
we find that the center manifold can be parametrized by the coordinates (φ, κ,A,B) via

u = Sφ
[(
u0(µ)

0

)
− κ

(
0

u′0(µ)

)
+A

(
upd(µ)

0

)
+B

(
0

upd(µ)

)
+ ω̄

(
uω(µ)

0

)
+H0(κ,A,B, µ, ω̄)

]
(5.12)

where u0(µ) denotes the µ-dependent spatially homogeneous oscillation, upd(µ) is the µ-dependent eigenmode
associated with u0(µ) which causes period doubling at µ = 0, and where we use the parameter ω̄ := ω−ω0(µ).
The function uω is the unique 2π-periodic solution of the system

[ω0∂τ − fu(u0(τ ;µ);µ)]uω = −u′0 +
〈ψ0, u

′
0〉L2(0,2π)

〈ψ0, Du′0〉L2(0,2π)
Du′0 (5.13)
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with 〈uω, u′0〉L2(0,2π) = 0. The function H0 is smooth, takes values in the generalized hyperbolic eigenspace
Eh of B0, and its derivative with respect to each of its arguments vanishes at the origin (κ,A,B, µ, ω̄) = 0.
Indeed, in these coordinates, the shifts Sθ are represented by

Sθ : (φ, κ,A,B) 7−→ (φ+ θ, κ,A,B),

and equivariance implies that the reduced vector field, and the center-manifold parametrization H0, can
therefore not depend on φ, as claimed. The isotropy group generated by S2π and the reverser R are
represented by

S2π : (φ, κ,A,B) 7−→ (φ, κ,−A,−B), R : (φ, κ,A,B) 7−→ (φ,−κ,A,−B).

In particular, the reduced vector field will be equivariant under S2π and reversible under R. We shall now
argue that the vector field for (φ, κ,A,B) is necessarily of the form

φx = κ+ g1(κ,A,B, µ, ω̄)

κx =
1
d0

[
−ω̄ +

1
2
ω′′nl(0)κ2 + b0A

2

]
+ O(|A|3 + |κ|3 +B2 + ω̄2) (5.14)

Ax = B + g2(κ,A,B, µ, ω̄)

Bx =
1
d1

[
(−ρ′pd(0)µ+ b1ω̄ + b2κ

2 + b3A
2)A+ b4κB

]
+O(|A|(A4 +A2|κ|+ µ2 + ω̄2) + |B|κ2 +B2(|κ|+ |A|))

for appropriate constants bj ∈ R, where the functions g1 and g2 are smooth, respect the symmetries and the
reverser, and their first two derivatives vanish at (κ,A,B, µ, ω̄) = 0. Indeed, the linear terms in (5.14) can
be computed as in [5, §8.1] by substituting (5.12) into (5.10) and projecting using the adjoint eigenfunctions
(5.11). In particular, the coefficient b1 is given by

b1 =
〈ψpd, ∂τupd − fuu(u0; 0)[uω, upd]〉L2(0,4π)

〈ψpd, upd〉L2(0,4π)
. (5.15)

The functions g1 and g2 must vanish to second order due to the facts that the diagonal of B0 vanishes
and the nonlinearity appears only in the v-component. Checking compatibility of monomial terms with the
involution S2π and the reverser R, we find that the equations for κ and B must be of the specified form.
The special form of the equation for κ when A = B = 0 is a consequence of [5, §8.1] and our choice of ω̄ as
the offset from the µ-dependent temporal frequency of spatially homogeneous oscillations. Lastly, to bring
equation (5.14) into the form (5.5), we introduce the new coordinates

κ̃ = κ+ g1(κ,A,B, µ, ω̄), B̃ = B + g2(κ,A,B, µ, ω̄). (5.16)

Upon dropping the tildes, we arrive at equation (5.5) as claimed, which completes the proof of Theorem 8.

To prove Theorem 9, we record that the solutions described by Theorem 8 are uniformly close to the
homogeneous oscillations u0(τ) whose Floquet multipliers are contained strictly inside the unit disk with
the exception of multipliers close to ρ = ±1. Floquet multipliers near ρ = ±1 can be captured by a spatial
center-manifold reduction for the eigenvalue problem

vx = [B0 + ω̄N + DG(u;µ)]v + λ

(
0 0

D−1∂τ 0

)
v (5.17)

which is carried out simultaneously with the reduction for the existence problem (5.10). Following the same
strategy as above, we find that the center manifold for the eigenvalue problem (5.17) about a solution u

26



from (5.12) corresponding to a solution (κ∗, A∗, B∗) of (5.5) is parametrized by

v =

[
−
(
u′0
0

)
− κ∗

(
0
u′′0

)
+A∗

(
u′pd

0

)
+B∗

(
0
u′pd

)
+ ∂τH0(κ∗, A∗, B∗, µ, ω̄)

]
Φ (5.18)

−κ
(

0
u′0

)
+A

(
upd

0

)
+B

(
0
upd

)
+ D(κ,A,B)H0(κ∗, A∗, B∗, µ, ω̄)

 κ

A

B



+λ


(
uω(µ)

0

)
Φ +H10

 κ

A

B

+H11(κ∗, A∗, B∗, µ, ω̄, λ)


Φ
κ

A

B




where H10 and H11 map into the hyperbolic eigenspace Eh of B0 and where H11(0) = 0. In particular, for
λ = 0, we obtain precisely the linearization of the reduced vector field about (κ∗, A∗, B∗), and it remains
to calculate the λ-dependent terms. Using that H10 maps into Eh and that (uω, 0) ∈ Eh by construction
(5.13), we obtain the desired expression (5.8) upon substituting (5.18) into (5.7) and projecting using the
adjoint eigenfunctions (5.11). We emphasize that the coefficient in front of the λA∗Φ term is equal to b1 as
computed in (5.15).

