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Abstract

We study pattern formation in a two-species reaction-diffusion system with a conserved quan-

tity. Such systems arise in the study of closed chemical reactors and recurrent precipitation.

We compare pattern forming aspects in these systems to Turing-pattern forming systems.

We show that in a zero-diffusion limit, these systems possess stable periodic patterns. We

also exhibit a wavenumber-selection mechanism in this limit: While spatially random initial

conditions give patterns on arbitrarily fine scales, localized initial conditions evolve into a

coherent pattern with a finite wavenumber that is formed in the wake of invasion fronts. We

compare our theoretical results with numerical simulations and point to an interesting front

instability in a small mass fraction regime.

1 Introduction

Turing [18] predicted that the coupling of reaction and diffusion can lead to pattern-forming

instabilities. The effect in its simplest form can be observed in linear reaction-diffusion systems

with two species, posed on the real line. Key ingredient is a disparity in the mobility of the

two species. Only much later, such patterns were actually realized experimentally [1, 4]. The

experimental setup involved an open-flow reactor: the system is not in equilibrium and patterns

are sustained through a continuous supply of reactants.

Some 50 years earlier, Liesegang [9] had observed pattern-forming processes in a simple

reaction-diffusion setup. The patterns he observed were created in a gel, very much like the

patterns in the experimental setup in [4], both according to Turing’s assumption that diffu-

sion alone would suffice to create patterns. The reaction process in Liesegang’s systems was

significantly simpler, involving a reaction between two electrolytes and a precipitation process.

Pattern formation in this context is attributed to the precipitation process which is often mod-

eled by a nonlinear reaction-diffusion system for precipitate and solute, with a conversion rate

that reflects saturation and super-saturation thresholds. We study such a model in more detail

in this paper.
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Supersaturation models for precipitation processes are similar to models for Turing pattern

formation but exhibit some key differences. Our goal here is to elucidate these parallels and dif-

ferences and point to a number of interesting phenomena associated with wavenumber selection

in precipitation models. At first glance, one notices that Liesegang patterns are not periodic,

but the wavenumber decreases as distances between precipitation bands increase in a geometric

sequence. On the other hand, Liesegang patterns are created in a closed system: an outer elec-

trolyte is inserted into the system only at an initial time. Also, Liesegang patterns are created

in the wake of a moving front, triggered by the diffusion of the outer electrolyte into the gel.

We showed in [7, 8] how periodic patterns are created in the wake of a uniformly and rigidly

translating front. Precipitation systems and Turing systems share a key feature, the difference

in diffusion constants for the two species: similar to Turing’s mechanism, precipitation models

always include slow diffusion for one species (the precipitate) compared to the other (the solute).

Our focus here will be on a model for precipitation with a simple cubic nonlinearity, which

has been studied in [7, 8] in connection with Liesegang patterns and wavenumber selection. We

denote by c the concentration of the solute and by e the concentration of the precipitate, and

consider the one-dimensional caricature of a precipitation system

ct = cxx − e(1 − e)(e − a) − γc

et = κexx + e(1 − e)(e − a) + γc. (1.1)

Here, γ > 0 and a ∈ (0, 1) are parameters, and x ∈ R is the idealized spatial domain. The

diffusion constant κ of the precipitate will be assumed to be small, 0 6 κ < 1. Shifting e and

c one can easily arrange for the positive quadrant c, e > 0 to be forward invariant, with cubic

−e(e − a)2, but the form (1.1) will be slightly more convenient for us.

Note that (1.1) is also a prototype for a simple closed reaction-diffusion system, with con-

served quantity m = c + e. In the remainder of this article, we analyze wavenumber selection in

this system, with focus on the case κ = 0. We sometimes write f(c, e) = e(1 − e)(e − a) + γc.

Acknowledgments. The authors gratefully acknowledge support through NSF grants DMS-

0806614 and DMS-1138495.

