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Abstract

We analyze the effect of nonlinear boundary conditions on an advection-diffusion
equation on the half-line. Our model is inspired by models for crystal growth where
diffusion models diffusive relaxation of a displacement field, advection is induced by api-
cal growth, and boundary conditions incorporate non-adiabatic effects on displacement
at the boundary. The equation, in particular the boundary fluxes, possesses a dis-
crete gauge symmetry, and we study the role of simple, entire solutions, here periodic,
homoclinic, or heteroclinic relative to this gauge symmetry, in the global dynamics.
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1 Introduction

We present results on entire solutions and asymptotic behavior in a very simple model for
the effect of boundaries and growth on crystalline phases. We first present some background
for our model and then describe our main results.

Derivation of phase-diffusion, strain-displacement, and effective boundaries.
We are interested in the effect of boundaries and growth on crystalline phases. In the
simplest context, such systems can be modeled by a displacement field u obeying a gradi-
ent flow to an elastic energy

∫
|∇u|2, resulting in a heat equation in a domain Ω. Again

idealizing the situation, we consider one-dimensional domains Ω ⊂ R, and focus on a sin-
gle boundary, only, Ω = R+. Such problems can be derived at various levels of rigor in
mesoscopic systems for striped phases and are then known as phase-diffusion equations. A
prototypical example are modulations of periodic patterns in the Swift-Hohenberg equation

∂tU = −(∂xx + 1)2U + µU − U3.

For µ > 0, the equation possesses a family of periodic solutions U(kx; k), U(ξ; k) = U(ξ +
2π; k), k ∼ 1. Posing the equation on x ∈ R, one can approximate solutions to the Swift-
Hohenberg equation by modulations of periodic solutions U(kx + Φ; k + Φx), Φ = Φ(t, x),
provided Φ solves a phase-diffusion equation

∂tΦ = d(k)∂xxΦ,

where d(k) is an effective diffusivity. Approximation results of this type are usually obtained
in a long-wavelength scaling regime, Φ = εφ(ε2t, εx), but often seem to hold in much more
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generality [8, 9, 18, 19, 23, 27, 30]. We note here that the two-parameter family of equilibria
U(kx+ϕ; k), k ∼ 1, ϕ ∈ [0, 2π) corresponds to the trivial equilibria Φ(t, x) ≡ κx+ϕ in the
phase-diffusion equation. Also, note that Φ, as a phase, takes values in the circle R/2πZ,
that is, our phase-diffusion equation possesses a gauge symmetry Φ 7→ Φ + 2π.
The effect of boundaries on striped phases can be quite complex. In this simple one-
dimensional caricature, earlier work demonstrated that boundaries act through an effec-
tive strain-displacement relation [12, 24, 29], relating strain k and displacement ϕ. In
the simplest scenario, the boundary acts as a selector of wavenumbers, k = g(ϕ), with
g(ϕ) = g(ϕ + 2π), thus providing effective boundary conditions for the phase-diffusion
equation Φx = g(Φ) and selecting stationary solutions Φ(x) = g(ϕ)x + ϕ. While we are
not aware of rigorous approximation results for temporal dynamics including such bound-
ary conditions, they have been found to well predict the interaction of striped phases with
boundaries in many scenarios [12, 3].

Apical growth. Of particular interest to us are scenarios where the domain occupied by
the crystalline phase grows in time. At constant growth rate c, such a domain would be
Ωt = {x > −ct}, which leads, in a comoving frame ξ = x+ ct to the equation

∂tΦ = ∂ξξΦ− cΦξ, ξ > 0.

In the following we study this equation with nonlinear boundary conditions subject to the
gauge symmetry Φ 7→ Φ+2π. Given the simplicity of the equation, we hope that the results
are of interest possibly even outside of the context of crystal growth and we will not stress
the relationship in most of our exposition, only return to this perspective in the discussion.

Advection-diffusion and functional-analytic setup. Consider the advection-diffusion
equation with non-linear flux,{

∂tu = ∂xxu− c∂xu, x > 0, t > 0

∂xu = g(u), x = 0, t > 0,
(1.1)

where c ≥ 0 and the flux is assumed to be smooth, g ∈ C2 (R,R), and to possess the gauge
invariance

g(u+ 2π) = g(u). (1.2)

We are interested in the long-time behavior of solutions of (1.1), in particular ω-limit sets
of trajectories, which consist of entire solutions, that is, solutions defined for all t ∈ R.
Throughout, we think of solutions as classical solutions and assume some growth condi-
tion. Namely, denoting X+ := BUC

(
R+
)

the space of bounded and uniformly continuous
functions on [0,∞), we consider the solutions of (1.1) in the function space

Yc :=
{
v : x 7→ e−

c
2
xv(x) ∈ X+

}
, (1.3)

and we are investigating solutions of (1.1) such that u(·, t) belongs to Yc, for all t.
In the following, we distinguish positive and zero advection speeds, c > 0 and c = 0. In the
case of positive speed, we first discuss the case g > 0, before turning to the case where g
has zeros.
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Positive flux and periodic solutions. Suppose g > 0, the case g < 0 being obtained
by reflection u 7→ −u. Scaling and shifting u, we may consider only fluxes

g(u) = g(u;ϑ) = 1 + ϑh(u), with h(π) = minh = −1, maxh = 1, ϑ ∈ (−1, 1). (BCϑ)

A prototypical example for such a nonlinear term is

g(u;ϑ) = 1 + ϑ cos(u). (1.4)

One quickly finds that there are no stationary solutions to (1.1) satisfying (1.3). Moreover,
|ϑ| < 1 and thus ∂xu > 00 at x = 0 suggests that solutions decrease monotonically. The
expected asymptotic behavior is a time-decreasing solution, which eventually would resonate
with the gauge symmetry and lead to asymptotic behavior u(t, x) = u(t + T, x) + 2π for
some minimal period T > 0.

Theorem 1 (Periodic solutions up to gauge). Consider (1.1) with boundary condition (BCϑ)
with c > 0. Then for all ϑ ∈ (−1, 1), there exists an entire solution u = u(x, t;ϑ) of (1.1)
such that u is

(i) relative periodic in time,

u(x, t+ T ;ϑ) = u(x, t;ϑ)− 2π, for some minimal T = T (ϑ),

(ii) monotone in space and time, ∂xu > 0 and ∂tu < 0,

(iii) unique (up to time translation) in the class of entire solutions with ∂tu < 0.

Sign-changing flux and heteroclinic solutions. The condition |ϑ| < 1, or equivalently
g > 0, is essential in the proof. In case |ϑ| ≥ 1, (1.1) admits constant stationary solutions
preventing the existence of such a time-decreasing dynamics. Our first result is concerned
with the fate of periodic solutions as |ϑ| ↗ 1.

Theorem 2 (Saddle-node on a limit cycle at ϑ = 1). Consider (1.1) with boundary condition
(BCϑ) with c > 0. Suppose that h(u) > −1 except for u = π mod 2π. Then there exists an
entire solution u1(x, t) of (1.1)–(BC1) that is

(i) homoclinic up to the gauge symmetry,

u1(·, t) −→
t→−∞

π, in L∞(R+) and u1(·, t) −→
t→∞

−π in L∞loc(R+);

(ii) unique in the sense that the family {u1(·, · + ty)} contains all entire solutions of
(1.1)–(BC1) between −π and π.

Moreover, the homoclinic u1 is the limit of the relative time-periodic solutions of (1.1)-(BCϑ)
from Theorem 1, parameterized as u(x, t;ϑ, y) with the convention u(0, 0;ϑ, y) = y, in the
sense that

(iii) For all y ∈ (−π, π), there exists ty ∈ R such that

u(·, · ;ϑ, y) −→
ϑ↗1

u1(·, ·+ ty) in L∞loc
(
R+ × R

)
.

Moreover, the map y 7→ ty is a decreasing bijection from (−π, π) onto R.
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(iv) For y = π, u(·, · ;ϑ, y) −→
ϑ↗1

π.

We emphasize that the convergence of the homoclinic in time is not uniform in x, since
u1(x, t)→ π for x→∞ and any fixed t.
Increasing |ϑ| past the boundary |ϑ| = 1, we find two constant stationary solutions as the
simple zeros of g(u;ϑ). Heteroclinic solutions for |ϑ| > 1 are found in the next result.

Theorem 3 (Heteroclinic connections). Consider (1.1) with generic boundary condition g
and with c > 0. Let y1 < y2 be two consecutive zeros of g. Then there exists a unique
(up to time translation) entire solution U∞ = U∞(x, t) of (1.1) satisfying y1 < U∞ < y2.
Moreover, if g > 0 on (y1, y2), then

U∞(·, t) −→
t→−∞

y2, in L∞(R+) and U∞(·, t) −→
t→∞

y1 in L∞loc(R+).

If g < 0 on (y1, y2), the same result holds, interchanging y1 and y2.

Purely diffusive case c = 0. We turn to the somewhat more subtle case of vanishing
transport, {

∂tu = ∂xxu, x > 0, t > 0

∂xu = g(u), x = 0, t > 0.
(1.5)

Clearly, linear functions of the form u(x) = y+g(y)x are stationary solution of (1.5). On the
other hand, subtracting linear profiles u 7→ u− xy simply changes g by adding a constant.
We can therefore study dynamics in general by restricting to solutions bounded in x, that
is, in Yc with c = 0, and studying the different cases of g > 0, g ≥ 0 and sign-changing g as
in the previous section.
In the case g > 0, we still expect decaying solutions, but diffusive transport is too weak to
accommodate relative time-periodic dynamics, but merely creates a diffusive drift compa-
rable to the caricature case g ≡ 1, as the following result shows.

Proposition 1.1 (Diffusive drift). Assume that g > 0. Then there is a constant C > 0
such that, for any bounded initial condition u0 ∈ X+, the solution u(x, t) of the Cauchy
problem (1.5) with u(·, 0) = u0 satisfies

−C
√
t− ‖u0‖∞ ≤ u(0, t) ≤ −

√
t

C
+ ‖u0‖∞ .

In the case where g is not strictly positive, we can still establish the existence of homoclinic
and heteroclinic solutions but uniqueness results are weaker.