The coefficients appearing in (5.5), and in particular the coefficient b1, are in general nonzero. It will often
be more convenient to express the term ω̄A in terms of κxA. Thus, we write (5.5) as

φx = κ

κx =
1
d0

[
−ω̄ +

1
2
ω′′nl(0)κ2 + b0A

2

]
+ O(|A|3 + |κ|3 +B2 + ω̄2)

Ax = B (5.19)

Bx =
(
−
ρ′pd(0)
d1

µ+ b̃1κx + b̃2κ
2 + b̃3A

2

)
A+ b̃4κB

+O(|A|(A4 +A2|κ|+ µ2 + ω̄2) + |B|κ2 +B2(|κ|+ |A|))

where

b̃1 := −d0b1
d1

, b̃2 :=
b2 + 1

2ω
′′
nl(0)b1

d1
, b̃3 :=

b3 + b0b1
d1

, b̃4 :=
b4
d1
.

The coefficients appearing in (5.19) have the following interpretation: b0 describes how the temporal fre-
quency of period-doubled spatially homogeneous oscillations changes with the amplitude of the period dou-
bling mode. The coefficient b̃2 encodes the wave number dependence of the onset of period doubling, and
b̃3 reflects whether the period doubling bifurcation is subcritical or supercritical. Lastly, b̃4 gives the de-
pendence of the linear group velocity of the period doubling mode on the wave number of the underlying
wave train. We shall assume that the period doubling bifurcation is supercritical and that the homogeneous
oscillations destabilize before the wave trains with nonzero wave number:

Hypothesis 1 We assume that b̃2 > 0 and b̃3 > 0.

Since we already assumed that ω′′nl(0) 6= 0, we can arrange to have ω′′nl(0) > 0, possibly after replacing κ

by −κ. Using this normalization together with b̃3 > 0, an appropriate change of the parameters and the
dependent and independent variables transforms (5.19) into

κx = −ω̄ + κ2 + bA2 + O(|A|3 + |κ|3 +B2 + ω̄2)

Ax = B (5.20)

Bx = [−µ+ aκx + dκ2 +A2]A+ cκB + O(|A|(A4 +A2|κ|+ µ2 + ω̄2) + |B|κ2 +B2(|κ|+ |A|))
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where we use the same letters for the new transformed variables and omitted the equation for φ as it
decouples. Hypothesis 1 translates into d > 0.

The long wavelength scaling

(κ,A,B, µ, ω̄, x) −→
(
εκ, εA, ε2B, ε2µ, ε2Ω,

x

ε

)
(5.21)

transforms (5.20) into

κx = −Ω + κ2 + bA2 + O(ε)

Ax = B (5.22)

Bx = [−µ+ aκx + dκ2 +A2]A+ cκB + O(ε).

This system is equivariant under the reflection S2π : (κ,A,B) 7→ (κ,−A,−B) and reversible with reverser

R : (κ,A,B) 7−→ (−κ,A,−B).

We set ε = 0 in the following and focus on the resulting system

κx = −Ω + κ2 + bA2

Ax = B (5.23)

Bx = [−µ+ aκx + dκ2 +A2]A+ cκB

or alternatively, upon substituting the equation for κx into the last equation, on

κx = −Ω + κ2 + bA2

Ax = B (5.24)

Bx = [−(µ+ aΩ) + (a+ d)κ2 + (1 + ab)A2]A+ cκB.

The reversibility of the full problem (5.22) will allow us to show persistence of the solutions of (5.23) that
we shall construct below for ε > 0.

Lastly, we discuss the PDE stability of bounded solutions U∗ = (κ∗, A∗, B∗) to (5.22) as given by Theorem 9.
Using that any such solution U∗ is of order ε as a solution to (5.20) due to the rescaling (5.21), it is not
difficult to see that any eigenvalue λ of the reduced eigenvalue problem (5.8) which lies near the origin and
has Reλ ≥ 0 is necessarily of order O(ε2); see [5, Proof of Lemma 8.2] for a similar argument. Thus, the
rescaling (5.21) for U∗ together with the rescaling

(Φ, κ, A,B, λ, x) −→
(
Φ, εκ, εA, ε2B, ε2Λ,

x

ε

)
(5.25)

for the linearization captures all unstable Floquet exponents near the origin, while transforming (5.8) into

Λ

(
1
d0

0
−aK0A∗

1
d1

)(
Φ
A

)
= (5.26)[(

∂xx − 2κ∗∂x −2bA∗
(−2(a+ d)κ∗A∗ − cB∗)∂x ∂xx − cκ∗∂x + (µ+ aΩ)− (a+ d)κ2

∗ − (1 + ab)A2
∗

)
+ O(ε)

](
φ

A

)
for a certain constant K0 > 0 that arises due to the coordinate transformations leading from (5.19) to (5.20).
Since we will not need the precise value of K0, we will not compute it.

5.2 Wave trains

We first investigate equilibria of (5.23), which correspond to wave trains of the original reaction-diffusion
system (5.4). Equilibria (κ,A,B) have B = 0 and satisfy

Ω = κ2 + bA2, [−µ+ dκ2 +A2]A = 0. (5.27)

28



A Ω
cpd
g

κ
√

µ/d−
√

µ/d

√
µ

κ
√

µ/d−
√

µ/d

cpd
g

Figure 3: The bifurcation diagram of the wave trains [left] and their nonlinear dispersion relation [right] are

shown: The solid dispersion curve is for 1− bd > 0, while the dashed curve is for 1− bd < 0.

Equilibria U0 = (κ, 0, 0) with A = 0 exist for all wave numbers κ with frequency offset given by Ω = κ2.
Thus, their group velocity is given by

c0g =
dΩ
dκ

= 2κ.

The linearization of (5.23) about these solutions is given by

L0 =

 2κ 0 0
0 0 1
0 −µ+ dκ2 cκ


from which we see that they are hyperbolic except when κ = 0 or κ =

√
µ/d. The bifurcation at κ =

√
µ/d

is a pitchfork which corresponds to the period doubling bifurcation which we analyse next.

The equilibria bifurcating at κ =
√
µ/d can be found by solving (5.27) with A 6= 0. We find equilibria

Upd =
(
κ,±

√
µ− dκ2, 0

)
defined for κ2 < µ/d where

Ω = bµ+ (1− bd)κ2;

see Figure 3. The group velocity of the period doubled wave trains is therefore given by

cpd
g =

dΩ
dκ

= 2(1− bd)κ.

