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1 IntrodutionIn this artile, semilinear ellipti equationsuxx +�yu+ g(y; u; ux;ryu) = 0 (x; y) 2 IR�
; (1:1)in in�nite ylinders IR�
 are investigated. Here, 
 is an open and bounded subset of IRn,and boundary onditions on IR��
 should be added. Solitary waves are loalized solutionsu(x; y) of (1.1) satisfying limjxj!1u(x; y) = 0uniformly for y 2 
. In appliations, they frequently arise as travelling waves u(x � t; y)for paraboli equationsut = uxx +�yu+ g(y; u; ux;ryu)� ux (x; y) 2 IR� 
: (1:2)As suh, their bifurations to periodi waves or N -solitary waves resembling N opies ofa primary solitary wave are interesting issues. Of importane is also the question of theirstability with respet to the paraboli equation (1.2). Another aspet is the numerialomputation of solitary-wave solutions sine it is in general impossible to obtain expliitexpressions. Typial appliations inlude problems in strutural mehanis like rods andstruts, hemial kinetis, ombustion, and nerve impulses, see, for instane, [30℄ and theomprehensive bibliography there. Existene of solitary waves or fronts has been proven formany equations of the form (1.1), see again [30, Setion 1.6.6℄ for referenes. Thus, in thispaper, we will assume that a solitary wave of (1.1) exists, and shall study its bifurations.In order to investigate ellipti equations in ylinders IR � 
, it has proved very useful toonsider them a dynamial system in the unbounded variable x. Properties like dissipativ-ity, reversibility, Hamiltonian struture, and zero numbers have been exploited in order todesribe bounded solutions of suh equations, see, for example, [4, 8, 16, 19, 21, 28℄. Themain tehnique has been redution to loal enter or global essential manifolds ontainingsome or all bounded solutions of (1.1). For instane, Mielke derived bifuration equationslose to stationary [19℄ and periodi [7, Chapter 4℄ solutions on a enter manifold.However, the use of geometri redutions like loal enter or global essential manifoldsis limited. Finite-dimensional essential or inertial manifolds are only C1 smooth. Also,1



the redution requires spetral gaps and works only for partiular nonlinearities, see [20,21℄. On the other hand, �nite-dimensional smooth loal enter manifolds exist only inthe neighborhood of small solutions. Using analytial methods like Lyapunov-Shmidtredution near solutions of (1.1) with large amplitudes resolves some of these problems.Therefore, rather than studying the set of all bounded solutions of (1.1), we shall onlyinvestigate solutions lose to solitary waves hoping to get a more detailed piture of thenearby dynamis. Interpreting the variable x as time, we write (1.1) as the �rst ordersystem 0B� uxvx 1CA = 0B� 0 id��y 0 1CA0B� uv 1CA�0B� 0g(y; u; v;ryu) 1CA : (1:3)Here, for eah �xed x 2 IR, (u; v)(x) is a funtion of y 2 
 ontained in some fun-tion spae depending on the boundary onditions on �
. A solitary wave of (1.1) or-responds to a homolini orbit of (1.3), that is to a solution (q(x); qx(x)) of (1.3) withlimjxj!1(q(x); qx(x))! 0 in the underlying funtion spae.There are two di�erent tehniques available for investigating homolini solutions. The�rst approah is to onsider Poinar�e maps. However, (1.3) is still ill-posed and will notgenerate a semiow. Thus it is not even possible to de�ne a Poinar�e map. The seond ap-proah, whih is adopted in this artile, is entirely analyti and based on Lyapunov-Shmidtredutions. The heart of this tehnique are exponential dihotomies for the linearization of(1.3) 0B� uxvx 1CA = 0B� 0 id��y �Dug �Dryugry Duxg 1CA0B� uv 1CA (1:4)along the solitary wave (q(x); qx(x)). Here, derivatives of g are evaluated at (y; q; qx;ryq).Exponential dihotomies are projetions onto x-dependent stable and unstable subspaes,say Es(x) and Eu(x), suh that solutions (u; v)(x) of (1.4) assoiated with initial values(u; v)(x0) in the stable spae Es(x0) exist for x > x0 and deay exponentially for x!1.In ontrast, solutions (u; v)(x) assoiated with initial values (u; v)(x0) in the unstable spaeEu(x0) satisfy (1.4) in bakward x-diretion x < x0 and deay exponentially for dereasingx. Existene of exponential dihotomies for ordinary, paraboli or funtional di�erentialequations is well known, see, for instane, [5, 14, 11℄. However, the proofs known thus farrely on the existene of a semiow. Even though in [25℄ a funtional-analyti framework for2



the existene on time intervals [�;1) for large � has been developed, the global extension tothe half line IR+ has been arried out using semiows. In the ontext of ellipti equations,stable and unstable subspaes will both be in�nite-dimensional and the semiow on theunstable subspae de�ned for bakward x-diretion annot be inverted. Hene, (1.4) willnot de�ne a semiow.In this artile, we present a proof of the existene of dihotomies for equation (1.4). Theproof employs a funtional-analyti framework ombining ideas from [25℄ and [28℄. In theformer work, exponential dihotomies for paraboli equations have been investigated us-ing only integral equations. In [28℄, an integral-equation based approah has been givenfor ellipti equations. We will derive an integral equation, see equation (3.1), satis�ed byexponential dihotomies. In ontrast to previous works on ordinary and paraboli di�eren-tial equations, we annot use semiows or the Gronwall lemma for the reasons explainedabove. Also, the integrands arising in the integral formulation are not small preventing usfrom using ontration mapping priniples. Instead, Fredholm's alternative is employed forproving existene of dihotomies on arbitrary subintervals of IR+. The advantage of thisapproah is that it preserves the symmetry between stable and unstable subspaes in thede�nition of dihotomies and does not a priori distinguish a time diretion.As a result, all bounded solutions of the nonlinear equation (1.3) staying lose to the solitarywave for all values of x are aessible using Lyapunov-Shmidt redution. For illustration,and as a �rst appliation, Melnikov's method for intersetions of stable and unstable mani-folds is extended to semilinear ellipti equations. Main result is the embedding of a shift onN symbols, with positive topologial entropy, into the dynamial system generated by theshift of bounded solutions lose to the solitary wave, provided a small generi perturbation�h(x; y; u; ux;ryu) periodi in x is added to (1.1).In a forthoming paper, we will give other appliations. In partiular, bifurations toperiodi waves as well as to N -solitary waves lose to a primary solitary wave will beinvestigated using tehniques developed in [17℄ and [25℄. Moreover, algorithms for thenumerial omputation of homolini or heterolini orbits of ellipti equations introduedin [12, 13℄ will be justi�ed by stability and onvergene proofs.We hope that the methods introdued here an be used to investigate stability of solitarywaves with respet to the paraboli equation (1.2) using an extension of the Evans funtion.3



Also, it may be possible to use this method to study ellipti equations for 
 = IRn providedthe solitary wave is loalized in the x and y variable, see the remark at the end of Setion 2.1.Note that in this ase essential manifolds will not exist due to the presene of ontinuousspetrum.This artile is organized as follows. In Setion 2, the main results on existene of exponentialdihotomies for abstrat linear equations are presented. They are proved in Setion 3.Smoothing properties for abstrat linear and nonlinear equations are addressed in Setion 4.In Setion 5, the e�et of small non-autonomous perturbations of an abstrat autonomousequation is investigated. Finally, Setion 6 is devoted to appliations to semilinear elliptiequations, and an example on the in�nite ylinder IR� (0; �)n is presented.Aknowledgement. DP was supported by the Deutshe Forshungsgemeinshaft (DFG)under grants La525/4-2 and La525/4-4. BS was partially supported by a Feodor-LynenFellowship of the Alexander von Humboldt Foundation.2 Exponential Dihotomies2.1 A lass of abstrat di�erential equationsLetX be a reexive Banah spae, andA : D(A) � X ! X be a losed, possibly unboundedoperator suh that its domain D(A) is dense in X. Then X1 := D(A) is a Banah spaewhen equipped with the norm jujX1 = jujX + jAujX . Let Z be some Banah spae suhthat there are ontinuous embeddingsX1 ,! Z ,! X:Later, Z is hosen as an interpolation spae between X1 and X. Moreover, let B 2C0(J; L(Z;X)) be a ontinuous family of operators where J � IR is some losed interval.We will be mainly interested in J = IR, J = IR+ or J = IR�.Consider the di�erential equation _x = (A+B(t))x: (2:1)A funtion x(t) de�ned on a losed interval J � IR is alled a solution of (2.1) if4



(i) x(�) 2 C0(intJ;X1) \C1(intJ;X),(ii) x(�) 2 C0(J; Z),(iii) x(�) satis�es equation (2.1) on intJ with values in X.We are partiularly interested in solutions with some presribed exponential behavior.Throughout, range and kernel of an operator L are denoted R(L) and N(L), respetively.De�nition (Exponential Dihotomy)Equation (2.1) is said to possess an exponential dihotomy in Z on the interval J � IR ifthere exists a family of projetions P (t) for t 2 J suh thatP (t) 2 L(Z); P 2(t) = P (t); P (�)z 2 C0(J; Z) for any z 2 Zand there exist onstants K; � > 0 with the following properties.� Stability. For any � 2 J and z 2 Z, there exists a unique solution xs(t; �; z) of (2.1)de�ned for t � � in J with xs(� ; �; z) = P (�)z andjxs(t; �; z)jZ � K e��jt�� j jzjZfor all t � � with t 2 J .� Instability. For any � 2 J and z 2 Z, there exists a unique solution xu(t; �; z) of(2.1) de�ned for t � � in J with xu(� ; �; z) = (id�P (�))z andjxu(t; �; z)jZ � K e��jt�� j jzjZfor all t � � with t 2 J .� Invariane. The solutions xs(t; �; z) and xu(t; �; z) satisfyxs(t; �; z) 2 R(P (t)) for all t � � with t; � 2 Jxu(t; �; z) 2 N(P (t)) for all t � � with t; � 2 J:In other words, if an exponential dihotomy exists, we an solve equation (2.1) for t � � forany initial value z 2 R(P (�)). The solution is then given by xs(t; � ; z) with xs(�; � ; z) = z.In addition, the solution is deaying exponentially in t. Moreover, the stable subspaes5