2 Temporal wavenumber selection

Linearizing at an equilibrium c = 0, e = a, and using Fourier transform, we find the family of

linear equations

ct = −k2c − fee − fcc

et = −κk2e + fee + fcc. (2.1)

Here, fe = a(1 − a) > 0 and fc = γ > 0. This system is unstable when fe > κfc. The fastest

growing solution to this family of equations has wavenumber ktemp, and all wavenumbers with

|k| 6 kmax are (marginally) unstable, where

ktemp =

√
−κ(fc + fe) +

√
κ(1 + κ)2fcfe

κ(1 − κ)
, kmax =

√
fe − κfc

κ
. (2.2)
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We emphasize that both, ktemp and kmax diverge to ∞ when κ → 0. Also, for κ > 0, ktemp

and kmax are O(ε) near onset of instability, that is, when fe = κfc + ε2.

Beyond those linear predictions, one can also investigate existence of nonlinear patterns with

a prescribed spatial wavenumber. Adding the equations ct = et = 0, integrating, and introducing

µ ≡ c + κe, we obtain

κexx + e(1 − e)(e − a) + γ(µ − κe) = 0.

One finds families of even periodic solutions parameterized by µ and wavenumber k for fixed γ, a.

All those patterns are, however, unstable when considered as solutions on the real line — they

are in fact unstable with respect to perturbations of twice their minimal period [7, 11, 12, 13].

One can compare these findings with typical situations in Turing pattern forming systems,

such as the Gray-Scott model, the Brusselator, Gierer-Meinhardt systems, or, most simply, the

Swift-Hohenberg equation. These systems possess an equilibrium state that destabilizes as a

parameter is varied in what is referred to as a Turing instability. Close to instability, there

exists a band of unstable wavenumbers k− < k < k+, with 0 < k± < ∞. There also exist

nonlinear stable spatially periodic (Turing) patterns for a range of spatial periods.

Closed reaction-diffusion that we consider here are similar to Turing-pattern forming systems

in that

• they exhibit linear wavenumber selection, that is, fastest growing linear modes with nonzero

wavenumber, and

• they possess nonlinear periodic patterns for a range of wavenumbers.

They are different from Turing systems since

• periodic patterns are all unstable, and

• there is no Turing instability, with finite selected wavenumber at onset.

The remainder of this paper therefore focuses on the limiting case where κ = 0. We will first

consider existence and stability of stationary patterns in this system on L∞-spaces.

Lemma 2.1 Consider (1.1) with κ = 0 on L∞(R). The equation generates a smooth local

semiflow on X = L∞(R) × L∞(R) and possesses a family of equilibria with c(x) ≡ 0 and

e(x) ∈ {0, a, 1}, so that e−1(a) and e−1(1) are measurable. In the case when e(x) ∈ {0, 1}, those

patterns are asymptotically stable. More precisely, any solution with initial condition L∞-close

to such an equilibrium will converge to the equilibrium exponentially in L∞ as t → ∞.

Proof. The unbounded operator (c, e) 7→ (cxx − γc, 0) is sectorial (although not densely

defined [10]) on X and the nonlinearity e 7→ e(1−e)(e−a) is smooth as a superposition operator

on L∞(R), which together gives local existence and smooth dependence on initial conditions.

Functions with c ≡ 0 and e ∈ {0, a, 1} are clearly equilibria, so that it remains to conclude

asymptotic stability. This in turn can be readily concluded once we establish that the spectrum

of the linearization is contained in Reλ 6 −δ < 0. To see this, consider the linearized operator

L
(

c

e

)
:=

(
−∂xx − γ −g′(e∗(x))

γ g′(e∗(x))

)(
c

e

)
,
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where g(e) = e(1 − e)(e − a). When e∗(x) 6= a almost everywhere, then g′(e∗(x)) < −δ < 0. As

a consequence, one finds through a short explicit calculation that L−λ is bounded invertible for

all λ with Re λ > 0, which guarantees linear asymptotic stability as claimed. Nonlinear stability

follows immediately from a variation-of-constants argument.

With this result we can contrast the case κ = 0 with the case κ > 0 and Turing-pattern forming

systems.

Turing Precipitation κ > 0 Precipitation κ = 0

linear wavenumber selection 0 < ktemp < ∞ 0 < ktemp < ∞ ktemp = ∞

nonlinear patterns periodic periodic periodic & aperiodic

nonlinear patterns stable yes no yes

Turing bifurcation yes no no

In other words, the case κ = 0 supports stable periodic patterns, but does not exhibit a mecha-

nism for wavenumber selection, neither linearly through the dispersion relation, nor nonlinearly.

