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Abstract

The Euler–Poisson equations for a cold, collisionless plasma support ion-acoustic solitary waves. We prove that these waves
are spectrally stable at low amplitude in one space-dimension and present numerical evidence that they destabilize at finite
amplitude before they develop singularities.
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1. Introduction

We investigate one-dimensional ion-acoustic solitary waves in a collisionless plasma, when the electron tem-
peratureTe is much higher then the ion temperatureTi . Neglecting thermal pressure, we describe the ions by the
hydrodynamic equations only:

nt + (nv)x = 0, vt +
(

1

2
v2 + e

M
ϕ

)
x

= 0,

wheren denotes the density of the ions,v the velocity,ϕ the electric potential,M the mass of ion, ande the
elementary charge. We assume the electrons are distributed according to the Boltzmann lawne = n0 eeϕ/Te, and
close the system by the Poisson equations for the electric potentialϕ:

ϕxx + 4πe(n − n0 eeϕ/Te) = 0.
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After an appropriate rescaling, we find the usual Euler–Poisson equations:

nt + (nv)x = 0, vt + (1
2v

2 + ϕ)x = 0, ϕxx − eϕ + n = 0. (1.1)

These equations are Galilean invariant and reversible, i.e.(n, v+c, ϕ)(x−ct, t) and, respectively,(n, v, ϕ)(−x,−t)

are solutions, if(n, v, ϕ)(x, t) is a solution. We refer to[15,21,29]and the references therein for more information
on the physical background of these equations.

A particular solution is found for constant densityn ≡ 1, vanishing potentialϕ ≡ 0, and constant velocityv ≡ v0;
herev0 is arbitrary due to Galilean invariance. Linearizing about this spatially homogeneous state we find the linear
problem

nt + v0nx + vx = 0, vt + v0vx + ϕx = 0, ϕxx − ϕ + n = 0 (1.2)

with sinusoidal travelling-wave solutions ei(ωt−kx), whereω andk are related through the dispersion relation:

(ω − v0k)
2(k2 + 1) − k2 = 0. (1.3)

Solving for the frequencyω, we find

ω±(k) = k

(
v0 ± 1√

k2 + 1

)
. (1.4)

In particular, for supersonic speedv0 > 1, group velocitiesω′±(k) are strictly positive. At sonic speed,ω′−(0) = 0
and for small wave numbers, we can expand

ω−(k) = 1
2k

3 + O(k5).

The cubic term together with Galilean invariance suggests that, in the long-wavelength limitk ∼ 0 andn, v ∼ 1,
ϕ ∼ 0, a Korteweg–de Vries equation would govern the dynamics. A natural question then is how far the dynamics
of the Korteweg–de Vries equation can actually be found in this particular model for an ion-acoustic plasma. Up to
now, only formal derivations of the Korteweg–de Vries limit seem to be known[12,32]; we refer to[16,9,30,4]for
validation of the long-wavelength limit in slightly different contexts.

One of the most striking phenomena in the Korteweg–de Vries equation—which largely motivated its discovery—
are solitary waves. In particular, solitary waves are among the most simple phenomena which necessitate a truly
nonlinear analysis, going beyond the linear dispersion relation(1.4). Existence of solitary waves has been proved in
many other physical systems exhibiting a similar cubic expansion of the dispersion relation at the origin. Methods
include calculus of variations[8], abstract fixed point arguments and implicit function theorem[3,11], and spatial
dynamics[19,20]. However, proofs of the stability of solitary waves rely almost exclusively on variational methods,
exploiting definiteness of the energy restricted to a fixed value of the impulse functional[5,6]. There does not seem
to be a single complete proof of stability for a solitary wave which does not satisfy the above criterion.

Opposed to these sufficient stability criteria, spectral investigations provide necessary conditions for stability.
Given a solitary wave solution, one investigates the linearization with spectral methods. Absence of spectrum in the
right complex half plane is necessary—though far from sufficient—for stability. The work of Pego and Weinstein
[25,26]provides an example where the linear, spectral information could be exploited to show asymptotic stability
of solitary waves, improving on orbital stability as concluded from energy methods.

A central tool for the study of spectral properties is the Evans function, first introduced in[10]. It allows for
a detection of eigenvalues inside and beyond the essential spectrum. Roughly speaking, the Evans function is a
Wronskian-like complex function depending on the spectral parameterλ, whose zeroes coincide with the eigenvalues
of the linearized operator. Analyticity allows for counting eigenvalues in the point spectrum with their multiplicity
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in a robust way. Analytic extension of the Evans function across the essential spectrum then gives control on possible
unstable eigenvalues created by perturbations.

The plasma equations investigated in the present article, are easily shown to possess a family of solitary waves,
asymptotic ton = 1 andv = ϕ = 0, parameterized by the wave speedc > 0 (see alsoSection 2). Our objective
here is to show that the linearization about these solitary waves does not possess any unstable eigenvalues, at least
for sufficiently small amplitudes of the solitary wave. As a consequence, we show that the linearized system is
asymptotically stable in exponentially weighted spaces.

The Korteweg–de Vries equation as a universal model equation arises in many other physical systems in the
long-wavelength limit. The original example are free surface water-waves, where solitary waves have been found
for Froude number close to 1, both with strong and without surface tension. Pego and Weinstein[27] proved spectral
stability of solitary waves for several Boussinesq model equations arising in this context. It does not come as a surprise
that their analysis in the small wavenumber regime is indeed very close to the analysis here (seeSection 6.2).

However, a major difference between the plasma system and model equations like the Korteweg–de Vries or
Boussinesq equations is that, for high wavenumbersk, the system is not dispersive, but the dynamics is to leading
order governed by a system of quasilinear conservation laws. This introduces difficulties in the study of the eigenvalue
problem at high frequencies (seeSection 5).

The same problems arise in the full water-wave problem, both for zero and large surface tension. The methods
developed in[14] show that in both cases spectral stability holds in bounded regions of the complex plane, with a
subtlety in the case of large surface tension, Weber numberb > 1/3. The present work is to our knowledge the first
proof of linear stability for a quasilinear system of Hamiltonian equations exhibiting solitary waves.

Solitary waves exist for speed 1< c < cmax ∼ 1.5852. At c = cmax, the second derivative blows up at the
maximum of the solitary wave. Stability at finite amplitude with respect to one-dimensional perturbations is central
for understanding of the plasma turbulence, but is not known. Computing numerically the dependence of the impulse
on the wave speed, we derive numerical evidence that the solitary waves areunstablefor ccrit < c < cmax, where
ccrit ∼ 1.52603.