Near dκ2 = µ, the linearization Lpd of (5.23) about Upd has eigenvalues near 2κ and cκ in addition to the
pitchfork eigenvalue given by

νpd = −
cpd
g A2

2cκ2
+ O(A3) = − (1− bd)A2

cκ
+ O(A3).

The spectrum of Lpd is illustrated in Figure 4. We remark that the spatial eigenvalue structure reveals in
particular that the period doubled wave trains must be PDE unstable near onset for c > 0 and 1− bd < 0.

5.3 Coherent structures

Our goal in this section is to shed some light on the nature of the line defect that appears in Figure 1.
The line defect mediates between a period-doubled wave train and its 2π-translate. Thus, we shall discuss
coherent structures that are spatially asymptotic as x → ±∞ to the period-two wave train Upd and its
2π-translate −Upd: These structures correspond to heteroclinic orbits between Upd and −Upd of the spatial
differential equation (5.24)

κx = −Ω + κ2 + bA2

Ax = B (5.28)

Bx = [−(µ+ aΩ) + (a+ d)κ2 + (1 + ab)A2]A+ cκB.
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A = 0 1 − bd > 0 1 − bd < 0

c > 0
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Figure 4: The spectra of the linearizations L0 and Lpd of (5.23) about the equilibria U0 [left] and Upd [center

and right], respectively, together with the phase eigenvalue at the origin from the trivial equation φx = κ are

plotted for different signs of the parameters. The open and closed circles denote eigenvalues coming from the

period doubling amplitude A, while crosses denote eigenvalues coming from the phase φ. The closed circle

correspond to the eigenvalue νpd that triggers the period doubling bifurcation; the arrow denotes its movement

upon decreasing κ through
p

µ/d.

κ

Ud

A

B

(iii)

κ

A

B

(ii)

κ

Ud

A

B

U−pd

(i)

Figure 5: Figure (i) shows part of the reversible heteroclinic orbit Ud of (5.28) for b = 0 that connects the

equilibrium U−
pd to U+

pd. Figures (ii) and (iii) contain the unfolding for b < 0 and b > 0, respectively, upon

setting Ω := bµ: The reversible heteroclinic orbit persists only for b > 0.

There are various limiting cases in which a perturbation analysis is possible. We focus on the perturbation
from b = 0 as it is the most illuminating case.

When b = 0, (5.28) admits the semi-hyperbolic equilibria U±pd = (0,±√µ, 0) for Ω = 0 and µ > 0 which
correspond to spatially-homogeneous period-doubled wave trains of the reaction-diffusion system (5.2). These
equilibria are connected by the heteroclinic orbit

Ud(x) =
(

0,
√
µ tanh

√
µ

2
x,

µ√
2

sech2

√
µ

2
x

)
;

see Figure 5(i). This orbit is reversible under the reverser RS2π : (κ,A,B) 7→ (−κ,−A,B). We discuss now
in what sense the reversible connection Ud persists upon varying b near zero, while fixing all other parameters
including µ. We focus on the persistence of reversible orbits which are obtained as intersections of unstable
manifolds with the B-axis. The following analysis is similar to the one given in [34, §7].

The first case is 0 < b� 1: We pick Ω = bµ so that (5.28) becomes

κx = κ2 + b(A2 − µ)

Ax = B (5.29)

Bx = [−µ+ (a+ d)κ2 +A2 + ab(A2 − µ)]A+ cκB.

In particular, the equilibrium U−pd = (0,−√µ, 0) persists as a semi-hyperbolic equilibrium for all b > 0. We
wish to determine how the κ-component of the strong unstable manifold at x = 0 depends on b upon varying
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Figure 6: Figure (i) shows part of the reversible heteroclinic orbit Ud of (5.28) for b = 0 that connects the

equilibrium U−
pd to U+

pd. Figures (ii) and (iii) contain the unfolding for b < 0 and b > 0, respectively, upon

setting Ω = bµ + (1− bd)η2 with η 6= 0: The reversible source persists for b < 0.

b near zero. To this end, we record that the adjoint variational equation

Wx = −

 0 0 0
0 0 1

cBd(x) [−µ+ 3A2
d(x)]A 0


∗

W

associated with the linearization of (5.29) abut Ud at b = 0 has the solution W (x) = (1, 0, 0). The Melnikov
integral associated with the derivative of the right-hand side of (5.29) with respect to b is therefore given by

M :=
∫ 0

−∞

〈
W (x), (A2

d(x)− µ)

 1
0
a

〉dx =
∫ 0

−∞
[A2

d(x)− µ] dx = −
√

2µ < 0. (5.30)

Thus, the unfolding of the heteroclinic orbit near b = 0 is as shown in Figure 5, and we conclude that the
reversible heteroclinic orbit between the semi-hyperbolic equilibria U±pd persists only for b > 0, but not for
b < 0. The resulting coherent structure of the reaction-diffusion system is a contact defect in the classification
of [34] as it mediates between two wave trains with zero group velocity.

The remaining case is −1 � b < 0: We set Ω = bµ+ (1− bd)η2 and treat η as independent parameter with
η ≈ 0 so that (5.28) becomes

κx = −(1− bd)η2 + κ2 + b(A2 − µ)

Ax = B (5.31)

Bx = [−µ− a(1− bd)η2 + (a+ d)κ2 +A2 + ab(A2 − µ)]A+ cκB.

The parameter η unfolds the saddle-node bifurcation occurring at b = 0, leading therefore to the equilibria

U±pd(η) = (η,±
√
µ− dη2, 0)

near U±pd. On account of the results in §5.2, we know that the equilibria U±pd(η) have positive group velocity
for η > 0 and negative group velocity for η < 0. We focus on finding reversible heteroclinic orbits that
connect the hyperbolic equilibrium U−pd(−η) at x = −∞ to the hyperbolic equilibrium U+

pd(η) at x = ∞ for
η > 0. The resulting coherent structure of the reaction-diffusion system is a source in the classification of
[34] as it connects a wave train with negative group velocity at x = −∞ to a wave train with positive group
velocity at x = ∞. To find sources, we note that the behaviour of the κ-component of the strong unstable
manifold under changes of b at x = 0 is, for η = 0, again determined by the Melnikov integral M < 0 in
(5.30). Thus, as far as sources are concerned, the unfolding of the heteroclinic orbit near b = 0 is as shown in
Figure 6: We conclude that, for each b < 0 close to zero, there is a unique η > 0 with a reversible heteroclinic
orbit connecting U−pd(−η) at x = −∞ to U+

pd(η), while no such connection exists for b > 0.
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Theorem 10 For 0 < b � 1, the amplitude equation (5.28) has contact defects that connect the period-
doubled spatially homogeneous wave train Upd at x = −∞ and its 2π-time translate at x = ∞. For −1 �
b < 0, (5.28) admits sources that connect period-doubled wave trains Upd(x) with negative group velocity at
x = −∞ and to the reflected wave trains Upd(−x) with positive group velocity at x = ∞. For a, b, c and d
sufficiently close to zero, both defects are spectrally stable.

