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Abstract

Front propagation into unstable states is often determined by the linearization, that is, propagation

speeds agree with predictions from the linearized equation at the unstable state. The leading edge

behavior is then a Gaussian tail propagating with the linear spreading speed. Fronts following this

leading edge are commonly referred to as pulled fronts, alluding to the idea that they are “pulled”

by this leading-edge Gaussian tail. We describe here a class of examples that exhibits how these

leading-order effects do not completely describe the dynamics in the wake of the front. In fact,

leading edge behavior predicts at most two possible invasion scenarios, associated with positive and

negative amplitudes of the Gaussian tail, but our examples exhibit three or more invasion fronts

with different states in the wake. The resulting invasion process therefore leaves behind a state that

is not solely determined by the leading edge, and thus not just pulled by the Gaussian tail.
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1 Introduction

Localized perturbations of unstable states in spatially extended systems both grow in time and spread

spatially. Generally speaking, instabilities in large systems lead to very high-dimensional unstable

manifolds and the evolution of the instability is difficult to predict. Initial perturbations that are

localized in space do however lead to distinct spatio-temporal dynamics, selecting a speed of propagation

of the instability and a state created in its wake. Curiously, in all “generic” examples that the authors

are aware of, there is in fact a dichotomy of a “positive” front and a “negative” front, even in systems

where there is no natural definition of positive and negative. As a consequence, only two different

states can be created in the wake of an invasion process. We shall explain in this introduction why it

is reasonable to conjecture that such a dichotomy holds quite generally for pulled fronts, that is, for

fronts whose dynamics are determined by the linear behavior in the leading edge, which in turn comes

with just two possible directions in a leading eigenspace. It is this determinacy of front dynamics by

the leading edge that in fact leads to the terminology of a pulled front, as opposed to pushed fronts

whose speed is determined by the state in the wake.

Our main results, Propositions 1.6 and 1.1, refute this conjecture of a more general dichotomy between

positive and negative fronts determined by the leading edge linear dynamics by exhibiting an open

(hence robust) class of systems that possess fronts whose speed is linearly determined, but which may
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Figure 1: Positive and negative fronts in the Nagumo equation (1.1) originating from a sign-changing initial condition at

the center of the domain: balanced nonlinearity a “ 1 (left two panels) and imbalanced nonlinearity a “ .2 (right two

panels). Space-time plots and snapshot at t “ 20 in both case. Note the slightly different speeds of propagation in the

imbalanced case due to a pushed front propagating to the left in the right two panels: the left front hits the boundary

before the right front (illustrated by the horizontal red dashed line). Invasion fronts leave behind a stationary (left) or

traveling (right) kink.

leave an arbitrary number of different states in their wake depending on initial conditions. The example

therefore demonstrates that dominant leading edge behavior, while responsible for the speed, does not

select the state in the wake: pulled fronts are not just pulled.

The spreading dichotomy in a scalar example. To be more precise, consider the simplest ex-

amples which arises in scalar equations of the type

ut “ uxx ` fpuq, x P R, u P R, (1.1)

with a trivial unstable equilibrium at the origin, fp0q “ 0, and f 1p0q ą 0, for instance fpuq “ up1 ´

uqp1 ` uq. Compactly supported, positive initial conditions u0pxq lead to solutions that converge to

u “ 1 locally uniformly, or, more precisely,

lim
tÑ8

upt, x ´ ctq “

#

1, |c| ă clint,

0, |c| ą clint,
clin “ 2

a

f 1p0q “ 2,

while negative, compactly supported initial conditions lead to convergence to ´1 when |c| ă clin. More

generally compactly supported initial conditions converge to either `1 or ´1 along rays x “ ct for

0 ă |c| ă clin. Regions where u “ `1 and where u “ ´1 in the wake of the front are separated by kinks

and anti-kinks upxq “ ˘ tanhpx{
?
2q [25].

For weakly asymmetric cubic nonlinearities, fpuq “ up1´uqpu´aq, with ´1 ă a ă ´1{2, an equivalent

result holds, that is, u converges to 1 or to a along rays with speeds |c| ă 2
?

´a, with the exception of

kinks now propagating with nonzero speed. Strong asymmetry ´1{2 ă a ă 0 leads to different speeds

of propagation: negative initial conditions spread with speed |c| “ 2
?

´a, positive initial conditions

spread faster with speed |c| “ p1 ´ 2aq{
?
2; see Figure 1.

A somewhat simpler description of the dynamics focuses on step-like initial data, u “ u0 for x ă 0,

u “ 0 for x ą 0. For u0 positive, solutions converge to a front leaving u “ 1 in its wake; for u0 negative,

the front leaves u “ ´a in its wake.

Dichotomies in systems. Somewhat curiously, this dichotomy between two possible modes of in-

vasion is observed in many systems of reaction-diffusion equations, and one may, in fact, even expect

such a dichotomy to hold more universally. We are thinking here for instance of systems

Ut “ DUxx ` F pUq, x P R, U P RN , D P RNˆN ą 0 (1.2)

2



Figure 2: Space-time plots of the u-component of pattern-forming fronts in FHN (1.3); parameters are a “ ´0.2, b “ γ “ 0

showing a pulled front with negative leading edge (left) and a pushed front with positive leading edge (right). Red lines

indicates theoretical linear spreading speeds. Note the faster, pushed, speed in the right panel. Also shown are profiles of

solution upt, xq at times t “ 150).

again with trivial unstable equilibrium at the origin F p0q “ 0, specF 1p0q X tz P C|Re z ą 0u ‰ 0. One

often finds spreading of step-like initial data at a distinct speed, in particular when the system obeys

a comparison principle and initial data is positive (or negative); see for instance [22] for cooperative

systems with a comparison principle and [8, 3, 2] for a dichotomy in the FitzHugh-Nagumo equation,

ut “ uxx ` up1 ´ uqpu ´ aq ´ v,

vt “ εpu ´ γv ` bq,

which does not possess a comparison principle; see Figure 2.