Proposition 1.2 (Heteroclinic connections). Assume that for y1 < y2, we have g(y1) =
g(y2) = 0 and g(u) > 0 for u ∈ (y1, y2). Then there exists a heteroclinic solution U∞(t, x)
with

U∞(·, t) −→
t→−∞

y2, in L∞(R+) and U∞(·, t) −→
t→∞

y1 in L∞loc(R+).

Moreover, any entire solution between y1 and y2 must be a heteroclinic connection in this
sense.

Unfortunately, we cannot prove uniqueness of the entire solution. We will briefly discuss
some results towards uniqueness in the last section.
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Techniques. Our result rely heavily on comparison principles and generally monotonicity
methods. Existence of periodic orbits is established using a homotopy and global contin-
uation results, invoking a Krein-Rutman argument as a key ingredient. Heteroclinic and
homoclinic orbits are found as suitable limits of trajectories, exploiting local compactness.
Uniqueness results for heteroclinic orbits are based on invariant manifolds theory.

Beyond phase-diffusion: boundary reactions and discrete gauge symmetries.
Our interest here is somewhat specific and we are not aware of results in the literature
addressing these specific questions. On the other hand, there are numerous results in the
literature addressing related problems. An important class of related problems arises for
instance in combustion, where substances diffuse in a domain but reaction is localized on the
boundary, an effect which can be modeled for instance through a nonlinear flux as described
here; see for instance [5, 6]. In the absence of advection, such problems are intrinsically
connected with fractional differential equations.
Our pursuit of non-convergent, periodic dynamics in scalar equations was preceded by [16]
where periodic solutions in a heat equation with nonlinear, nonlocal boundary conditions
are found.
Our specific choice of gauge symmetry on the other hand mimics models for phase oscillators,
prominent in particular in neuroscience [10], where u ∈ R mod 2πZ would describe the
phase of an individual neuron, and x would parameterize a collection of neurons. In this
context, the case of g > 0 is usually referred to as a bursting or oscillatory state, while
sign-changing g models excitable states; see also [4] for the transition between these two
scenarios. We emphasize however that the kinetics in this scenario are present in the entire
domain.
Closer in spirit to our motivation are results in [25, 26], where monotonically increasing
solutions in a scalar reaction-diffusion system are understood as periodic orbits relative to
a gauge symmetry, similar to our situation. Motivation here is contextually related to ours,
originating from crystal growth.

Outline. We first recall well-posedness results, comparison principles, and lap number
monotonicity results for our context in Section 2. We prove Theorem 1 in Section 3. We
study the limit |ϑ| → 1, and, more generally, the dynamics between constant solutions in
Section 4. Most of the results here apply to the case c = 0, as well. Section 5 presents some
specific aspects of the diffusive case c = 0. We conclude with a discussion.

2 Preliminaries

Symmetrization and well-posedness of the Cauchy problems. For any u0 ∈ Yc,
we consider the Cauchy problem (1.1),

∂tu = ∂xxu− c∂xu, x > 0, t > 0

∂xu = g(u;ϑ), x = 0, t > 0,

u(x, 0) = u0(x), x ≥ 0.

(2.1)

We claim that there exists a unique classical solution u = u(x, t;u0) of (2.1) such that
u(x, t)→ u0(x) as t→ 0+ and u(·, t) ∈ Yc, for all t > 0. Although the boundary condition
in (2.1) is less common, global well-posedness follows from abstract results on semi-linear
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parabolic equations; see for instance [1, 17], or Chapter XIII in [22]. For a more extensive
bibliography on the subject, see [20] and references therein. For the sake of completeness we
outline a more self-contained approach, here. We make the dependence on the parameter
ϑ as in (BCϑ) explicit for later use. Generally, Lipschitz dependence of g on a parameter is
sufficient for the results stated here. For any u ∈ Yc, let

ũ(x) = e−
c
2
xu(x) ∈ X+. (2.2)

Then u(x, t) is a classical solution of (2.1) if and only if ũ(x, t) is a classical solution of
∂tũ = ∂xxũ− c2

4 ũ, x > 0, t > 0

∂xũ = g(ũ;ϑ)− c
2 ũ, x = 0, t > 0,

ũ(x, 0) = e−
c
2
xu0(x), x ≥ 0,

(2.3)

and well posedness of (2.1) in Yc is equivalent to well-posedness of (2.3) in X+. The method
now relies on standard considerations for the heat equation on the half-line (see [7], chapter
4). Since the linear operator in (2.3) is symmetric, we extend the equation on the full
line and consider the boundary condition as a localized source term. Let us consider the
embedding j : X+ ↪→ X = BUC(R) through j(ũ)(x) = ũ(|x|). For the sake of notation, we
later identify j(ũ) and ũ when there is no ambiguity. Then, at least formally, ũ is a solution
of (2.3) if and only if j(ũ) is a solution of

∂tv = ∂xxv −
c2

4
v − 2

〈
δ0, g(v)− c

2
v
〉
δ0

where δ0 is the Dirac distribution at x = 0. All solutions arise as fixed points from a
variation-of-constant formula, which leads us to define, for all T > 0,

G :


C ([0, T ], X)×X+ × R → C ([0, T ], X)

(v; ũ0, ϑ) 7→ t 7→ Γ(t) ∗ j(ũ0)
−2
∫ t
0 Γ(·, t− s)

(
g(v(0, s))− c

2v(0, s)
)

ds

(2.4)

where Γ(x, t) := (4πt)−1/2e−
c2

4
t−x

2

4t is the Green function associated to the first equation
of (2.3) on the whole line. The corresponding semi-group is analytic, hence G is smooth
with respect to ũ0, and the regularity with respect to ϑ is determined by g. Any clas-
sical solution of (2.3) must be a fixed point of G. A direct computation shows that if
T < π/4 ‖∂1g(· ;ϑ)‖∞, then G is a contraction with respect to v, uniformly in ũ0, locally
uniformly in ϑ, which guarantees the existence and uniqueness of a global solution of (2.3)
in X+ as desired. As a fixed point of G, the solution inherits regularity with respect to ϑ
and ũ0. Standard space-time parabolic regularity shows that the solution is classical.

Sub and super-solutions. Throughout, we define a sub-solution of (2.1) as a function
u(x, t), continuous on s ≤ t ≤ T , and satisfying the following inequalities in the classical
sense for all s < T , {

∂tu ≤ ∂xxu− c∂xu, x > 0, t ∈ (s, T )

∂xu ≥ g(u), x = 0, t ∈ (s, T ),
(2.5)

We define super-solutions in the same fashion, as functions satisfying (2.5) with the reverse
inequalities. The following classical result is our basic tool; see for instance [31] for proofs.
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Lemma 2.1 (Comparison principles). Let u be a sub-solution and u be a super-solution of
(2.1), defined for t ∈ (s, T ), such that u(x, s) ≤ u(x, s), for all x ≥ 0. Then, either u < u
for all t ∈ (s, T ) or there exists t0 > s such that u ≡ u for all t ∈ [s, t0).
The result remains valid if u is a supremum of a finite number of sub-solutions, or if u is
an infimum of a finite number of super-solutions.

Zero number for parabolic equations. We now turn to solutions of a linear parabolic
equation

vt = vxx + c(x, t)v, x ∈ I, t ∈ (s, T ) , (2.6)

where −∞ ≤ s < T ≤ ∞, I = (a, b) with −∞ ≤ a < b ≤ ∞ and c is a bounded measurable
function. We denote by zI(v(·, t)) the number, possibly infinite, of zeros x ∈ I of the
function x 7→ v(x, t).

Lemma 2.2 (Zero numbers [2]). Let v be a nontrivial solution of (2.6) and I = (a, b), with
−∞ ≤ a < b ≤ ∞. Assume that the following conditions are satisfied:

• if b <∞, then v(b, t) 6= 0 for all t ∈ (s, T ),

• if a > −∞, then v(a, t) 6= 0 for all t ∈ (s, T ).

Then the following statements hold true.

(i) For each t ∈ (s, T ), all zeros of v(·, t) are isolated. In particular, if I is bounded,
then zI(v(·, t)) <∞ for all t ∈ (s, T ).

(ii) The function t 7→ zI(v(·, t)) is monotone non-increasing on (s, T ) with values in
N ∪ {0} ∪ {∞}.

(iii) If, for some t0 ∈ (s, T ), the function v(·, t0) has a multiple zero in I and zI(v(·, t0)) <
∞, then for any t1, t2 ∈ (s, T ) with t1 < t0 < t2, one has

zI(v(·, t1)) > zI(v(·, t0)) ≥ zI(v(·, t2)). (2.7)

If (2.7) holds, we say that zI(v(·, t)) drops in the interval (t1, t2).

Remark 2.3. If the assumptions of Lemma 2.2 are satisfied and for some t0 ∈ (s, T ), one
has zI(v(·, t0)) <∞, and zI(v(·, t)) can drop at most finitely many times in (t0, T ). If zI is
constant on (t0, T ), then v(·, t) has only simple zeros in I for all t ∈ (t0, T ). In particular,
if T =∞, there exists t1 <∞ such that t 7→ zI(v(·, t)) is constant on (t1,∞) and all zeros
are simple.

Using the previous remark and the implicit function theorem, we obtain the following corol-
lary.

Corollary 2.4. Assume that the assumptions of Lemma 2.2 are satisfied and that the
function t 7→ zI(v(·, t)) is constant on (s, T ). If for some (x0, t0) ∈ I × (s, T ) one has
v(x0, t0) = 0, then there exists a C1-function t 7→ η(t) defined for t ∈ (s, T ) such that
η(t0) = x0 and v(η(t), t) = 0 for all t ∈ (s, T ).
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3 Existence of a periodic solution

We prove the existence of the entire solution from Theorem 1. Recall that g(·;ϑ) is given
through (BCϑ). We shall use continuation in ϑ. Let I ⊂ (−1, 1) be the set of all ϑ ∈ (−1, 1)
such that there exist u = u(x, t;ϑ) and T = T (ϑ) > 0 such that u is

(P1) a classical solution of (1.1);

(P2) periodic relative to the gauge: u (·, T (ϑ)) = u (·, 0)− 2π;

(P3) monotone, ∂tu < 0.

In order to complete the proof of Theorem 1, we need to prove that I is non-empty and
both open and closed in (−1, 1).
First, I is nonempty since 0 ∈ I. Indeed,

u(x, t; 0) = x− ct (3.1)

is a trivial solution of (1.1)–(BC0) satisfying (P1)-(P3), with T (0) = 2π
c . Notice also that

up to a time shift u(·, ·; 0) is the only solution of (1.1)–(BC0) satisfying (P1)-(P2).