Proof. The existence part has already been proved, and we therefore focus on spectral stability.

We consider sources first, and set a = c = d = 0, b = −δ and Ω = b+ η2 = −δ + η2 for δ > 0 small. We also
rescale the A-equation so that µ = 1. Thus, (5.31) becomes

κx = −η2 + κ2 + δ(1−A2)

Ax = B

Bx = [A2 − 1]A

so that A∗(x) = tanh(x/
√

2) independently of η and δ. The source Ud = (κ∗, A∗, ∂xA∗) decays exponentially
to zero as x→ ±∞ with rate independently of δ ≥ 0 since it lies by construction in the strong unstable and
stable manifolds of the asymptotic semi-hyperbolic equilibria. The reduced PDE eigenvalue problem (5.26)
about Ud is given by

Λ
(
φ

A

)
=

(
d0[∂xx − 2κ∗∂x] 2δA∗

0 d1[∂xx + 1−A2
∗]

)(
φ

A

)
. (5.32)

Since the constant functions are admissible eigenfunctions for sources according to the counting arguments
presented in [34], we see that Λ = 0 is an eigenvalue with geometric multiplicity two. This is in line with [34,
Lemma 4.4] which asserts that sources must have two eigenvalues at the origin. It remains to show that the
algebraic multiplicity of Λ = 0 is two and that there are no other eigenvalues in the closed right half-plane.
To prove this claim, we set δ = 0 to get

Λ
(
φ

A

)
=

(
d0∂xx 0

0 d1[∂xx + 1−A2
∗]

)(
φ

A

)
=:

(
L0 0
0 L1

)(
φ

A

)
. (5.33)

Sturm–Liouville theory implies that L1 has a simple eigenvalue Λ = 0 and no other spectrum in the closed
right half-plane. Similarly, L0 has the eigenvalue Λ = 0 with eigenfunction φ(x) = 1 and no other spectrum
in the closed right half-plane. Since the perturbation leading from (5.33) to (5.32) is small and decays with
uniform exponential rate in x, we can apply standard Evans-function theory [15] to conclude that (5.32) with
0 < δ � 1 has precisely two eigenvalues near the origin, counting multiplicity, which are therefore given by
the eigenvalues at Λ = 0 mentioned above. The same argument applies when perturbing from (a, c, d) = 0,
which completes the proof for sources.

It remains to consider the contact defects. We set a = c = d = 0, b = δ and Ω = b = δ for δ > 0 small, and
again rescale the A-equation so that µ = 1. The existence problem (5.31) becomes

κx = κ2 − δ(1−A2)

Ax = B

Bx = [A2 − 1]A

so that A∗(x) = tanh(x/
√

2) independently of δ, and we get

κx = κ2 − δ sech2

(
x√
2

)
.

We record for later use that the reversible contact-defect solution κ∗(x) then satisfies

−
√

2δ ≤ κ∗(x) ≤ 0, x ≥ 0
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with κ∗(0) = 0 and κ∗(x) = K1/x
2 + O(1/x3) as x → ∞ for some K1 ≤ 0. The reduced PDE eigenvalue

problem (5.26) about the contact defect is again given by

Λ
(
φ

A

)
=

(
d0[∂xx − 2κ∗∂x] 2δA∗

0 d1[∂xx + 1−A2
∗]

)(
φ

A

)
. (5.34)

As shown in [35, Theorem 3], contact defects have generically a single simple eigenvalue at the origin.
Furthermore, it is a consequence of the results in [35] that the only admissible eigenfunctions of (5.34) are
those that decay algebraically as x→ ±∞. We will therefore focus on the decoupled eigenvalue problem

φxx − 2κ∗(x)φx =
Λφ
d0

(5.35)

for φ and prove that it has no spectrum in the closed right half-plane for δ > 0. Eigenfunctions belonging to
nonzero eigenvalues Λ of (5.35) in the closed right half-plane decay necessarily exponentially with nonzero
rate

√
Λ and, using the algebraic convergence κ∗(x) = K1/x

2 + O(1/x3) of the contact defect as x → ±∞,
we may therefore set

Φ(x) := exp
(∫ x

∞
κ∗(y) dy

)
φ(x) (5.36)

which transforms the eigenvalue problem for φ into the equivalent eigenvalue problem

Φxx − δ sech2

(
x√
2

)
Φ =

ΛΦ
d0

for Φ. For δ > 0, there are no eigenvalues in the closed right half-plane, with the possible exception of the
origin. We focus therefore on the eigenvalue problem (5.35) with Λ = 0, which is given by

φxx − 2κ∗(x)φx = 0. (5.37)

For δ > 0, the unique solution which decays algebraically as x→∞ is given by

φ(x) =
∫ x

∞
exp

(∫ y

∞
2κ∗(z) dz

)
dy.

This solution is an eigenfunction provided it is odd as φ(x) = 1 is the unique even solution of (5.37). Thus,
we need φx(0) = 0 but have

φx(0) = exp
(∫ 0

∞
2κ∗(z) dz

)
6= 0

which proves that Λ = 0 is not an eigenvalue of (5.35). Lastly, the perturbation from (a, c, d) = 0 can be
dealt with by regular perturbation theory using the Evans-function construction in [35].