The paper is organized as follows. We briefly review the existence proof inSection 2and present our main results
in Section 3. The main tools used in the spectral analysis are introduced inSection 4. The stability proof then
proceeds in two steps, excluding unstable eigenvalues with high and finite but non-zero-frequency first (Section 5)
and with small frequency (Section 6) then. InSection 7, we review the Hamiltonian formulation and the criterion on
instability, based on the second derivative of the Evans function and the impulse. We then present numerical results
on the instability forc > ccrit.

2. Existence of solitary waves

We review some properties of the solitary waves and refer to[22] for a detailed proof of existence.
We look for travelling-wave solutions to(1.1)of the form(1+ ñ, v, ϕ)(x − ct) with speedc, which decay to zero

asξ = x − ct → ±∞. Such solutions satisfy the system (we write againx for ξ ):

−cñx + ((1 + ñ)v)x = 0, −cvx + (1
2v

2 + ϕ)x = 0, ϕxx − eϕ + 1 + ñ = 0. (2.1)

We integrate the first two equations and set the constant of integration to zero, solve forñ andv as functions ofϕ,
and arrive at

ñ = c −
√
c2 − 2ϕ√

c2 − 2ϕ
, v = c −

√
c2 − 2ϕ, ϕxx = eϕ − c√

c2 − 2ϕ
.
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Fig. 1. The shape of theϕ-component of the solitary wave forc = 1.3 andc = cmax.

Solitary waves exist for supersonic speedsc > 1. For slightly supersonic speedc = √
1 + µ,µ > 0, we can expand

ϕxx = µϕ − ϕ2 + O(|ϕ|(|µ|2 + |ϕ|2)).
A solitary wave is a homoclinic solution to the origin of this equation which we develop as

ϕ∗(x;µ) = µΦ∗(
√
µx) + µ2R(

√
µx) (2.2)

with R(y) ≤ C exp(−|y|/2), uniformly in y ∈ R andµ > 0 small. The leading order termΦ∗ solves

Φ ′′
∗ = Φ∗ − Φ2

∗

and is explicitly given asΦ∗(y) = 3/2 sech2(y/2). For the full system, the solution is readily expanded as

(n∗, v∗, ϕ∗)(x) = µΦ∗(
√
µx)(1,1,1) + µ2R̃(

√
µx) (2.3)

and againR̃(y) ≤ C exp(−|y|/2), uniformly in y ∈ R andµ > 0 small.
This solution exists for values of the wave speedc, until the maximum of the solitary wave reaches the branch

point of the square root
√
c2 − 2ϕ. This occurs atcmax ∼ 1.5852, the solution of the equation exp(c2/2) = 1+ c2.

Close to the maximum, atx = 0, the solitary wave forc = cmax scales like

ϕ(x) ∼ 1
2c

2
max − |x|4/3

(
81
32

)1/3
c

2/3
max.

We included plots ofϕ(x) for c = 1.3 andc = cmax (seeFig. 1) .
Note also that the solution(n∗, v∗, ϕ∗)(x) above is an even function, and that we have in fact a one-parameter

family of solitary waves, for each speedc, due to the invariance of the system under spatial translations.

3. Spectral and linear stability—main results

In this section we formulate the linearized problem and state the main results on spectral and linear stability.
Linearizing the Euler–Poissonequations (1.1)about the solitary wave solution(2.3) in a frame moving with the

speedc = √
1 + µ > 1 of the solitary wave, we find the system

nt − cnx + vx + (n∗(x)v)x + (v∗(x)n)x = 0, vt − cvx + ϕx + (v∗(x)v)x = 0,

ϕxx + n − eϕ∗(x)ϕ = 0. (3.1)

Since∂xx − eϕ∗(x) is a small, bounded perturbation of∂xx − id, we can solve the last equation forϕ = ϕ[n].
Substituting the result into the second equation, we find

d

dt

(
n

v

)
= L∗(µ)

(
n

v

)
(3.2)
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with

L∗(µ)

(
n

v

)
:=
(

cnx − vx − (n∗(x)v)x − (v∗(x)n)x
cvx − ϕ[n]x − (v∗(x)v)x

)
. (3.3)

We considerL∗(µ) as a closed operator onX = L2(R)×H 1(R), with domain of definitionX1 = H 1(R)×H 2(R).
We say thatλ ∈ C is in theessential spectrumspecessL∗(µ), if the operatorλ id − L∗(µ) is not Fredholm with

index zero. We say thatλ /∈ specessL∗(µ) is in thepoint spectrumspecptL∗(µ), if λ id − L∗(µ) is not invertible.
The main result in this paper is the following theorem on the spectrum ofL∗(µ), which shows that the solitary

waves are spectrally stable at small amplitudes.

Theorem 1 (SpectralL2-stability). There isµ0 > 0 such that for all0 < µ < µ0, the spectra ofL∗(µ) in
X = L2(R) × H 1(R) satisfy

specessL∗(µ) = iR, specptL∗(µ) = ∅.

We considerL∗(µ) on exponentially weighted spaces next. Define

L2
η(R) = {u ∈ L2

loc(R); |u|L2
η
< ∞}

with

|u|2
L2
η

=
∫
R

|u(x)eηx |2dx.

Analogously, we define

H 1
η (R) = {u ∈ H 1

loc(R); |u|H1
η

:= |ux |L2
η
+ |u|L2

η
< ∞}.

We note that similar weighted spaces have been used by Pego and Weinstein[26] in their proof of asymptotic
stability of solitary waves for the Korteweg–de Vries equation.

Theorem 2 (Spectral stability in exponential weights).There are positive constantsµ0, η±
0 , such that for all

0 < µ < µ0 and0 < η < η+
0 µ

1/2, there existsδ(η, µ) > 0, such that the spectra in the exponentially weighted
spacesXη = L2

η(R) × H 1
η (R) satisfy

specηessL∗(µ) ⊂ {λ; Reλ ≤ −δ(η, µ) < 0}
and

specηptL∗(µ) ∩ {λ; Reλ > −δ(η, µ)} = {0}.
The eigenvalue0 is of algebraic multiplicity2, with eigenfunction given by the derivative of the solitary wave
(n∗, v∗) with respect to x. A principal eigenvector is provided by the derivative of(n∗, v∗) with respect to the wave
speed c.