3.1 The set I is open

Suppose throughout that there exists ϑ∗ ∈ I such that (P1)-(P3) hold true and denote by
u∗(x, t) and T ∗ the corresponding solution and period.

Proposition 3.1. There exists ε > 0 such that (ϑ∗ − ε, ϑ∗ + ε) ⊂ I.

The proof proceeds in several steps.

Relative periodic orbits as fixed points. Using the transformation (2.2), the desired
periodic property (P2) is equivalent to

ũ(x, T ) = ũ(x, 0)− 2πe−
c
2
x. (3.2)

We define the map

F :

{
X+ × (−1, 1)× R+ −→ X+

(ũ0, ϑ, T ) 7−→ ũ(·, T )− ũ0 + 2πe−
c
2
· (3.3)

where ũ(·, t) is the solution of (2.3) with initial condition ũ0. Clearly, zeros of F correspond
to relative time-periodic solutions. By assumption, we have that

F (ũ∗(·, 0;ϑ∗), ϑ∗, T ∗) = 0. (3.4)

The linearized problem. The well-posedness of (2.3) ensures that F is well-defined.
Its regularity is given by the regularity of G in the (ũ0, ϑ)-variables, and by the parabolic
regularity in T . Therefore it is continuously differentiable in all three variables. Let us
denote DũF

∗ := DũF (ũ∗(·, 0, ϑ∗), ϑ∗, T ∗) the partial derivative of F with respect to the
initial condition at the critical triplet, which is,

DũF
∗ = Φ(T ∗)− id (3.5)
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where Φ is defined by Φ(t)v0 := v(t), where v(·, t) is the solution of the linearized equation{
∂tv = ∂xxv − c2

4 v, t > 0, x > 0

∂xv =
(
∂ug(ũ∗;ϑ∗)− c

2

)
v, t > 0, x = 0,

(LP)

with initial condition v(x, 0) = v0(x). Since ũ∗ satisfies (3.2), the time derivative ∂tũ
∗ is

T ∗−periodic and is a solution of (LP). Hence, together with assumption (P3), it yields

−∂tũ∗(x, t) := v∗(x, t) > 0, DũF
∗[v∗(·, 0)] = 0. (3.6)

In order to complete the proof of Proposition 3.1, we show that DũF
∗ is a Fredholm operator

of index 0 with one-dimensional generalized kernel, that is,

• DũF
∗ is invertible up to a compact operator.

• ker DũF
∗ = ker (DũF

∗)2 = v∗(·, 0)R;

We will then conclude that Dũ,TF
∗ is onto and solve F = 0 with the implicit function

theorem for nearby parameter values ϑ after eliminating the kernel.

Lemma 3.2. There exist linear operators L(T ∗) and K(T ∗) on X such that L(T ∗) is a
contraction, K(T ∗) is compact, and

Φ(T ∗) = L(T ∗) +K(T ∗).

In particular, DũF
∗ is Fredholm of index 0.

Proof. Recall the definition of Φ(t)v, v ∈ X+, as the solution of (LP) with initial condition
v. Slightly abusing notation, we write v(x, t) for the solution with v(x, 0) = v(x). Denoting

the heat kernel Γ(x, t) =
1√
4πt

e−
x2

4t we have the following solution formula for t ≥ 0,

[Φ(t)v] (x) = v(x, t) =e−
c2

4
t

∫ ∞
0

(Γ(x− y, t) + Γ(x+ y, t)) v(y, 0)dy

+ 2

∫ t

0
e−

c2

4
(t−s)Γ(x, t− s)

( c
2
− ∂ug(ũ∗(0, s);ϑ∗)

)
v(0, s)ds.

Let us define, for t > 0 and v ∈ X+,

[L(t)v] (x) := e−
c2

4
t

∫ ∞
0

(Γ(x− y, t) + Γ(x+ y, t)) v(y)dy, (3.7)

[K(t)v] (x) := 2

∫ t

0
e−

c2

4
(t−s)Γ(x, t− s)

( c
2
− ∂ug(ũ∗(0, s);ϑ∗)

)
v(0, s)ds. (3.8)

Clearly, K is implicitly defined through the solution v(x, t) of (LP), but L is well defined
and linear, and so is K, as the difference Φ− L.

Step 1: L(t) is a contraction, for all t > 0. We quickly estimate for all v ∈ X+,

‖L(t)v‖L∞ ≤ e−
c2

4
t ‖v‖L∞ . (3.9)
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Step 2: K is uniformly bounded. This is a direct consequence of the Gronwall In-
equality. For all v ∈ X+, t > 0, we have

K(t)v = 2

∫ t

0
e−

c2

4
(t−s)Γ(·, t− s) [(K(s) + L(s)) v] (0)

(
ϑ
c

2
− ∂ug(ũ∗(0, s);ϑ∗)

)
ds. (3.10)

Hence, with (3.9) and Γ(x, t) ≤ 1√
4πt

, we have, denoting C1 = 2 ‖∂ug‖∞ + c,

‖K(t)v‖L∞ ≤ C1

∫ t

0

e−
c2

4
(t−s)√

4π(t− s)
e−

c2

4
s ‖v‖L∞ ds+ C1

∫ t

0

e−
c2

4
(t−s)√

4π(t− s)
‖K(s)v‖L∞ ds

≤ C1
t√
4π

e−
c2

4
t ‖v‖L∞ + C1

∫ t

0

e−
c2

4
(t−s)√

4π(t− s)
‖K(s)v‖L∞ ds

≤ β(t) ‖v‖L∞ +

∫ t

0
γ(s) ‖K(s)v‖L∞ ds, (3.11)

where t 7→ β(t) is positive and bounded and s 7→ γ(s) is positive and of finite integral
on (0, t), uniformly in t. From Gronwall’s Lemma, there exists a positive and continuous
function C(t) such that for all t ≥ 0, for all v ∈ X,

‖K(s)v‖L∞ ≤ C(t) ‖v‖L∞ . (3.12)

Step 3: K(T ∗) is compact. By standard parabolic estimates, the restrictions of Φ(T ∗)
and L(T ∗) to BUC ([0,M ]) are both compact, for all M > 0, and so is the restriction of
K(T ∗) to BUC ([0,M ]). For all x ≥M , we have, combining (3.9-3.11):

|[K(T ∗)v] (x)| ≤ C1

∫ T ∗

0

e−
c2

4
(T ∗−s)√

4π(T ∗ − s)
e
− x2

4(T∗−s) (‖L(s)‖+ ‖K(s)‖) ‖v‖L∞ ds

≤ e−
M2

4T∗C1

√
T ∗

4π
(1 + C(T ∗)) ‖v‖L∞ −→

M→∞
0, (3.13)

which establishes the compactness of K(T ∗) on BUC(R+). The linearizationDũF
∗ therefore

is Fredholm of index 0 as a perturbation of the identity by a contraction and a compact
map.

Lemma 3.3. The kernel of DũF
∗ is one dimensional, ker DũF

∗ = v∗(·, 0)R.

Proof. Let w be an element in ker DũF
∗. With a slight abuse of notation, we denote by

w(x, t) the solution of (LP) with initial condition w(x, 0) = w(x). We show that w has
to be a multiple of v∗. The method, standard in parabolic equations, is to prove that, up
to a scalar multiple, w and v∗ can be ordered, and then to apply the parabolic maximum
principle. The functions v∗ and w are both T ∗-periodic in time, bounded, differentiable,
and uniformly continuous for all time. Decomposing into Fourier series, we find, with
ω = 2π/T ∗,

v∗(x, t) =

∞∑
k=−∞

vk(x)eikωt, w(x, t) =

∞∑
k=−∞

wk(x)eikωt. (3.14)
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Since v, w are solutions of (LP), the functions vk, wk are solutions of the differential equation

y′′ −
(
c2

4
+ ikω

)
y = 0, x ≥ 0. (3.15)

Solutions of (3.15) are given by y(x) = Aeν
+
k x + Beν

−
k x, where ν±k = ±

√
c2

4
+ ikω. Notice

that

Re ν±k = ± c
2

√
1 +

√
1 + 16k2ω2/c4

2
. (3.16)

Considering that Re ν+k = −Re ν−k > 0, because v and w are bounded functions, there are
complex numbers λk, µk such that

vk(x) = λke
ν−k x, wk(x) = µke

ν−k x. (3.17)

Moreover, from (3.16) there exists δ > 0 such that for all |k| ≥ 1, Re ν−k < − c
2 − 2δ. Thus,

the asymptotic behavior of v∗ and w as x→∞ is

v∗(x, t) = λ0e
− c

2
x + O

(
e−( c2+δ)x

)
, w(x, t) = µ0e

− c
2
x + O

(
e−( c2+δ)x

)
(3.18)

Combining (3.18) with the fact that λ0 =
1

T ∗

∫ T ∗

0
v∗(0, t)dt > 0, there exists k > 0 such

that kv∗(x, t) > |w(x, t)|, for all x ≥ 0, for all t ∈ [0, T ∗). Let us define

ρ0 := inf {k > 0 : kv∗(x, t) > |w(x, t)|, x ≥ 0, t ∈ [0, T ∗)} , and z(x, t) = ρ0v
∗(x, t)− w(x, t).

Then, up to replacing w by −w, the function z is a solution of (LP) and satisfies:

z(x, t) ≥ 0, inf {z(x, t) : x ≥ 0, t ∈ [0, T ∗)} = 0, and z(x, ·) is T ∗ − periodic.

Using the time periodicity, we are in one of the three following situations.

Case 1: contact point at the boundary. There exists t0 ∈ [0, T ∗) such that z(0, t0) =
0. The function z reaches its minimum at the boundary. By the Hopf Lemma, either z ≡ 0
or ∂xz(0, t0) > 0. But the later contradicts the fact that z is a solution of (LP), hence
w ≡ ρ0v∗.

Case 2: finite contact point. There exist t0 ∈ [0, T ∗) and x0 > 0 such that z(x0, t0) = 0.
Again, by the parabolic maximum principle, this implies that z ≡ 0 and gives the desired
result.