The linear origin of the dichotomy. In order to determine a speed and a state U´ selected in the

wake, one starts with the dynamics in the leading edge of the invasion process, which are governed by

the linearized equation

Ut “ DUxx ` F 1p0qU. (1.3)

Spreading speeds are determined by marginal pointwise stability, that is, the spreading speed is the

largest speed in which one observes pointwise instability; see [20] for background. Pointwise growth

and decay in a comoving frame are (generically) determined by the presence of pinched double roots

pλdr, νdrq on the imaginary axis, that is solutions to

dcpλ, νq “ 0, Bνdcpλ, νq “ 0, (1.4)

where

dpλ, νq “ det pDν2 ` F 1p0q ´ λq, dcpλ, νq “ dpλ ´ cν, νq,

together with the pinching condition which encodes that the two roots ν˘pλq which collide at pλdr, νdrq

originate from opposite directions as Reλ Ñ 8. More precisely, the pinching condition requires that

two continuous curves of roots ν “ ν˘pλpτqq, τ P r0,8q to dcpλ, νqq “ 0, ν˘pλq on a path λp0q “ λdr,

and Reλpτq increasing, Reλpτq Ñ 8 for τ Ñ 8, with ν˘pλp0qq “ νdr, satisfy

Re ν˘pλpτqq Ñ ˘8, for τ Ñ 8.

Generically pBλdcq ¨ pBννdcq ‰ 0 and there is a unique eigenvector Udr and generalized direction U1
dr

associated with the pointwise growth, that is, for λ “ λdr, ν “ νdr,

λUdr “ Dν2Udr ` cνUdr ` F 1p0qUdr,

λU1
dr “ Dν2U1

dr ` cνU1
dr ` F 1p0qU1

dr ` p2ν ` cqUdr.
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We focus on the situation where λdr “ 0 at c “ clin, and Re νdr ă 0, so that the behavior in the leading

edge of the instability is non-oscillatory. The vector Udr then gives the direction in RN of the instability,

complementary directions decay in the leading edge. This suggests that the linearized instability points

in precisely two directions, `Udr and ´Udr.

Invasion processes that are determined by these linear dynamics, since for instance nonlinear effects do

not enhance the speed of propagation, are commonly referred to as pulled and the associated fronts,

which propagate with the associated linear speed of propagation and are marginally stable precisely

due to the marginal stability in the leading edge that we just analyzed are referred to as pulled fronts.

The idea behind this terminology is that the dynamics in the leading edge “pull” the instability into

the unstable state. This is the linear origin of the conjecture of a dichotomy of fronts, determined by a

sign in the leading edge corresponding to “positive” perturbations `Udr and “negative” perturbations

´Udr, respectively.

A trivial (degenerate) counterexample. There are examples where such a simple dichotomy can

obviously not be true, since the leading edge does not possess a unique eigenvector Udr, that is, the

double root is degenerate as a solution to (1.4). A simple such example is the complex Ginzburg-Landau

equation,

At “ Axx ` A ´ A|A|2, (1.5)

which we write here in real variables as

ut “ uxx ` up1 ´ u2 ´ v2q,

vt “ vxx ` vp1 ´ u2 ´ v2q.
(1.6)

The linearization decouples into two identical copies of the exponentially growing diffusion equation

ut “ uxx ` u with spreading speed 2. In fact propagation at any complex angle is possible and equally

favored, that is, one can observe fronts Apt, xq “ eiφupx ´ 2tq for any φ P r0, 2πq, upξq P R, upξq Ñ ´1

for ξ Ñ ´8 and upξq Ñ 0 for ξ Ñ 8 [13, 6, 14].

The Ginzburg-Landau equation arises as a normal form or modulation equation for pattern-forming

systems near a Turing instability [11, 24], the simplest example being the Swift-Hohenberg equation,

where the instability is in fact oscillatory, leading to the rhythmic nucleation of patterns in the leading

edge. The modulation is however averaged out, leaving a double zero eigenvalue at the origin. From our

perspective here, this situation is degenerate and we wonder if perturbations that break the degeneracy

would result in the selection of precisely two selected fronts, a positive and negative front associated

with the eigenvector to the pinched double root system.

Counterexample: more than two fronts. To rule out examples such as the complex Ginzburg-

Landau equation (1.5) which are in some sense special, or degenerate, we insist that counter examples

should be robust. Our main result states that given a natural number N , there is in fact an open class

of systems that exhibit N selected fronts. To fix the setting, consider therefore

ut “ duuxx ` fupu, vq,

vt “ dvvxx ` fvpu, vq,
(1.7)

where we think of du{v P R2 and fu{v P C2
locpR2,Rq as parameters. To more easily state our result, we

fix the origin as an equilibrium and define F “ tfup0, 0q “ fvp0, 0q “ 0u Ă C2
locpR2,R2qu.
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Proposition 1.1 (Multiple fronts). For any N P N, there exists an open region Ω Ă R2 ˆ F , so that

for all pdu, dv, fu, fvq P Ω, (1.10) possesses N distinct selected, pulled fronts pu, vqf,jpx ´ clintq, j “

1, 2, ..., N ; see Definition 1.2, below for a precise characterization of selected, pulled fronts. Moreover,

limξÑ´8pu, vqf,jpξq “ pu, vq˚,j are all different, that is, the fronts in fact select different states in their

wake.

The proposition refers to the selected pulled front, a notion that we define next. We define what

we mean by selection, first, and then list specific criteria that guarantee selection. Those criteria are

commonly associated with the notion of a pulled front. Pushed fronts are characterized by a different

set of conditions, encoding marginal stability due to a localized mode at the front interface, which also

guarantees selection.

Definition 1.2 (Selected fronts). We say a front U˚ with speed c˚ is selected if there exists a normed

space X and for any ε ą 0 an open class Uε Ă X of initial conditions, containing functions with support

in R´, so that solutions U stay close to the family of translates, }Upt, ¨`c˚tq ´U˚p¨ ´hptqq}L8 ă ε, for

t sufficiently large, with a phase shift hptq “ optq as t Ñ 8.

The topology X typically enforces exponential and algebraic decay near x “ `8. The definition was

introduced in [5] to identify speeds and front profiles that are relevant for spreading from compactly

supported data. The shift hptq is necessary due to a slow drift along front profiles, where typically

hptq „ ´ log t; see [7, 21, 13, 18].

Selection in the sense of Definition 1.2 was established in [5] for scalar parabolic equations and in [1]

for parabolic systems relying on robust properties of front profiles that we shall make explicit, next.

Definition 1.3 (Marginal stability and pulled fronts). We say a front U˚px ´ clintq, U˚pξq Ñ 0 for

ξ Ñ `8, U˚pξq Ñ U´ for ξ Ñ ´8, with speed clin satisfies the pulled front selection criterion if the

linearization L is marginally stable in an exponentially weighted norm, with marginally stable spectrum

only due to a pinched double root at λ “ 0 in the leading edge, that is,

• U´ is linearly exponentially attracting;

• p0,´ηq with η ą 0 is a pinched double root for the linearization at U “ 0;

• specη pLq X tReλ ě 0u “ t0u, where the norm is }U}η “ }p1 ` eη¨qUp¨q}L8;

• the kernel of L in the norm does not contain functions with } ¨ }η ă 8, but U˚pξqeηξ{ξ Ñ a` ‰ 0.