R(P (t)) satisfy R(xs(t; � ; �)) � R(P (t)). An analogous statement holds for xu(t; � ; z).Therefore, the spaes R(P (t)) an be thought of as the time-slies of the stable manifold ofthe linear non-autonomous equation (2.1), while xs(t; � ; �) is the evolution operator mappingthe time-slie R(P (�)) into R(P (t)) for t � � .First, we give suÆient onditions suh that the equation_x = Ax; (2:2)that is (2.1) with B(t) = 0, has an exponential dihotomy on IR in X. These onditions arenot neessary for the existene of dihotomies, but will be used later in deriving the mainperturbation and ontinuation result.(H1) Suppose that there is a onstant C suh thatk(A � i�)�1kL(X) � C1 + j�jfor all � 2 IR. Assume that there is a projetion P� 2 L(X) suh that A�1 and P�ommute. Furthermore, there exists a Æ > 0 suh that Re� < �Æ for any � 2 �(AP�) andRe� > Æ for any � 2 �(A(id�P�)).SuÆient onditions for the existene of the projetion P� have been given in [3℄ and [10℄.We also refer to the expliit onstrution of the projetions for semilinear ellipti equationsin Setion 6.1.De�ne P+ = id�P� and A� = �P�A, A+ = P+A, and let X� = R(P�) and X+ = R(P+).By Hypothesis (H1), the operators A� and A+ are setorial with their spetrum ontainedin the right half plane. Thus, they generate analyti semigroupseA+t = 12�i Z�+ e�t(��A)�1 d�; t < 0e�A�t = 12�i Z�� e�t(��A)�1 d�; t > 0on X+ and X�, respetively. Here, the urve �+ is asymptoti to re�i' as r ! 1 forsome �xed ' 2 (0; �2 ), and �� = ��+. We should point out that the semigroups eA+t ande�A�t are ontained in L(X+) and L(X�), respetively. However, the produts eA+tP+ ande�A�tP� are de�ned on X. With the onstant Æ appearing in Hypothesis (H1), eA+tP+and e�A�tP� satisfy the estimateke�A�tP�kL(X) + ke�A+tP+kL(X) � C e�Æt6



for some onstant C and all t � 0.Finally, we de�ne the interpolation spaes X�+ = D(A�+) and X�� = D(A��) for � � 0, see[14℄ or [31℄, and set X� = X�+ �X��. The projetion P� obtained in Lemma 2.1 is then inL(X�) for any � < 1, and the semigroups e�A+t and e�A�t satisfyke�A�tP�kL(X;X�) + ke�A+tP+kL(X;X�) � Cmax(1; t��)e�Ætfor some onstant C and all t > 0.We summarize the above disussion in the following lemma.Lemma 2.1 Assume that Hypothesis (H1) is met. Equation (2.2) has then an exponentialdihotomy on IR in X. The projetions P (t) = P� 2 L(X) do not depend on t and ommutewith A on D(A). Moreover, �P�A and (id�P�)A are setorial operators suh that theirdomains are dense in R(P�) and N(P�), respetively.From now on, we onsider the intervals J = IR, J = IR+, or J = IR�. The perturbation B(t)appearing in (2.1) should satisfy the following hypothesis. The onstant � > 0 appearingin (H2) is small and will be spei�ed in the statement of the main theorem below.(H2) There exist � 2 [0; 1), # > 0, t� � 0, and S;K 2 C0;#(J; L(X�;X)) with B(t) =S(t) +K(t) suh that kS(t)kL(X� ;X) � � for t 2 J , and K(t) = 0 for all t 2 J with jtj � t�.Hypothesis (H2) requires that B(t) is small for all suÆiently large jtj. Suh an assumptionis needed as an be seen in the ase that B(t) = B is independent of t and Hypothesis(H1) is met for the operator A. Indeed, the perturbed equation _x = (A + B)x has thenan exponential dihotomy on IR+ or IR� if, and only if, the spetrum of A+B is boundedaway from the imaginary axis whih an only be guaranteed if kBkL(X�;X) is small.As mentioned in the introdution, some ompatness properties will be needed later on.We assume that either A has ompat resolvent:(H3) Suppose that the inverse A�1 is a ompat operator in L(X).or else the operators K(t) appearing in (H2) are ompat:(H4) Suppose that there exists a Banah spae Y � X with ompat inlusion suh thatK 2 C0;#(J; L(X�; Y )). In addition, the restrition of A to Y is a losed operator A :7



D(A) � Y ! Y with domain dense in Y whih satis�es Hypothesis (H1) with X replaedby Y .Hypothesis (H4) may be useful when onsidering semilinear ellipti equations on IR � IRnwith loalized solutions u(x; y) suh that ju(x; y)j � Ce��jyj for some � > 0 uniformly in x.Then B is a di�erential operator with oeÆients deaying exponentially in y, and Y anbe hosen as a funtion spae with exponential weights.Finally, we assume forward and bakward uniqueness of solutions of equation (2.1) onthe interval J . This hypothesis seems to be neessary for the ontinuation of exponentialdihotomies from a strit subinterval ~J of J to J . For instane, bakward uniqueness ofsolutions has been used in the ontext of paraboli or funtional di�erential equations, see[14℄ and [11℄, respetively. There, forward uniqueness is met automatially. For elliptiequations, however, we also have to require forward uniqueness. Of ourse, for ordinarydi�erential equations, forward and bakward uniqueness are always satis�ed.(H5) The only bounded solution x(t) of (2.1) or its adjoint equation on the interval J withx(0) = 0 is the trivial solution x(t) = 0.Here, the adjoint equation is given by_� = �(A� +B(t)�) �; � 2 X�: (2:3)Note that the adjoint operators A� and B(t)� onsidered with range in X� satisfy (H2),(H3) and (H4) whenever A and B(t) do sine X is reexive, see [23, Setion 1.10℄, [14,Setion 7.3℄, and [15, Chapter III℄.2.2 Perturbation and ontinuation of exponential dihotomiesThe following theorem, whih is the main result of this paper, is stated for the intervalJ = IR+.Theorem 1 Suppose that Hypothesis (H1) is satis�ed. Let J = IR+. Choose � suh that0 � � < Æ where Æ appears in Hypothesis (H1). There are then onstants �0 > 0 and C > 0with the following properties. Assume that Hypotheses (H2), (H5) and either (H3) or (H4)8



are met for some � � �0. Equation (2.1) has then an exponential dihotomy in X� on theinterval J = IR+ with rate �.Furthermore, the projetions P (t) are H�older ontinuous in t 2 J = IR+ with values inL(X�). The range Es of P (0) is uniquely determined and satis�esz 2 Es = R(P (0)) =) z = P�z + P+(S0 +K0)zfor some operators S0 and K0 in L(X�) with kS0kL(X�) � C� and K0 ompat. For anylosed omplement Eu of Es there exists a unique exponential dihotomy with R(P (0)) = Esand N(P (0)) = Eu. In partiular, losed omplements of Es exist.An analogous theorem is true for the interval J = IR�.It is straightforward to generalize Theorem 1 in that perturbations of the non-autonomousequation (2.1) instead of the autonomous equation (2.2) are onsidered. In that ase, wehave to require that the solutions xs(t; �; z) and xu(t; �; z) of (2.1) map X� into X�+� forsome positive � and are H�older ontinuous between these spaes. We will not state a resultbut refer the reader to Setion 4 where the neessary regularity properties are proved.Theorem 1 shows that, up to fatoring a �nite-dimensional subspae of the stable subspaeEs, the range R(P (0)) = Es is lose to the spae R(P�). Hene, dimensions an be ountedon aount of the ompatness assumptions (H3) or (H4).Corollary 1 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on both inter-vals, J = IR+ and J = IR�. Denote the projetions of the assoiated exponential dihotomieson IR+ and IR� by P (t) and Q(t), respetively. The intersetion R(P (0))\R(Q(0)) is then�nite-dimensional.If J = IR+ and the perturbation B(t) tends to zero as t ! 1, we expet the projetionP (t) of the exponential dihotomy on IR+ to onverge to the spetral projetion P�. Thisis made preise in the following orollary.Corollary 2 Suppose that A and B(t) satisfy the assumptions of Theorem 1 on the intervalJ = IR+ and, in addition,kB(t)kL(X�;X) � Ĉe��t t � 09



for some onstants Ĉ; � > 0. The rate � appearing in Theorem 1 an then be hosen in therange 0 � � � Æ and we havekP (t) � P�kL(X�) � ~C(e�2Æt + e��t) t � 0for some onstant ~C > 0. An analogous statement is true on the interval J = IR�.Finally, we state a theorem haraterizing equations having exponential dihotomies on thereal line IR.Theorem 2 Suppose that the assumptions of Theorem 1 hold for both intervals J = IR+and J = IR�. Then, x(�) = 0 is the only bounded solution of equation (2.1) on t 2 IR if andonly if equation (2.1) has an exponential dihotomy on IR.3 Proofs of the results in Setion 2.2We start with the proof of Theorem 1 whih will oupy most of this setion. The outlineof its proof is as follows.First, we give a mild formulation of the problem, an integral equation whih is satis�edby the evolution operators xs(t; � ; z) and xu(t; � ; z). It is then shown that strong and mildformulation are equivalent. Using the mild integral equation, we onstrut the subspaeEs = R(P (0)) onsisting of bounded solutions of (2.1) on IR+ using Fredholm's alternative.Then, for a �xed hoie of Eu, it is shown that the mild integral equation has a unique so-lution (xs(�; �); xu(�; �)) for any �xed � � 0 satisfying xu(0; �) 2 Eu. Finally, we verify thatthese solutions are strongly ontinuous in � and that they satisfy the semigroup properties.3.1 The integral formulationWe write xs(t; �; z) = xs(t; �) and xu(t; �; z) = xu(t; �) whenever onfusion is impossible.
10