Case 3: infinite contact point. z(x, t) > 0 for all x, t, and there exist t0 ∈ [0, T ∗) and
a sequence xn →∞ such that z(xn, t0) −→

n→∞
0. In the asymptotics x→∞, the behavior of

z(x, t) is given by (3.18): z(x, t) = (ρ0λ0 − µ0) e−
c
2
x + O

(
e−( c2+δ)x

)
. By definition of ρ0, it

yields ρ0λ0 − µ0 = 0. Let k0 be the first k such that ρ0λk − µk 6= 0 or ρ0λ−k − µ−k 6= 0.
Combining (3.18) and (3.17), there exists δ0 > 0 such that the asymptotic behavior of z(x, t)
as x→∞ is given by

z(x, t) = eik0ωt (ρ0λk0 − µk0) e
ν−k0

x
+ e−ik0ωt (ρ0λ−k0 − µ−k0) e

ν−−k0
x

+ O

(
e

(
Re ν−k0

−d0
)
x
)
.
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But the left part of the above asymptotic behavior is sign changing over t, which contradicts
z(x, t) > 0. Hence, this situation is impossible. As a result, ρ0v

∗ − w ≡ 0, and the proof of
the lemma is complete.

Lemma 3.4. The eigenvalue 0 is algebraically simple, ker (DũF
∗)2 = ker DũF

∗.

Proof. Let w ∈ ker (DũF
∗)2. Then DũF

∗[w] is an element of ker DũF
∗, so by the above

lemma, there exists λ ∈ R, DũF
∗[w] = Φ(T ∗)w−w = λv∗(·, 0). We argue by contradiction.

Let us assume that λ 6= 0. Then, up to a scaling of w, we can assume that

Φ(T ∗)w − w = v∗(·, 0). (3.19)

Slightly abusing notation again, we write w(x, t) for the solution of (LP) with initial con-
dition w(x, 0) = w(x). Then, by (3.19) it yields w(·, T ∗) − w(·, 0) = v∗(·, 0). Now the
function

z(x, t) = w(x, t)− t

T ∗
v∗(x, t).

is a solution to {
∂tz = ∂xxz − c2

4 z −
1
T ∗ v

∗, t > 0, x > 0

∂xz =
(
∂ug(ũ∗;ϑ∗)− c

2

)
z, t > 0, x = 0.

(AP)

Moreover, z(·, T ∗) = z(·, 0), so z is T ∗-periodic, as is v∗. Notice also that, since v∗ > 0 and
v∗ solves (LP), then kv∗(x, t) is a super-solution for (AP) for all k ∈ R. The strategy is,
again, to derive a contradiction from the maximum principle. Decomposing z onto Fourier
series, still with ω = 2π/T ∗,

z(x, t) =

∞∑
k=−∞

zk(x)eikωt,

and, combining (3.14) and (AP), the functions zk are solutions of

z′′k −
(
c2

4
+ iωk

)
zk =

vk
T ∗
.

Let us recall that vk is a solution of (3.15) and given by (3.17). Using the boundedness of
z, we find that for some complex numbers bk,

zk(x) =
λk

2ν−k T
∗xeν

−
k x + bke

ν−k x. (3.20)

This, along with (3.16) gives us the asymptotic behavior of z as x→∞,

z(x, t) = − λ0
cT ∗

xe−
c
2
x + b0e

− c
2
x + O

(
e−( c2+δ)x

)
. (3.21)

Recall that λ0 = 1
T ∗

∫ T ∗
0 v(0, t)dt > 0. The asymptotics (3.21) imply that there exists M > 0

such that
z(x, t) < 0, for all x > M, for all t ∈ [0, T ∗). (3.22)

We consider two separate cases.
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Case 1: z is sign-changing. Let us assume that z(x0, t0) > 0 for some x0, t0. Because
v∗(x, t) > 0 is time periodic and continuous there exists η > 0 such that v∗(x, t) > η for all
x ≤M , for all t ∈ [0, T ∗). Hence, with (3.22), there exists k > 0 such that kv∗(x, t) > z(x, t)
for all x ≥ 0, for all t ∈ [0, T ∗). Let us again define

ρ0 := inf {k > 0 : kv∗(x, t) > z(x, t), x ≥ 0, t ∈ [0, T ∗)} .

Since z(x0, t0) > 0, we have that ρ0 > 0, and, due to (3.22), there exists a finite contact
point (x1, t1) such that ρ0v

∗(x1, t1) = z(x1, t1) and ρ0v
∗(x, t) ≥ z(x, t) for all x, t. But this

is impossible, because ρ0v
∗ is a super-solution for (AP).

Case 2: z is negative. Let us assume that z(x, t) < 0, for all x, t. Comparing (3.18) with
(3.22), for all k > 0, there exists M = M(k) such that |kv∗(x, t)| < |z(x, t)|, for all x > M .
As a result, ρ0 := inf {k > 0 : kv∗(x, t) > z(x, t), x ≥ 0, t ∈ [0, T ∗)} exists and is negative.
Moreover, for the same reason, the contact point cannot be at infinity, so there is a finite
contact point, and we obtain the same contradiction. As a consequence, our assumption
(3.19) is impossible, and the proof of Lemma 3.4 is complete.

Conclusion of the proof of Proposition 3.1. The conclusion is classical for periodic
autonomous systems, showing that periodic orbits persist if the trivial Floquet multiplier
is algebraically simple. Specifically, Lemma 3.2 and 3.3 imply that the differential DũF

∗

defined by (3.5) has closed range and one-dimensional co-kernel. The derivative of F ∗ with
respect to T ∗ is ∂tũ

∗
0 and, by Lemma 3.4, does not belong to the range of DũF

∗, such
that Dũ,TF

∗ is onto. We can now apply the implicit function theorem, solving for ũ in
a complement of the kernel. Note that the implicit function theorem also implies local
uniqueness. This proves the lemma once we establish that ∂tu < 0 for the solution.
In order to show that the condition ∂tũ < 0 is open, notice that ∂tũ(t, x) < 0 for x sufficiently
large, due to (3.18), such that uniform continuity on compact sets suffices to establish the
claim.

3.2 The set I is closed in (−1, 1)

Let (ϑn)n ⊂ I be a sequence satisfying ϑn −→
n→∞

ϑ∞ ∈ I. Let Tn, un(x, t) be the corre-

sponding periods and entire solutions satisfying (P1)-(P3). Without loss of generality, we
assume

0 ≤ ϑn ↗
n→∞

ϑ∞, ϑ∞ > 0, and un(0, 0) = 0. (3.23)

We need to prove that ϑ∞ ∈ I, that is, there is a period 0 < T∞ <∞ and a relative time-
periodic entire solution u∞ of (1.1)–(BCϑ∞) satisfying (P1)-(P3). We first derive a priori
estimates for ∂xun, which will allow us to construct sub and super-solutions to control the
behavior of Tn. The conclusion then follows from parabolic regularity.

Lemma 3.5. For all n, we have, 1− ϑ∞ ≤ ∂xun(x, t) ≤ 1 + ϑ∞ for all x ≥ 0, t ∈ R.

Proof. Fix n, and let us define v(x, t) = ∂xun(x, t). Then v is a Tn-periodic function in
time, solution of {

∂tv = ∂xxv − c∂xv, x > 0, t ∈ R
v(0, t) = f(t), x = 0, t ∈ R

(3.24)
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with f(t) = 1 + ϑh(un(0, t)). As a result, v(x, ·) is periodic and at the boundary we have

1− ϑ∞ ≤ v(0, t) ≤ 1 + ϑ∞, t ∈ R. (3.25)

Moreover, by parabolic estimates, considering that un ∈ Yc, for all δ > 0, there exists C1 > 0
such that

|v(x, t)| ≤ C1e
(x2+δ)x, x ≥ 0, t ∈ R. (3.26)

Step 1. We claim that for all δ > 0, there exists C2 = C2(δ) such that

|v(x, t)| ≤ C2e
δx, x ≥ 0, t ∈ R. (3.27)

To prove this claim, decompose v(x, t) onto Fourier series:

v(x, t) =
∞∑

k=−∞
vk(x)eikωt, ω =

2π

Tn
.

Then, from (3.24), the functions vk are solutions of the differential equation

v′′k − cv′k − ikωvk = 0, x ≥ 0. (3.28)

Solutions of (3.28) are

vk(x) = Ake
η+k x +Bke

η−k x, η±k =
c±
√
c2 + 4ikω

2
.

This gives Re η±k =
c

2
± 1

2
Re
√
c2 + 4ikω, and, in particular, Re η+k > c and Re η−k < 0, for

all k. Taking into account (3.26), the first inequality implies Ak = 0, for all k, and, together
with the second, it implies the desired estimate (3.27).
Step 2. We conclude the proof of Lemma 3.5 by a sliding argument. Let us define, for
parameters k, η > 0:

v(x; k, η) = 1 + ϑ∞ + keηx, v(x; k, η) = 1− ϑ∞ − keηx. (3.29)

Then, for all 0 < η < c, v and v are super and sub-solution of (3.24) respectively. We
prove the upper bound of Lemma 3.5, the lower being similar. Fix η > 0. Then, by (3.27),
v(·; k, η) > v for k large enough. Let k0 := inf {k ≥ 0 : v(x; k, η) > v(x, t), x ≥ 0, t ∈ R}.
Then necessarily k0 = 0. Otherwise the function w(x, t) := v(x; k0, η) − v(x, t) is a time-
periodic super-solution of (3.24) satisfying w(0, t) > 0 (because of (3.25)), w(x, t) ≥ 0 and
w(x0, t0) = 0 for some x0, t0, which is impossible. As a result, for all k > 0, for all η > 0, it
reads v(x; k, η) > v(x, t), for all x ≥ 0, t ∈ R. Passing to the limit k, η → 0, we obtain the
upper bound of Lemma 3.5.

Lemma 3.6. There exist λ, µ > 0 such that for all n,

2π

µ
≤ Tn ≤

2π

λ
.

Proof. The proof is based on the construction of sub and super solutions, that are time

decreasing with constant speed. Let K1 =
6ϑ∞

c(1− ϑ∞)
. Let f be a smooth function with

f(0) = 0 such that, 
f ′(0) = 1− ϑ∞ ≤ f ′(x), for all x ≥ 0.

f ′(x) = 1 + ϑ∞, for all x > K1.