The simulations in Figure 2.1 show how the presence of small diffusion in the precipitate

selects a band of dominant wavenumber in the systems, which then evolves through a coarsening

process, reflecting the instability of periodic patterns. We simulated (1.1) with initial conditions

given as a small perturbation of c = 0, e = a in both c- and e-component. We constructed

the perturbation using 3kmax Fourier modes with amplitudes chosen from a uniform random

distribution in [0, 0.1]. Here, kmax is chosen from (2.2) using κ = 0.2, fe = a(1− a), and fc = γ.

In the absence of diffusion, κ = 0, stationary patterns are created from random initial conditions,

however without an apparent selected wavenumber.

Space x

T
im

e 
t

a=0.4, γ=0.1, κ=0

100 200 300 400
0

1000

2000

3000

4000

5000

6000

Space x

T
im

e 
t

a=0.4, γ=0.1, κ=0.2

100 200 300 400
0

1000

2000

3000

4000

5000

6000

Space x

T
im

e 
t

a=0.04, γ=0.1, κ=0.2

100 200 300 400
0

1000

2000

3000

4000

5000

6000

Figure 2.1: Simulations with Fourier randomized initial perturbations (see text for details) of c = 0, e = a.

The pictures show gray-scale space-time plots, where e = 0 corresponds to black and e = 1 to white.

The left picture shows a = 0.4, with zero diffusion κ = 0. The middle picture shows a = 0.4, with small

diffusion κ = 0.2. The right picture shows a smaller a-value a = 0.04 with diffusion κ = 0.2. Throughout,

γ = 0.1.

3 Spatial wavenumber selection

A slightly different class of randomized initial conditions leads to dramatically different resulting

patterns. When one forces initial perturbations of an unstable state to be spatially localized,
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the solution involves into a pair of coherent invasion fronts, leaving behind a regular periodic

pattern with a distinguished wavelength. Figure 3.1 contrasts localized and uniformly random

initial conditions and illustrates the corresponding crossover. We chose initial conditions as

perturbations of the spatially homogeneous, unstable state (c, e) = (0, a). We chose the pertur-

bations as piecewise constant on intervals of length 3, with values in {−δ, 0, δ}, δ = 0.1, with

probabilities {α, 1 − 2α,α}. For small α, perturbations are localized in space with expected

value for the distance 3 · 1
2α . For α ∼ 0.5, perturbations are non-local. One expects a crossover

between correlated patterns and random patterns for spacings 3/2α ∼ 2π/k, where k is the

wavenumber in the wake of invasion fronts. Using the predicted values for k = klin derived

below, this corresponds to α ∼ 0.085. Figure 3.1 shows the resulting increase in coherence of

patterns for α = 0.015, 0.09, 0.33.
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Figure 3.1: Simulations with white noise random initial perturbations (see text for details) of c = 0, e = a.

The pictures show gray-scale space-time plots, where e = 0 corresponds to black and e = 1 to white.

Parameters are a = 0.4, γ = 0.1, and zero diffusion κ = 0. Nucleation events appear with probability

α = 0.015, 0.09, 0.33 and amplitude δ = 0.1 from left to right.

In the following, we derive a linear criterion that predicts the selected wavenumber in the

wake of an invasion front; see [19] for a review of front propagation into unstable states. We

look for solutions to the linearized equation in a comoving frame ξ = x − st via the ansatz

(c, e) = (c0, e0)e
λt+νξ . Nontrivial solutions exist when the complex dispersion relation ds(λ, ν)

vanishes, where

ds(λ, ν) = d(λ − sν), d(λ, ν) = λ2 − (fe − fc + (1 + κ)ν2)λ − (κfc − fe)ν
2 + κν4.

We say solutions to (2.1) with compactly supported initial condition decay pointwise in a co-

moving frame ξ = x − st if they decay for fixed ξ. We then define the linear spreading speed as

the supremum of all speeds s so that there are compactly supported initial conditions that do

not decay pointwise.