A similar definition would characterize pushed fronts as marginally stable due to only a simple eigen-

value, rather than essential spectrum, at the origin. The results in [5, 1] then give the following.

Theorem 1.4 (Marginal stability ùñ selection). Fronts satisfying the selection criteria of Defini-

tion 1.3 are selected in the sense of Definition 1.2.

As a corollary, one also finds robustness [5, 1].

Theorem 1.5 (Robustness of marginal stability). Fronts satisfying the selection criteria of Defini-

tion 1.3 occur for open sets of reaction-diffusion equations.
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As a consequence, in order to prove Proposition 1.1, it is sufficient to exhibit an example that is

marginally stable in the sense of Definition 1.3. We give two such examples. In the first example,

which may appear somewhat artificial, we verify all assumptions analytically. In the second example,

we show how the first example underlies a more general mechanism for multiple front selection in a

more realistic setting.

Example 1: Multistability in scalar equations and multiple fronts. Our first example is a

simple scalar equation

ut “ uxx ` fpuq, (1.8)

with a carefully constructed f .

Proposition 1.6 (N fronts). For each N P N There exists an open class of nonlinearities f P

tC2
loc, fp0q “ 0u such that there exist N selected invasion fronts leaving behind states uj, j “ 1, . . . , N ,

which are all distinct u0 “ 0 ă u1 ă u2 ă . . . ă uN .

The states uj are all stable, f 1pujq ă 0, while f 1p0q ą 0 leading to a linear spreading speed clin “

2
a

f 1p0q. The nonlinearity is constructed as a perturbation of a nonlinearity which allows for monotone

fronts all traveling with speed clin, of the form

lim
xÑ`8

uℓ,˚pxq “ uℓ´1, lim
xÑ´8

uℓ,˚pxq “ uℓ, for ℓ “ 1, . . . , N.

The perturbation gives fronts connecting uℓ to 0 by concatenating fronts uℓ,˚,. . . ,u1,˚.

Situations of this type were more generally analyzed for instance in [15] and referred to as propagating

terraces. In out particular interest, we require all fronts, that is, all “steps” in the terrace to propagate

at the same speed.

Example 2: Skew-coupled staged invasion. We next turn to an example where the plateaus in

between fronts are unstable states. These turn out to be more common in applications, but occur in

systems of equations, only. We consider the skew-coupled reaction-diffusion system,

ut “ uxx ` u ´ u3,

vt “ vxx ` p2u2 ´ 1 ` µqpv ´ v3q.
(1.9)

Setting v “ 0, we find a simple invasion problem with unstable state u “ 0. There is a selected front

u˚pξq Ñ 1 for ξ Ñ ´8, u˚pξq Ñ 0 for ξ Ñ 8, where ξ “ x ´ 2t. There also is, by symmetry, a second

selected front ´u˚pξq. Restricted to the first equation, only, both these fronts are marginally stable

in the sense of Definition (1.3). The fronts are of course also solutions to the full system, since v “ 0

is simply invariant under the time dynamics. Linearizing at the front in the full equation however

yields an instability, so that as solutions to the full system, the fronts do not satisfy the conditions in

Definition 1.3. To see this, note that the linearization at the front in a comoving frame (here, denoted

by x again) is block-triangular, and simply inspect the linearization at the front in the v-equation,

vt “ vxx ` 2vx ` p2u2˚ ´ 1 ` µqv “: Lvv

Since u2˚ Ñ 1 for x Ñ ´8, we have that the essential spectrum of Lv contains the spectrum of

L´ “ Bxx `2Bx `1`µ, with maximal real part 1`µ. In an optimal exponential weight }v}L2
η
:“ }w}L2 ,
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with wpxq “ vpxqeηx, η “ 1 for maximal stability, the spectrum of L´ is p´8, µs, that is, increasing µ

past zero will trigger an instability in any exponentially weighted space.

Somewhat equivalently, we can fix u “ 1 (or u “ ´1), the state left in the wake of the u-invasion front

and consider the v-equation for this fixed u-value,

vt “ vxx ` p1 ` µqpv ´ v3q.

Here, v “ 0 is unstable and the instability spreads with speed c “ 2
?
1 ` µ, mediated by fronts

˘v˚px ´ ct; cq, v˚pξ; cq Ñ 1 for ξ Ñ ´8, v˚pξq Ñ 0 for ξ Ñ `8, ξ “ x ´ ct. In particular, the

instability spreads faster than the u-instability for µ ą 0, and slower for µ ă 0. It is then reasonable

to expect that for µ Á 0, there is a front consisting of a concatenation of the u˚, ramping up u from

0 to ˘1 followed by a v-front, ramping up v from 0 to ˘1. These fronts are in fact easily observable

numerically. We will show below that these four fronts, leaving pu, vq “ p˘1,˘1q with any combination

of signs possible in their wake, in fact exist and satisfy Definition 1.3.

Proposition 1.7. For µ Á 0, there exist four invasion fronts p˘u˚pξq,˘v˚pξqq leaving the states

pu, vq “ p˘1,˘1q in their wake. All four fronts are marginally stable in the sense of Definition 1.3.

We emphasize that the robustness result, Theorem 1.5, ensures that there are also 4 fronts for per-

turbations of the specific system (1.9) that include dependence on v in the u-equation or additive

u-dependent coupling terms in the v-equation, thus destroying the skew-coupling structure and the

invariance of subspaces tu “ 0u or tv “ 0u.

This example can easily be combined with the scalar example, replacing the kinetics in the u-equation,

to obtain any number of invasion fronts, thus establishing our main result, Proposition 1.1. We nonethe-

less continue exploring different aspects of non-uniqueness of selected fronts with the following examples,

which may be more prevalent in application.

Example 3: Forced complex Ginzburg-Landau. Our next example builds on the idea of sec-

ondary invasion fronts creating alternative states. The system we consider is a perturbation of (1.5)

that arises when studying pattern formation in spatially prepatterned systems, with prepatterning at

one half and one third of the wavelength selected by the instability; see [23, 12, 10]. Specifically, we

consider

At “ Axx ` A ´ A|A|2 ` αĀ ` βĀ2. (1.10)

Rotating A ÞÑ eiφA, we may assume α ą 0. While there are many interesting questions associated to

the relative complex phase of α and β, we focus here on β ą 0. This leads to the real variable equation

ut “ uxx ` p1 ` αqu ` βpu2 ´ v2q ´ upu2 ` v2q,

vt “ vxx ` p1 ´ αqv ´ 2βuv ´ vpu2 ` v2q.
(1.11)

For α ‰ 0, the linear spreading speed is 2
?
1 ` α. In the equation linearized at the origin, with α ą 0,

the u-component spreads at this speed while the v-component decays exponentially pointwise in the

frame moving with this speed.