Moreover, for η−
0 µ < η < η+

0 µ
1/2, we have uniform estimates of the resolvent inReλ > −δ(η, µ) with a

1/λ2-pole at the origin, and

‖(λ id − L∗(µ))−1‖Xη→Xη ≤ M

Reλ + η

uniformly inReλ > −δ(η, µ) and outside a neighborhood of the origin.
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The proof ofTheorem 2occupiesSections 5 and 6. In the next section, we introduce the basic tools for the
analysis, prove the claims on essential spectra, and show howTheorem 1is deduced fromTheorem 2.

An immediate consequence ofTheorem 2is linear asymptotic stability of the family of solitary waves in weighted
spaces. Since the double zero eigenvalue, generated by the tangent space of the two-parameter family of solitary
waves, belongs to the point spectrum, we can define a spectral projectionP(µ, η) onto the generalized eigenspace
for any 0< µ < µ0 and 0< η < η+

0 µ
1/2.

Corollary 3.1 (Linear convective stability).There exist positive constantsµ0, η±
0 , such that for all0 < µ < µ0

andη−
0 µ < η < η+

0 µ
1/2, the family of solitary waves is asymptotically linearly stable inXη = L2

η(R) × H 1
η (R).

More precisely, initial values(n0, v0)
T ∈ (1 − P)Xη for (3.2) yield unique solutions(n(t), v(t))T ∈ (1 − P)Xη

which decay exponentially:

‖(n(t), v(t))‖Xη ≤ C(η,µ)e−δ(η,µ)t‖(n0, v0)‖
withC, δ > 0, independent ofn0, v0.

Proof. We first have to show thatL∗(µ) generates a strongly continuous semigroup. To see that, it is sufficient
to show thatD∗ = (c − v∗(x))∂x generates a semigroup onL2

η(R) andH 1
η (R), sinceL∗(µ) can be viewed

componentwise as a bounded perturbation of this operator. The operatorD∗−id is dissipative, Re(D∗u, u)−(u, u) ≤
0, and therefore generates a contraction semigroup. Next, the uniform resolvent estimate fromTheorem 2then
ensures that a spectral mapping theorem holds for the linear semigroup (see[2, p. 95]). This proves asymptotic
stability as stated. �

4. Essential spectra, point spectra, and the Evans function

We introduce the basic tools for the spectral analysis in the succeeding sections and prove the statements on the
essential spectrum.

Instead of the operatorL∗(µ), we consider the slightly more general operatorL∗(µ), obtained from rewriting
the eigenvalue problem for the full linearized problem(3.1)as

λn − cnx + vx + (n∗(x)v)x + (v∗(x)n)x = 0, λv − cvx + ψ + (v∗(x)v)x = 0,

ϕx − ψ = 0, ψx + n − eϕ∗(x)ϕ = 0 (4.1)

or, in short form,(λB −L∗(µ))(n, v, ϕ, ψ)T = 0, whereB = diag(id, id,0,0). The operatorL∗(µ) is considered
as a closed operator onL2 × H 1 × H 1 × L2 with domainH 1 × H 2 × H 2 × H 1 (from now on we write shortly
L2, H 1, . . . instead ofL2(R), H 1(R), . . . ).

For thegeneralizedeigenvalue problem(4.1), we define the algebraic multiplicity of thegeneralizedeigenvalue
λ in caseλB −L∗(µ) is Fredholm with index zero as follows. Letuj1 ∈ R4, 1 ≤ j ≤ j0 be a basis of the kernel and

let uj( , 2 ≤ ( ≤ (j be the longest possible generalized Jordan chain(λB − L∗(µ))u
j
( = Buj(−1, for 2 ≤ ( ≤ (j ,

1 ≤ j ≤ j0. The algebraic multiplicity is then defined as the sum of the lengths of the generalized Jordan chains:

alg(λ) =
j0∑
j=1

(j .

The different spectra of the operatorL∗(µ) are found by analyzing the operatorλB − L∗(µ). More precisely, the
following statements hold.
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Lemma 4.1. Assumeµ is sufficiently small.

(i) The operatorλB − L∗(µ) is invertible if and only ifλ /∈ specL∗(µ).
(ii) The operatorλB − L∗(µ) is Fredholm with index zero if and only ifλ /∈ specessL∗(µ).

(iii) The algebraic multiplicity ofλ as an eigenvalue ofL∗(µ) and the algebraic multiplicity ofλ as a generalized
eigenvalue toλB − L∗(µ) coincide.

The proofs follow easily from the definitions of these operators, using the invertibility of∂xx − eϕ∗ ; we refer to
[1,25] for similar statements.

As a first step towards the proofs ofTheorems 1 and 2, we characterize essential spectra. Just like inSection 1 (1.3),
we compute the dispersion relation to(4.1) from the asymptotic equation atx = ±∞, settingn∗ = v∗ = ϕ∗ = 0,
with the ansatz(n, v, ϕ, ψ) = (n0, v0, ϕ0, ψ0)eνx . We find

d(λ, ν) = det



λ − cν ν 0 0

0 λ − cν 0 1

0 0 ν −1

1 0 −1 ν


 = (λ − cν)2(ν2 − 1) + ν2 = 0. (4.2)

Proposition 4.2. For all 0 < µ < µ0 sufficiently small, and anyη > 0, the essential spectrum ofL∗(µ) in
exponentially weighted spacesL2

η × H 1
η is given by the set ofλ ∈ C such thatd(λ, ν) = 0 for someν ∈ C with

Reν = −η.

Proof. By Lemma 4.1it is enough to look at the operatorλB −L∗(µ). This operator is a differential operator with
asymptotically constant coefficients. By settingn∗ = v∗ = ϕ∗ = 0, fromL∗(µ) we find the asymptotic operator
L∞(µ), atx = ±∞. SinceλB − L∗(µ) is a relatively small perturbation ofλB − L∞(µ), standard perturbation
theory implies that its essential spectrum coincides with the set ofλ such thatλB − L∞(µ) is not Fredholm index
0. The spectrum ofλB − L∞(µ) is easily analyzed via Fourier transform, which gives the proposition. �

Corollary 4.3. For all 0 < µ < µ0 sufficiently small, the essential spectrum ofL∗(µ) in L2 × H 1 is precisely
the imaginary axis. In exponentially weighted spacesL2

η × H 1
η , with 0 < η < η0µ

1/2, the essential spectrum is
contained in the set{λ; Reλ ≤ −δ(η, µ) < 0}, for some positive constantsδ(η, µ) andη0.