It is well known that pointwise decay is equivalent to the absence of pointwise growth modes

in the unstable half plane Re λ > 0; see [3, 2, 5, 6, 14, 16]. These pointwise growth modes

correspond to double roots of ds that satisfy the pinching condition:

ds(λ, ν) = 0, ∂νds(λ, ν) = 0, Re ν±(λ) → ±∞ for λ → ∞,

where the ν±(λ) are the continuations of the two roots ν of ds(λ, ν) that collide in the double

root, and λ follows a curve where Re λ increases monotonically to +∞.
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As a consequence, we will see that the linear spreading speed is the largest value s so that

ds(iω, ν) = 0, ∂νds(iω, ν) = 0, Re ν±(λ) → ±∞ for λ → ∞.

Associated with this specific value of s = slin is the marginally stable pointwise growth mode

λ = iωlin and a complex spatial decay rate ν. An oscillation of frequency ω in a moving frame of

speed s creates a spatial pattern of wavenumber k = ω/s. We refer to this wavenumber k = klin

as the spatially selected wavenumber.

Lemma 3.1 Suppose κ = 0 and fc, fe > 0, fc > κfe. Then the spatially selected wavenumber

is nonzero, that is, slin > 0, ωlin 6= 0 and klin 6= 0.

We prove the lemma in the appendix.

Corollary 4.15 in [8] shows that the existence of invasion fronts of the form (c, e)(x − st, ωt)

that converge to (c, e) = (0, a) for x → +∞ with exponential rate at least Re ν and to (c, e)(kx),

k = ω/s is a robust phenomenon — without showing actual existence. Existence can sometimes

be shown using topological arguments, as exemplified in the case of the Cahn-Hilliard equation;

see [17].

In order to compute linear spreading speeds numerically, one needs to find the largest value

of s so that there is a double root (λ, ν) with Reλ = 0. One can directly compute such roots

numerically and then continue in the parameter γ. In order to show that the curve of spreading

speeds computed in this fashion gives the supremum, one needs to establish that there are no

pinched double roots on the imaginary axis for larger values of s. In our case, this can be

verified by continuing the complex double root in s to large values of s due to Lemma 7.7, which

guarantees that there is at most one complex double root. Summarizing, one can determine

spreading speeds by continuing the complex double root in s, decreasing s until Reλ = 0. We

found numerically that Re λ is monotone in s, so that the speed as a solution of ds(iω, ν) = 0,

∂ν(iω, ν) = 0 is in fact unique. We were however not able to prove this fact analytically. The

results are plotted in Figures 4.1 and 4.2, together with data from direct simulations.

4 Numerical experiments versus linear prediction

In the following, we compare the linear predictions with numerical simulations. We solve (1.1)

on a domain x ∈ [0, L], L = 700, with Neumann boundary conditions, using second-order finite

differences (δx = 0.1) and implicit Euler time stepping (δt = 0.05). Results are robust to grid

refinements. We start with initial condition (c, e) = (0, a) + (δc(x), 0), where a is a parameter

and δc(x) has support on x ∈ [0, 20]. Figure 4.1 shows a sequence of space-time plots for γ = 0.1,

Figure 4.2 shows the corresponding results for γ = 1.5.

Wavenumbers and speeds in the direct simulations compare well to wavenumbers and speeds

predicted by the linear dispersion relation as illustrated in Figure 4.3. The most significant

difference between linear predictions and direct simulations occurs for small values of a.

Figure 4.4 illustrates the transition near a∗ in some more detail. One notices that the

wavenumber in the wake oscillates since some nucleation events in the leading edge of the front

do not pass a threshold and eventually do not create a spike. We found that the average

effective wavenumber in the wake drops by roughly a factor 2/3. Note that the transition is
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Figure 4.1: Gray-scale space-time plots of e(t, x) (e = 0 black, e = 1 white) for varying a = 0.046, 0.2, 0.4

and γ = 0.1. One notices a drop in wavenumber when precursors fail to nucleate spikes. For most

parameter values, the pattern in the wake is not periodic but intermittent.
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Figure 4.2: Space-time plots of e(t, x) (e = 0 black, e = 1 white) for varying a = 0.08, 0.25, 0.45 and

γ = 1.5. Similar to the case of γ small, one notices a drop in wavenumber for small a.
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Figure 4.3: Wavenumbers and speeds as functions of a in direct simulations compared to the predictions

from the dispersion relation. The left figure shows good agreement of s for all values of a, fixing γ = 0.1.