The x-independent dynamics,

At “ A ´ A|A|2 ` αĀ ` βĀ2 P C, (1.12)
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Figure 3: Schematic phase portrait of (1.12) for α “ β “ 0 (left) and α, β Á 0 (right). Note that equilibria on the

invariant (almost) circle are alternatingly stable and unstable.
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Figure 4: Solution to (1.10) with β “ 0.5, α “ 0.02, at time T “ 1500, in a frame moving with the linear spreading speed

c˚ “ 2
?
1 ` α, and initial condition A “ eiℓπ{3χă0, ℓ “ 0, 1.2, 4 from left to right. All three fronts are selected and pulled.

possess 6 equilibria Aj „ e2πij{6, j “ 0, . . . , 5 near the circle |A| “ 1. The equilibria A0,2,4 are stable,

the other equilibria are saddles; see Figure 3. We claim that all three stable nontrivial states can be

selected in the wake of an invasion front. We only provide numerical evidence and heuristics based on

the conceptual gluing procedure in Example 1 and therefore state this fact as a result rather than a

proposition.

Result 1.8. For β P pβc, βpq, with βc ď 1`3α?
6

and βp “

b

1`a
2 , 0 ă α ă 1{3, there exist three pulled

fronts satisfying the assumptions of Definition 1.3, leaving the stable states Aj, j “ 0, 2, 4 in their wake.

The front leaving A0 in its wake is simply the positive real front. The other two fronts arise from a sec-

ondary invasion: a primary negative real front leaves A3 ă 0 in its wake. This state is unstable against

perturbations in the imaginary direction. Postivise and negative imaginary perturbations spread at a

speed faster than the primary speed for β ą 1`3α?
6
. The upper boundary β “

b

1`a
2 marks a transition

of the primary front to a pushed front.

All three fronts can be observed starting from step-function initial data with the state A “ e2πij{6,

j “ 0, 2, 4 in x ă 0. Figure 4 shows the observations in a comoving frame with speed c “ 2
?
1 ` α

confirming our predictions.
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Figure 5: A saddle-node of invasion fronts occurs in (1.13) with δ “ 10´3. The saddle occurs when the speed is varied

(left) for a value csnpµq ă 2 for µ “ 3.6 and csnpµq ą 2 for µ “ 3.8 (left); front profiles for u and v (center, µ “ 3.7) and

space-time plots of v (right) from direct simulations of the invasion process in a frame traveling with speed 2 illustrate

that, fixing c “ 2, we see a saddle-node of selected fronts: the positive fronts persists for a long time as the remainder of

the equilibrium that has in fact disappeared in a saddle-node (µ “ 3.66).

Example 4: Interface bifurcations in skew-coupled systems. Our last example shows non-

uniqueness of fronts leaving behind the same state, as opposed to all previous examples where different

fronts left different states in their wake. The multiplicity arises through eigenmodes that cause bifur-

cations localized in the front interface, without leading to pushed fronts. We consider

ut “ uxx ` u ´ u3, vt “ vxx ` µpu ´ u3qv ´ v3 ` δpu ´ u3q. (1.13)

Here, the u-equation clearly possesses front solutions connecting u “ 1 to u “ 0 for all speeds. The

v-equation, at δ “ 0, possesses the trivial solution v ” 0 with a linearization of the form Bxx`cBx`V pxq

with localized, positive potential V pxq “ µpu ´ u3q, where u is the front with speed c. It turns out

that for large speeds c, this localized instability is destroyed by the advection term, while for small

speeds c it is present and leads to a pitchfork bifurcation and the emergence of a localized pattern in

the v-equation, emerging near the interface of the u-front. This localized pattern can be either positive

or negative due to the reflection symmetry in the v-equation. The critical speed cbif depends on µ, and

coincides with the spreading speed for roughly µ “ 3.6. Adding a small perturbation δ ‰ 0 breaks the

pitchfork into two branches: for negative δ, a localized negative bump in the v-equation exists for all

values of c. A solution with a positive bump in c exists for c ă cbifpµq, where it undergoes a saddle-node

bifurcation. For δ small, there is a µbif „ 3.6 so that cbifpµbifq “ clin “ 2; see Fig. 5.

In summary, the example above allows for the emergence of a nonlinear front with speed clin through

a saddle-node bifurcation, which cannot be found through a homotopy in c starting with c " 1. We

will return to this example when discussing marginal stability, below.

2 Proof of Proposition 1.6 — N fronts in scalar PDE invasion

We construct f with the desired properties. We start with a function f such that fpℓq “ 0, ℓ “

0, 1, 2, 3, . . . N , and f 1p0q ą 0, f 1pℓq ă 0, ℓ “ 1, . . . , N . Let c “ clin “ 2
a

f 1p0q be the linear spreading
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Figure 6: Schematic picture of the equilibria uj (blue), heteroclinics in the unperturbed equation (green) and perturbed

chains of heteroclinics. The perturbed heteroclinics do not lie in the strong stable manifold of the origin and are monotone,

ux ă 0.

speed. The goal is to establish a phase portrait for the ODE

ux “ v, vx “ ´clinv ´ fpuq.

as depicted in Figure 6. We start with the unperturbed phase portrait, which shall exhibit heteroclinic

connections uℓ`1 Ñ uℓ for all ℓ “ 0, . . . , N ´ 1, shown in green in Fig. 6. We therefore modify f in

closed intervals Jℓ Ă pℓ´1, ℓq, ℓ “ 1, . . . , N so that there indeed exist monotone heteroclinic connections

uℓ,˚ connecting uℓ to uℓ´1, at speed clin. Moreover, we may assume that the heteroclinic u1,˚ is a non-

degenerate pulled front, that is, the heteroclinic connection is not contained in the (codimension-one)

strong stable manifold, consisting of trajectories with pure exponential asyptotics e´
?

f 1p0qx. We now

successively modify the nonlinearity in the intervals pℓ, ℓ ` 1q, ℓ “ 1, . . . , N ´ 1, starting with ℓ “ 1.