Proof. If d(λ, ik) = 0 for somek ∈ R, the result in(4.2)givesλ = iω with

ω = ck± k√
k2 + 1

(seeFig. 2) . Similarly, in weighted spaces, fromd(λ, ik−η) = 0 we find the two branches of the essential spectrum:

λ±(k, η) = (ik − η)

(
c ± 1√

1 − (ik − η)2

)
, k ∈ R.

These values ofλ have negative real part and are uniformly bounded away from the imaginary axis, forc > 1 and
η sufficiently small. In fact, to first order inη we find

d(Reλ)

dη

∣∣∣∣
η=0

= d(Reλ)

d(−Reν)

∣∣∣∣
Reν=0

= d(Im λ)

d(−Im ν)

∣∣∣∣
Reν=0

= −dω

dk
= −cg,
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Fig. 2. To the left, the two branches ofω(k) for c = 1.1, and to the right, the essential spectrum ofL∗(µ) in exponentially weighted spaces
L2
η × H 1

η , for c = 1.1 andη = 0.1.

i.e., the essential spectrum moves with the speed of the group velocity in the complex plane whenη is increased.
For c > 1, supersonic speed, all group velocities are positive, so the essential spectrum moves in the complex left
half plane and stabilizes (seeFig. 2). The uniform bound Reλ ≤ −δ(η, µ) is then obtained from the behavior for
largek where

lim
k→±∞

d(Reλ)

dη
(k, η) = −c. �

Remark 4.4. At sonic speedc = 1, the essential spectrum ofL∗(µ) coincides with the imaginary axis inL2 ×H 1,
and destabilizes in weighted spaceL2

η × H 1
η , for any smallη > 0, sinceλ−(0, η) = −η(1 − 1/

√
1 − η2) > 0.

To understand point spectra, it is sufficient to analyze the eigenvalue problem(4.1) and discuss existence of
nontrivial, bounded solutions. A very useful tool in this context is the Evans function. Solving the first two equations
for nx andvx , we find a four-dimensional non-autonomous differential equation:

ux = A(x)u + λM(x)u, (4.3)

where the matricesA(x) → A∞, M(x) → M∞ are asymptotically constant.
The dynamics atx = ±∞ is described by the eigenvaluesνj , j = 1, . . . ,4 of A∞ + M∞, which solve the

dispersion relationd(λ, νj ) = 0. In particular, for Reλ > 0, there are precisely three eigenvaluesνj (λ), j = 1,2,3
in the complex half plane Reν > 0 and one eigenvalue with Reν4 < 0. For Reλ = 0, two of these eigenvalues
reside on the imaginary axis, Reν1,2 = 0, and Reν4 < 0 < Reν3. For |Im λ| → +∞ andµ = 0, we can expand
the location of the eigenvalues according to

ν1,2(λ) = λ ± i + O

(
1

|Im λ|
)
, ν3,4(λ) = ±1 + O

(
1

|Im λ|
)
.

In the origin, we can expand inµ and find

ν1,2(0) = 0, ν3,4(0) = ±√
µ(1 + O(µ)).
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The 1:3-splitting, Reν4(λ) < −η−(µ) < −η+(µ) < Reνj (λ), j = 1,2,3, persists for an appropriate choice of
0 < η±(µ) = O(µ1/2) and for all Reλ ≥ −δ(µ), whenδ(µ) > 0 is sufficiently small. Note that this property is
strongly related to the fact that forµ positive the essential spectrum in exponentially weighted spaces moves in the
complex left half plane (Corollary 4.3).

For the non-autonomous differential equation, we can then construct a three-dimensional subspaceEu−(λ) such
that for the solutionu(x; λ) to (4.3)with initial valueu(0; λ) = u0, we have

u0 ∈ Eu
−(λ) ⇒ |u(x; λ)| ≤ C eη(µ)|x| for all x < 0.

Similarly, we constructEs+(λ) as the one-dimensional subspace of initial conditions which lead to solutions which
decay with exponential rateη(µ), at least, onx > 0. Clearly, for Reλ > 0, initial conditions which lead to bounded
solutions onx < 0 lie in Eu−(λ) and those which lead to bounded solutions onx > 0 lie in Es+(λ). In particular,
point spectrum in Reλ > 0 coincides with those values ofλ such thatEu−(λ) andEs+(λ) intersect nontrivially.
Choosing analytic bases in the two subspaceses andeu

j , j = 1,2,3, we can detect nontrivial intersections as zeroes
of the Evans function:

E(λ;µ) = det(es, eu
1, e

u
2, e

u
3). (4.4)

The functionE is analytic inλ, for Reλ > −δ(µ), and smooth inµ, for sufficiently smallµ. The zeroes of this
function coincide with the eigenvalues ofL∗(µ) and the order of the zero gives the algebraic multiplicity of the
eigenvalues[1,25]. The Evans function as constructed above is not unique and merely depends on the choice of
bases. However, the zeroes with multiplicity do not depend on that choice.

The above construction is independent of the introduction of small exponential weights, which immediately gives
the following lemma.

Lemma 4.5. There exist positive constantsµ0 andη0 such that for all0 < µ < µ0, the point spectra in the unstable
complex half planeReλ > 0 of L∗(µ), considered inL2 × H 1 or in the weighted spaceL2

η × H 1
η , coincide with

multiplicity for 0 < η < η0µ
1/2. Moreover, for 0 < η < η′ < η0µ

1/2, the point spectra inL2
η ×H 1

η andL2
η′ ×H 1

η′
coincide with multiplicity in a regionReλ > −δ(η, µ), for δ(η, µ) > 0 sufficiently small.

In particular, this lemma shows that, given the results on essential spectra inCorollary 4.3, Theorem 1is a
consequence ofTheorem 2, since the point spectrum ofL∗(µ) is symmetric with respect to the imaginary axis due
to reversibility (reflectt → −t , x → −x, and use the fact that the solitary wave is an even function).

In the succeeding sections, we prove the remaining claims ofTheorem 2on the point spectrum in exponentially
weighted spaces and the resolvent estimates.

5. Non-zero and high frequencies

We show that there are no eigenvalues in a region|λ| ≥ ε0, Reλ ≥ −δ(µ, η), for sufficiently smallµ, sufficiently
small weightη, and anyε0 > 0. Moreover we prove the resolvent estimates fromTheorem 2.