The middle and right figure show agreement of k for values of a larger than a∗ ∼ 0.05, for γ = 0.1

(middle) and γ = 1.5 (right).
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Figure 4.4: Space-time plots of solutions e(t, x) (e = 0 black, e = 1 white) for small values of a =

0.045, 0.039, 0.033. One notices the intermittent nature of the drop in wavenumbers.

intermittent, so that wavenumber averages are inherently unreliable. A somewhat simplistic

view would characterize this transition in a comoving frame as a Hopf bifurcation from the

primary invasion front. Since the primary front is a periodic orbit in a comoving frame one

expects frequency locking for the bifurcating fronts, a prediction that is consistent with the

observed strong resonance in frequencies ω/ωlin ∼ 2/3. We note that this simple view does not

explain the apparent intermittent nature of the bifurcation.

Similar transitions have been observed in [8] for non-vanishing diffusion κ = 0.1; see Figure

14, there. On the other hand, robustness arguments based on counting of Morse indices in [8]

indicate that for small γ, pattern-forming fronts are typically not robust. The reason is that

periodic patterns are unstable for small γ with respect to perturbations of the same (minimal)

period. This leads to a resonance between the instability and the invasion process that effectually

destroys the pattern in the wake of the front after a short transient; see again [8, Fig. 8,9,11 and

Thm 1.2]. We notice however that for κ = 0, periodic patterns in the wake are stable regardless

of the value of γ!

One might also be tempted to compare these findings with observations in the Cahn-Hilliard

equation. There, invasion fronts also leave behind a pattern which is unstable. The instability

in the wake of the pattern leads to a secondary invasion front that follows the primary front.

One can (numerically) compute invasion speeds for this secondary front and finds that for small

mass fractions, the secondary front is in fact faster than the primary front. As a result, one does

not see the predicted wavenumber in the wake of the front but an ’instantaneously coarsened’,

smaller wavenumber. Comparison with direct simulations indicate that the secondary front

already locks with the first front for parameter values when its predicted speed is slower than

the speed of the primary front. We envision that this locking can be explained by a front

instability caused by point spectrum rather than an absolute instability in the wake of the front;

see [15] for a similar phenomenon. In the case κ = 0, the patterns in the wake are stable, so

that point spectrum would necessarily cause the observed instability.

5 Bulk fronts

Up to now, we have investigated how localized initial perturbations evolve into a pattern-forming

front. When gradually relaxing the assumption of localization, one encounters an interesting
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Figure 5.1: Space-time plots of solutions e(t, x) (e = 0 black, e = 1 white) for initial perturbations with

decay eνx, with ν = −0.27,−0.2,−0.18. Throughout, a = 0.5 and γ = 0.1.

crossover from pattern-forming to bulk fronts, that is, fronts that leave behind a spatially ho-

mogeneous state. In the following, we investigate this phenomenon and compare our theoretical

predictions with direct simulations.

We envision perturbations of the initial unstable state (c, e)(x) = (0, a) by a small, exponen-

tial profile c(x) = δeν|x|. For 0 > Re ν > Re νlin, that is, when the decay of the initial condition is

weaker than the decay of the selected pointwise growth mode, one observes fronts with different

speeds s and frequency ω. Given ν, one can predict ω and s by solving the dispersion relation

ds(iω, ν) = (iω − sν)2 − (1 − 2γ + ν2)(iω − sν) + (1 − γ)ν2,

for s and ω (we normalized fe + fc = 1). In fact, Im ds(iω, ν) = 0 leads to either ω = 0 or

s = −ν2−(1−2γ)
2ν , when Im ν = 0, that is, for monotone exponential tails in the initial conditions.

The case ω = 0 leads to a quadratic equation in s, which possesses real roots only when

|ν| 6 ηcrit := |
√

1 − γ −√
γ|. (5.1)

One finds roots with ω 6= 0 in the case when (5.1) does not hold, by substituting s = −ν2−(1−2γ)
2γ

and solving for ω. As a consequence, we predict a transition from pattern-forming fronts to

uniformly translating fronts at |ν| = ηcrit.

We compared this prediction with simulations, where a = 0.5, hence fe = 0.25, and fc = 0.1.

Scaling to fe + fc = 1 gives a critical value of ηcrit = 0.184. Figure 5.1 shows space-time plots

close to the transition.