‖f ′′‖∞ ≤
3ϑ∞
K1

.
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For any M ∈ R, define

λ :=
c

2
(1− ϑ∞) , u(x, t) := −λt+ f(x) +M. (3.30)

Then u is a super-solution for (1.1) with (BCϑn) for all n, for all M . From Lemma 3.5
and our choice of f , for some M = M1 large enough, u(x, 0) > un(x, 0), for all x ≥ 0,
for all n. Moreover, ∂xu(0, t) = 1 − ϑ∞ ≤ ∂xun(0, t), for all t ≥ 0. As a consequence,
u(x, t) ≥ un(x, t), for all x, t ≥ 0.

Similarly, with K2 =
6ϑ∞

c(1 + ϑ∞)
, let g be a smooth function with g(0) = 0 such that:


g′(0) = 1 + ϑ∞ ≥ g′(x), for all x ≥ 0.

g′(x) = 1− ϑ∞, for all x > K2.

‖g′′‖∞ ≤
3ϑ∞
K2

.

Then, define for any M ∈ R,

µ :=
c

2
(1 + ϑ∞) , u(x, t) := −µt+ g(x)−M.

Then u is a sub-solution for (1.1) with (BCϑn) for all n, for all M . From our choice of
g, for some M = M2 large enough, u(x, 0) < un(x, 0), for all x ≥ 0, for all n. Moreover,
∂xu(0, t) = 1+ϑ∞ ≥ ∂xun(0, t), for all t ≥ 0. As a result, we have the following inequalities,

−µt+ g(x)−M2 < un(x, t) < −λt+ f(x) +M1, for all t ≥ 0, n ≥ 0, x ≥ 0. (3.31)

Considering that the functions un are relative time-periodic in the sense of (P2), letting
t→∞ in (3.31), we obtain the desired bounds.

Proof of Theorem 1. By Lemma 3.6, there exists 0 < T∞ < ∞ such that, up to a
subsequence, Tn → T∞. By parabolic regularity, there exists u∞(x, t) such that, up to a
subsequence, un and its derivatives converge to u∞ and its derivatives, locally uniformly
in (x, t) ∈ R+ × [0, T∞]. Then u∞ solves (1.1) with (BCϑ∞) and satisfies u∞(·, T∞) =
u∞(·, 0)− 2π. Moreover, ∂tu∞ ≤ 0 as a limit of positive functions, so necessarily ∂tu∞ < 0
due to the maximum principle. Hence ϑ∞ belongs to I, so I = (−1, 1).

Remark 3.7. Considering that (3.1) is the unique solution of (1.1) with (BC0), the implicit
functions theorem also provides the uniqueness of the solution under the condition ∂tu < 0.
We do not know if it remains unique without this condition. However, no other entire
solutions can be continuously connected to our monotone branch.

4 Dynamics in the presence of stationary solutions

We now turn to the case when g(y) = 0 for some y ∈ R. We start establishing convergence
of the solutions from Theorem 1 in the limit ϑ ↗ 1, the basis of the proof of Theorem 2.
We then discuss asymptotics of solutions of (1.1) as t → ±∞ in Section 4.2. Most of the
results there are valid in both cases c > 0 and c = 0. We restrict to c > 0 only in the
last paragraph, concerned with the uniqueness, and prove Theorem 3. Theorem 2 is then a
direct consequence.
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4.1 The case ϑ = 1 as a limit

We consider boundary conditions (BCϑ) with the additional assumption h(y) > −1 for
y ∈ (−π, π). For all y ∈ (−π, π] and for all ϑ ∈ (−1, 1), let u(·, · ;ϑ, y) be the entire solution
of (1.1) given by Theorem 1 with u(0, 0;ϑ, y) = y.

Lemma 4.1. For all M > 0, τ > 0 the family {u(·, · ;ϑ, y) : ϑ ∈ (−1, 1)} in uniformly
bounded in L∞ ([0,M ]× [−τ, τ ]).

Proof. This lemma is a direct consequence of Lemmas 3.5 and 3.6. In the proof of
the latter, by construction we obtain that T (ϑ) ≥ 2π

c for all ϑ ∈ (−1, 1). Therefore by
T−periodicity it yields that for all t ∈ [−τ, τ ], |u(0, t;ϑ, y)| ≤ τc + |y|. Lemma 3.5 ensures
that 0 < ∂xu(·, · ;ϑ, y) < 2, which completes the proof of boundedness, locally in space and
time around (x, t) = (0, 0).

Convergence of u(·, · ;ϑ, π). Let (ϑn) ⊂ (−1, 1) be any sequence with ϑn ↗ 1. Then,
by Lemma 4.1 and parabolic regularity, up to a subsequence, the sequence u(·, · ;ϑn, π)
converges to some function U(x, t) in L∞loc(R+×R), solution of (1.1)–(BC1). Moreover, due
to Theorem 1 and by definition of u(·, · ;ϑn, π), it satisfies

∂tU ≤ 0, ∂xU ≥ 0, U(0, 0) = π, hence U(x, 0) ≥ π.

Since the constant function π is a stationary solution of (1.1)–(BC1), the comparison
principle implies that U ≡ π. Therefore, any sequence ϑn ↗ 1 contains a subsequence
along which u(·, · ;ϑn, π) converges to π in L∞loc(R+ × R), and from Lemma 4.1 the fam-
ily {u(·, · ;ϑ, π) : ϑ ∈ (−1, 1)} is precompact with respect to this topology. Therefore,
convergence holds for ϑ↗ 1 which proves (iv) in Theorem 2.

Convergence to some heteroclinic connection between −π and π. We apply the
same compactness method. Fix any y0 ∈ (−π, π) and any sequence ϑn ↗ 1. Then, up to
a subsequence, the sequence u(·, · ;ϑn, y0) converges to some function U0(x, t), solution of
(1.1)–(BC1) in L∞loc(R+×R). Taking into account that u(·, · ;ϑn, y0) < u(·, · ;ϑn, π) and the
above convergence result, it satisfies

∂xU0 ≥ 0, ∂tU0 ≤ 0, U0(0, 0) = y0, U0(x, 0) ≤ π. (4.1)

Since ∂tU0 solves a linear equation, either U0 is a stationary solution or ∂tU0 < 0. But
(1.1)–(BC1) does not admit any bounded stationary solutions besides the constant functions
π + 2kπ, k ∈ Z. Therefore, ∂tU0 < 0, for all t ∈ R. Similarly, (4.1) and the comparison
principle imply that −π < U0 < π, for all x, t. Due to its monotonicity, the function U0

converges to some stationary solutions as t→ ±∞, and the only possibility is

U0(·, t) −→
t→−∞

π, U0(·, t) −→
t→∞

−π. (4.2)

This proves (iii) in Theorem 2.

16



4.2 Dynamics between two stationary solutions

This subsection is devoted to the proof of Theorem 3 and (i)–(ii) of Theorem 2. Consider
(1.1) with any boundary term g, and let y1 > y2 be two consecutive zeros of g. Without
loss of generality, we assume

y1 > y2 = 0, g(y) < 0 for y ∈ (0, y1), g(0) = g(y1) = 0. (4.3)

Therefore, the constant functions U− ≡ 0 and U+ ≡ y1 are stationary solutions of (1.1),
and there is no other stationary solution with range in [0, y1].

Existence of the heteroclinic connection. We construct the entire solution U∞ in a
general setting, using sub and super-solutions. The following key ingredient gives a long
time control of the super-solution.

Lemma 4.2. Fix c ≥ 0. For all large enough k, there exist Tk > 0 and a function uk ∈
C ([0, Tk], X+) such that

(i) uk(·, 0) = 1/k2;

(ii) the function uk is a super-solution of (1.1) for t ∈ (0, Tk];

(iii) uk(0, Tk) = 1/k;

(iv) Tk →∞ as k →∞.

Proof. Fix ε > 0. There exists δ > 0 such that

g(y) ≥ (g′(0)− ε)y, for all y ∈ [0, δ]. (4.4)

Let us define

λ := −c
2

4
+ 4

( c
2
− g′(0) + ε

)
, γ :=

√
c2

4
+ λ. (4.5)

Fix k > 1/δ and define uk as the solution of
∂tuk = ∂xxuk − c∂xuk, x > 0, t > 0

∂xuk = c
2uk −

γ
k2

eλt, x = 0, t > 0,

uk(x, 0) = 1/k2, x ≥ 0.

Then, considering (4.4), uk is a super-solution as long as uk(0, t) ≤ δ. Therefore, since
k > 1/δ, we define

Tk := inf

{
t > 0 : uk(0, t) =

1

k

}
.

The proof of Lemma 4.2 is complete if we can prove that Tk is well defined and diverges as
k →∞. The linear form of (2.4) gives

uk(0, t) =
e−

c2

4
t

k2
√

4πt

∫
R

e−
x2

4t
− c

2
|x|dx+ 2

γ

k2

∫ t

0

e−
c2

4
(t−s)√

4π(t− s)
eλsds.

A direct computation leads to

uk(0, t) =
1

k2
erfc

(
c
√
t

2

)
+

eλt

k2
erf
(
γ2
√
t
)
, (4.6)
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where erf(x) =
2√
π

∫ x

0
e−u

2
du and erfc(x) = 1− erf(x). Therefore, Tk is well defined, and

satisfies

Tk >
1

λ
log(k − 1) −→

k→∞
∞. (4.7)

We now have all the ingredients to construct U∞. For all integer n large enough, let un(x, t)
be the solution of the Cauchy problem (2.1) starting from the initial condition

un(x, 0) = max

(
1

n
+ g

(
1

n

)
x, 0

)
. (4.8)

Notice that (4.8) defines a sub-solution as the supremum of two sub-solutions, therefore the
solution satisfies ∂tun(·, t) > 0 and ∂xun(·, t) < 0 for all t > 0. As a consequence, un(·, t)
converges to some stationary solution of (1.1) as t → ∞. The only possibility is U+ ≡ y1,
therefore

un(·, t) −→
t→∞

y1 in L∞loc(R+). (4.9)

Moreover, for all n, k with n > k2 we have un(x, 0) < uk(x, 0), and therefore

un(0, t) < uk(0, t) <
1

k
, for all t ∈ (0, Tk). (4.10)

From (4.9), we deduce that there exists τn > 0 such that un(0, τn) = y1/2. From (4.10) and
Lemma 4.2, we obtain that tn →∞ as n→∞. Let us define the sequence

un(x, t) := un(x, t+ τn), for x ≥ 0, t > −τn.