We change the nonlinearity in such a way that the heteroclinic connection breaks and the unstable

manifold of u2 intersects the line pu1, 0q in u´ux-phase space at some small negative p´ε, 0q. Following

this manifold further, it stays close to the heteroclinic connection from u1 to 0 and therefore is also

contained in the stable manifold of the origin, excluding the strong stable manifold. In other words,

upon perturbation, the unstable manifold of u2 just misses the stable manifold of u1. Continuity of

the transition near the equilibrium u1, which can for instance be seen in coordinates that linearize

the dynamics near u1 using the Grobman-Hartman theorem, then gives that the unstable manifold

of u2 is close to the unstable manifold of u1 when it intersects a line u “ u1 ´ ε, just to the left of

u1. Closeness to the unstable manifold of u1 when entering a neighborhood of the origin then also

guarantees that the unstable manifold of u2 also misses the strong stable manifold of the origin with

pure exponential asymptotics. This construction therefore gives a pulled invasion front leaving behind

u2 in the wake, in addition to the front leaving behind u1. We now ignore the front leaving behind

u1 and continue our construction concatenating the front connecting u3 and u2 with the newly found

invasion front connecting u2 and the origin, repeating exactly the above construction. Again, modifying

the nonlinearity in J3, we can find a front connecting u3 and 0 directly. Inductively, we can thus find

N pulled invasion fronts.

3 Proof of Proposition 1.7 — four fronts in staged invasion

A short proof based on comparison principles. We consider the v-equation in a frame moving

with speed 2 with µ ą 0 and u “ u˚ fixed as the invasion front in the u-equation with, say, u˚p0q “ 1{2,

vt “ vxx ` 2vx ` p2u2˚ ´ 1 ` µqpv ´ v3q. (3.1)
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We construct sub and super-solutions. Fix µ ą 0 and choose any 0 ă ε ă µ. Then there exists a x0 ! ´1

such that 2u˚px0q2 ´ 1 ` µ ą 1 ` ε. Monotonicity of u˚ then implies that 2u˚pξq2 ´ 1 ` µ ą 1 ` ε for

all x ă x0. Next, by essentially replacing the linear term in (3.1) by 1, let ϕpξ, cq denote the invasion

front with speed c which satisfies the equation

0 “ ϕ2 ` cϕ1 ` ϕ ´ ϕ3,

unique up to translation in ξ. When c “ 2 ´ ε ă 2 this front is oscillatory. To define ϕpξ, cq uniquely

we select the translate of the front that satisfies

ϕpx0, cq “ 0, ϕpξ, cq ą 0 for all ξ ă x0.

We then define the candidate sub-solution

vϵpx, tq “

#

ϕpx ` εt, 2 ´ εq x ` εt ď x0
0 x ` εt ą x0

,

Define the operator

Npvq “ vt ´ vxx ´ 2vx ´ p2u2˚ ´ 1 ` µqpv ´ v3q.

Then for x ` εt ă x0

N pvεpx, tqq “ pϕ ´ ϕ3q
`

1 ´ p2u2˚ ´ 1 ` µq
˘

ă ´εpϕ ´ ϕ3q ă 0. (3.2)

This establishes that vεpx, tq is a sub-solution when x`εt ă x0 and, by extension, for any px, tq P RˆR`.

For the super-solution we first consider the linear equation

wt “ wxx ` 2wx.

For any ν ă 0, this equation has solutions of the form eλt`νx provided that

λ “ ν2 ` 2ν.

These exponential solutions propagate with speed

cenvpνq “ ´ν ´ 2.

Take ν “ ´2 ´ ε so that cenvp´2 ´ εq “ ε and the linear solution propagates to the right (in the

co-moving frame adapted to the u front).

Define

vεpt, xq “

#

1 x ď εt ` 1
2`ε lnpMq

Meνpx´cenvtq x ą εt ` 1
2`ε lnpMq

,

for a constant M to be defined below. We then compute

N
´

Meνpx´cenvtq
¯

“ p1 ´ µ ´ 2u2˚q

ˆ

Meνpx´cenvtq ´

´

Meνpx´cenvtq
¯3

˙

Since u˚ Ñ 0 as x Ñ 8 we can find an x˚ such that 1´µ´2u2˚ ą 0 for all x ą x˚. Finally, by taking M

sufficiently large so that x˚ ă 1
2`ε lnpMq we obtain that vε is a super-solution for any px, tq P R ˆ R`.
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For any small negative speed, we therefore have the existence of a family of compactly supported sub-

solutions for (3.1). Similarly, for any small positive speed we also have the existence of a super-solution

for (3.1). Standard compactness arguments then give the existence of a stationary solution with limits

´1 at ξ “ ´8 and 0 at ξ “ `8. The construction also gives 0 ă v˚ ă 1. We next show v˚ is

monotonically decreasing. For this, note that for a minimum at x´, 2u˚px´q ´ 1 ` µ ď 0 and for a

maximum x`, 2u˚px`q ´ 1 ` µ ě 0. Since u˚ is strictly decreasing, x` ď x´, a contradiction given

that v˚ is decreasing near ˘8.

Decay of this bounded solution in the v-equation is easily seen to be e´p1`
?
µqx, hence faster than the

decay in the u-component, which establishes all conditions of Definition 1.3 provided we can show

absence of unstable point spectrum in the linearization of the v-equation at the solution,

vt “ vxx ` 2vx ` p2u2˚ ´ 1 ` µqp1 ´ v2˚qv “ Lvv.

For this, we differentiate (3.1) at v˚ with respect to x and find

Lvv˚,x “ h, hpxq “ ´4u˚,xu˚pv˚ ´ v3˚q ą 0.

Suppose now that Lvv̄ “ λv̄ for some λ ą 0. Choosing the first eigenvalue, we may also assume that

v̄pxq ą 0 for all x. Inspecting decay at infinity, we see that v̄pxq decays faster than ´v˚,x so that there

is a ρ ą 0 for which

ρv̄pxq ď ´v˚,xpxq, for all x, and ρv̄px0q “ ´v˚,xpx0q, for some x0. (3.3)

At x0 we then find, using (3.3), that ρv̄px0qx “ ´v˚,xxpxq,

Lp´v˚,x ´ ρv̄qpx0q “ ´v˚,xxxpx0q ´ v̄xxpx0q “ ´hpx0q ´ λρv̄px0q.

Using again (3.3) we find ´v˚,xxx ´ v̄xx ě 0 but ´h ´ λv̄ ă 0, a contradiction.

This shows the absence of unstable point spectrum and concludes the verification of all assumptions

in Definition 1.3.

A conceptual existence proof. The fronts can also be obtained using a dynamical-systems type

heteroclinic gluing argument. Such arguments were pursued in more difficult situations. In [17], an

oscillatory invasion front follows a parameter step (rather than the primary front u˚, here), while in

[19] the secondary front is locked to the primary front due to a resonance pole in the linearization

rather than the pinched double root.