The following mild formulation of equation (2.1) is the key.e�A�(t��)P�z = xs(t; �) + e�A�tP�xu(0; �) + Z 1t eA+(t��)P+B(�)xs(�; �) d�� Z t� e�A�(t��)P�B(�)xs(�; �) d�+ Z �0 e�A�(t��)P�B(�)xu(�; �) d�eA+(t��)P+z = xu(t; �)� e�A�tP�xu(0; �) � Z t� eA+(t��)P+B(�)xu(�; �) d�+ Z 0t e�A�(t��)P�B(�)xu(�; �) d�� Z 1� eA+(t��)P+B(�)xs(�; �) d�:
(3:1)

Here, t � � � 0 in the �rst and � � t � 0 in the seond equation of (3.1). The pair(xs; xu) is written x := (xs; xu). We will see that solutions of (3.1) are in fat the evolu-tion operators arising in the de�nition of exponential dihotomies. In partiular, we willprove that the projetions of the exponential dihotomy are given by P (t)z = xs(t; t; z)and (id�P (t))z = xu(t; t; z) for solutions xs(t; �; z) and xu(t; �; z) of (3.1). The operatorxu(0; 0; �) is determined by the hoie of the omplement Eu.Notie that the integrands appearing in (3.1) are not small sine B might have large norm.Therefore, it is not possible to use the ontration mapping theorem for solving equa-tion (3.1).We have to show that the strong and the mild formulation are equivalent.Lemma 3.1 Suppose that x = (xs; xu) satis�es equation (3.1) for some z 2 X�. Then,xs(�; �) and xu(�; �) satisfy (2.1) on the intervals J = [�;1) and J = [0; � ℄, respetively.Conversely, any two solutions x1(�), x2(�) of (2.1) on J1 = [�;1) and J2 = [0; � ℄ aresolutions of (3.1) with xs(t; �) = x1(t), xu(t; �) = x2(t) and z = x1(�) + x2(�).Proof. Suppose x = (xs; xu) satis�es equation (3.1). Then, by [14, Lemma 3.5.1℄, the inte-gral operators are ontinuously di�erentiable in t sine the family B(t) is H�older ontinuous.Thus, for t 6= � , we an di�erentiate with respet to t and obtain that_xs(t; �) = (A+B(t))xs(t; �) t > �_xu(t; �) = (A+B(t))xu(t; �) t < �:Therefore, Axs(t; �) and Axu(t; �) are ontinuous, too, and xs(t; �) and xu(t; �) are solu-tions. 11



Conversely, suppose that x1(t) and x2(t) satisfy (2.1). As xi(�) are bounded for i = 1; 2,they are solutions ofx1(t) = e�A�(t��)P�x1(�) + Z t� e�A�(t��)P�B(�)x1(�)d�� Z 1t eA+(t��)P+B(�)x1(�)d�x2(t) = e�A�tP�x2(0) + eA+(t��)P+x2(�) + Z t� eA+(t��)P+B(�)x2(�)d�+ Z t0 e�A�(t��)P�B(�)x2(�)d�;by integration. Setting z = x1(�) + x2(�), we obtain equation (3.1).3.2 Constrution of the stable eigenspaeHere, we will determine those initial values for whih we an solve (2.1) for t 2 IR+ suhthat the assoiated solution is bounded on IR+. Therefore, we set � = 0 in (3.1) and obtaine�A�tP�z = xs(t) + e�A�tP�xu(0) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t0 e�A�(t��)P�B(�)xs(�) d�P+z = P+xu(0)� Z 10 e�A+�P+B(�)xs(�) d�for t � 0. Note that we have omitted the argument � = 0 in xs and xu. Sine we areinterested in the initial values with xs(0; z) = z, we set xu(0) = 0 and obtain the equatione�A�tP�z = xs(t) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t0 e�A�(t��)P�B(�)xs(�) d�P+z = � Z 10 e�A+�P+B(�)xs(�) d�: (3:2)We will solve this equation in the following spaes. For a �xed hoie of � 2 [0; Æ), and for�xed � � 0, letX s� = fx 2 C0([�;1);X�); jxjX s� := supt�� e�jt�� jjx(t)jX� <1gX u� = fx 2 C0([0; � ℄;X�); jxjXu� := sup0�t�� e�jt�� jjx(t)jX� <1g (3:3)equipped with the norms j � jX s� and j � jXu� , respetively, and set X� = X s� �X u� .For �xed z 2 X�, we shall then solve ~'0z = ~T0xs (3:4)12



for xs 2 X s0 , where( ~T0xs)(t) = xs(t)� Z t0 e�A�(t��)P�B(�)xs(�) d� + Z 1t eA+(t��)P+B(�)xs(�) d�and ( ~'0z)(t) = e�A�tP�z for t � 0. Thus, equation (3.4) oinides with the �rst equationin (3.2). It is straightforward to verify that ~'0 : X� ! X s0 is bounded. We show next that~T0 is Fredholm with index zero on X s0 .Lemma 3.2 The operator ~T0 2 L(X s0 ) is Fredholm with index zero.Proof. It is straightforward to show that ~T0 is a bounded operator from X s0 into itself.The operator ~T0 is of the form ~T0 = id+I1+ I2, where I1 and I2 are the integral operators(I1xs)(t) = � Z t0 e�A�(t��)P�B(�)xs(�) d�(I2xs)(t) = Z 1t eA+(t��)P+B(�)xs(�) d�:We have to show that ~T0 = id+I1 + I2 is Fredholm with index zero. It suÆes to showthat the operators Ij an be written as Ij = Sj+Kj for j = 1; 2 suh that Sj has norm lessthan 14 and Kj is ompat for j = 1; 2. Indeed, the operator id+S1+S2 is then invertible,and hene Fredholm with index zero. Adding a ompat operator preserves this property.For any t� � 0, we may deompose I1 = S1 +K1 aording to(K1xs)(t) = 8>><>>: � Z t0 e�A�(t��)P�B(�)xs(�) d� for t � t��e�A�(t�t�) Z t�0 e�A�(t���)P�B(�)xs(�) d� for t � t�;(S1xs)(t) = 8><>: 0 for t � t�� Z tt� e�A�(t��)P�B(�)xs(�) d� for t � t�:Sine S1xs and K1xs are ontinuous at t = t�, they map X s0 into itself. Moreover, for larget�, we have kS1kL(X s0 ) � C supt�t� kB(t)kL(X�;X) � C�by Hypothesis (H2). It remains to prove that K1 is ompat. We restrit K1xs to theinterval [0; t�℄. The proof for ompatness of K1 then depends on whether Hypothesis (H3)or (H4) is satis�ed.First, assume that Hypothesis (H3) is met. It follows that K1 maps X s0 ontinuously intoC0;�([0; t�℄;X�+�) for some small � > 0, see [14, Lemma 3.5.1℄. Sine A has ompat13



resolvent, the inlusion X�+� ,! X� is ompat. Thus, by Arz�ela's theorem, the spaeC0;�([0; t�℄;X�+�) is ompatly embedded into C0([0; t�℄;X�).Next, assume that Hypothesis (H4) is met. The proof is then similar to the one above.Note that B(t) = S(t) +K(t) with S small. Subsume the part of K1 assoiated with theoperator S(t) into S1. The remaining term of K1 assoiated with K(t) is ompat. Indeed,it maps X s0 ontinuously into C0;�([0; t�℄; Y �) by applying the arguments given so far to therestrition of A to Y . Finally, C0;�([0; t�℄; Y �) is ompatly embedded in C0([0; t�℄;X�).Thus, K1 is a ompat operator sine it is the omposition of the above restrition to [0; t�℄with the bounded multipliation operator assoiated withid for 0 � t � t�e�A�(t�t�)P� for t� � t:The proof for I2 is similar.We denote the stable subspae at t = 0 byEs := ( ~T�10 (R( ~'0)))(0) = fz 2 X�; 9xs 2 X s0 with xs(0) = z and ~T0xs = ~'0zg: (3:5)In other words, Es onsists of all initial values yielding bounded solutions on IR+. Notethat Es is losed sine ~T0 is Fredholm, see Lemma 3.2, and R( ~'0) is losed.Lemma 3.3 The equalitydimN(P�jEs) = dimN( ~T0) = odimR( ~T0) = odimX�� P�Es = ksholds for some ks <1.Proof. We start by showing the �rst equality. The mappingN( ~T0) 7! N(P�jEs)xs(�) 7! xs(0)is well de�ned, ontinuous and one-to-one by the uniqueness assumption (H5). It is alsoonto by onstrution of Es. This proves dimN(P�jEs) = dimN( ~T0) = k <1.Next, we have dimN( ~T0) = odimR( ~T0) sine ~T0 is Fredholm with index zero.14



In order to show the last equality, hoose a omplement V� of P�Es inX��. By onstrution,for any z 2 V�, the map t ! e�A�tP�z is not ontained in R( ~T0). Thus the mappingz 2 V� ! e�A��P�z 2 X s0 maps the omplement V� of P�Es in X�� one-to-one into aomplement of R( ~T0) in X s0 . This implies odimX�� P�Es � odimR( ~T0) = k.We use the adjoint equation_� = �(A� +B(t)�)�; � 2 (X�)� (3:6)to show equality. Note that results obtained so far apply to the adjoint equation as well,see the omments in Setion 2.1. It is easy to see thatddth�(t); x(t)i = 0for arbitrary solutions �(t) and x(t) of (3.6) and (2.1), respetively, where h�; �i denotes thedual pairing. Sine all bounded solutions xs satisfy the estimatejxs(t)jX� � Ce��tjxs(0)jX� ;any bounded solution of the adjoint equation has to annihilate Es at t = 0. Call Es� thesubspae of (X�)� onsisting of initial values �(0) of bounded solutions for (3.6). Next, weapply the arguments obtained thus far to the adjoint equation. The on�guration spae(X�)� an be written as (X�)�+ � (X�)��. Therefore, using the arguments given so far, thestable subspae satis�es1 > dimN �P �+jEs�� = k� � odim(X�)�+ P �+Es� :Hene, using that Es� annihilates Es, we obtaink� = dimN �P �+jEs�� � dimN �P �+jAnnih:(Es)�= dim�(��; 0) 2 (X�)�� � (X�)�+; h��; z�i = 0 8z� 2 P�Es	= odimX��(P�Es) � k:Repeating the same argument for the adjoint system and using reexivity of X, yieldsk�� = dimN �P ��� jEs��� = k = dimN (P�jEs)and k = k�� � odim(X�)�+ P �+Es� � k� � k;where the strit inequality holds if and only if dimN(P�jEs) > odimX��(P�Es).15