By parabolic regularity, there exists an extraction ϕ : N � N such that the sequence (uϕ(n))
converges to some function U∞ together with its derivatives in L∞loc(R+), and U∞ is an entire
solution of (1.1) for all time t ∈ R. It inherits the following properties from the sequence
un,

0 ≤ U∞ ≤ y1, ∂tU∞ ≥ 0, ∂xU∞ ≤ 0, U∞(0, 0) = y1/2, U∞(·, t) −→
t→∞

0 in L∞(R+). (4.11)

Since U∞ cannot be a stationary solution, the inequalities in (4.11) are strict inequalities,
and U∞(·, t) is convergent to some stationary solution as t → ∞. The only possibility is
U+ ≡ y1.
We have thus established the following result.

Proposition 4.3. Consider (1.1) with any c ≥ 0. Assuming (4.3) for the nonlinear term
g, there exists an entire solution U∞(x, t) of (1.1) such that

U∞(·, t) −→
t→−∞

0 in L∞(R+), U∞(·, t) −→
t→∞

y1 in L∞loc(R+).

This results includes the existence part of Theorem 3. Along with the uniqueness part of
Theorem 3, which will be proved in the next section, it also concludes the proof of Theorem
2.
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Long-time behavior of solutions. We consider solutions of (1.1) with g satisfying (4.3).
Let us recall some standard facts about limit sets of a solution.
For any forward solution u(x, t) of (1.1), uniformly bounded in t ≥ 0, we define its ω-limit
set

ω(u) := {ϕ : u(·, tn)→ ϕ for some sequence tn →∞} . (4.12)

Similarly, for a bounded ancient solution U(x, t), defined for all t ≤ 0, of (1.1), we defined
its α-limit set

α(U) := {ϕ : U(·, tn)→ ϕ for some sequence tn → −∞} . (4.13)

In both cases, the convergence is understood in L∞loc(R+). As a consequence of parabolic esti-
mates, the ω and α-limit set of a bounded solution are non-empty, compact and connected
for the considered topology. Moreover, they are invariant with respect to the evolution
problem (1.1): if ϕ ∈ ω(u), then there exists a function Ũ(x, t) entire solution of (1.1) such
that Ũ(·, 0) = ϕ and Ũ(·, t) ∈ ω(u) for all t ∈ R. Let us briefly recall how such an entire
solution is found. If U(·, tn)→ ϕ, consider the sequence Un(x, t) = u(x, t+ tn). Passing to
a subsequence if necessary, it converges to Ũ as n → ∞ in C2,1

loc (R+ × R), which therefore
also solves (1.1). The same holds true for an element in α(U).
A function U is convergent as t→∞ (resp. t→ −∞) if its ω-limit set (resp. its α-limit set)
is reduced to a single element. In this situation, the convergence holds in C2

loc(R+). Notice
also that due to the above argument, it converges necessarily to a stationary solution. The
main result of this paragraph is the following proposition, describing the long time behavior
of the dynamics between two stationary solutions.

Proposition 4.4. Fix c ≥ 0. Consider our advection-diffusion equation (1.1) with boundary
nonlinearity having two zeros y1 > y2 = 0, g < 0 on (y2, y1), as in (4.3).

(i) Let U(x, t) be an entire solution with 0 ≤ U ≤ y1. Then either α(U) = {0} and
ω(U) = {y1}, or U is constant.

(ii) Let u(x, t) be a solution with initial condition 0 ≤ u0 ≤ y1. Then either ω(u) = {y1}
or ω(u) = {0}.

Proof. We first give the proof of the first part of Proposition 4.4 in the case c > 0,
and explain thereafter how to adapt. Let U(x, t) be an entire solution of (1.1) such that
0 ≤ U ≤ y1. Recall that the only admissible bounded stationary solutions are the constant
functions 0 and y1. Let us first deal with the α-limit set. One of the following mutually
exclusive cases must hold:

(C1) α(U) = {0}.

(C2) y1 ∈ α(U).

(C3) There exist at least two distinct functions ϕ1, ϕ2 ∈ α(U), none of them equal to y1.

We need to prove that the case (C2) implies that U is constant equal to y1, and that the
case (C3) is impossible.
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Case (C2): y1 ∈ α(U). In this case, by definition, there exists some sequence tn → −∞
such that

U(·, tn) −→
n→∞

y1 in L∞loc(R+). (4.14)

For some given y0 ∈ (0, y1), let us define

u0(x) := max (y0 + g(y0)x, 0) .

Notice that u0 is the supremum of two sub-solutions, it is therefore a sub-solution for the
evolution problem. Let u(x, t) be the solution of the Cauchy problem (2.1) with initial
condition u0. Since u0 is a sub-solution, ∂tu > 0 for t ∼ 0+, therefore ∂tu > 0 for all
t > 0, and u(·, t) is convergent as t→∞ in L∞loc(R+) to some stationary solution. The only
possibility is y1. Therefore, for all ε > 0, there exists Tε > 0 such that

y1 − ε < u(x, t) < y1, for all x >
1

ε
, t > Tε. (4.15)

By (4.14) there is N0 such that for all n ≥ N0, U(x, tn) > u0(x). Therefore, the comparison
principle gives

U(x, tn + t) > u(x, t), for all x > 0, t > 0, n ≥ N0. (4.16)

Since tn → −∞, from (4.15-4.16) necessarily U ≡ y1.

Case (C3): there exist two distinct functions ϕ1, ϕ2 ∈ α(U), with ϕ1,2 < y1. We first
claim that, up to choosing different functions in α(U), we can assume that

0 ≤ ϕ1(0) < ϕ2(0) < y1. (4.17)

Indeed, by assumption (C3), one element in α(U) is not equal to 0, say ϕ1. Let Ũ(x, t) be an
entire solution of (P1) such that Ũ(·, 0) = ϕ1 and Ũ(·, t) ∈ α(U). Assume by contradiction
that it is impossible to satisfy (4.17). Then this would imply that Ũ(0, t) = ϕ1(0), for all
t ∈ R. But assuming so, V = ∂tŨ would solve{

∂tV = ∂xxV − c∂xV x > 0, t ∈ R
V (0, t) = ∂xV (0, t) = 0 x = 0, t ∈ R,

and therefore V ≡ 0, so Ũ would be a stationary solution with range in (0, y1), which is
impossible. Hence, we can assume that (4.17) holds true in the case (C3).

Let y0 :=
1

2
(ϕ1(0) + ϕ2(0)). For all β < 0, define

ψβ :=
β

c
(ecx − 1) + y0. (4.18)

Notice that ψβ is stationary for the evolution equation without boundary condition. We
claim that there are two functions ϕ3, ϕ4 ∈ α(U) with

ϕ3(0) < y0 < ϕ4(0)

satisfying
zR+ (ϕ3 − ψβ) = N = 2k1 + 1, zR+ (ϕ4 − ψβ) = M = 2k2, (4.19)
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for β = g(y0), and such that all zeros are simple. This is a direct consequence of (4.17), the
invariance of α(U) under the evolution problem, and Remark 2.3. Notice that if M = 0,
then max(ψβ, 0) < ϕ3 ∈ α(U), which would imply that U ≡ y1 using the same argument
given in case (C2), so we can assume M ≥ 2.
We differentiate between the two situations N < M and M < N . Let us first assume that
N > M . Then, there exists β1 > g(y0), and such that (4.19) remains true, with all zeros
simple, for β = β1. By definition of α(U), there exists some sequence tn ↘ −∞ such that

U(·, t2k−1) −→
k→∞

ϕ3, and U(·, t2k) −→
k→∞

ϕ4, in L∞loc(R+). (4.20)

Combining (4.19) and (4.20), we get that for all large enough k,

zR+ (U(·, t2k−1)− ψβ1) = N, zR+ (U(·, t2k)− ψβ1) = M (4.21)

and all zeros are simple. Therefore, a zero was created in [t2k, t2k−1]. Due to Lemma 2.2,
creation of a zero can only occur at x = 0. Let t0 ∈ (t2k, t2k−1) such that U(0, t0) = y0 =
ψβ1(0). By the boundedness of U , the functions ∂tU and ∂xxU are uniformly bounded.
Hence, since ψ′β1(0) = β1 > ∂xU(0, t0), there exists η > 0 such that ∂x (U − ψβ1) < −η on
[0, η]× [t0 − η, t0 + η]. Combining this with Lemma 2.2 and Corollary 2.4, three situations
are possible:

(i) U(0, t)− y0 has constant sign on (s, T ) with s < t0 < T , and t 7→ zR+ (U(·, t)− ψβ1)
is non-increasing on (s, T ).

(ii) U(0, t)− y0 > 0 on (s, t0) and U(0, t)− y0 < 0 on (t0, T ), and zR+ (U(·, T )− ψβ1) <
zR+ (U(·, s)− ψβ1) .

(iii) U(0, t)− y0 < 0 on (s, t0) and U(0, t)− y0 > 0 on (t0, T ), and zR+ (U(·, T )− ψβ1) ≤
zR+ (U(·, s)− ψβ1) + 1.