One can also compute selected wavenumbers for ν complex. In this case, we typically find

ω 6= 0. For small |Re ν|, one finds that k ∼ Im ν: the wavelength of the initial condition

translates directly into the wavelength of the spatial pattern. For small | Im ν|, one finds a

crossover near Re ν = −ηcrit, where the wavelengths in the wake change from | Im ν| to an

intrinsic wavelength selected by the system.

We emphasize that this transition is different from a transition from pattern-forming to bulk

fronts that was observed in [8]. There, we observed that for small values of a and γ, front

invasion leaves behind a bulk state. In this regime, fronts are “pushed” [19], that is, steeper and

faster than predicted by the linear dispersion relation. The regime of pushed front propagation

is limited by a 6 a∗(κ) and a∗(κ) → 0 for κ → 0 for small γ.
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6 Discussion

We presented a simple and robust mechanism for the creation of stable periodic patterns in

a closed, two-species reaction-diffusion system. Since smooth periodic patterns are unstable

in closed, two-species systems, we investigated the limit of vanishing diffusion. In this sharp-

interface limit, the sideband instability of periodic patterns disappears. On the other hand,

linear growth rates in the dispersion relation predict patterns on infinitely fine scales, a prediction

that is corroborated in simulations with white noise initial data. Stable periodic patterns with

a distinguished wavelength are, however, selected when initial conditions are spatially localized.

Instabilities evolve through pattern-forming invasion fronts that leave behind a coherent pattern

— even in the case of zero diffusion. We showed rigorously that the linear prediction for the

selected wavenumber is finite for zero diffusion.

An interesting phenomenon arises for small mass fractions, when linear predictions for

wavenumbers disagree with direct simulations. Phenomenologically, one observes that small

modulations in the leading edge of the invasion front repeatedly fail to nucleate spikes. The

resulting pattern is typically quasi-periodic with average wavenumber about 2/3 of the linear

prediction close to transition. It would be interesting to characterize this transition conceptually

and predict the intermittent behavior of spiking at least qualitatively.

7 Appendix

7.1 Proof of Lemma 3.1

Our goal is to prove that the supremum in the definition of the spreading speed is actually

attained when a double root that satisfies the pinching condition is located on the imaginary

axis, λ ∈ iR \ {0}. We outline the general strategy of proof.

We first show that double roots of the dispersion relation (disregarding the pinching condition

for now) are continuous with respect to s in Lemma 7.1. We then show that the real part of

the pointwise growth rate is continuous in s, showing some type of continuity for the pinching

condition; see Lemma 7.3.

Given continuity, we then show existence of a critical double root λ = iω using that pointwise

growth rates are negative for s ≫ 1, Lemma 7.4, and positive for s ∼ 0, Lemma 7.5. Lastly, we

exclude the case ω = 0 for a double root by a direct calculation, Lemma 7.6.

Lemma 7.1 Double roots (ν, λ) of the dispersion relation vary continuously with respect to s.

Proof. By a straightforward computation, the double root equation

ds(λ, ν) = 0, ∂νds(λ, ν) = 0

can be rewritten as

• for s 6= 1,

{
−2sν5 − s2ν4 + 4sν3 + [4γ(1 − γ) + 2s2]ν2 − 2(1 − 2γ)2sν − (1 − 2γ)2s2 = 0

λ = sν + s(1−2γ+ν2)+2(1−γ)ν
2(s+ν)

(7.1)
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• for s = 1, ν = −1,

(ν, λ) = (−1,−γ ±
√

(1 − γ)2 − (1 − γ))

• for s = 1, ν 6= −1,

{
(ν + 1 − 2γ)2 − 2(1 − 2γ + ν2)(ν + 1 − 2γ) + 4(1 − γ)ν2 = 0

λ = sν + s(1−2γ+ν2)+2(1−γ)ν
2(s+ν)

We first note that there are precisely 5 double roots (counted with multiplicity) when s 6= 1,

since the first equation in (7.1) is a quintic polynomial. As solutions to a polynomial equation,

these double roots depend continuously on s. Next, note that roots obtained in the case for

s = 1 agree with those obtained in the case s 6= 1 when formally setting s = 1 in the quintic

polynomial for ν. Therefore, to prove the continuity, we only need to show that for s → 1, s 6= 1,

there are two double roots (λ1, ν1) and (λ2, ν2) such that

lim
s→1

λ1 = −1, lim
s→1

ν1 = −γ +
√

(1 − γ)2 − (1 − γ);

lim
s→1

λ2 = −1, lim
s→1

ν2 = −γ −
√

(1 − γ)2 − (1 − γ).