5.4 Boundary sinks

Lastly, we investigate the existence and stability of boundary sinks for Neumann boundary conditions. In
other words, we seek solutions U(x) of

κx = −Ω + κ2 + bA2

Ax = B (5.38)

Bx = [−(µ+ aΩ) + (a+ d)κ2 + (1 + ab)A2]A+ cκB

for x ≤ 0 so that U(0) lies on the A-axis, corresponding to Neumann boundary conditions, and U(x)
converges to an equilibrium U− of (5.38) with positive group velocity as x→ −∞.
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Figure 7: The boundary sink U∗ which accommodates Neumann boundary conditions and the period-one wave

train with nonzero wave number
√

Ω is shown for Ω > 1/d.

We focus on the equilibria U0 = (κ,A, b) = (
√

Ω, 0, 0) which correspond to the period-one wave trains with
nonzero wave number

√
Ω and group velocity c0g = 2κ = 2

√
Ω > 0. In this case, the boundary sink is given

explicitly by
U∗(x) = (κ,A,B)(x) =

(
−
√

Ω tanh(
√

Ωx), 0, 0
)
, x ≤ 0; (5.39)

see Figure 7. The PDE stability of the boundary sink U∗ can be analysed as follows. Evaluating (5.26) at
ε = 0, we find that the reduced eigenvalue problem associated with the boundary sink U∗ = (κ∗(x), 0, 0) is
given by

φxx − 2κ∗(x)φx =
Λ
d0
φ

Axx − cκ∗(x)Ax + [µ+ aΩ− (a+ d)κ2
∗(x)]A =

Λ
d1
A

on R− together with Neumann boundary conditions φx(0) = Ax(0) = 0. The equation for φ decouples
and coincides with the eigenvalue problem of Lax shocks of Burgers equation: in particular, there are no
point eigenvalues in the closed right half-plane, and the essential spectrum consists of the curve Λ/d0 =
−k2 − 2

√
Ωik for k ∈ R; see, for instance, [5, Lemma 8.2]. It remains to analyse the equation for A given by

Axx + c
√

Ω tanh(
√

Ωx)Ax +
[
µ− dΩ− (a+ d)Ω sech2(

√
Ωx)

]
A =

Λ
d1
A, x < 0 (5.40)

Ax(0) = 0.

The essential spectrum of (5.40) is given by

Λess(k)
d1

= µ− Ωd− k2 − c
√

Ωik, (5.41)

and we denote by
Λbp

d1
= µ− Ω

(
d+

c2

4

)
(5.42)

the branch point of the linear dispersion relation Λess. The point spectrum of (5.40) can also be calculated
explicitly: Using the independent variable z = tanh(

√
Ωx), real-valued solutions to (5.41) are given in terms

of Ferrers functions which are appropriate linear combinations of the Associated Legendre functions [22, §5].
Using the results in [22, §5.12 and §5.15], we find that the point spectrum of (5.40) consists precisely of the
points Λn given by

Λn
d1

= µ− Ωd+
Ω
4

([√
(c− 1)2 + 4(a+ d)− 1− 4n

]2
− c2

)
(5.43)

for those integers n ≥ 0 for which √
(c− 1)2 + 4(a+ d) ≥ 1 + 4n. (5.44)

In particular, the rightmost point eigenvalue Λ0 is given by

Λ0

d1
= µ− Ωd+

Ω
4

([√
(c− 1)2 + 4(a+ d)− 1

]2
− c2

)
, (5.45)
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Figure 8: We illustrate case (2) (c < 0 and Λbp < Λ0 < Λess) for increasing µ under the assumption that

the bifurcation associated with λ0 is supercritical. The first instability occurs when Λess = 0, leading in (ii)

to a stable period-two wave train Upd which does not persist under Neumann boundary conditions as there is

no boundary sink available. When Λ0 destabilizes, the stable boundary sink U∗∗ bifurcates from U∗, and the

period-two wave train Upd persists now under Neumann boundary conditions due to the presence of U∗∗.

assuming that the term in the square brackets is positive.

We shall assume from now on that the group velocity c of the period doubling mode is negative so that c < 0.
The period-one wave train U− undergoes a pitchfork bifurcation at µ = Ωd which, as outlined in §5.2, leads
to the period-two wave train Upd which has a nonzero A-component. We discuss now how this bifurcation,
which occurs when the essential spectrum Λess crosses the imaginary axis, interacts with the bifurcation of
boundary sinks which occurs when the eigenvalue Λ0 destabilizes. There are three relevant cases:

(1) Λ0 does not exist, that is, (5.44) is not met for n = 0;

(2) Λbp < Λ0 < Λess;

(3) Λess < Λ0.

Using c ≤ 0, we see that the last case occurs for a+ d > 0, while the eigenvalue Λ0 disappears in the branch
point Λbp when the term in the square brackets in (5.45) becomes zero. Since case (1) has already been
discussed in §3.4, and case (2) is similar to (3), we concentrate in the following on (3) and refer to Figure 9
for an illustration of case (2).

Thus, assume that c < 0 and Λess < Λ0: Upon increasing µ, the boundary sink U∗ destabilizes when Λ0 = 0.
In terms of the spatial ODE (5.38), this bifurcation manifests itself as a tangency of the unstable manifold
of the equilibrium U− as indicated in Figure 9(ii). We show in Lemma 5.1 below that this bifurcation can
be supercritical, thus leading to a stable boundary sink U∗∗ which connects U− to the A-axis as illustrated
in Figure 9(iii). Since the A-component of U∗∗ is not zero, the boundary sink U∗∗ will have period two, even
though the period-two wave train Upd has not yet bifurcated from U−. A further increase of µ then leads to
the period-two wave trains Upd which persist under Neumann conditions thanks to the boundary sink U∗∗
as indicated in Figure 9(iv). The characteristic feature of scenario (3) is therefore that the period doubling
sets in first at the boundary, where it is also most pronounced during the entire bifurcation sequence. It
remains to prove that the pitchfork bifurcation of the boundary sink is supercritical.

Lemma 5.1 Assume that b ≤ 0, c < 0, a + d > 0, and 1 + ab ≥ 0, then the pitchfork bifurcation of the
boundary sink U∗ which occurs when Λ0 = 0 is supercritical.