3.3 Existene of xs(�; � ; z) and xs(�; � ; z) for �xed �In the next step, we onstrut solutions xs(�; � ; z) and xs(�; � ; z) for �xed � . For thispurpose, we have to inorporate a �xed omplement Eu of the stable subspae Es intothe funtional-analyti setting. Therefore, hoose any losed omplement Eu of Es in X�subjet to odimX�+ P+Eu = dimN(P+jEu) = ku <1: (3:7)To aomplish this, hoose, for instane, losed omplements Eu� of P�Es in X�� and Eu+ ofN(P�jEs) in X�+. Note that these omplements exist sine P�Es has �nite odimension inX�� and N(P�jEs) is �nite-dimensional, see Lemma 3.3. The spae Eu� � Eu+ � X�� �X�+is then a omplement of Es in X� satisfying the above ondition with ku = ks, sinedimN(P�jEs) = odimX�� P�Es = ksby Lemma 3.3. Other omplements will be onsidered later.For any losed subspae E � X�, we de�ne the losed subspaeXE� = f(xs; xu) 2 X s� �X u� ; xu(0) 2 Egof X s� �X u� .For �xed � � 0, the right hand side of equation (3.1) de�nes an operator denoted T�(T�x)s(t) := xs(t) + e�A�tP�xu(0) + Z 1t eA+(t��)P+B(�)xs(�) d�� Z t� e�A�(t��)P�B(�)xs(�) d� + Z �0 e�A�(t��)P�B(�)xu(�) d�(T�x)u(t) := xu(t)� e�A�tP�xu(0) � Z t� eA+(t��)P+B(�)xu(�) d�+ Z 0t e�A�(t��)P�B(�)xu(�) d� � Z 1� eA+(t��)P+B(�)xs(�) d�; (3:8)
with t � � in the �rst, and � � t � 0 in the seond equation. Similarly, the left hand sideof (3.1) de�nes a bounded operator '� : X� ! XX+� by('� z)s(t) = e�A�(t��)P�z t � � � 0('� z)u(t) = eA+(t��)P+z � � t � 0; (3:9)with bound independent of � .Proposition 1 For any �xed � � 0, the operator T� de�ned by (3.8) is an isomorphismwhen onsidered as a map T� : XEu� �! XX+� .16



Proof. First, notie that T� is well-de�ned and bounded independently of � . Indeed, T� isbounded as an operator from X s� �X u� into itself and its bound does not depend on � . Also,for any hoie of Eu, the range of T� is inluded in XX+� , so T� is well-de�ned. Indeed, theonly term appearing in the equation for xu in (3.1) whih does not belong to X+ is theintegral Z 0t e�A�(t��)P�B(�)xu(�) d�:However, this term vanishes at t = 0.We laim that(i) N(T� ) = f0g and(ii) T� is Fredholm with index zero for B = 0.By arguments similar to those given in Lemma 3.2, we onlude from (ii) that T� is Fredholmwith index zero for any perturbation B satisfying Hypothesis (H2) for � small enough. Notethat � an be hosen independent of � sine it depends only on the norm of P� and thedeay rates Æ and �. The �rst assertion then shows that T� is one-to-one and thus, usingthe seond assertion (ii), onto. Therefore, by the losed graph theorem, T� is ontinuouslyinvertible.With a slight abuse of notation, but for the sake of larity, we write elements (xs(�); xu(�)) 2X� as (xs(�; �); xu(�; �)) indiating the domain of de�nition.We �rst prove (i). Suppose that T� (xs; xu) = 0 for some (xs; xu) 2 XEu� . This impliesxu(�; �) = �xs(�; �) by adding the two equations in (3.1). Thus, the funtion~xs(t; 0) := 8><>: xu(t; �) for 0 � t � ��xs(t; �) for � � t � 1 (3:10)is ontinuous. Using the de�nition (3.9) of ', we laim that ~xs(t; 0) satis�esT0(~xs; 0) = '0(~xs(0; 0)) = '0(xu(0; �)); (3:11)that is,e�A�tP�xu(0; �) = ~xs(t; 0) + Z 1t eA+(t��)P+B(�)~xs(�; 0) d�� Z t0 e�A�(t��)P�B(�)~xs(�; 0) d� t � 0P+xu(0; �) = � Z 10 e�A+�P+B(�)~xs(�; 0) d� t = 0: (3:12)17



By assumption, (xs; xu) satis�es (3.1) with z = 0, that is0 = xs(t; �) + e�A�tP�xu(0; �) + Z 1t eA+(t��)P+B(�)xs(�; �) d�� Z t� e�A�(t��)P�B(�)xs(�; �) d� + Z �0 e�A�(t��)P�B(�)xu(�; �) d�0 = xu(t; �)� e�A�tP�xu(0; �) � Z t� eA+(t��)P+B(�)xu(�; �) d�+ Z 0t e�A�(t��)P�B(�)xu(�; �) d� � Z 1� eA+(t��)P+B(�)xs(�; �) d� (3:13)
for t � � and t � � , respetively. Using (3.10) and distinguishing the ases t � � and t � � ,it is seen that (3.12) and (3.13) are idential.Thus ~xs(t; 0) satis�es (3.11). However, ~xs(0; 0) = xu(0; �) 2 Eu and, at the same time,belongs to Es as it is a bounded solution of (3.1) at � = 0. Therefore ~xs(0; 0) = 0 vanishessine Eu \ Es = f0g. By the uniqueness hypothesis (H5), we onlude ~xs(t; 0) = 0 for allt � 0, whih proves (i).It remains to prove (ii). For B = 0, the equation T� (xs; xu) = (gs; gu) 2 XX+� readsP+xs(t; �) = P+gs(t; �); P�xs(t; �) = P�gs(t; �)� e�A�tP�xu(0; �)P+xu(t; �) = P+gu(t; �); P�xu(t; �) = e�A�tP�xu(0; �): (3:14)First, suppose that g = (gs; gu) = 0. Then, for any xu(0; �) 2 Eu satisfying xu(0; �) 2N(P+jEu), we get a unique solution of (3.14) in XEu� . Note that dimN(P+jEu) = ku.On the other hand, we an solve for any g provided P+gu(0; �) 2 P+Eu whih de�nes asubspae of XX+� of odimension ku. This proves (ii) and thus the proposition.3.4 Proof of Theorem 1Finally, we show the assertions of Theorem 1. We onsider a similar set-up as in theprevious setion.Similar to (3.3), we de�ne the funtion spaesX s = fx 2 C0(Ds;X�); jxjX s := sup(t;�)2Ds e�jt�� jjx(t; �)jX� <1gX u = fx 2 C0(Du;X�); jxjXu := sup(t;�)2Du e�jt�� jjx(t; �)jX� <1gwith Ds = f(t; �); t � � � 0g and Du = f(t; �); � � t � 0g;and set XE = f(xs; xu) 2 X s �X u; xu(0; �) 2 E for all � � 0g18



for any losed subspae E of X�. As before, the left hand side of (3.1) de�nes a boundedoperator ' : X� ! XX+ by('z)s(t; �) = e�A�(t��)P�z (t; �) 2 Ds('z)u(t; �) = eA+(t��)P+z (t; �) 2 Du:Let T be the operator de�ned by the right hand side of (3.1). We shall solve Tx = 'z. Welaim that T : XEu ! XX+ is an isomorphism. Notie that T is well-de�ned, see the proofof Proposition 1, and ontinuous.Assuming that x 2 N(T ), we get x(�; �) 2 N(T� ) for any � � 0 whene x(�; �) = 0 byProposition 1. Thus N(T ) = f0g.It is more diÆult to prove that T is onto. Due to Proposition 1, there exists a unique familyx(�; �) satisfying T�x(�; �) = '� z for any �xed � . This family satis�es Tx = ' providedx(�; �) 2 XEu . In partiular, we have to show that x(�; �) is ontinuous in � and deaysexponentially uniformly in � . Denoting the unique solution (xs; xu) of T� (xs; xu) = '�z by(xs(t; �; z); xu(t; �; z)), we will prove the following.(i) Invariane and semigroup properties.xs(t;�; xs(�; �; z)) = xs(t; �; z) t � � � �xs(t;�; xu(�; �; z)) = 0 � � t; �xu(t;�; xu(�; �; z)) = xu(t; �; z) t � � � �xu(t;�; xs(�; �; z)) = 0 � � t; �:(ii) Continuity.xs(�; �; z) and xu(�; �; z) are ontinuous.(iii) Exponential deay.jxs(t; �; z)jX� � Ce��jt�� j jzjX� t � �jxu(t; �; z)jX� � Ce��jt�� j jzjX� t � �:First onsider (i). Let � � � , and de�ne ẑ := xs(�; �; z) andys(t) := xs(t;�; ẑ) = xs(t;�; xs(�; �; z)) t � �yu(t) := xu(t;�; ẑ) = xu(t;�; xs(�; �; z)) t � �: (3:15)By de�nition, (ys; yu) = (xs; xu)(�;�; ẑ) satis�es T�(ys; yu) = '� ẑ, that is,e�A�(t��)P�ẑ = (T�(ys; yu))s(t) t � �eA+(t��)P+ẑ = (T�(ys; yu))u(t) t � �; (3:16)19