This can be readily seen by substituting s = 1 + ε and ν = −1 + ν̃ε + O(ε2) into the quintic

polynomial (7.1) and solving for ν̃. We obtain two solutions ν1/2 which we then substitute into

the expression for λ. A short calculation then shows that λ is continuous in ε which implies

continuity of double roots.

Lemma 7.2 For fixed s > 0, ds(λ, ν) = 0 is a cubic polynomial with respect to ν. As Re λ →
+∞, the real parts of two roots, denoted as ν1 and ν2, go to +∞, while the real part of the third

root, denoted as ν3, goes to −∞.

Proof. For |λ| → ∞, one readily notices that |ν| → ∞ for solutions of ds = 0. Poincaré

inversion therefore gives all solutions using the Newton polygon for the inverted equation, that

is, solving

[1 − (1 − 2γ)ε]δ3 + [−2sε − (1 − 2γ)sε2]δ2 + [−ε + (1 − γ + s2)ε2]δ + sε2 = 0,

where ε = 1/λ and ν = 1/δ. We find three roots with

δ1 = sε + O(ε2)

δ2 = ε1/2 + O(ε)

δ3 = −ε1/2 + O(ε),

or, in terms of λ and ν,

ν1 =
λ

s
+ O(1)

ν2 = λ1/2 + O(1)

ν3 = −λ1/2 + O(1).
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Lemma 7.3 The pointwise growth rate is continuous in s.

Proof. By Lemma 7.1, double roots depend continuously on s. We need to show that

the pinching condition depends continuously on s. For this, we first remark that the pinching

condition is continuous as long as double roots are simple. In that case, the roots depend

continuously on s along any compact part of the curve connecting the double root with λ = +∞
in the complex plane, so that the maximal real part of roots that satisfy the pinching condition is

continuous in s. In general, it is not difficult to see that the pointwise growth rate is upper semi-

continuous. Indeed, suppose that the roots ν1/2 are separated from ν3 in Re λ > η. Then the

infimum of the distance will be strictly positive and a continuous function of s, which shows that

the pointwise growth rate cannot increase under perturbations. To show lower semi-continuity,

we need to consider multiple double roots. In our case, there are precisely four possible cases,

characterized by the leading order terms in the local Taylor jet:

(i) ds(λ, ν) = d20λ̂
2 + d11λ̂ν̂ + d02ν̂

2,

(ii) ds(λ, ν) = d10λ̂ + d03ν̂
3,

(iii) ds(λ, ν) = d20λ̂
2 + d11λ̂ν̂ + d03ν̂

3,

(iv) ds(λ, ν) = d20λ̂
2 + d03ν̂

3,

where ν̂ = ν−ν∗ and λ̂ = λ−λ∗, and (λ∗, ν∗) is the degenerate double root. Here, the coefficients

djℓ are assumed to be nonzero. To see that these are the only relevant cases, notice that the

coefficients of λ̂2 and ν̂3 are nonzero because they are independent of ν∗, λ∗. One then simply

enumerates possibilities for vanishing lower-order terms.

In fact, a short explicit calculation shows that case (iii) does not occur in our system for

γ ∈ (0, 1). In case (i), only two roots ν̂ coalesce near the singularity, so that the pinching

condition is either satisfied for all double roots or not.

It remains to show that there are always pinched double roots near the origin in cases (ii) and

(iv). In case (ii), one finds precisely two double roots in a neighborhood. Letting λ̂ = εeiϕ, one

finds that the roots are permuted cyclically after one loop, which implies that none of the roots

possesses a unique analytic continuation. The same argument shows that there exist pinched

double roots near λ̂ = 0 in case (iv).

Lemma 7.4 For s ≫ 1, the pointwise growth rate is negative, that is, Reλ < 0 for the first

pinched double root.