Figure 7 illustrates the heteroclinic bifurcation associated with the bifurcation at µ “ 0. One glues two

heteroclinic orbits: the first heteroclinic Q1 connects P´ u “ v “ 1, ux “ vx “ 0 to P0, u “ 1, v “ 0,

ux “ vx “ 0, within the invariant subspace u “ 1, ux “ 0. The second heteroclinic connects P0,

u “ 1, v “ 0, ux “ vx “ 0, to P`, u “ 0, v “ 0, ux “ vx “ 0, within the invariant plane v “ vx “ 0.

In order to find connections directly between P´ and P`, one tracks the unstable manifold of P´ past

a neighborhood of P0 and matches with the stable manifold of P`. Choosing polar coordinates in the

v-vx-plane, the double eigenvalue of the linearization at P0 splitting into two complex eigenvalues as µ

increases past 0 in the v-vx plane corresponds to a saddle-node on the invariant circle representing the

equilibrium. The unstable manifold of P´ is exponentially close to the center-unstable manifold of the
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saddle-node equilibrium on the invariant circle and intersects the stable manifold of P` transversely.

Increasing µ past 0, this transverse intersection persists and now corresponds to an actual heteroclinic

orbit. In fact, the picture also shows a family of heteroclinic orbits bifurcating at µ “ 0, indexed by the

number of turns around the circle P0. The profiles exhibit an increasing number of sign changes and

are expected to have an increasing number of unstable eigenvalues. We also refer to [4] for background

on the desingularization via polar coordinates and a similar analysis, used there to study fronts in

bounded domains.

Remark 3.1 (Distance scaling). From the conceptual analysis, one finds immediately that the length

of the plateau is determined by the passage time near a saddle-node bifurcation. In a scaled normal

form, this saddle-node bifurcation is described as ξ1 “ µ ` ξ2, and the time to move from ´δ to δ in

this equations scales with the inverse squareroot of µ. The distance between fronts therefore scales as

∆x „
1

?
∆µ

. (3.4)

This is in stark contrast to the front locking induced by a resonance pole, studied in detail in [19], where

we found much smaller separation distances,

∆x „ logp∆µq. (3.5)

Conceptual stability. General results on heteroclinic gluing give that the linearization at the glued

profile is the union of essential spectra at P´ and P`, eigenvalues at Q1 and Q2, and clusters of

eigenvalues accumulating at the absolute spectrum of P0 [26] . As a consequence, unstable eigenvalues

can only bifurcate from the origin. Excluding these eigenvalues is somewhat subtle. In fact, the

comparison arguments can be adapted to construct fronts with sign changes and establish the presence

of unstable eigenvalues in the linearization near these non-monotone fronts. The fact that the first

bifurcating front is in fact stable has however been shown in the more complicated case of an oscillatory

secondary front in [16]. We do not attempt to summarize the construction here.

4 Analysis of Ginzburg-Landau with resonant forcing and Result 1.8

We start by considering real fronts and their stability. We then discuss secondary invasion front and

evoke the picture from our skew-coupled toy example, Figure 7.

ut “ uxx ` p1 ` αqu ` βpu2 ´ v2q ´ upu2 ` v2q,

vt “ vxx ` p1 ´ αqv ` 2βuv ´ vpu2 ` v2q,
(4.1)

Real fronts. In the real subsystem, we find the equation

ut “ uxx ` p1 ` αqu ` βu2 ´ u3, (4.2)

with equilibria

u “ 0, u˘ “
1

2

´

β ˘
a

4 ` 4α ` β2
¯

.

Fronts u˘
˚ connecting u˘ to u “ 0 at the linear spreading speed 2

?
1 ` α exist and are stable (that is,

they are pulled) when u`{u´ ą ´2, which gives β ă
a

p1 ` aq{2. This can be readily seen by finding

explicit fronts where ux is a quadratic function of u and using monotonicity in c.
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Figure 7: Top: Phase portrait in the four-dimensional space of pu, ux, v, vxq here shown schematically, with the hetero-

clinics Q1 and Q2. Middle: A simplified picture, replacing the fixed orbit Q2 simply by a scalar heteroclinic on the line,

showing now in more detail the dynamics in the v-vx directions. One sees how W u
´ “almost” intersects W s

` transversely.

Upon increasing µ, the double eigenvalue at P0 becomes complex and W u
´ winds around the v “ vx “ 0 axis. Bottom:

This is made more visual in polar coordinates, where the v-vx axis is replaced by an invariant circle after choosing polar

coordinates in this direction. The unstable manifold W u
´ is exponentially close to the center-unstable manifold W cu

0 of the

saddle-node equilibrium on the invariant circle, which in turn intersects W s
` transversely. For µ small, this intersection

translates into an intersection of W u
´ and W`s since trajectories in W u

´, fibered over the dynamics in W cu
0 , are no longer

blocked by the invariant strong unstable manifold of the saddle-node equilibrium.
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Imaginary stability of real fronts. Linearizing the full equation (1.11) at u˘
˚ , we find the linearized

operator

L˘

˜

u

v

¸

“

˜

L˘
u u

L˘
v v

¸

“

˜

uxx ` clinux ` p1 ` αqu ` 2βu˘
˚ u ´ 3pu˘

˚ q2u

vxx ` clinvx ` p1 ´ αqv ´ 2βu˘
˚ v ´ pu˘

˚ q2v

¸

, (4.3)

which decouples, with L˘
u being simply the linearization at the real front, thus stable in an exponentially

weighted norm. The linearization in the imaginary direction, L˘
v can exhibit instability. We analyze

the spectrum of L˘
v in three steps:

Leading edge. In the leading edge, we can find the essential spectrum by setting u˚ “ 0. In an

exponential weight vpxqeηx, η “
?
1 ` α, determined by the real operator, the essential spectrum can

be found after Fourier transform with Fourier exponent k “ k̃ ` iη, k̃ P R. A quick calculation finds

that the essential spectrum is stable for α ą 0 with a maximum real part at ´2α, for both L˘
v .

Wake. In the wake we set u˚ “ u˘
˚ and find the associated dispersion relation

dv˘pλ, νq “ ν2 ` 2
?
1 ` αν ` 1 ´ α ´ 2βu˘

˚ ´ pu˘
˚ q2 ´ λ “ 0,

Without exponential weights, stability is determined by setting ν “ 0. One readily finds that, at u`
˚ ,

λ ď ´2α ´ 3
2βpβ `

a

4 ` 4α ` β2q ă 0, hence stability. At u´
˚ , we find a maximal real part as

λ “ ´2α `
3

2
βp´β `

a

4 ` 4α ` β2q,

which is unstable for β ą 2α?
9`3α

. Similarly, in the optimal exponential weight where with ν “ ´
?
1 ` α,

we find instability when β ą βlin “ 1`3α?
6
.