where (T�y)s and (T�y)u are the omponents of T�y in X s� = X s� �X u� .On the other hand, using the de�nition ẑ = xs(�; �; z), we obtainẑ = e�A�(���)P�z � e�A��P�xu(0; �; z) � Z �0 e�A�(���)P�B(�)xu(�; �; z) d�(3.17)� Z 1� eA+(���)P+B(�)xs(�; �; z) d� + Z �� e�A�(���)P�B(�)xs(�; �; z) d�:Substituting (3.17) into (3.16) yieldse�A�(t��)P�z = Z �0 e�A�(t��)P�B(�)xu(�; �; z) d�� Z �� e�A�(t��)P�B(�)xs(�; �; z) d�+e�A�tP�xu(0; �; z) + (T�(ys; yu))s(t)0 = Z 1� eA+(t��)P+B(�)xs(�; �; z) d� + (T�(ys; yu))u(t); (3:18)for t � � and t � �, respetively. Regarding (ys; yu) as unknowns, we an uniquely solve(3.18) sine T� is invertible. Thus the unique solution (ys; yu) is given by (3.15). On theother hand, it is straightforward to alulate thatys(t) = xs(t; �; z) t � �yu(t) = 0 t � �satis�es (3.18) as well, proving two of the four identities in (i). The remaining two areproved in a similar way, see also [25℄.Next, we prove (ii). This is ahieved by omparing the solutions x(�; � + h) and x(�; �) forsmall h. First, we take h > 0 and �x z 2 X� with jzjX� = 1. The ase h < 0 is provedsimilarly. De�ne ysh(t) = 8><>: xs(t; � + h) t � � + hz � xu(t; � + h) � + h � t � �yuh(t) = xu(t; � + h) t � �:Then, yh 2 XEu� sine ysh is ontinuous at t = � + h. With an abuse of notation, we willdenote the norms j � jXE� by k � k in this paragraph. We laim that the estimatekT�yh � T�x(�; �)k � o(1) (1 + kyhk) (3:19)holds for some funtion o(1) satisfying o(1)! 0 as h tends to zero. Assume for the momentthat (3.19) is true. Sine the inverse of T� is ontinuous, we then havekyh�x(�; �)k � C1kT�yh�T�x(�; �)k � o(1)(1+ kyhk) � o(1)(1+ kyh�x(�; �)k+ kx(�; �)k)20



for some onstant C1 > 0 independent of h whih we subsume into the o(1) term. Therefore,we onlude that kyh� x(�; �)k = o(1)! 0 as h tends to zero. Thus, in order to prove (ii),it suÆes to prove (3.19).Note that, by de�nition, T�+hx(�; � + h) = '�+h. We ompare T�yh with T�+hx(�; � + h).Consider t � � �rst. Using equation (3.1) and the de�nition of yh, we obtain(T�yh)u(t) = (T�+hx(�; � + h))u(t)� Z �+h� eA+(t��)P+B(�)xu(�; � + h) d�� Z �+h� eA+(t��)P+B(�)(z � xu(�; � + h)) d�= eA+(t���h)P+z + o(1)O(e��jt�� j) (1 + kyhk);sine the arguments in the integrals are bounded by kx(�; � + h)k whih is bounded by1 + kyhk. Next, onsider t � � + h. Then(T�yh)s(t) = (T�+hx(�; � + h))s(t)� Z �+h� e�A�(t��)P�B(�)(z � xu(�; � + h)) d�+ Z ��+h e�A�(t��)P�B(�)xu(�; � + h) d�= e�A�(t���h)P�z + o(1)O(e��jt�� j) (1 + kyhk)holds. It remains to onsider � � t � � + h.(T�yh)s(t) = z � (T�+hx(�; � + h))u(t)� Z t� e�A�(t��)P�B(�)(z � xu(�; � + h)) d�+ Z �+ht eA+(t��)P+B(�)z d� + Z �t e�A�(t��)P�B(�)xu(�; � + h) d�= z � eA+(t���h)P+z + o(1)O(e��jt�� j) (1 + kyhk):Summarizing the above inequalities and using T�x(�; �) = '� , we obtain(T�yh)s(t) � (T�x(�; �))s(t) =8><>: eA+(t��)(e�A+hP+ � P+)z +Rs(t) t � � + hz � eA+(t���h)P+z � eA�(t��)P�z +Rs(t) � + h � t � �(T�yh)u(t) � (T�x(�; �))u(t) = e�A�(t���h)(P� � e�A�hP�)z +Ru(t) t � �for some remainder term with norm kRk = o(1) (1 + kyhk). This ompletes the proof ofinequality (3.19).It remains to show (iii). In order to prove uniform exponential deay for xs, it suÆesto onsider t; � � t� for some t� large. Indeed, as xs(t; �; z) = xs(t; t�; xs(t�; �; z)) fort > t� > � , we an employ boundedness of xs(t; �; z) on t; � � t� and obtain the result infull generality. Up to this point, we have investigated the operator T on the interval [0;1).21



However, we may as well restrit to [t�;1). On this smaller interval, T is ontinuouslyinvertible as T = id+I for some integral operator I whih is small in norm on [t�;1) asB is small, see the proof of Lemma 3.2 or [25℄. Thus the operators xs(t; �; �) have uniformexponential bounds for t � � � t�. The arguments for xu are similar. Note that, byalulating the norm of I, the onstant �0 determining the largest admissible norm of B(t)on [t�;1) depends only on the hoie of the exponent �.Thus, T is onto and therefore ontinuously invertible. Finally, we onstrut the exponentialdihotomy. Let P (t)z = xs(t; t; z):By the semigroup property (i), P (t) is a projetion. Moreover, P (t) is bounded as T�1 is.The invariane properties of R(P (t)) and N(P (t)) follow immediately from the invarianeproperty (i). The uniform exponential bounds an be obtained from the uniform boundson xs and xu.Until now, we have only onsidered omplements Eu whih meet (3.7). Exponential di-hotomies atually exist for any omplement Eu of Es and not just for the ones satisfying(3.7). Indeed, let xs and xu be the evolution operators for some omplement satisfying(3.7) and denote the assoiated projetions by P (t). Choose an arbitrary omplement ~Euof Es and let L : R(id�P (0))! R(P (0)) be a bounded operator suh that graphL = ~Eu.De�ne ~P (t) := P (t)� xs(t; 0; �)Lxu(0; t; �) t � 0~xs(t; �; �) := xs(t; �; �) ~P (�) t � � � 0~xu(t; �; �) := (id� ~P (t))xu(t; �; �) (id�P (�)) � � t � 0; (3:20)then ~x is an exponential dihotomy of (2.1) suh that R( ~P (0)) = graphL, see [25℄. Notethat we still have R( ~P (0)) = Es with Es de�ned in (3.5).Finally, by inspeting (3.1) and (3.20), we havez 2 Es =) z = P�z � Z 10 e�A+�P+B(�)xs(�; 0; z) d�as xu(0; 0; z) = (id�P (0))z = 0. It has been proved in Lemma 3.2 that the integraloperator is the sum of a ompat operator and an operator with norm less than C� forsome onstant C independent of �.This ompletes the proof of Theorem 1. 22



3.5 Proof of the orollaries and Theorem 2Proof of Corollary 1. The orollary follows easily from the haraterization of the stablesubspaes in Theorem 1.Proof of Corollary 2. We prove the orollary for omplements Eu satisfying (3.7).Using the expression (3.20), it is straightforward to show the statements of the orollaryfor arbitrary omplements.It is straightforward to verify that the right hand side of the integral equation (3.1) iswell-de�ned and an isomorphism from XEu to XX+ even for � = Æ provided B(t) deaysexponentially as t!1. This proves the laim onerning the hoie of �.The projetion P (t) satis�esP (t)z = P�z � e�A�tP�xu(0; t; z) � Z t0 e�A�(t��)P�B(�)xu(�; t; z) d� (3.21)+ Z 1t e�A+(t��)P+B(�)xs(�; t; z) d�:We will prove the orollary using the assumption that B(t) deays exponentially with rate�. Using (3.21) and Theorem 1, we havejP (t)z � P�zjX� � je�A�tP�xu(0; t; z)jX� + ��� Z t0 e�A�(t��)P�B(�)xu(�; t; z) d����X�+��� Z 1t e�A+(t��)P+B(�)xs(�; t; z) d����X�� Ce�(Æ+�)tjzjX� + CĈ ��� Z t0 (1 + (t� �)��)e�Æ(t��) e��� e��(t��) d���� jzjX�+CĈ ��� Z 1t (1 + (t� �)��)e�Æ(��t) e��� e��(��t) d���� jzjX�� ~C(e�(Æ+�)t + e��t) jzjX� ;whih proves the orollary.Proof of Theorem 2. If (2.1) has an exponential dihotomy P (t) on IR, any boundedsolution x(t) satis�es (id�P (0))x(0) = 0, sine x(t) is bounded for t � 0. Similarly,P (0)x(0) = 0 on aount of boundedness of x(t) for t � 0. Therefore, x(0) = 0, whihimplies x(�) = 0 by the uniqueness hypothesis (H5).Assume onversely, that x(�) = 0 is the only bounded solution of (2.1) on IR. The mild23



formulation (3.1) an be written asT�x = '�� t 2 IR+T+x = '+� t 2 IR�:Here, T+ and '+ denote right and left hand side of (3.1), respetively, for t 2 IR+, whileT� and '� orrespond to the mild formulation on J = IR�. We denote the assoiatedprojetions of the exponential dihotomies by P (t) and Q(t) de�ned for t 2 IR+ and t 2IR�, respetively. We have R(P (0)) \ R(id�Q(0)) = f0g, sine, by assumption, equation(2.1) has no bounded non-trivial solution on IR. Therefore, R(id�Q(0)) is a omplementof R(P (0)) whene we an onstrut an exponential dihotomy on IR+ with assoiatedprojetion ~P (t) suh that R( ~P (0)) = R(P (0)) and N( ~P (0)) = R(id�Q(0)). By the sametoken, an exponential dihotomy exists for t 2 IR� suh that the assoiated projetion att = 0 is again given by ~P (0). Thus, the projetions are ontinuous at t = 0, whene weobtain an exponential dihotomy on IR.4 Regularity and nonlinear equationsFrom now on, we will use the notation�s(t; �)z := xs(t; �; z); t � ��u(t; �)z := xu(t; �; z); t � �;where z 2 X� and t; � 2 J . Indeed, in the last setion, we onsidered the solutions xs(t; �; z)and xu(t; �; z) for �xed z 2 X�. Here, however, z will vary. We therefore emphasize theoperator-point-of-view and hoose a notation whih is loser to semigroup theory.In this setion, we will verify some additional properties for the families �s(t; �) and �u(t; �)of evolution operators where t; � 2 J with t � � and t � � , respetively. The statementsare similar to the paraboli ase, where the ranges R(�u(t; �)) are �nite-dimensional fort � � , see [14, Theorem 7.1.3℄. However, the Gronwall-type lemma whih is the main toolin Henry's proof is not available in the present setting.Theorem 3 Assume that A and B(t) satisfy the onditions of Theorem 1 with J = IR+.The evolution operators �s(t; �) with t; � 2 J and t � � then have the following properties.24