We exclude eigenvalues in a region|λ| ≥ ε0, Reλ > −δ(η, µ) by inverting the operatorλ id − L∗(µ) in the
weighted spaceXη = L2

η × H 1
η . We do this by solving the system

λn + (−c + v∗(x))(nx − ηn) + (1 + n∗(x))(vx − ηv) + v′
∗(x)n + n′

∗(x)v = fn,

λv + (−c + v∗(x))(vx − ηv) + ψ + v′
∗(x)v = fv,

ϕx − ηϕ − ψ = 0, ψx − ηψ + n − eϕ∗(x)ϕ = 0 (5.1)
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in L2 ×H 1 ×H 1 ×L2, for (fn, fv) ∈ L2 ×H 1. Estimates on the norms ofn andv will give the desired resolvent
estimates.

For smallµ, the left hand side of(5.1)defines a linear operator which is a relatively bounded perturbation of the
operator with constant coefficients, atµ = 0. After a change of variables that we introduce now, the perturbation
becomes bounded in the operator norm.

We defineξ(x) through

ξ ′(x) = (c − v∗(x))−1, ξ(0) = 0.

For µ sufficiently small,ξ(x) gives a valid change of variable, inducing equivalentL2-norms. The system(5.1)
becomes (we write againx instead ofξ )

λn − (nx − ηn) + (vx − ηv) + O(µ) = fn, λv − (vx − ηv) + ψ + O(µ) = fv,

ϕx − ηϕ − ψ + O(µ) = 0, ψx − ηψ + n − ϕ + O(µ) = 0, (5.2)

where O(µ) denotes a small, bounded perturbation:

L̃1(µ, η) : L2 × H 1 × H 1 × L2 → L2 × H 1 × H 1 × L2, ‖L̃1(µ, η)‖ ≤ Cµ.

We first analyze the autonomous system atµ = 0, and then, by a perturbation argument, the full system, for
sufficiently smallµ > 0. At µ = 0 the left hand side in(5.2)defines a differential operator̃L0(λ, η), with constant
coefficients, onL2 × H 1 × H 1 × L2 with domainH 1 × H 2 × H 2 × H 1.

Lemma 5.1. For anyε0 > 0 there are positive constantsη0 andC0 such that for allη ∈ (0, η0) and all λ with
Reλ + η/2 > 0, |λ| ≥ ε0, the operatorL̃0(λ, η) has a bounded inverse inL2 × H 1 × H 1 × L2 with norm

‖L̃0(λ, η)‖ ≤ C0

Reλ + η
.

Proof. We invertL̃0(λ, η) by solving the system

λn − (nx − ηn) + (vx − ηv) = fn, λv − (vx − ηv) + ψ = fv,

ϕx − ηϕ − ψ = fϕ, ψx − ηψ + n − ϕ = fψ (5.3)

in L2 × H 1 × H 1 × L2. By taking the Fourier transform inx we find a linear system that we can solve explicitly
and obtain[

(λ + η − ik)2 − (ik − η)2

1 − (ik − η)2

]
n̂ = (λ + η − ik)f̂n − (ik − η)gv,[

(λ + η − ik)2 − (ik − η)2

1 − (ik − η)2

]
v̂ = (λ + η − ik)gv − ik − η

1 − (ik − η)2
f̂n,

ϕ̂ = n̂ − f̂ψ − (ik − η)f̂ϕ

1 − (ik − η)2
, ψ̂ = (ik − η)ϕ̂ − f̂ϕ,

where

gv = f̂v + f̂ϕ − (ik − η)f̂ψ

1 − (ik − η)2
∈ H 1.



M. Haragus, A. Scheel / Physica D 170 (2002) 13–30 23

For any|λ| > ε0, Reλ + η/2 > 0, and sufficiently smallη ∈ (0, η0), we show that∣∣∣∣(λ + η − ik)2 − (ik − η)2

1 − (ik − η)2

∣∣∣∣
2

≥ C(ε0)(Reλ + η)2(1 + (Reλ + η)2 + (Im λ − k)2). (5.4)

This lower bound together with the explicit formulas above proves the lemma.
We obtain(5.4)first in a region Reλ > ε1, and then for Imλ > ε1, for anyε1 > 0. A direct calculation gives

∣∣∣∣(λ + η − ik)2 − (ik − η)2

1 − (ik − η)2

∣∣∣∣
2

= (Reλ + η)4 + (Im λ − k)4 + 2(Reλ + η)2(Im λ − k)2 + b2
1

+2(Reλ + η)2b1 − 2(Im λ − k)2b1 + 4b2
2 + 8(Reλ + η)(Im λ − k)b2,

(5.5)

where

b1 = (k2 + η2)2 + k2 − η2

(1 + k2 − η2)2 + 4k2η2
∈
[
− η2

1 − η2
,1

]
, b2 = kη

(1 + k2 − η2)2 + 4k2η2
∈ [−c1η, c1η]

for some positive constantc1 which does not depend uponη.
For Reλ > ε1, the right hand side in(5.5) is bounded below by

(Reλ + η)4 + (Reλ + η)2(Im λ − k)2 − 2(Reλ + η)2
η2

1 − η2
− 12b2

2

≥ 1

2
(Reλ + η)4 + (Reλ + η)2(Im λ − k)2 + ε4

1

4
− 4η4

(1 − η2)2
− 12c2

1η
2,

so(5.4)holds for sufficiently smallη.
Assume now|Im λ| > ε1. For|Im λ−k| ≤ δ, with δ sufficiently small, we have|k| ≥ ε1/2 andb1 ≥ b1(ε1) > 0.

Then the right hand side in(5.5) is bounded below by

(Reλ + η)4 + (Reλ + η)2(Im λ − k)2 + b2
1 + 2(Reλ + η)2b1 − 2δ2b1 − 12b2

2

≥ (Reλ + η)4 + (Reλ + η)2(Im λ − k)2 + 2b1(ε1)(Reλ + η)2

+ 1
2b1(b1(ε1) − 4δ2) + 1

2(b1(ε1)
2 − 24c2

1η
2)

and(5.4)holds for sufficiently smallη andδ(ε1).
If |Im λ − k| ≥ δ(ε1), we consider first|k| ≥ k∗η. Then the right hand side in(5.5) is bounded below by

(Reλ + η)4 + (Reλ + η)2(Im λ − k)2 + 2(Reλ + η)2b1 − 12b2
2

≥ (Reλ + η)4 + (Reλ + η)2(Im λ − k)2 + 1
2(η

2)b1 − 12b2
2.