Proof. We need to prove that the part of the unstable manifold of U− which lies in A > 0 has B ≥ 0. Using
the projective coordinate w = B/A, we arrive at the system

ux = −Ω + u2 + bA2

Ax = Aw

wx = −(µ+ aΩ) + (a+ d)u2 + (1 + ab)A2 − cuw − w2.
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Figure 9: Case (3) (c < 0 and Λess < Λ0) is illustrated for increasing µ: The boundary sink U∗ destabilizes

in (ii) when the eigenvalue Λ0 crosses the imaginary axis. This leads in (iii) to the existence of a stable

period-doubled boundary sink U∗∗. The essential instability which occurs when Λess = 0 leads then in (iv) to

a stable period-two wave train Upd which persists under Neumann boundary conditions due to the presence

of U∗∗.
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Figure 10: Proof of Lemma 5.1: If the tangent space angle w(x) decreases monotonically, then the unstable

manifold lies above the tangent space for b < 0 and 1 + ab > 0.

If the solution that corresponds to the tangent space of the unstable manifold of U− evaluated along the
boundary sink U∗ decreases monotonically for x ∈ R−, then the bifurcation will indeed be supercritical for
b < 0 and 1 + ab > 0 as outlined in Figure 10 since the nonlinear terms involving A point in the right
direction. The tangent space of the unstable manifold of U− evaluated along the boundary sink U∗ satisfies
the linearized equation

wx = −(µ+ aΩ) + (a+ d)u2
∗(x)− cu∗(x)w − w2.

We claim that wx < 0 for all x for the solution that converges as x → −∞ to the tangent space of the
unstable manifold of U∗. Firstly, for u near

√
Ω, we write u =

√
Ω− h and w(x) = w∗ +W (x) where w∗ is

the unique positive solution of

− (µ+ aΩ) + (a+ d)Ω− c
√

Ωw∗ − w2
∗ = 0 (5.46)

which corresponds to the unstable eigenvector of the linearization of (5.38) about U−. The resulting system
for W is

Wx = (c
√

Ω− 2w∗)W − h√
Ω

[2Ω(a+ d) + c
√

Ωw∗] + O(h2 +W 2).

Substituting (5.46), we get

Wx = (c
√

Ω− 2w∗)W − h√
Ω

[Ω(a+ d) + µ+ aΩ + w2
∗] + O(h2 +W 2)

which means that Wx < 0 for h > 0 since the term in the square brackets turns out to be positive when
Λ0 = 0. A similar argument shows that the solution w(x) satisfies wxx(x) < 0 whenever wx(x) = 0 which
completes the proof.
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Figure 11: A contourplot of the w-component of the period-doubled spiral wave is plotted in the left figure for

C = 3.4. To the right, the w-components of the spatially homogeneous oscillations are plotted as functions

of time.

6 Period doubling of spirals in the Rössler system: A case study

In this section, we apply our findings to the planar 3-component partial differential equation

ut = 0.4 ∆u− v − w

vt = 0.4 ∆v + u+ 0.2 v (6.1)

wt = 0.4 ∆w + uw − Cw + 0.2,

written abstractly as
Ut = 0.4 ∆U + f(U,C), (6.2)

on a square (x, y) ∈ (0, L)2 ⊂ R2 with Neumann boundary conditions. Kapral and coworkers [13] observed
period-doubled spiral waves for (6.1) when changing the parameter C in the interval (2.8, 3.4); see Figures 1
and 11.

Spatially homogeneous solutions of (6.1) satisfy the Rössler equation

ut = −v − w

vt = u+ 0.2 v (6.3)

wt = uw − Cw + 0.2

which is known to exhibit periodic solutions which undergo a period-doubling sequence beginning at C = 2.83;
see Figure 11. The periodic solutions of (6.3) are accompanied by 1D wave trains U(kx− ωt) of (6.2) with
nonzero wave number k which can be found as 2π-periodic solutions of the travelling-wave ODE

0.4 k2Uxx + ωUx + f(U,C) = 0, x ∈ R. (6.4)

In the remainder of this section, we report on numerical computations for (6.1) and (6.4). We used Barkley’s
finite-difference code ezspiral [2] for direct numerical simulations of spiral-wave solutions to (6.1), typically
with L = 250, and the boundary-value solver auto97 [4] for all computations relating to the travelling-wave
ODE (6.4). In particular, the absolute and essential spectra of wave trains are computed with auto97 using
the algorithms outlined in [27, 31].

The nonlinear dispersion relation ω = ωnl(k) of the wave trains of (6.4) is shown in Figure 12. Note that
their phase velocity cp = ω/k and their group velocity cg = dω/dk have opposite sign: Since the 2D spiral
waves select the wave trains with positive group velocity, the wave trains in the far field of the 2D spirals
travel towards the core rather than towards the boundary.
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Figure 12: In the left figure, we plot the nonlinear dispersion relation ωnl(k) of the 1D wave trains of

(6.4) for C = 2.8324, i.e. at the period-doubling bifurcation. To the right, the temporal frequency ω of the

period-doubled spatially homogeneous oscillations is plotted against the parameter C. Since onset occurs at

C = 2.834, the bifurcation is supercritical, whence b̂3 > 0 in (6.5). Since the frequency decreases with the

period-doubling amplitude, we see that the coefficient b0 in (6.5) is negative.
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Next, we plot in Figure 13 the curves where the essential and absolute spectra of the 1D wave trains with
frequency ω cross the imaginary axis: These instabilities are caused by period-doubling modes with negative
linear group velocity cpd

g < 0; see Figure 14. Direct numerical simulations of (6.1) allow us to determine the
temporal frequencies selected by spiral waves for different values of C, which are also shown in Figure 13.
The associated spatial wave number of the wave trains in the far field is k ≈ 0.2 which is close to zero
in line with the observation that the period doubling bifurcations are organized by spatially homogeneous
oscillations.

The closeness to spatially homogeneous oscillations allows us to investigate the nature of the line defect that
is visible in Figure 11 by applying the results of §5.3 about coherent structures: Figure 12 shows that the
coefficient b arising in (5.28) is negative, and Theorem 10 then implies that the line defect in Figure 11 is a
source, rather than a contact defect. The analysis in §5.3 predicts a tanh(x) profile of the period-doubling
mode across the line defect which has indeed been measured in [13, (2) and Figure 3] based on numerical
simulations of (6.1). We refer to [44] for an analysis of line defects based on interpreting spirals as a field of
coupled oscillators.