(i) For t � � , �s(t; �) has a bounded extension to X satisfying �s(t; t) = P (t) and�s(t; �)�s(�; �)z = �s(t; �)z for all t � � � � and any z 2 X.(ii) For �xed 0 � � < 1, �s(t; �), t � � is strongly ontinuous in (t; �) with values inL(X�).(iii) For any 0 � ; � < 1, there is a onstant C > 0 suh that �s(t; �) 2 L(X ;X�) fort > � and k�s(t; �)kL(X ;X�) � Cmax(1; (t� �)��) e��(t��):Analogous properties hold for �u(t; �) with t; � 2 J and t � � .Proof. As mentioned above, the assertion of the theorem is similar to [14, Theorem7.1.3℄. However, the weak integral formulation (3.1) involves integrals over intervals [0; t℄and [t;1). Moreover, these integrals are not small. We therefore annot use the Gronwalllemma but have to adopt a di�erent strategy. For the sake of larity, we take the exponentialweight � = 0.First, we prove (i) and (ii). Note that the laims are true if � � � by applying Theorem 1 tothe spae X�. Thus, we would like to solve the equation Tx = 'z for z 2 X� with � < �.However, 'z is ontinuous with values in X� only for t 6= � , but satis�es an estimatej('z)s(t; �)jX� = je�A�(t��)P�zjX� � Cjt� � j���jzjX� ;as t! � , and similarly for ('z)u(t).The key idea is to subtrat the part oming from the autonomous equation, that is theoperator 'z, from the solution x(t; �). So, de�ney1(t; �; z) = x(t; �; z) � ('z)(t � �):The new unknown y1 satis�es the equation Ty1 = '1z where '1 is given by'1z = (id�T )'z:Again, the ruial point is ontinuity of '1 as t! s. We laim that '1 is ontinuous withvalues in X for any  < 1� �+ �, and satis�es the slightly better estimatej('1z)s(t; �)jX� � Cjt� � j���+(1��)jzjX� ;25



as t ! � , and similarly for ('1z)u. Assuming that the laim has been proved, we mayproeed by indution. Let yk = x� k�1Xi=0(id�T )i'zwhih satis�es the equation Tyk = (id�T )k'z: (4:1)By the same arguments as in the �rst step, we see that the right hand side of this equationis ontinuous for z 2 X� with values in X� provided k(1� �) > �� �.So, we have split the solution x in a well-behaving, ontinuous part yk and expliitly givendisontinuous parts (id�T )i'z, whih behave better than 'z. Choosing k large enough,we an solve equation (4.1) as its right hand side is ontinuous with values in X�.From this observation, (i) and (ii) follow immediately. Indeed, the expliit partk�1Xi=0(id�T )i'zextends to X� for any � < �. Therefore, it suÆes to prove the smoothing property forthe operators (id�T )i.The funtion '1z = (id�T )'z is given by('1z)s(t; �) = � Z 1t eA+(t��)P+B(�)e�A�(���)P�z d�+ Z t� e�A�(t��)P�B(�)e�A�(���)P�z d�� Z �0 e�A�(t��)P�B(�)e�A+(���)P+z d�; t � �('1z)u(t; �) = Z t� eA+(t��)P+B(�)e�A+(���)P+z d�� Z 0t e�A�(t��)P�B(�)e�A+(���)P+z d�+ Z 1� eA+(t��)P+B(�)e�A�(���)P�z d�; t � �;see (3.1), as the exponential terms disappear due to the de�nition of 'z. Note that thisproperty is preserved under the iteration (id�T )k for the same reason as in the proof ofProposition 1.First, onsider the integral(I1g)(t; �) = Z 1t eA+(t��)P+B(�)g(�; �) d�26



where g(t; �) is ontinuous for t > � with values in X� satisfyingjg(t; �)jX� � Cjt� � j��as t ! � for some � > 0. Notie that I1 is ontinuous for t > � with values in X�. Weestimate j(I1g)(� + h; �)jX� � ��� Z 1�+h eA+(�+h��)P+B(�)g(�; �) d����X�� C ��� Z 1�+h eÆ(�+h��) j� + h� �j�� j� � �j�� d����� Ĉh1����as h! 0 for some onstants C and Ĉ independent of h. Thus, as laimed, the exponent �is dereased by 1��. The alulations for the other integral operators are similar, and wewill omit them.The proof of (iii) is ompletely analogous to the above and we will omit it, too.Theorem 1 and 3 are used for obtaining existene of solutions of inhomogeneous linearequations _x = (A+B(t))x+ f(t) f 2 C0;#(IR+;X); # > 0as well as nonlinear equations_x = (A+B(t))x+G(t; x) G 2 C1;1(IR+ �X�;X)with G(t; 0) = DG(t; 0) = 0. The assoiated weak formulation is given bye�A�(t��)P�z = xs(t; �) + e�A�tP�xu(0; �)+ Z 1t eA+(t��)P+�B(�)xs(�; �) + F (�; xs(�; �))�d�� Z t� e�A�(t��)P��B(�)xs(�; �) + F (�; xs(�; �))�d�+ Z �0 e�A�(t��)P��B(�)xu(�; �) + F (�; xu(�; �))�d�eA+(t��)P+z = xu(t; �)� e�A�tP�xu(0; �)� Z t� eA+(t��)P+�B(�)xu(�; �) + F (�; xu(�; �))�d�+ Z 0t e�A�(t��)P��B(�)xu(�; �) + F (�; xu(�; �))�d�� Z 1� eA+(t��)P+�B(�)xs(�; �) + F (�; xs(�; �))�d�;
(4:2)
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where F is replaed by either f or G. In the former ase, using Theorem 1 and 3, existeneis easily obtained, see [14, Theorem 7.1.4℄. In the latter ase, the right hand side of (4.2)de�nes a di�erentiable map from XEu to XX+ with � = 0. Also, the linear part is invertibleas T is. Thus, we may employ an impliit funtion theorem and obtain solution operators�s(t; �; z) and �u(t; �; z) for t � � and 0 � t � � , respetively, de�ned for small z 2 X�and depending smoothly on z.5 Transverse homolini orbits in periodially perturbedequationsIn this setion, we extend the Melnikov theory, see, for instane, [18℄ or [22℄, for intersetionsof stable and unstable manifolds to the general lass of di�erential equations investigatedin the previous setions. Exept for the proof of Theorem 4, we an losely follow thepresentation in [22℄, and will only indiate the hanges neessary to adapt the proofs giventhere to the situation studied here. We refer to [2℄ and [24℄ for proofs for paraboli equations.Throughout this setion, we assume that X is a reexive Banah spae, and A is a losedoperator on X with ompat resolvent satisfying Hypothesis (H1) stated in Setion 2.Consider the following small non-autonomous perturbation of an autonomous nonlinearequation _x = Ax+G(x) + �H(t; x; �) (x; �) 2 X� � IR (5:1)for some �xed � 2 [0; 1). Suppose that G 2 C1;1(X�;X) with G(0) = 0 and DG(0) = 0.The perturbation H belongs to C1(IR�X� � IR;X) suh that, in addition,t! DtH(t; x; �) and x! DxH(t; x; �)are loally H�older and Lipshitz ontinuous, respetively, in the operator norm. Further-more, H is periodi in t with period p, that is H(t+ p; �; �) = H(t; �; �) for all t 2 IR.(H6) Assume that A meets Hypothesis (H1) and has ompat resolvent. Suppose thatequation (5.1) has a homolini orbit for � = 0, that is a solution q(t) 2 C1(IR;X�) \C0(IR;X1) with q(t) ! 0 as t ! �1. We assume that the operator DG(q(t)) satis�esHypothesis (H5). Finally, assume that _q(t) is the only bounded solution (up to onstant28



multiples) of the variational equation_x = Ax+DG(q(t))x (5:2)along q(t).Note that Hypothesis (H2) is met for the variational equation for any � > 0 sine q(t)! 0.Hypothesis (H3) is also satis�ed sine the resolvent A�1 2 L(X) of A is ompat. Withthese assumptions at hand, equation (5.2) and its adjoint equation_y = �(A� +DG(q(t))�)y (5:3)have exponential dihotomies on the intervals IR+ and IR� by Theorem 1. Moreover, theresults of Setion 4 apply to the nonlinear equation (5.1), and all bounded solutions loseto the homolini orbit are given by (4.2).It is then a onsequene of Hypothesis (H6) that the adjoint equation (5.3) has a unique,up to salar multiples, bounded solution  (t). The proof is similar to the one given in [22℄.We de�ne the Melnikov integralM(�) = Z 1�1h (t);H(t � �; q(t); 0)i dt (5:4)for � 2 S1 = [0; p℄=�. Note that M is C1 in �. The next theorem haraterizes transverseintersetions of the stable and unstable manifold of zero (more preisely, of the uniquehyperboli p-periodi orbit �-lose to zero).Theorem 4 Assume that Hypothesis (H6) is met. If there is a number �0 2 S1 suh thatM(�0) = 0 and M 0(�0) 6= 0, then there exist positive onstants �0 and Æ0 suh that equation(5.2) has a unique solution x(t; �) for any � with 0 < j�j < �0 satisfyingsupt2IR jx(t; �)� q(t+ �0)jX� � Æ0:In fat, supt2IR jx(t; �)� q(t+ �0)jX� = O(�)as �! 0 and the variational equation_y = (A+DG(x(t; �)) + �DxH(t; x(t; �); �))y (5:5)has an exponential dihotomy on IR. 29