For k∗ large enough we have 24b2
2 < b1η

2, and(5.4) follows since|Im λ − k| ≥ δ(ε1). Next, if |k| ≤ k∗η, we find
the lower bound

(Reλ + η)4 + (Im λ − k)4 + (Reλ + η)2(Im λ − k)2 + 2(Reλ + η)2b1 − 2(Im λ − k)2b1 − 12b2
2

≥ (Reλ + η)4 + 1
2(Reλ + η)2(Im λ − k)2 + 1

2(Reλ + η)2(δ(ε1)
2 + 4b1)

+ 1
2(Im λ − k)2(δ(ε1)

2 − 4b1) + 1
2δ(ε1)

4 − 12c2
1η

2

from which we obtain(5.4), for sufficiently smallη, since|b1| ≤ c2η
2, for |k| ≤ k∗η. This completes the proof of

the inequality(5.4). �
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Corollary 5.2. For all ε0 > 0 there existsη0 > 0 andµ0 > 0 such that, for allη ∈ (0, η0), µ ∈ (0, µ0η) and
|λ| ≥ ε0, Reλ > −η/2 the operatorλ id − L∗(µ) has a bounded inverse in the weighted spaceXη = L2

η × H 1
η .

Moreover, we have the estimate on the resolvent

‖λ id − L∗(µ)‖Xη→Xη ≤ C

Reλ + η

for some positive constant C depending uponε0.

Proof. By Lemma 5.1we can chooseµ0 sufficiently small such that

‖L̃0(λ, η)
−1L̃1(µ, η)‖ ≤ 2C0Cµ0 ≤ 1

2

and we conclude that the operatorL̃0(λ, η) + L̃1(µ, η) is invertible, soλ id − L∗(µ) is invertible as well. �

This corollary, together withLemma 4.5, proves the statements inTheorem 2, outside any neighborhood of the
origin |λ| < ε0.

6. The zero-frequency limit and the Korteweg–de Vries scaling

The goal of this section is to analyze the linearization in a neighborhood ofλ = 0. In a suitable scaling, we find,
at the lowest order inµ, the Korteweg–de Vries equation, for which the spectra in an exponentially weighted space
is exactly known. Critical and unstable spectrum consists precisely of one double eigenvalue in the origin. Since
this double eigenvalue is induced by spatial translation and the Galilean invariance, it is robust and cannot create
instabilities after perturbation. The analysis in this section is very much reminiscent of[14,27].

The outline of this section is as follows. InSection 6.1, we review the dispersion relation in a small neighborhood
of λ = ν = 0. We then expand the linearized system in the perturbation parameterµ and transform variables
to find the Jordan normal form atµ = 0. In Section 6.2, we scale variables to find the linearization about the
Korteweg–de Vries soliton to leading order as a subsystem of our four-dimensional linear equation. We compute
the Evans function of the full system and show that it is robust with respect to higher order perturbations. In the last
paragraph,Section 6.3, we finally justify the Korteweg–de Vries scaling proving absence of eigenvalues in a small
neighborhood of the origin, outside this scaling.

6.1. Expanding the linearization nearλ = 0

The dispersion relation at the asymptotic state of the solitary wave was computed asd(λ, ν) = (λ− cν)2(ν2 −1)
+ ν2 = 0 with c2 = 1 + µ. Forµ = 0, we find a quadruple rootν = 0 atλ = 0, which unfolds like

ν0 = 1
2λ + O(|λ|3), ν1,2,3 = −(2λ)1/3 + O(|λ|).

The three eigenvaluesν1,2,3 stem from the Korteweg–de Vries limit, whereasν0 introduces an additional root of
the dispersion relation, with a non-zero group velocity.

Forµ > 0 and Reλ ≥ 0, we find three roots in the right half plane Reν ≥ 0 and one root in the left half plane
Reν < 0. This fact will allow us to construct an Evans function in a robust way.

Remark 6.1. Surprisingly enough, the fourth eigenvalueν0 seems to appear in all known examples, where solitary
waves have been found in a Korteweg–de Vries limit of a physically realistic system. The group velocity associated
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with this root can however be positive as well as negative. Within the Korteweg–de Vries scaling, transport is
always unidirectional—the central observation in[25,26] which allowed for a proof of asymptotic stability using
exponentially weighted spaces. The transport induced by the fourth eigenvalue happens to be in the same direction
in the plasma model, as well as in model equations for water-waves[27] or the full water-wave problem without
surface tension[14]. However, for gravity surface waves in the presence of large surface tension, the group velocities
from the additional branch of the dispersion relation have the opposite sign! As a consequence, the proof of stability
in [14] is, in consequence, much more subtle.

We expand the linearized system(4.1) in a neighborhood of the origin, solving fornx andvx :

nx = λn + v′
∗n + λv + (v′

∗ + n′
∗)v + ψ + (−µ + n∗ + 2v∗)ψ + O((|λµ| + µ5/2)(|n| + |v|) + µ2|ψ |),

vx = λv + v′
∗v + ψ + (−1

2µ + v∗)ψ + O((|λµ| + µ5/2)|v| + µ2|ψ |),
ϕx = ψ, ψx = ϕ − n + (eϕ∗ − 1)ϕ (6.1)

and transform variables to put the linear part atµ = λ = 0 into Jordan normal form. We set

n = a1, v = a0 + a1, ϕ = a1 + a3, ψ = a2.

The system for(a0, a1, a2, a3) ∈ C4 becomes

a0,x = −λa1 − µ3/2Φ ′
∗a0 − 2µ3/2Φ ′

∗a1 + µ(1
2 − 2Φ∗)a2 + O((|λµ| + µ5/2)(|a0| + |a1|) + µ2|a2|),

a1,x = a2 + λ(a0 + 2a1) + 2µ3/2Φ ′
∗a0 + 3µ3/2Φ ′

∗a1 − µ(1 − 3Φ∗)a2

+ O((|λµ| + µ5/2)(|a0| + |a1|) + µ2|a2|),
a2,x = a3 + µΦ∗(a1 + a3) + O(µ2(|a1| + |a3|)),
a3,x = −λ(a0 + 2a1) − 2µ3/2Φ ′

∗a0 − 3µ3/2Φ ′
∗a1 + µ(1 − 3Φ∗)a2

+ O((|λµ| + µ5/2)(|a0| + |a1|) + µ2|a2|), (6.2)

where we used that, by(2.3),

(n∗, v∗,eϕ∗ − 1)(x) = µΦ∗(
√
µx)(1,1,1) + O(µ2).

6.2. The Korteweg–de Vries scaling

The natural scaling, suggested from the dispersion relation, is

x = µ1/2ξ, λ = µ3/2Λ, a0 = µb0, a1 = b1, a2 = µ1/2b2, a3 = µb3.