Intermediate regime. We now consider eigenvalues in the optimal exponential weight η “ ´
?
1 ` α,

which leads to studying the operator

L̃˘
v v “ vxx ´ 2αv ´ 2βu˘

˚ v ´ pu˘
˚ q2v.

Clearly, L̃`
v is a self-adjoint Schrödinger operator and negative semi-definite since u`

˚ ą 0. It turns out

that L̃´ may have positive eigenvalues. We computed the spectrum at the critical value β “ βlin “ 1`3α?
6
,

in which case the essential spectrum touches the origin; see Fig. 8. For α ă αc „ 0.15, L̃´
v possesses

a positive eigenvalue at β “ βlin. It is negative semi-definite for β ď βc ă βlin. Setting βc “ βlin for

α ą αc then gives instability in the regime described in Result 1.8.

Secondary fronts. It appears difficult to establish existence and stability of pulled secondary fronts,

that is, fronts invading A3 and leaving behind A2 (or A4 for the complex conjugate front). Neverthe-

less, these fronts are easy to observe in direct simulations and can be computed numerically, both at

the predicted linear invasion speed. We investigated these fronts numerically, in direct simulations.

Sweeping the parameter plane with 0 ă α ă 1{3 and βp{2 ă β ă βp, we found invasion of A3 by A2 at

the linear spreading speed. In particular, we did not find pushed fronts in this invasion process.

Gluing. We also studied the glued profiles numerically; see Figure 9. We found fronts where A2 and,

by symmetry, A4 invade the origin for all β P pβc, βpq, the range described in Result 1.8. We also found

that the fronts indeed disappear upon decreasing β past βc by splitting into two fronts, with first A3

15



0 0.1 0.2 0.3

0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3

0

0.2

0.4

0.6

0.8

Figure 8: Left: Spectra of L̃´
v at β “ 1`3α?

6
, computed numerically with numerically computed profile u˚ as the critical

front at speed 2
?
1 ` α in the u-equation. For α ą αc „ 0.15, there are no unstable eigenvalues so that increasing β

past this threshold produces an instability caused by the essential spectrum only. For α ă αc, the instability occurs at a

value β “ βc ă 1`3α?
6

due to point spectrum and leads to an alternative form of locking between primary and secondary

invasion, discussed in [19]. Right: Critical value of β for which the linearization L̃´
v is neutrally stable. For values above

this critical β, there exist locked fronts. The blue curve shows the prediction from the essential spectrum in the wake, the

green curve shows the earlier locking due to an eigenvalue.
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Figure 9: Left: Location of secondary front relative to primary front, measured by the difference of locations xi ´ xr

where ImApxiq “ 0.1 and ReApxrq “ 0.1. The distance increases in α. One also notices a qualitative change between

front splitting induced by a resonance pole, α ă αc, and front splitting induced by essential spectrum, α ą αc, αc „ 0.15;

see ; see (3.4) and (3.5). The former leads to distances growing with logpβ ´ βc and the latter to distances growing with

pβ ´ βcq
´1{2. Center and Right: Sample profiles (top row) and distance as a function of β for fixed α (bottom row),

demonstrating the log-scaling below αc and the inverse square root scaling above αc.
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invading the origin, followed by a slower invasion of A3 by A2{4. The distance between the two fronts

diverges as β Œ βc. Figure 9 shows the distance and front profiles at βc ` 0.01.

We also note that one expects a long-range interaction between primary and secondary front for β ă βc,

α ă α ă c: the resonance pole in the linearization of the primary front leads to an accelerated speed

of the secondary front although the distance increases linearly in time; see [19].

5 Discussion

We established rigorously that reaction-diffusion equations can possess more than two selected pulled

fronts. This contradicts the simple intuition that pulled fronts are selected by their Gaussian tail in

the leading edge, which is either positive or negative in the direction of the eigenvector. We construct

examples in scalar reaction-diffusion equations and in a system of skew-coupled equations. In both

cases, the fronts arise through the concatenation of a primary and a secondary front. In the first

example, the intermediate state is stable, in the latter it is unstable. We also study, partly numerically,

an example that arises as a modulation equation near a Turing instability in a spatially periodic

medium, where multiple fronts again arise through concatenation, here at an unstable state. Our

analysis emphasizes the robustness of the phenomena seen here, showing in particular that the higher

multiplicity is not due to a degeneracy, as for instance the skew-coupling, or a degenerate leading

edge, as in the complex Ginzburg-Landau equation. We therefore rely on the conceptual approach

towards front selection based on marginal stability initiated for linear equations in [20] and for nonlinear

equations in [5, 1]: we show existence and stability and conclude selection and robustness using the

conceptual results in [5, 1].

In our example, we find pulled fronts but we suspect that the analysis can readily be adapted to find

pushed fronts, with similar multiplicities. In fact, when the strength β of quadratic terms is larger, one

expects pushed fronts.

In the pattern-formation example, it would be interesting to derive a more comprehensive picture of

the existence and bifurcation of pulled and pushed fronts in the parameters α, β, possibly describing in

more detail the boundaries of the basin of attraction. We emphasize however that such basin boundaries

are poorly understood even in the example of the Nagumo equation (1.1).

Returning to the terminology of a pulled front, one may wonder how then exactly the selection of a

state in the wake occurs. In an exponentially weighted space, the leading edge dynamics are simply

diffusive, induced by the expansion of the dispersion relation near the double root λ „ deffν
2. From

this perspective, the leading order dynamics do not exhibit directional transport! This is different for

fronts with speeds c ą clin, for which the dispersion relation starts with λ „ pc ´ clinqν ` deffν
2 in

an appropriately weighted space, and which therefore possess directed transport with group velocity

cg “ c ´ clin from the leading edge to the wake.

For the critical front at speed clin, selection is established from steep initial conditions by matching

a Gaussian profile in the leading edge with the nonlinear front in the wake. Errors in the matching

problem, such as a mismatch from gluing tail and wake from different fronts, are controlled using the

linearization, and may, in the absence of transport lead to corrections in either the leading edge or the

tail. We did in fact observe both possibilities as shown in Figure 10.