Proof. First, we prove the existene of x(t; �). We introdue a new variable z byx(t) = q(t+ �) + z(t+ �) � 2 IR;and write equation (5.1) in the form_z = Az +DG(q(t))z + F (t; z; �; �): (5:6)with F (t; z; �; �) = G(q(t) + z)�G(q(t)) �DG(q(t))z + �H(t� �; q(t) + z; �):On aount of Theorem 1 and the hypotheses made, we know that the linear part of equation(5.6), that is equation (5.2), has an exponential dihotomy on IR+ and IR�, respetively.As in Setion 4 and Theorem 3, we denote the solution operators of (5.2) by �s1(t; �) and�u1(t; �) for t � � 2 IR+ and � � t 2 IR+, respetively, and by �u2(t; �) and �s2(t; �) fort � � 2 IR� and � � t 2 IR�, respetively. We deompose the subspaes of boundedsolutions for t! �1 aording toR(�s1(0; 0)) = Y1 � span _q(0) and R(�u2(0; 0)) = Y2 � span _q(0):Solutions of the nonlinear equation (5.6) are bounded on IR+ and IR�, respetively, if andonly if there exist �1 2 Y1 and �2 2 Y2 suh thatz1(t) = �s1(t; 0)�1 + Z t0 �s1(t; �)F (�; z1(�); �; �) d�� Z 1t �u1(t; �)F (�; z1(�); �; �) d� for t 2 IR+z2(t) = �u2(t; 0)�2 + Z t0 �u2(t; �)F (�; z2(�); �; �) d�+ Z t�1�s2(t; �)F (�; z2(�); �; �) d� for t 2 IR�;respetively. Thus, for any �1 2 Y1 and �2 2 Y2 near zero, we get bounded solutionsz1(t; �1; �; �) and z2(t; �2; �; �) of equation (5.6) for t 2 IR+ and t 2 IR�, respetively, bythe impliit funtion theorem, see Theorem 3. The maps (�1; �; �) ! z1(t; �1; �; �) and(�2; �; �)! z2(t; �2; �; �) are C1. Next, for any small �, we seek � = �1 + �2 2 Y1 � Y2 and� 2 S1 suh that z1(0; �; �; �) = z2(0; �; �; �). This is equivalent to solving the equation(�s1(0; 0) ��u2(0; 0))� = Z 0�1�s2(0; �)F (�; z2(�; �; �; �); �; �) d� (5.7)+ Z 10 �u1(0; �)F (�; z1(�; �; �; �); �; �) d�:30



Aording to the proof of Theorem 1, L = �s1(0; 0)��u2 (0; 0) 2 L(X�) is a Fredholm oper-ator with index zero, null spae N(L) = span _q(0) and range R(L) = f� 2 X�; h (0); �i =0g. Therefore, using Lyapunov-Shmidt redution, it follows that equation (5.7) is solvablenear � = �0 if and only if Z 1�1h (t);H(t � �0; q(t); 0)i dt = 0Z 1�1h (t);D�H(t� �0; q(t); 0)i dt 6= 0for some �0 2 S1. The solution is given by x(t; �) = q(t + �(�)) + z(t + �(�); �) with�(�) 2 C1((��0; �0); IR) and �(0) = �0. This proves the �rst part of the theorem.It remains to show that equation (5.5) has an exponential dihotomy on IR. On aount ofTheorem 1, equation (5.5) has an exponential dihotomy on IR+ and IR�, respetively, forany small �.For a bounded solution y(t) of equation (5.5), we set y(t) = _x(t; �) + w(t) suh that_w = �A+DG(x(t; �)) + �DxH(t; x(t; �); �)�w � �DtH(t; x(t; �); �) (5.8)= �A+DG(q(t; �))�w + �DG(x(t; �)) �DG(q(t; �)) +�DxH(t; x(t; �); �)�w � �DtH(t; x(t; �); �)= �A+DG(q(t; �))�w +O(�)w � �DtH(t; x(t; �); �):Lyapunov-Shmidt redution shows that this equation has a bounded solution if and onlyif ~M(�) := Z 1�1 D (t+ �(�)); �DG(x(t; �)) �DG(q(t+ �(�))) +�DxH(t; x(t; �); �)�w(t; �)� �DtH(t; x(t; �); �)E dt= 0;where w(t; �) = O(�) satis�es the invertible part of (5.8). Therefore,~M(�) = �� Z 1�1h (t);DtH(t� �0; q(t); �)i dt+Z 1�1 D (t+ �(�)); �DG(x(t; �))�DG(q(t+ �(�))) + �DxH(t; x(t; �); �)�w(t; �)���DtH(t; x(t; �); �) �DtH(t; q(t+ �0); �)�E dt:The �rst integral is M 0(�0) whih we keep. The other integral is of order o(�). Indeed,DG(x) is Lipshitz ontinuous in x, w(t; �) = O(�), and x(t; �) � q(t + �(�)) = z(t; �) =31



O(�), whene the term involving w is of order O(�2). The di�erene DtH(t; x(t; �); �) �DtH(t; q(t+�0); �) = o(1) onverges to zero as � tends to zero sine � is C1 andDtH(t; x; �)is ontinuous in x. Thus, we have~M (�) = �M 0(�0)�+ o(�);whih is non-zero sineM 0(�0) 6= 0. An appliation of Theorem 2 then shows that equation(5.5) has an exponential dihotomy on IR.We proeed by proving the shadowing lemma, see also [2℄ for a proof for the paraboli ase.We onsider the slightly more general nonlinear equation_x = Ax+ F (t; x) (5:9)with F 2 BC1(IR�X�;X) for some � 2 [0; 1) and DxF (t; �) being Lipshitz. Note that Fis not neessarily periodi in t.Theorem 5 Assume that A satis�es Hypothesis (H1) and has ompat resolvent. Fur-thermore, suppose that equation (5.9) has solutions u�n1(t), uk(t), and un2(t) for �n1 <k < n2 de�ned on the intervals I�n1 = (�1; t�n1 ℄, Ik = [tk�1; tk℄, and In2 = [tn2 ;1) for�n1 < k < n2, respetively, suh that(i) the variational equation _y = (A+DxF (t; uk(t)))yhas an exponential dihotomy on Ik with projetions Pk(t), exponent Æ and bound K for�n1 � k � n2. Also, Hypotheses (H2) and (H5) are met for the variational equation.(ii) jtk � tk�1j � Æ�1 ln 3K.Then, there exists a positive onstant �0 suh that the following holds. For any � with0 < � < �0 there exists a onstant �(�) > 0 suh that, if in addition(iii) juk�1(tk�1)� uk(tk�1)jX� � �(�), and(iv) kPk�1(tk�1)� Pk(tk�1)kL(X�) � �(�),are met, equation (5.9) has a unique bounded solution x(t) on IR satisfyingjx(t)� uk(t)jX� < �for t 2 Ik and �n1 � k � n2. 32



Proof. We de�ne a funtion u(t) for t 2 IR by u(t) = uk(t) for t 2 Ik. Then, u(t)is H�older ontinuous exept at the points tk. For any �xed  > 0, there is a funtion�(t) 2 L1(IR;X) with supt2IR j�(t)jX <  suh that F (u(t); t) + �(t) is H�older ontinuouson IR. We approximate u(t) by the unique bounded solution z(t) of the equation_z = Az + F (u(t); t) + �(t):Sine the equation _z = Az has an exponential dihotomy on IR, the above equation has aunique solution. We have the estimateju(t)� z(t)jX� � C( + �)for some onstant C > 0. Thus, for � and  suÆiently small, and due to Hypothesis (ii),_y = (A+DxF (t; z(t)))yhas an exponential dihotomy on IR, see [22℄ for the details.Finally, we introdue new oordinates x(t) = z(t) + w(t) and write equation (5.9) in theform _w = (A+DxF (t; z(t)))w + F (t; z(t) + w)� F (t; z(t)) �DxF (t; z(t))w+F (t; z(t)) � F (t; u(t)) � �(t):For  and � small, we thus obtain a unique solution of equation (5.9) employing an impliitfuntion theorem.We now de�ne the Bernoulli shift. Let N be a positive integer andSN = f(ak)k2 ZZ ; ak 2 f0; :::; N � 1g for all k 2 ZZ gwith the produt topology. The shift � : SN ! SN , de�ned by (�(a))k = ak+1, is ahomeomorphism.Corollary 3 Assume that the hypotheses of Theorem 5 are met and that, in addition,F (t; x) is periodi in t with period p. Moreover, suppose that (5.9) has a bounded solutionv(t) and a T -periodi solution u(t) suh that33



(i) the variational equation _y = Ay +DxF (t; v(t))yhas an exponential dihotomy on IR and(ii) jv(t)� u(t)jX� ! 0 as jtj ! 1.Then there are �0 > 0 and funtions MN (�) for eah N 2 IN suh that, for given � with0 < � � �0 and m � MN (�) the following holds. For any a 2 SN , equation (5.9) has aunique bounded solution xa(t) de�ned on IR satisfyingjxa(t+ (2k � 1)mT )� v(t+ akT )jX� � � (5:10)for t 2 [�mT;mT ℄ and for all k 2 ZZ . The map �(a) = xa(0) is a homeomorphism onto aompat subset � of X�. Furthermore,xa(2mp) 2 �xa(2mp) = x�(a)(0) = �(�(a))is true for any a 2 SN .Proof. The onditions of Theorem 5 are satis�ed for k 2 [�n0; n0℄ and n0 2 IN if we de�neuk(t) = v(t + akT � (2k � 1)mT ) and tk = 2kmT for m large enough. Thus, for any n0,we obtain a solution xan0 that satis�es inequality (5.10) for k 2 [�n0; n0℄. The sequeneof solutions fxan0 gn02IN is a Cauhy sequene on ompat intervals and onverges to thesolution xa. The remaining part of the proof is similar to the one given by Palmer [22,Corollary 3.6℄.We an interpret the statement of the orollary as follows. The solution v(t) has N partswhih orrespond to the time segments[�mT;mT ℄; [(�m+ 1)T; (m + 1)T ℄; :::; [(�m +N � 1)T; (m +N � 1)T ℄:The solution xa(t) shadows one of these N parts of v(t) in eah time segment[(2k � 2)mT; 2kmT ℄but swithes randomly from one part to another.34