The system(6.2)reads

b0,ξ = −Λb1 − 2Φ ′
∗b1 + (1

2 − 2Φ∗)b2 + O(µ), b1,ξ = b2 + O(µ), b2,ξ = b3 + Φ∗b1 + O(µ),

b3,ξ = −2Λb1 − 3Φ ′
∗b1 + (1 − 3Φ∗)b2 + O(µ). (6.3)

At µ = 0, we find the linearization about the Korteweg–de Vries soliton

b1,ξξξ = −2Λb1 + b1,ξ − 2(Φ∗b1)ξ

decoupled from the equation forb0.
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As a next step, we construct an Evans function, analytic inΛ and smooth inµ. First, we analyze the dispersion
relation to(6.3)at the asymptotic state,ξ = ±∞, andµ = 0. Settingbj (ξ) = bj0 eϑξ , we find

dsca(Λ, ϑ) = det



ϑ Λ −1

2 0

0 ϑ −1 0

0 0 ϑ −1

0 2Λ −1 ϑ


 = ϑ(ϑ3 − ϑ + 2Λ) = ϑdKdV(Λ, ϑ).

The four eigenvaluesϑj , satisfyingdsca(Λ, ϑj ) = 0, are

ϑ1 = 0, ϑ2 = 2Λ + O(Λ), ϑ3 = 1 + O(Λ), ϑ4 = −1 + O(Λ).

For sufficiently small ReΛ ≥ −δ0, they are separated by Reϑ4 < −η̃ < Reϑ1,2,3, for someη̃ ∈ (0,1). This
splitting persists for anyµ sufficiently small, so we can construct an Evans functionEsca(Λ;µ), analytic inΛ and
smooth inµ (seeSection 4).

Lemma 6.2. For any constantM > 0 there isδ > 0 such that forReΛ ≥ −δ and|Λ| < M

Esca(Λ; 0) = Λ2 + O(Λ3) as Λ → 0

and

Esca(Λ; 0) �= 0, if Λ �= 0.

Proof. We compute an Evans function for the scaled system(6.3)atµ = 0. A trivial solution of the equation forµ =
0 is given byb0(ξ) ≡ (1,0,0,0)T. The equations forb1, b2, b3 are independent ofb0 and consist of the linearization
about the Korteweg–de Vries soliton. They possess solutionsbs

KdV(ξ ;Λ), bu,1
KdV(ξ ;Λ), andbu,2

KdV(ξ ;Λ) such that

|bs
KdV(ξ ;Λ)| ≤ C eReϑ4ξ ≤ C e−η̃|ξ | for ξ > 0, |bu,1

KdV(ξ ;Λ)| ≤ C eReϑ3ξ ≤ C eη̃|ξ | for ξ < 0,

|bu,2
KdV(ξ ;Λ)| ≤ C eReϑ2ξ ≤ C eη̃|ξ | for ξ < 0. (6.4)

We defineEKdV(Λ) := det(bs
KdV(0;Λ), b

u,1
KdV(0;Λ), b

u,2
KdV(0;Λ)). From[25], we conclude thatEKdV(Λ) �= 0

for Λ �= 0 andEKdV(Λ) = Λ2 + O(Λ3), asΛ → 0. From the three solutionsbjKdV, we find solutions of the full
scaled system(6.3), atµ = 0, from simple integration of the equation forb0,ξ . For ReΛ > 0, we set

bs
0(ξ ;Λ) =

∫ ξ

∞
(−Λbs

1,KdV(ζ ) − 2Φ ′
∗(ζ )b

s
1,KdV(ζ ) − 2Φ∗(ζ )bs

2,KdV(ζ ))dζ + 1
2b

s
1,KdV(ξ),

b
u,1
0 (ξ ;Λ) =

∫ ξ

−∞
(−Λb

u,1
1,KdV(ζ ) − 2Φ ′

∗(ζ )b
u,1
1,KdV(ζ ) − 2Φ∗(ζ )bu,1

2,KdV(ζ ))dζ + 1
2b

u,1
1,KdV(ξ),

b
u,2
0 (ξ ;Λ) =

∫ ξ

−∞
(−Λb

u,2
1,KdV(ζ ) − 2Φ ′

∗(ζ )b
u,2
1,KdV(ζ ) − 2Φ∗(ζ )bu,2

2,KdV(ζ ))dζ + 1
2b

u,2
1,KdV(ξ).

Note that the integrals share the exponential decay estimates for the vectorsb
j

KdV (6.4). The vectorsbjsca =
(b

j

0(0), b
j

1,KdV(0), b
j

2,KdV(0), b
j

3,KdV(0))
T, with j = u,1 or j = u,2, together withb0 = (1,0,0,0) form a

basis of the unstable subspace atξ = 0 of the scaled system, andbs
sca = (bs

0(0), b
s
1,KdV(0), b

s
2,KdV(0), b

s
3,KdV(0))

T
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spans the stable subspace. An Evans function for the scaled system atµ = 0, for ReΛ > 0, is therefore found from

Esca(Λ; 0) := det
(
b0, bs

sca, b
u,1
sca, b

u,2
sca

)
= det




1 b
u,1
0 (0) b

u,2
0 (0) bs

0(0)

0 b
u,1
1,KdV(0) b

u,2
1,KdV(0) bs

1,KdV(0)

0 b
u,1
2,KdV(0) b

u,2
2,KdV(0) bs

2,KdV(0)

0 b
u,1
3,KdV(0) b

u,2
3,KdV(0) bs

3,KdV(0)


 = EKdV(Λ).

The analyticity inΛ shows thatEsca(Λ; 0) = EKdV(Λ), for ReΛ > −δ, which proves the lemma. �

Next, note thatEsca(0;µ) = E ′
sca(0;µ) = 0 even forµ ≥ 0, since an eigenvector and a generalized eigenfunction

are provided by the derivative of the solitary wave with respect to spacex and speedc, respectively. Continuity in
µ and analyticity inΛ guarantee that no additional zeroes besides the double zero at the origin may emerge for
smallµ. This proves the absence of point spectrum in regions|λ| ≤ Mµ3/2, Reλ ≥ −δµ3/2, besides the double
eigenvalue at the origin.

6.3. Justifying the Korteweg–de Vries scaling

We conclude the proof ofTheorem 2showing absence of eigenvalues in a small neighborhood of the origin. We
may therefore assume thatµ = δ|λ|2/3, with δ small. We may scale

ξ = |λ|1/3x, a0 = |λ|2/3b0, a1 = b1, a2 = |λ|1/3b2, a3 = |λ|2/3b3.