Proof. It is sufficient to show that for sufficiently large s ≫ 1, roots ν(λ) to ds(λ, ν) = 0 do

not have Re ν = −1 as long as Reλ > 0. This would imply that the roots ν1/2 that converge to

+∞ according to Lemma 7.2 are separated from the root ν3 that converges to −∞ as Reλ → ∞.

Substituting Re ν = −1 into ds(λ, ν) = 0 gives

0 = −A(Im ν)6 − (5A2 + 4A + B)(Im ν)4 − (8A3 + 4A2 + 4AB)(Im ν)2 − (4A4 + 4A2B) > 0,

where A = Reλ + s − (1 − γ) > 0 and B = (1 − γ) − (1 − γ)2 > 0.

Lemma 7.5 For s > 0, s ≪ 1, the pointwise growth rate is positive.

12



Proof. We can find double roots explicitly for s = 0 and expand in s, using the quintic

polynomial (7.1). The leading-order terms are

ν1 = 1−2γ
2γ s λ1 = 1 − 2γ

ν2 = − 1−2γ
2(1−γ)s λ2 = 0

ν3 = (2γ − 2γ2)
1

3 s−
1

3 λ3 = (1 − γ) + 1
2(2γ − 2γ2)

1

3 s
2

3

ν4 = (2γ − 2γ2)
1

3 e
2πi

3 s−
1

3 λ4 = (1 − γ) + 1
2(2γ − 2γ2)

1

3 e
2πi

3 s
2

3

ν5 = (2γ − 2γ2)
1

3 e
4πi

3 s−
1

3 λ5 = (1 − γ) + 1
2(2γ − 2γ2)

1

3 e
4πi

3 s
2

3

On the other hand, we find roots ν of ds(λ, ν) = 0 with Re ν = 0 only for values of λ in the

essential spectrum, where

λ± = isk2 +
1 − 2γ − k2

2
±
√

(1 − 2γ − k2)2

4
+ (1 − γ)k2. (7.2)

Noting that Reλ′
+(k2) > 0 and lim|k|→+∞ λ̃+ = 1 − γ, we have supk∈R λ̃+(k2) = 1 − γ.

Now consider the right-most double root (λ3, ν3). We examine the pinching condition on a

curve Re λ → +∞. Since Re λ3 > 1− γ, Re νj 6= 0 on this curve. On the other hand, Re ν3 > 0,

so that this double root cannot satisfy the pinching condition.

Next, consider the complex conjugate double roots (λ4/5, ν4/5). This time, Re ν4/5 < 0,

so that, by Lemma 7.2, the double root lies to the left of λ+(k2), but to the right of λ−(k2).

This implies that there is one and only one root ν crossing the imaginary axis on a curve from

the double root λ4/5 to Reλ = +∞. This shows that these double roots satisfy the pinching

condition.

Lemma 7.6 For s > 0, suppose that (iω, ν) is a double root of the dispersion relation that

satisfies the pinching condition. Then ω 6= 0.

Proof. We can substitute λ = 0 in the equation for double roots and find a cubic polynomial

in ν,

ds(0, ν) = s2ν2 + s(1 − 2γ + ν2)ν + (1 − γ)ν2.

One readily verifies that this polynomial does not have double roots when γ 6= 1/2. For γ = 1/2,

the double root is given by ν = 0, with the third root located at −(1 + 2s2)/2 < 0. Since there

are no crossings ν ∈ iR for λ > 0 (7.2), and since for λ → ∞ we have two roots with Re ν → +∞,

we can conclude that the two roots that collide in the double root have Re ν > 0 for all λ > 0

and hence do not satisfy the pinching condition.

7.2 Uniqueness of complex double roots

Lemma 7.7 There are at least three real double roots, counted with multiplicity.

Proof. We need to show that the quintic polynomial (7.1),

q(ν, s) = −2sν5 − s2ν4 + 4sν3 + [4γ(1 − γ) + 2s2]ν2 − 2(1 − 2γ)2sν − (1 − 2γ)2s2,

possesses at least three real roots. For this, one verifies that q(0, s) < 0, q(1, s) > 0, and

q(−s/2, s) > 0 for all s > 0 and all γ ∈ (0, 1). This implies the existence of three roots

ν1 ∈ (−s/2, 0), ν2 ∈ (0, 1), and ν3 ∈ (1,∞).
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