6 An appliation to semilinear ellipti equationsIn this setion, we apply Melnikov's method as developed in the last setion to semilinearellipti equations. First, we have to relate the abstrat equation investigated in the previoussetions to ellipti equations. Then, ellipti equations on in�nite ylinders are onsidered.We state onditions guaranteeing that the theory developed in the present paper applies.Finally, a onrete example on the in�nite ylinder IR� (0; �)n is presented.6.1 Abstrat ellipti equationsLet Y be a Hilbert spae and L : D(L) � Y ! Y a densely de�ned, stritly positive andself-adjoint operator. Moreover, denote the frational power spaes assoiated with L byY �. In partiular, Y 1 = D(L). Finally, suppose thatg : Y 1+�2 � Y �2 ! Yis a nonlinearity of lass Ck for some � 2 [0; 1) whih we will �x from now on. We areinterested in the abstrat ellipti equationuxx � Lu = g(u; ux) x 2 IR (6:1)for u 2 Y �.Consider the operator A = 0B� 0 idL 0 1CA : Y 1 � Y 12 ! Y 12 � Y; (6:2)then Hypothesis (H1) is met. In fat, the projetions P� are given byP� = 12 0B� id �L� 12�L 12 id 1CA : Y 12 � Y ! Y 12 � Y;and the operators A� by A� = 12 0B� L 12 � id�L L 12 1CA :The frational powers are then given byA�� = 12 0B� L�2 �L��12�L 1+�2 L�2 1CA35



with assoiated frational power spaes X� = Y 1+�2 � Y �2 . Consider the equationddxv = Av +G(v) (6:3)with v = (u; ux) and G(v) = (0; g(v)). Sine g : Y 1+�2 � Y �2 ! Y is Ck, we see thatG : X� ! X is Ck as well. Furthermore, it is straightforward to show that A has ompatresolvent whenever L has.Therefore, it suÆes to verify the assumptions made on L and g stated at the beginning ofthis setion in order to apply the results in Setion 2 and 5 to equation (6.3) whih is (6.1)written as a �rst order system in x. We emphasize that similar statements hold if (6.1) isof fourth order in x, and refer to a forthoming paper for the details.6.2 Semilinear ellipti equations on in�nite ylindersConsider a salar semilinear ellipti equationuxx +�yu+ ĝ(y; u; ux;ryu) + �ĥ(x; y; u; ux;ryu) = 0 (x; y) 2 IR� 
: (6:4)Here, � is a small real parameter, h is periodi in x with period p and 
 � IRn is an openbounded domain with smooth boundary. For the sake of simpliity, we onsider Neumannboundary onditions ��u(x; y) = 0 (x; y) 2 IR� �
 (6:5)where � denotes the outer normal of �
. Let Y = L2(
). Then L = ��y + u is aself-adjoint and positive operator with ompat resolvent and dense domainY 1 = D(L) = fu 2 H2(
); ��u = 0 on �
gin L2(
), see, for instane, [9℄. Finally, we assume that the nonlinearities g and h de�nedby (g(v1; v2))(y) := ĝ(y; v1(y); v2(y); (ryv1)(y))(h(x; v1; v2))(y) := ĥ(x; y; v1(y); v2(y); (ryv1)(y))map the spae Y 1+�2 � Y �2 smoothly into L2(
) for some � 2 [0; 1). Depending on thedimension of 
, this may require some nonlinear growth restritions for whih we refer tothe literature, see, for instane, [1, Chapter 9℄, [29, Chapter II℄, and [27, Chapter 7℄. We36



remark that the spaes hosen above always allow for linear dependene of ĝ and ĥ on thegradient ux of u in the unbounded variable x. This is important when the ellipti equationdesribes travelling waves of paraboli equations travelling in the x-diretion.The uniqueness assumption (H5) is met under very weak onditions on equation (6.4).Indeed, Cordes [6, Satz 5℄ proved that any solution u of lass C2 satisfyinguxx +�yu+ a(x; y)ux + b(x; y)ryu+ (x; y)u = 0 (x; y) 2 IR� 
u(0; y) = ux(0; y) = 0 y 2 
 (6:6)vanishes identially u(x; y) = 0 on IR � 
 provided the oeÆients a, b, and  are loallyLipshitz ontinuous.Suppose that q(x; y) is a homolini solution of (6.4) for � = 0 satisfyinglimjxj!1 q(x; y) = 0:In addition, assume that qx(x; y) is the unique, up to salar multiples, bounded solution ofvxx +�yv +Dux ĝ(y; q; qx;ryq)vx (6.7)+Dryuĝ(y; q; qx;ryq)ryv +Duĝ(y; q; qx;ryq)v = 0;whih is of the form (6.6). Also, as limjxj!1 q(x; y) = 0, the oeÆients onverge forjxj ! 1 to funtions depending only on y.Thus, the theory developed in the previous setions applies. Indeed, using the results inSetion 6.1, it is possible to write (6.4) as an evolution equationddxv = Av +G(v) + �H(x; v) (6:8)where A = 0B� 0 id��y + id 0 1CAand G(v)(y) = 0B� 0�g(v1; v2)� v1 1CA ; H(x; v)(y) = 0B� 0��h(x; v1; v2) 1CA :The linearization ddxv = Av +DG(q; qx)v37



at the homolini solution satis�es Hypothesis (H5) whenever, for instane, Cordes' resultapplies to (6.7). Also, the smallness assumption (H2) is always satis�ed based on the aboveremarks.6.3 An example on an in�nite ylinderAs an example, we take 
 = (0; �)n and onsideruxx + 2�yu� u+ u2 + �(1 + h(y)) os x = 0 (x; y) 2 IR� (0; �)n; (6:9)for n 2 IN with Neumann boundary onditions�yu(x; y) = 0 for (x; y) 2 IR� �
:Here,  6= 0, and h(y) is a smooth funtion with zero mean, that is R
 h(y) dy = 0. Notethat the nonlinearity is analyti for � = 0. Hene the uniqueness hypothesis (H5) is satis�edsine any solution of either (6.9) or its linearization is analyti as well. Though the domain
 is not smooth, equation (6.9) �ts into the setting of the last setion. Alternatively, thereader may onsider the n-dimensional unit ball using spherial harmonis instead of thetrigonometri expansion employed below.We remark that the redution to essential manifolds developed by Mielke [21℄ applies toequation (6.9) provided n = 1. However, as pointed out in the introdution, the resultingmanifold will only be of lass C1. For n > 1, the results in [20℄ do not apply sine theyrequire that the nonlinearity is independent of x. Also, the example an be modi�ed easilysuh that the spetral gaps are not arbitrarily large as required by any inertial-manifoldredution. Replae, for instane, 
 as de�ned above by Qnj=1(0; aj�) with rationally inde-pendent onstants aj > 0.Rewrite equation (6.9) aording toddx 0B� v1v2 1CA = 0B� 0 1�2�y + 1 0 1CA0B� v1v2 1CA�0B� 0v21 + �(1 + h(y)) os x 1CA= Av +G(v) + �H(x; v):Let k 2 INn0 be a multi-index and de�ne jkj2 :=Pnj=1 k2j . Then, the eigenvalues of the linearoperator A are given by��k = �q1 + 2jkj2 for k 2 INn038



with assoiated eigenfuntionsw�k (y) = 0B� 1�p1 + 2jkj2 1CA nYj=1 os kjyj for k 2 INn0 :In the invariant subspae W0 = spanfw+0 ; w�0 g, the homolini solution(q(x); qx(x)) = �32 seh 12x;�34 seh 12x tanh 12x�of (6.9) is found for � = 0. Consider the variational equationddxv = (A+DG(q(x)))v: (6:10)It turns out that the subspaes Wk = spanfw+k ; w�k g are invariant under the ow of (6.10)for k 2 INn0 . In the subspae Wk, equation (6.10) readswxx � (1 + 2jkj2 � 2q(x))w = 0 x 2 IR; (6:11)where w(x) is the amplitude. We are interested in the set of bounded solutions to thisequation. First onsider the spetrum of the operatorLw = wxx � (1� 2q(x))w x 2 IR: (6:12)The spetrum of L is given by isolated simple eigenvalues �0 = 54 , �1 = 0, and �2 = �34with eigenfuntions ~w0(x) = seh 32 (12x) and ~w1(x) = qx(x). The remainder part (�1;�1℄of the spetrum is essential spetrum. See [26, Lemma 2.1℄ for the proofs.Now suppose that  6= p52l for all l 2 IN: (6:13)Then the linearized equation (6.11) has non-trivial bounded solutions only for k = 0 andHypothesis (H6) holds by non-degeneray of the homolini orbit in the plane W0. There-fore, Theorem 4 and Corollary 3 apply one (6.13) is met. Note that, in partiular, (6.13)is met if  > p52 .In passing, we remark that the subspae W0 beomes normally hyperboli for  !1. Inthis ase, equation (6.9) is posed on a thin domain as an be readily seen by resaling they variable.It remains to alulate the Melnikov integrals. The bounded solution of the adjoint equationddxv = �(A� +DG(q(x))�)v39



is given by (� x(x);  (x)) = (�qxx(x); qx(x)):Therefore, we obtainM(�) = Z 1�1 Z
 qx(x)(1 + h(y)) os(x� �) dy dx= �n Z 1�1 q(x) sin(x� �) dx= �n Z 1�1 31 + oshx sin(x� �) dx= 6�n+1sinh� sin�:For � = 0, we have M(0) = 0 and M 0(0) 6= 0. Thus, the onlusions of Theorem 4 andCorollary 3 apply to this partiular example.Note that, for non-zero h(y) and � 6= 0, the subspae W0 is no longer invariant whene thesolutions ensured by Corollary 3 do have non-trivial y-dependene. These solutions an beviewed as ompliated equilibria u(x; y) of the paraboli equationut = uxx + 2�yu� u+ u2 + �(1 + h(y)) os x (x; y) 2 IR� (0; �)n (6:14)on the ylinder IR � (0; �)n. Moreover, for small , the above results still hold if a term�ux is added to (6.9). Then Corollary 3 ensures existene of many travelling-wave solutionsu(x � �t; y) of (6.14) with non-trivial spatial dependene travelling with non-zero speed�.Referenes[1℄ J. Appell and P.P. Zabrejko. Nonlinear superposition operators. Cambridge Uni-versity Press, Cambridge, 1990.[2℄ C.M. Blazquez. Transverse homolini orbits in periodially perturbed paraboliequations. Nonlin. Anal. TMA 10 (1986), 1277{1291.[3℄ T. Burak. On semigroups generated by restritions of ellipti operators to invari-ant subspaes. Israel J. Math. 12 (1972), 79{93.40
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