In scaled coordinates we find

b0,ξ = −ei argλb1 + O(|δ|), b1,ξ = b2 + O(|λ|2/3), b2,ξ = b3 + O(|δ|),

b3,ξ = −2 ei argλb1 + O(|δ| + |λ|2/3).
Settingδ = λ = 0, we find an autonomous linear equation with eigenvaluesν̃ satisfying

ν̃4 + 2 ei argλν̃ = 0,

i.e.:

ν̃0 = 0, ν̃3
2,3,4 = −2 ei argλ.

Again, for argλ �= π , the eigenvalues are well separated by a spectral gapν̃4 < η̃ < ν̃j , j = 1,2,3. The eigenspaces
Eu− andEs+ intersect trivially since the equation is autonomous. The intersection remains trivial when adding the
small perturbations inλ andν. Exploiting exponential convergence of the coefficients of the non-autonomous terms,
we may even continue the unstable subspace across the cut argλ = π in a robust way (see[13,17,14]). This implies,
that for allδ sufficiently small, we can exclude eigenvaluesλ in a neighborhood of the origin. This completes the
proof ofTheorems 1 and 2.

7. Finite amplitude instability of solitary waves

The plasmaequations (1.1)possess a Hamiltonian structure with Hamiltonian function

H(n, v, ϕ) =
∫
R

(
1

2
nv2 + nϕ − 1

2
ϕ2
x − eϕ

)
dx
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and (formal) degenerate symplectic structure

ω((n1, v1, ϕ1), (n2, v2, ϕ2)) =
∫
R

(v1∂
−1
x n2 + n1∂

−1
x v2)dx.

In this symplectic structure, spatial translations are generated by the impulse

J (n, v, ϕ) =
∫
R

nv.

Both,J andH are conserved quantities for the time evolution of the initial value problem to(1.1).
Solitary waves, as discussed in this article, are critical points of the conserved energy functional

H̃ (n, v, ϕ) = H(n + 1, v, ϕ) − cJ(n, v, ϕ)

(seeSection 2). Unfortunately, the Hamiltonian is strongly indefinite and does not give satisfactory information on
global existence or stability of solitary waves. For example, global existence for the initial value problem is not
known (local existence in time follows easily from the general results in[18]). However, the Hamiltonian structure
is useful in understanding stability at finite amplitude. Heuristically, the family of solitary waves is parameterized by
the value of the impulse functionalJ , attained at the solitary wave, or by the speed of the wavec. When the function
J (c) attains an extremum along the family of the solitary waves, we typically find a saddle-node bifurcation due to
an additional eigenvalue crossing the origin, which renders the solitary wave unstable to one side of the extremum.
This type of instability has also been observed in water-waves[23,24,31].

This formal reasoning can be extended and made rigorous.

Theorem 3. The solitary wave solutions of the plasma equation(1.1), described inSection 2, are unstable for
ccrit < c < c∗, if J ′(c) > 0 for c < ccrit andJ ′(c) < 0 for ccrit < c < c∗.

The criterion gives the first instability through a real eigenvalue crossing the imaginary axis. We do not know, if
an oscillatory instability renders the solitary wave unstable forc < ccrit.

This criterion for instability is frequently used in the literature to prove instability of solitary waves (see[25,7],
and the references therein). Similar criteria are known for shock waves in conservation laws[13] and pulse solutions
in dissipative systems[28].

Before the proof ofTheorem 3, we illustrate the consequences by means of some numerical computations. We
computedJ (c) numerically from

J (c) =
∫
R

n∗v∗ =
∫
R

(c −
√
c2 − 2ϕ∗(x))2√

c2 − 2ϕ∗(x)
dx = 2

∫ �max(c)

0

(c −
√
c2 − 2ϕ)2√

2(c2 − 2ϕ)(eϕ + c
√
c2 − 2ϕ − 1 − c2)

dϕ,

where for the substitution of variables in the second equality, we used the identity

1
2(∂xϕ)

2 − eϕ − c

√
c2 − 2ϕ + 1 + c2 ≡ 0,

which holds along the solitary wave. The maximum of the solitary waveϕmax is found from

eϕmax + c

√
c2 − 2ϕmax = 1 + c2.

According toTheorem 3, we found instability forccrit < c < cmax, all wave speeds beyond a critical valueccrit.
The graph ofJ (c) is shown inFig. 3.

We conclude this section with the proof ofTheorem 3.
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Fig. 3. To the left, the value of the impulseJ of the solitary wave as a function of the wave speedc is plotted. Solitary waves are unstable to the
right of the maximum. To the right, we show the shape of theϕ-component of the solitary wave at speedc = ccrit .

Proof (Theorem 3). We first construct an analytic Evans functionE(λ; c) for the linearization around the solitary
waveλB − L∗(c), as found in(4.1), for all Reλ > −δ andc < cmax. We then normalize it such thatE(λ; c) → 1
asλ → ∞. Sinceλ = 0 is at least algebraically double as an eigenvalue, if the second derivativeE ′′(0, c) of the
Evans function is negative for some value ofc, thenE(·; c) restricted to the positive real axis is negative for small
λ and positive for largeλ, which implies existence of an unstable eigenvalue on the positive real axis. For small
values ofc, we conclude fromTheorem 2thatE ′′(0, c) > 0.

The eigenvalueλ = 0 is at least algebraically double, with kernel given by the derivative of the solitary wave
∂x(n∗, v∗, ϕ∗, ϕ′∗)(·; c) and generalized eigenvector given by the derivative with respect toc, ∂c(n∗, v∗, ϕ∗, ϕ′∗)(·; c).
Since forλ = 0, the first two equations can be solved to given andv as functions ofϕ, the kernel can be at most
one-dimensional. As a consequence, the eigenvalueλ = 0 is double if and only if theB∂c(n∗, v∗, ϕ∗, ϕ′∗)T(·; c)
does not lie in the range ofL∗(c). By Fredholm’s alternative, we therefore compute the scalar product with the
kernel of theL2-adjoint ofL∗(c), which is given by(−v∗,−n∗ − φ′∗, φ′∗)T, and find

M = −
∫
R

(v∗∂cn∗ + n∗∂cv∗) = −∂c

∫
R

n∗v∗ = −J ′(c).

Clearly,M vanishes precisely whenE ′′(0, c) vanishes. Following[25,7], one can proceed to show thatME ′′(0, c) �=
0 for all values ofc. This proves the theorem. �
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