To determine when and how the spiral waves destabilize upon increasing C, we fix points (x0, y0) in the
domain and record the time series w∗(x0, y0, t) of the spiral wave. We then compute the difference between
consecutive maxima of the time series which we use as a measure for the period-doubling amplitude. This
computation is done for five points (xj , yj) which are spaced equi-distantly on a ray that connects the spiral
core to the boundary and avoids the line defect. Since our theoretical results predict that period-doubled
spirals ought to drift, we also computed the spiral tip and its drift velocity. The results are shown in
Figure 13: The indications are therefore that period doubling of spirals sets in at C ≈ 2.96. The instability
appears to set be most visible at the boundary, with a square-root type behaviour reminiscent of pitchfork
and Hopf bifurcations, and less pronounced towards the core. The spiral does begin to drift, but the drift
velocity is very small and there is no clear onset visible.

We now discuss the different possible mechanisms outlined in §4 that may be responsible for the observed
period doubling in the Rössler system. Firstly, we plot in Figure 14 representative absolute and essential
spectra of the asymptotic 1D wave trains. Lemma 2.3 asserts that the absolute spectrum arising due to
period-doubling bifurcations of wave trains near spatially homogeneous oscillations has to lie on the symmetry
line Imλ = ω/2, and this is indeed what happens here for the spatial wave numbers k ≈ 0.2 selected by the
spirals. Figure 14 also shows that the linear group velocity cpd

g of the period doubling modes is negative.
However, both absolute and essential spectra are still in the left half-plane when the period doubling sets in at
C = 2.96. Furthermore, due to cpd

g < 0, the absolute eigenmodes decay towards the boundary which appears
to contradict Figure 13 which seems to imply that period doubling is more pronounced at the boundary.
Thus, the bifurcation does not seem to be caused directly by the absolute spectrum.

The second possibility is that the instability is caused by point eigenvalues that emanate from the branch
point located at the edge of the absolute spectrum due to curvature effects of the Laplacian; see Remark 4.2.
We have evaluated numerically the criterion derived in [37, §IV] using the algorithm described there and
found that, in the notation of [37], Φ = π which means that no point eigenvalues arise near the branch point.

This leaves the last option, namely that period doubling is caused by point eigenvalues of the boundary sink.
We have discussed this case in §5.4 for boundary sinks in the near-spatially homogeneous case and shown
that these sinks can indeed possess isolated point eigenvalues that are in resonance with iω/2. In particular,
the scenario described in Figure 9 is consistent with the numerical observations reported in Figure 13, and
therefore provides the likeliest explanation for the occurrence of period doubling in the Rössler system: As
seen from Figure 9(iii), the period-doubling amplitude is most visible at the boundary, whilst decreasing
towards the core. Since the adjoint eigenfunction associated with the translational eigenmodes of the spiral
wave decreases exponentially towards the boundary, we expect that the drift coefficient is exponentially small
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Figure 15: In the left figure, we plot the period-doubling Floquet exponent λpd of the spatially homogeneous

wave trains of (6.3) as a function of the parameter C. The right figure shows the period-doubling bifurcation

curve of wave trains to (6.4) with wave number k together with various curve fits.

in the domain diameter which may explain the slow drift observed in Figure 13.

To further corroborate this conclusion, we exploit that the wave trains selected by the spiral waves have wave
numbers near zero and are therefore close to spatially homogeneous oscillations. Thus, if we can determine
the coefficients appearing in the reduced eigenvalue problem (5.40) of the boundary sinks, then we can
calculate the approximate location of the rightmost eigenvalue Λ0 given in (5.45) and the expected onset of
period doubling. The unscaled version (5.5) of the amplitude equations is given by

d0κx = −ω̄ +
1
2
ω′′nl(0)κ2 + b0A

2 (6.5)

d1Axx = [−µ+ b̂1κx + b̂2κ
2 + b̂3A

2]A+ b4κAx.

We remark that the coefficients b0 and b̂3 do not enter into the calculations presented in §5.4 but Figure 12
indicates that b̂3 is positive as required. The coefficient b0 is relevant for the line defect of the period doubled
spiral and has already been discussed above. The parameter µ will be replaced later by an appropriate
expression in C.

Firstly, we note that d0 = d1 = 0.4 are equal to the diffusion coefficient in (6.1) since the diffusion matrix
is a multiple of the identity. The fit to the nonlinear dispersion relation presented in Figure 11 gives
1
2ω

′′
nl(0) = 0.530. The coefficient b̂1 can be computed numerically by evaluating (5.15): Since the diffusion

matrix in (6.1) is a multiple of the identity, it follows from (5.13) that uω = 0. After calculating the adjoint
solution ψpd of the linearization of (6.3) about the homogeneous oscillation, we obtain b̂1 = 0.925. The
coefficient b4 is equal to the slope of the linear group velocity of the period doubling mode, considered as a
function of the wave number k of the underlying wave train: our computation of this slope gives b4 = −0.74;
see [27] for the relevant algorithms. Next, we need to express the bifurcation parameter µ in (6.5) by an
appropriate expression in C: To this end, we calculated in Figure 15 the period-doubling Floquet exponent
of the homogeneous oscillations as a function of C. A least-square fit gives λpd = 0.108(C − 2.834), and
therefore µ = 0.108(C − 2.834) since µ in (6.5) and λpd in the reduced eigenvalue problem appear with the
same coefficient. Summarizing the results obtained so far, we arrive at the equation

0.4κx = −ω̄ + 0.530κ2 (6.6)

0.4Axx = [−0.108(C − 2.834) + 0.925κx + b̂2κ
2]A− 0.74κAx.