Therefore, for k large enough, zR+ (U(·, t2k)− ψβ1) ≤ zR+ (U(·, t2k−1)− ψβ1), which contra-
dicts (4.21). So N > M is impossible.
The case M < N is similar, but taking β2 < g(y0) instead. This concludes the proof of the
first part of Proposition 4.4 in the case c > 0 for the α-limit set.
Concerning the ω-limit set: let us assume that U 6≡ 0, and fix y0 = U(0, 0) ∈ (0, y1). Define
ψβ through (4.18) for β < 0. Since α(U) = 0, for all β < 0, there exists tβ � −1 such that

zR+ (U(·, tβ)− ψβ) = 1. (4.22)

Let t0 = inf{t ≤ 0 : U(0, t0) = y0}. Define β0 = g(y0), and without loss of generality, we
can assume tβ < t0 for all β. We claim that

U(·, t0) ≥ ψβ0 on R+. (4.23)

Indeed, assume by contradiction that for some x0 > 0, we have U(x0, t0) < ψβ0(x0). Then
there exists β1 = β0 − δ with δ small enough such that zR+ (U(·, t0)− ψβ1) ≥ 2, and
there is creation of a zero in [tβ1 , t0]. Using the same argument as above, this leads to
a contradiction, and (4.23). But then, u0 := max(ψβ0 , 0) is a sub-solution, below U(·, 0).
Using similar arguments as in the case (C2) above, if u(·, t) is the corresponding solution,
then U(·, t) > u(·, t)→ y1, and necessarily ω(U) = {y1}.
The second part of Proposition 4.4 is similar to the above proof, with obvious modifications
to rule out the possibility of elements in ω(u) between 0 and y1. Finally, the case c = 0 is
similar, adapting the stationary solutions ψβ(x) = βx+ y0.
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Remark 4.5. We note that the second part of Proposition 4.4 is incomplete, and the natural
result would be to rule out the possibility of converging to 0. This would require further
analysis beyond the scope of this paper. Similar methods yield the result directly in the non-
degenerate case g′(0) < 0. In this case, if 0 ≤ u0 ≤ y1, then either u0 ≡ 0 or ω(u) = {y1}.
In a direct adaptation of the case (C2) above we conclude that if u0 6≡ 0, then u(·, t) > 0
for any t > 0. Then, for some y0 small enough, u(·, 1) < ψg(y0) and we can use it as a
sub-solution.

Uniqueness of the entire solution. In this paragraph we complete the proof of Theorem
3 by proving that any entire solution of (1.1) with range in (0, y1) is a time translation of
U∞. The proof relies on center manifold theory as laid out in [21] for nonlinear boundary
value problems. The absence of spectral gaps in the case c = 0 makes a direct adaptation
of these results, valid for c > 0, to the case c = 0 impossible.
We focus on the situation where the boundary term satisfies (4.3). With the transformation
(2.2), (1.1) is equivalent to {

∂tũ+Aũ = 0, x > 0, t ∈ R
∂xũ = B(ũ) x = 0, t ∈ R,

(4.24)

where the operator A = −∂xx +
c2

4
is a linear operator with domain H2(R+) and B(ũ) =

g(ũ) − c
2 ũ is the nonlinear boundary condition. The rest state u∗ ≡ 0 is an equilibrium

for (4.24). We consider the linear system around u∗. Let A0 be the operator with domain

D(A0) = {ϕ ∈ H2(R+) : ϕ′(0) =
(
g′(0)− c

2

)
ϕ(0)} and A0 = A on D(A0). Then, the

spectrum of A0 is real and given by

σ(−A0) =

(
−∞,−c

2

4

]
∪ {g′(0)2 − g′(0)c} = σs ∪ σc. (4.25)

The eigenspace Ec is given by ker(A0 − σcI) = e−λcxR with λc =
√
c2/4 + σc and is one-

dimensional. Let Pc be the spectral projection onto Ec, Ps the spectral projection onto σs.
For fixed p > 3, let us denote X0 := Lp(R+) and Xp = W 2(1−1/p),2. Applying [21], Theorem
5.2 in the case g′(0) = 0 or [20], Theorem 17 in the case g′(0) < 0, there exist a function
Φ ∈ C1 (PcX0, PsXp) with Φ(0) = 0,Φ′(0) = 0, and ε > 0 such that if ũ(x, t) solves (4.24)
with ‖ũ(·, t)‖Xp ≤ ε for all t < 0, then

u∗ + ũ(·, 0) ∈Mcu := {u∗ + z0 + Φ(z0) : z0 ∈ PcX0} . (4.26)

Notice that due to parabolic regularity, any entire solution U(x, t) with 0 ≤ U ≤ y1 satisfies

x 7→ U(x, t)e
c
2
x ∈W 2,q(R+), for all q ≥ 1.

By definition of Φ, since Ec is one-dimensional, Mcu is a one-dimensional center unstable
manifold. For a fixed y0, consider the entire solution defined in (4.1). Then U0(·, t) converges
to 0 by the above as t → −∞. Therefore, up to a smaller ε if necessary, there exists some
T ∈ R such that

Mcu ∪BXp(u∗, ε) ∪ {ũ : ũ ≥ u∗} =
{
U∞(·, t)e−

c
2
· : t < T

}
. (4.27)
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Let U(x, t) be any other entire solution of with 0 < U < y1. By Proposition 4.4, U(·, t)→ 0
as t → −∞ in C2

loc(R+). Therefore, there exists T1 ∈ R such that V (x, t) = U(x, t)e
c
2
x

satisfies ‖V (·, t)− u∗‖Xp ≤ ε, for all t < T1, and so by (4.26-4.27) necessarily U(·, t) =

U∞(·, t− T2) for some T2 ∈ R, for all t < T1. Consequently, any entire solution with range
in (0, y1) is a time-translation of U∞. This concludes the proof of Theorem 3.

5 Purely diffusive dynamics

We conclude the proofs of the main results stated in the introduction. Having established
Proposition 1.2 in the previous section, we only need to prove Proposition 1.1. We also
present several results and observations on possible uniqueness statements, striving to de-
scribe in more detail asymptotics of heteroclinic solutions.

Asymptotic behavior in the case g > 0 — proof of Proposition 1.1. Assuming
0 < γ1 ≤ g ≤ γ2, we proceed via a direct computation. Let u0 be any initial condition in
L∞(R+). Then, the comparison principle given in Lemma 2.1 states that

u2(·, t) < u(·, t) < u1(·, t), t > 0 (5.1)

where u1,2 are solutions of
∂tui = ∂xxui, x > 0, t > 0

∂xui = γi, x = 0, t > 0,

ui(x, 0) = (−1)i−1 ‖u0‖∞ , x ≥ 0.

(5.2)

The solutions of (5.2) are explicit and given by

ui(x, t) = (−1)i−1 ‖u0‖∞ − 2γi

∫ t

0

e
− x2

4(t−s)√
4π(t− s)

ds, (5.3)

which immediately gives Proposition 1.1.

Dynamics between stationary solutions. Unlike Proposition 4.3 and 4.4, the unique-
ness of the entire solution in Theorem 3 does not extend to the case c = 0. There are
two main obstacles to this. First, the a priori estimates in Proposition 4.4 are sufficient in
the case c > 0 since we work in exponentially weighted spaces; the same information does
not appear to be sufficient in the case c = 0 to control the behavior at x = +∞. Second,
exponential weights provide a spectral gap in the case c > 0, whereas for c = 0 we have con-
tinuous spectrum up to the origin, no point spectrum when g′(0) ≥ 0. We can nevertheless
construct unique entire solutions with prescribed convergence rates as t→ −∞, using either
strong unstable manifold theory or scaling variables [32], to overcome continuous spectrum
at the origin. Throughout we assume (4.3), and keep the notation of the previous section
with the formalism associated with (4.24).

Linear behavior near the origin. Let us first assume that the local behavior around 0
is given by

g(y) = −γy + O(yp) for some p > 1. (5.4)
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The asymptotics of solutions for t → −∞ was described in Proposition 4.4 and Remark
4.5. We shall discuss uniqueness in classes of exponentially decaying functions, here. The
relevant linear operator is A0 = −∂xx with domain D(A0) = {ϕ ∈ H2(R+) : ϕ′(0) =
−γϕ(0)}. It admits a spectral gap:

σ(−A0) = (−∞, 0] ∪ {γ2} = σs ∪ σu. (5.5)

The eigenspace associated to the positive eigenvalue is one-dimensional, given by Eu =
e−γxR. Considering the functions spaces X0, Xp defined in the previous section, and letting
Ps, Pu be the spectral projection onto σs, σu, there exists Φ ∈ C1(PuX0, PsXp) with Φ(0) =
0,Φ′(0) = 0 such that the unstable manifold

Mu = {z0 + Φ(z0) : z0 ∈ PuX0}

is invariant under the evolution problem as long as the solution remains small. Moreover,
due to the spectral gap (5.5) for all δ ∈ (0, γ2), if U(x, t) is a solution coming from 0 as
t→ −∞, then for some T � −1,

sup
t≤0

{∥∥∥U(·, t)e−(γ2−δ)t
∥∥∥
Xp

<∞
}
⇐⇒ (U(·, t) ∈Mu, for t < T ) . (5.6)

Since PuX0 = Eu is known and one-dimensional, the asymptotics (5.6) is satisfied by a one
parameter family of solutions, of the form

U(x, t) = e−γx+γ
2(t+T ) + Φ̃(T )

where ˜Φ(T ) = Φ(eγ
2T−γ·).

Quadratic behavior around the origin. In this critical case, we assume that the
behavior of g near the origin is given by

g(y) = −y2 + g1(y), with g1(y) = O(y3). (5.7)

The spectrum of the linearized operator is simply R−, and we resort to similarity variables
in order to understand the algebraic rates of decay. Since we are interested in asymptotics
for t → −∞, we assume that t < −1. For an ancient solution U of (1.5), consider the
change of variables

τ = − log(−t), ξ =
x√
−t
, and U(x, t) =

1√
−t
V (ξ, τ). (5.8)

Then the resulting equation for V reads, using η = 1/
√
−t := eτ/2,

∂τV = ∂ξξV − ξ
2∂ξV −

V
2 = −LV, ξ > 0, τ < −1

∂ξV = −V 2 + O(ηV 3), ξ = 0, τ < −1

∂τη = η
2 .

(5.9)

The stationary equation can be solved explicitly in ξ > 0, which results in an algebraic
equation at ξ = 0 that we solved, finding a unique equilibrium (V, η) = (V ∗, 0) with

V ∗(ξ) =
1√
π

e
ξ2

4 erfc(ξ), (5.10)
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in the ambient space H2(R+) ⊕ R. Linearizing at this stationary solution, the operator
becomes L0 = L on D(L0) = {ϕ : ϕ′(0) = −2V ∗(0)ϕ(0)}. In spaces of sufficiently localized
functions, the spectrum of this operator is discrete, as one can quickly infer from the methods
in [32]. We found that

σ(−L0) = σs ∪ σu
with σs ⊂ (−∞, λs], λs = −1.23162 . . ., and σu = {1}. Notice also that the linearization of
(5.9) admits another positive eigenvalue in the η direction, for which the dynamics is trivial.
Let ϕ1 be the eigenfunction associated to σu. Using again the methods in [32], there exists
Φ ∈ C1(R2, PsXp) with Φ(0) = 0 and Φ′(0) = 0, and ε > 0, such that the unstable manifold

Mu = {(V ∗ +Aϕ1 + Φ(A, η), η) : (A, η) ∈ (−ε, ε)× [0, ε)} (5.11)

is invariant for the evolution problem (5.9) for τ < −1. Going back to the (x, t) variables,
we get the existence of an entire solution

U(x, t) =
1√
−t
V ∗
(
x/
√
−t
)

+ Φ̃(t)

where Φ̃(t) =
1√
−t

Φ(0, 1/
√
−t) = O

(
(−t)−3/2

)
. This entire solution is unique within the

class of solutions that are small and bounded as t→ −∞ in the scaling variables.