17



-37.5 18.7 75

1300

650

370

0

-37.5 18.7 75

1300

650

370

0

Figure 10: Simulation of (1.10) with α “ 0.02 and β “ 0.7, initial conditions A0pxq “ e4πi{3 for x ă 0, zero elsewhere,

in x P r´150, 75s (only part of the domain is shown). After time t “ 370, the solution is replaced by A “ 1 in x ă L0,

unchanged in x ą L0, with L0 “ ´1.82 (left) and L0 “ ´2.3 (right). Shown is a plot of logp|ReA|q, the time when

the solution is altered, and in magenta a space-time curve where ReA changes sign. The sign change from the wake

propagates to the leading edge when a large enough part of the solution is altered (left) and recedes to recover the original

state in the wake when the change is too far in the wake (right).

In a different direction, one could wonder about oscillatory fronts, when linear marginal stability is

caused by oscillations in the leading edge, dcpiω˚, ν˚q “ 0, Bνpiω˚, ν˚q “ 0. These situations arise

in particular near pattern-forming instabilities or in phase-separation models [9, 27]. In fact, the

Ginzburg-Landau equation (1.5) is the modulation equation near such an instability and the double

double root at the origin corresponds to two double roots at ˘iω˚ in a pattern-forming equation

such as a reaction-diffusion system near a Turing instability. Other examples include in particular

the Ginzburg-Landau equation with complex coefficients. From our perspective, the linear equation

possesses a unique complex eigenvector, which one might expect to be reflected in a uniqueness of

selected invasion fronts, of course up to time shifts, which correspond to complex phase rotation of the

eigenvector, and to complex phase rotation of fronts in Ginzburg-Landau models. We suspect that the

constructions here can be adapted to give examples of non-uniqueness of selected oscillatory invasion

fronts as well.

References

[1] M. Avery. Front selection in reaction-diffusion systems via diffusive normal forms. Arch. Ration.

Mech. Anal., 248(2):Paper No. 16, 63, 2024.

[2] M. Avery, P. Carter, and B. de Rijk. Selection of pushed pattern-forming fronts in the Fitz-Hugh

Nagumo system. In preparation.

[3] M. Avery, P. Carter, B. de Rijk, and A. Scheel. Stability of coherent pattern formation through

invasion in the FitzHugh-Nagumo system, 2023.

[4] M. Avery, C. Dedina, A. Smith, and A. Scheel. Instability in large bounded domains—branched

versus unbranched resonances. Nonlinearity, 34(11):7916–7937, 2021.

[5] M. Avery and A. Scheel. Universal selection of pulled fronts. Comm. Amer. Math. Soc., 2:172–231,

2022.

18



[6] M. Avery and A. Scheel. Sharp decay rates for localized perturbations to the critical front in the

Ginzburg-Landau equation. J. Dynam. Differential Equations, 36:S287–S322, 2024.

[7] M. Bramson. Convergence of solutions of the Kolmogorov equation to traveling waves. Mem. Amer.

Math. Soc. American Mathematical Society, 1983.

[8] P. Carter and A. Scheel. Wave train selection by invasion fronts in the FitzHugh-Nagumo equation.

Nonlinearity, 31(12):5536–5572, 2018.

[9] P. Collet and J.-P. Eckmann. Instabilities and fronts in extended systems. Princeton Series in

Physics. Princeton University Press, Princeton, NJ, 1990.

[10] P. Coullet. Commensurate-incommensurate transition in nonequilibrium systems. Phys. Rev.

Lett., 56:724–727, Feb 1986.

[11] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev. Mod. Phys.,

65:851–1112, Jul 1993.

[12] M. Dolnik, I. Berenstein, A. M. Zhabotinsky, and I. R. Epstein. Spatial periodic forcing of turing

structures. Phys. Rev. Lett., 87:238301, Nov 2001.

[13] U. Ebert, W. Spruijt, and W. van Saarloos. Pattern forming pulled fronts: bounds and universal

convergence. Physica D: Nonlinear Phenomena, 199(1):13–32, 2004. Trends in Pattern Formation:

Stability , Control and Fluctuations.

[14] J.-P. Eckmann and C. E. Wayne. The nonlinear stability of front solutions for parabolic partial

differential equations. Comm. Math. Phys., 161(2):323–334, 1994.

[15] T. Giletti and H. Matano. Existence and uniqueness of propagating terraces. Commun. Contemp.

Math., 22(6):1950055, 38, 2020.

[16] R. Goh and B. de Rijk. Spectral stability of pattern-forming fronts in the complex Ginzburg-

Landau equation with a quenching mechanism. Nonlinearity, 35(1):170–244, 2022.

[17] R. Goh and A. Scheel. Triggered fronts in the complex Ginzburg Landau equation. J. Nonlinear

Sci., 24(1):117–144, 2014.

[18] F. Hamel, J. Nolen, J.-M. Roquejoffre, and L. Ryzhik. A short proof of the logarithmic Bramson

correction in Fisher-KPP equations. Netw. Heterog. Media, 8(1):275–289, 2013.

[19] M. Holzer and A. Scheel. Accelerated fronts in a two-stage invasion process. SIAM J. Math. Anal.,

46(1):397–427, 2014.

[20] M. Holzer and A. Scheel. Criteria for pointwise growth and their role in invasion processes. J.

Nonlinear Sci., 24(1):661–709, 2014.

[21] K.-S. Lau. On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov. J.

Differential Equations, 59(1):44–70, 1985.

[22] M. A. Lewis, B. Li, and H. F. Weinberger. Spreading speed and linear determinacy for two-species

competition models. J. Math. Biol., 45(3):219–233, 2002.

19



[23] M. Lowe, J. P. Gollub, and T. C. Lubensky. Commensurate and incommensurate structures in a

nonequilibrium system. Phys. Rev. Lett., 51:786–789, Aug 1983.

[24] A. Mielke. The Ginzburg-Landau equation in its role as a modulation equation. In Handbook of

dynamical systems, Vol. 2, pages 759–834. North-Holland, Amsterdam, 2002.

[25] A. Pauthier and P. Polácik. Large-time behavior of solutions of parabolic equations on the real line

with convergent initial data III: unstable limit at infinity. Partial Differ. Equ. Appl., 3(4):Paper

No. 48, 27, 2022.

[26] B. Sandstede and A. Scheel. Gluing unstable fronts and backs together can produce stable pulses.

Nonlinearity, 13(5):1465–1482, 2000.

[27] A. Scheel. Spinodal decomposition and coarsening fronts in the Cahn-Hilliard equation. J. Dynam.

Differential Equations, 29(2):431–464, 2017.

20


	Introduction
	Proof of Proposition 1.6 — N fronts in scalar PDE invasion
	Proof of Proposition 1.7 — four fronts in staged invasion
	Analysis of Ginzburg-Landau with resonant forcing and Result 1.8
	Discussion