It remains to determine the coefficient b̂2 which measures the dependence of the onset of period doubling
on the wave number k of the underlying wave train of (6.4). This relation, together with various curve fits,
is plotted in Figure 15. We recall that the spirals select wave numbers of around k = 0.203: In this region,
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Figure 16: A snap shot of a period-doubled spiral wave with five interacting line defects is plotted for the

Rössler system (6.1) with C = 3.4.

however, there is unfortunately no accurate fit of the required form C − 0.2834 = b̂2k
2. Thus, we do not

seem to be in the region where the approximation by (6.5) is valid. We therefore proceed as follows: Firstly,
we may take b̂4 = 9.06 which corresponds to a quadratic fit in the interval k ∈ (0.15, 0.25). Alternatively,
we replace the b̂2κ

2 term in (6.6) by 88.8κ4 + 3.91κ2 + 2.83 which is an excellent fit of Figure 15. In
the latter case, our formula (5.45) for the rightmost boundary-sink eigenvalue is no longer valid, and we
determine this eigenvalue numerically using finite differences. Both approximations result in an eigenvalue
Λ0 that destabilizes prior to the essential spectrum: The predicted parameter values for the onset of the
point instability are C = 2.99, when taking b̂4 = 9.06, and C = 3.06 for the approximation by the quartic
polynomial, compared with the value C = 2.96 indicated by the direct simulations from Figure 13. Thus,
while the predicted and measured values for onset disagree, the amplitude equation does predict that the
instability is caused by a point eigenvalue of the boundary sink rather than by the absolute spectrum.

7 Discussion

In summary, we investigated period-doubling bifurcations of 1D sources and 2D spiral waves. The proposed
explanation for spatio-temporal period doubling of spiral waves appears to consistent with numerical simula-
tions of the Rössler system. We also found numerical evidence that period-doubled spirals drift, as predicted,
and we clarified the nature of the line defects that appear in the period-doubled pattern by showing that
these can be sources or reversible contact defects.

Still, large parts of our analysis are only formal. For instance, the prediction of drift for truncated sources
is based on the reduced equation (3.10) on an appropriate center manifold: It is not clear whether the
center-manifold reduction is valid in a uniform region near the source, and not even whether the Taylor jet
of the reduced vector field has a limit as the domain diameter goes to infinity. Similarly, we are currently
not able to analyse the nonlinear bifurcation of spiral waves on the plane or on large bounded disks.

The remaining open problems we would like to mention pertain to the line defects. As indicated by (4.13)
and shown in Figure 16, it is possible to excite several line defects near onset. Neighbouring line defects
typically attract each other which eventually leads to pairwise annihilation. We expect that the time scales of
this interaction depend strongly on whether they involve sources or contact defects. Another open problem
is the transverse instability of line defects observed in [25].
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A Spectra of sources on large bounded domains

We outline the proof of Theorem 3. Suppose that u∗(x, t) is a source on (−L,L) obtained from Theorem 1
as the concatenation of a source on R and two boundary sinks. The linearization of (3.6) about u∗ is given
by

vt = Dvxx + fu(u∗(x, t);µ)v, x ∈ (−L,L)

0 = vx(±L, t),

and we denote its evolution by Φ′t. Floquet multipliers ρ can be found by seeking nontrivial solutions v0 to
Φ′T v0 = ρv0, where T = 2π/ω∗ denotes the temporal period of the source u∗. Writing

v(x, t) = eΛtu(x, t)

for v(x, t) = Φ′tv0, we see that ρ = eΛT is a Floquet multiplier if, and only if, u(x, t) satisfies

ut = Duxx + fu(u∗(x, t);µ)u− Λu, x ∈ (−L,L) (A.1)

0 = ux(±L, t),

with u(x, t) being T -periodic in t. As in [34, §4.1], we write (A.1) as(
ux

vx

)
=

(
0 1

D−1[∂t − fu(u∗(x, t);µ) + Λ] 0

)(
u

v

)
, (A.2)

with u = (u, v) ∈ X := H
1/2
per (0, T ) × L2

per(0, T ) for all x, together with the boundary conditions u(±L) ∈
H

1/2
per (0, T )× {0}.

We want to prove that the Floquet spectrum of the truncated source u∗ is the union of two disjoint sets: One
of these approaches the absolute spectrum of the asymptotic wave trains uwt(k∗x − ω∗t) in the symmetric
Hausdorff distance as L→∞, whilst the other one converges to the union of the extended point spectra of
the source on R and the two boundary sinks. This issue has previously been addressed in [30] in the case
where the linearized problem (A.2) is an ODE.

The convergence proof for the absolute spectrum in [30, §5.3] involves only exponential dichotomies and
Lyapunov–Schmidt reduction, and therefore carries over immediately to (A.2) once the absolute spectrum
of the wave trains uwt is identified: For constant-coefficient problems

ux = A(Λ)u, u ∈ R2n,

the absolute spectrum is given by

Σabs = {Λ ∈ C; Re νn = Re νn+1},

where νj = νj(Λ) with j = 1, . . . , 2n are the eigenvalues of the matrix A(Λ), ordered with increasing real
part. The corresponding definition for (A.2) uses spatial Floquet exponents instead of eigenvalues: We
consider the asymptotic 2π/k∗-periodic system

ux =

(
0 1

D−1[∂t − fu(uwt(k∗x− ω∗t);µ) + Λ] 0

)
u

whose spatial Floquet exponents ν are found by seeking solutions u ∈ X of the form

u(x, t) = eνxu0(k∗x− ω∗t)
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where u0 is 2π-periodic in its argument. As shown in [33, Proposition 2.10 and §4] or [34, §3.4], there are
infinitely many spatial Floquet exponents νj(Λ) for each fixed Λ which, alternatively, can also be found as
roots ν of the function D(Λ, ν). Ordering the resulting roots νj by increasing real part, we end up with the
absolute spectrum (2.23) of the wave trains in the laboratory frame. With this identification, the proofs
given in [30, §5.3] for the absolute spectrum carry over to (A.2).

It remains to prove that the remaining spectrum converges to the union of the extended point spectra
of the source on R and the boundary sinks. There are two different proofs that give this result: Firstly,
we may invoke [28] where the spectrum of concatenated multi-pulses was investigated, using again only
exponential dichotomies and Lyapunov–Schmidt reduction. An alternative proof uses the same topological
winding-number arguments based on Evans functions as in [30, §4.3] but now applied to a finite-dimensional
Galerkin approximation of (A.2): It is a consequence of the results proved in [18, 33] that a sufficiently
high-dimensional Galerkin approximation captures all eigenvalues of the truncated source.
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