6 Discussion

Summarizing, we established existence, and, within reasonable classes of functions, unique-
ness of entire solutions, thus characterizing the asymptotic behavior in this class of advection-
diffusion equations with nonlinear flux and gauge symmetry. Our results are schematically
summarized in Table 1. While the table shows apparent strong similarities between the
cases c > 0 and c = 0, there are important differences. First, there is in fact a family
of tables for the case c = 0, parameterized by k, the asymptotic strain u ∼ kx, x → ∞.
Second, rates are much slower, diffusive, rather than exponential.

Back to crystal growth. Interpreting Table 1 in light of the motivation from crystal
growth, we think of the slope ux as the wavenumber or strain and the value u as the
phase. The trivial case, origin of our homotopies, where g ≡ g0 is constant corresponds
to boundary conditions that are compatible with one particular strain, only, for arbitrary
phases. From this perspective, our results account for non-adiabatic effects, where the effect
of boundaries depends on the phase at the boundary, that is, the crystalline microstructure
at the boundary cannot be averaged. In the case g > 0, we establish that growth processes
will be resonant, periodic with minimal period. This in particular excludes subharmonic
bifurcations, when solutions emerge who are periodic up to multiples 2`π, ` > 1, of the
gauge symmetry 2π.
In this context, the interesting quantity is the relation between the speed c and the crystal
strain k = limx→∞ ux, which is related to the period through the simple relation ck =
ω = 2π/T . The coarse nature of our results does not provide a quantitative description of
this speed-strain relation, but rather establishes existence, uniqueness, and smoothness of
a relation k(c). We comment below on more quantitative results and contexts where more
complicated, including subharmonic, dynamics can arise.

25



positive growth rate c > 0

g > 0 g ≥ 0 g ≷ 0

dynamics

existence X Thm 1 X Thm 2 X Thm 3

uniqueness X Thm 1 X Thm 2 X Thm 3

stability X Thm 1 X Thm 2 X Thm 3

interpretation resonant growth compatible zero strain selection,
phase slips from small perturbations

bounded solutions, zero growth rate c = 0

g > 0 g ≥ 0 g ≷ 0

dynamics

existence X Prop 1.1 X Prop 1.2 X Prop 1.2

uniqueness × (X) Prop 1.2 (X) Prop 1.2

stability × (X) Prop 1.2 (X) Prop 1.2

interpretation diffusion ∼
√
t

toward
compatible strain

compatible zero strain selection,
diffusive phase slips from small

perturbations

Table 1: Schematic representation of our results phase portraits up to gauge symmetry. See
the main theorems for precise statements, in particular concerning the (partial) uniqueness
results in the case c = 0.
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The case when g possesses zeros is not immediately relevant for the case of non-trivial
patterns but does arise in systems with trivial constant solutions such as the complex
Ginzburg-Landau equation [12, 24]. Zeros of g correspond to constant phase solutions
which are naturally “compatible” with domain growth, such that the convergence to these
states in the case c > 0 can be interpreted as a selection of compatible, zero strain. In the
stationary case, c = 0, the asymptotic strain is conserved. Imposing then, for instance, zero
strain, the system either relaxes to a phase with zero strain, g(u0) = 0, or, when g does not
possess zeros, diffusively approaches a state with (extremal) strain; see Proposition 1.1.

Open questions. There are clearly many more subtle questions one could ask, pertaining
for instance to global attractivity in the case g > 0, asymptotics in the case g > 0, c = 0,
or uniqueness in larger classes of functions in the case c = 0, g sign-changing. A question
of more general interest arises when describing ancient solutions in the case g(u0) = 0,
g′(u0) < 0. Besides the exponentially decaying solutions that we analyzed here, one would
like to exclude solutions that decay inside of a center-stable manifold. It is however not
clear how to use the equivalent of scaling variables after projecting onto this codimension-
one manifold.

Connecting the entire solutions across parameters. Our picture may appear some-
what fractured, and we are indeed missing a more cohesive description of how entire solu-
tions limit onto each other as both c and ϑ are varied. Fixing c > 0, we have a fairly complete
picture, analogous to the classical saddle-node-on-limit-cycle (SNIC) bifurcation in dynam-
ical systems, where periodic orbits limit on a saddle-node homoclinic, which then breaks up
into two heteroclinic connections forming an invariant circle. Our picture is slightly more
complicated due to the presence of essential spectrum, which leads to complications such as
the rather weak convergence in L∞loc. A more refined description would include the release
of an error-function type kink as heteroclinic solutions converge for t → +∞. Information
clearly is more limited, yet, in the case c = 0, and we have not attempted to attach the
less selective dynamics that occur for c < 0, when initial conditions are advected towards
the boundary and patterns are annihilated. In this case, one would eliminate essential
spectrum by using exponentially growing weights, thus preserving the asymptotic growth
and preventing the release of error-function type kinks. We expect periodic solutions with
prescribed strain k, rather than the selected strain k(c) in the case c > 0.

Higher space dimensions. Many of our techniques here can be adapted to the multi-
dimensional setting, studying advection-diffusion in x1 > 0, y ∈ Rn, with transport speed
c ∈ Rn away from the boundary, c1 ≥ 0. One can then prescribe a lateral strain ky through
a periodicity assumption and mimic for instance the construction of relative periodic orbits,
here. We intend to pursue these questions in forthcoming work.

Quantitative speed-strain relations. Quantitative results were obtained in a formal
setting in [12]. The regions of interest there were 0 < c � 1 and c � 1. The former
case leads to a rather involved singular perturbation problem and asymptotics k ∼ min g−√

2ζ(1/2)
√
c+ O(c3/4), where ζ is the Riemann ζ-function. The latter case, c = 1

ε2
, can be

thought of as a large-advection limit after scaling ct = τ ,

∂τu = ε2∂xx − ux,
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with limit uτ = ux in x ≥ 0, hence ut = −g(u) at x = 0. This can be made rigorous expand-
ing the Dirichlet-to-Neumann operator with periodic boundary conditions, or, equivalently,
constructing slow manifolds in spatial dynamics [28]. At ε = 0, infinite speed, we can solve
the differential equation at the boundary explicitly to find the period T =

∫ 2π
0 g(u)−1du,

and therefore ω =
(
−
∫
g−1
)−1

, the harmonic average of the boundary flux. Expanding the
Dirichlet-to-Neumann operator further, one can also compute higher-order corrections; see
[12].

Transport versus memory. The simple form of our equation in x > 0 would allow us
to reduce the dynamics to a pseudo-differential equation on the boundary, introducing in
particular infinite memory into the dynamics. In the purely diffusive case, this reduction has
been exploited in the literature, giving rise to the field of fractional differential equations.
The memory kernel is increasingly localized as the speed increases, which can intuitively be
understood as reducing the effect of the pattern away from the boundary by increasing the
advection speed. In the limit of infinite speed, the equation then becomes a local-in-time
differential equation. The corrections in k(c) for finite ε = 1/

√
c can then be understood as

incorporating moment approximations of this memory kernel; see for instance [11] for such
reductions and expansions for nonlocal kernels. The SNIC bifurcation, at |ϑ| = 1, would
then be understood in the context of saddle-node bifurcation in the presence of memory, or,
in the extreme case c = 0 as a saddle-node bifurcation in a fractional differential equation.

Strain-speed relations beyond phase-diffusion. Turning to the original motivation
from striped phases, one would like to know how much of the present results or techniques
transfer to systems such as the Swift-Hohenberg equation. Technically, the methods here
are based on comparison principles and therefore not applicable. One can however envision
scenarios such as in [15, 29] where phase-diffusion equation with effective boundary could be
derived rigorously and the results obtained here would then indeed imply resonant crystal
growth in the Swift-Hohenberg equation. The results in [12] demonstrate numerically that
working on the level of the phase-diffusion equation while extracting the nonlinear flux g
quantitatively in the form of a strain-displacement relation can give accurate quantitative
predictions for a large class of pattern-forming equations.

Phenomena beyond phase-diffusion. On the other hand, there are numerous phenom-
ena, just within the Swift-Hohenberg equation, that cannot be analyzed in this simple scalar
context, including detachment and [13, 14] and wrinkling [3]. In fact, more complex phe-
nomena arise precisely when the phase-diffusion approximation fails to capture the growth
dynamics, due to the relevance of amplitude variations or other instabilities. The simplest
example are side-band instabilities, in which case the sign of the diffusion constant changes
and fourth-order differential operators are needed to stabilize dynamics. Such side-band
instabilities are a key ingredient in two-dimensional growth scenarios when the orientation
of stripes is perpendicular to the boundary. It was demonstrated in [3] that the growth dy-
namics are well approximated by a Cahn-Hilliard equation for the phase gradient together
with an advection term and effective boundary condition at the growth interface. Differ-
ent from the scenario here, the simplest “harmonic” or “resonant” growth destabilizes in a
saddle-node bifurcation on a limit-cycle, giving rise to more complex patterns, correspond-
ing to crystals with superstructure, specifically wrinkled stripes. Translated into the context
of our results, the Cahn-Hilliard setting forces solutions to possess asymptotically periodic

28



strain, with Φx alternating periodically between values close to ±1 rather than approaching
a finite limit. The interfaces between regions of different strain, known as kinks, interfaces,
or defects in different contexts, are stationary in a steady frame and can be interpreted as
building blocks for superstructures in crystals. Defect nucleation during crystal growth has
also been documented in the example of the complex Ginzburg-Landau equation in [12],
where amplitude defects emerged for moderate growth speeds which pushed the selected
strain into an Eckhaus-unstable regime.
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