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Abstract

Pattern-forming fronts are often controlled by an external stimulus which progresses through a stable

medium at a fixed speed, rendering it unstable in its wake. By controlling the speed of excitation, such

stimuli, or “triggers,” can mediate pattern forming fronts which freely invade an unstable equilibrium and

control which pattern is selected. In this work, we analytically and numerically study when the trigger

perturbs an oscillatory pushed free front. In such a situation, the resulting patterned front, which we call

a pushed trigger front, exhibits a variety of interesting phenomenon, including snaking, non-monotonic

wavenumber selection, and hysteresis. Assuming the existence of a generic oscillatory pushed free front,

we use heteroclinic bifurcation techniques to prove the existence of trigger fronts in an abstract setting

motivated by the spatial dynamics approach. We then derive a leading order expansion for the selected

wavenumber in terms of the trigger speed. Furthermore, we show that such a bifurcation curve is governed

by the difference of certain strong-stable and weakly-stable spatial eigenvalues associated with the decay

of the free pushed front. We also study prototypical examples of these phenomena in the cubic-quintic

complex Ginzburg Landau equation and a modified Cahn-Hilliard equation.

Running head: Triggered pushed fronts

Keywords: Pushed fronts, heteroclinic bifurcations, Ginzburg-Landau equation, Cahn-Hilliard equa-

tion

1 Introduction

Over the past three decades, much experimental, numerical, and theoretical work has been done to study

pattern formation in the wake of invading fronts (see [2, 10, 11, 43] for some of the first papers and reviews).

Typically, such fronts arise via the nucleation and invasion of an instability into a homogeneous unstable

equilibrium which leaves behind a pattern forming front in its wake. In many cases, the resulting pattern

is an unstable periodic wave train. The wavenumber of this periodic pattern is usually independent of

the initial perturbation and is selected by the nonlinear front propagation. We refer to such fronts, which

mediate this invasion process, as free fronts.

In practice, such invasion processes can be difficult to control as uniform suppression of random

fluctuations is required to prepare the unstable equilibrium and hence form defect-free patterns. Also, one

may only have limited control on system parameters, making it even more difficult to control the patterns

formed. One way of gaining control of the pattern-forming process is to use an external mechanism

which travels through a stable medium and locally excites it into an unstable state. We shall call such a

mechanism a trigger and the resulting front, which connects the unstable and stable states, a preparation
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front. Once the unstable state is established, the mechanism which governs the free front, causes a

uniformly patterned state to nucleate in the wake of the trigger. We shall call the resulting pattern-

forming front a trigger front. See Figure 1.1 below for a schematic description of this process.

Heuristically, one can think of the trigger as an effective boundary condition for the system when posed

in a co-moving frame. Stationary solutions in this coordinate frame are usually referred to as nonlinear

global modes [4]. They mediate the transition from convective to absolute instability in a semi-infinite

domain. From this perspective, our problem is somewhat equivalent to problems studied in [7, 5, 36],

and our results can be understood as a rephrasing and improvement of expansions in [8]. In particular,

we emphasize universality in expansions for wavenumber and frequency in terms of only properties of the

corresponding free front. We also note that a slightly different but related approach was used in [12] to

study the effect of defects on one-dimensional localized structures.

Many examples of this triggered pattern formation arise in systems with mass-conserving properties.

Typical model equations for such systems are the Cahn-Hilliard equation [15, 29, 30, 41], the Keller-Segel

model for chemotaxis [1, 33], reaction-diffusion systems [32], or phase-field systems [14, 18, 19]. Other

examples arise in ion-bombardment studies [17] and are modeled by Kuramoto-Shivashinsky-type models,

while still others arise when studying general osciliatory instabilities using real and complex Ginzburg-

Landau models [4, 6, 7].

Free Fronts: Pushed vs. Pulled Since the pattern formed in the wake of a trigger front is

controlled by how the free front interacts with the trigger, we must discuss free fronts in more detail

before we can describe our results. In an analogous fashion to super- and sub-critical transitions, free

fronts come in two generic types known as pulled and pushed.

Pulled fronts can be described to very good approximation by a linear analysis based on branch

points of a complex dispersion relation. The speed of such a front, known as the linear spreading speed,

is determined by a marginal stability criterion [11], which requires that the trivial state is pointwise

marginally stable in a frame moving with this speed. In other words, decreasing the speed of the frame of

observation, the instability of the trivial state changes from convective to absolute. Furthermore, invasion

of such fronts is governed by linear growth in the leading edge which then saturates in the wake due to the

nonlinearities of the system. Such nonlinear pulled fronts are known to be very sensitive to disturbances

in the leading edge. Convergence towards, as well as relaxation of small perturbations to, pulled fronts

is typically slow, in fact algebraic. In a co-moving frame, this type of invasion can be either stationary

or oscillatory with frequency ωfr. This frequency is typically a fraction of the frequency derived by the

marginal stability criterion, ωfr = ωlin/`. The case of strong resonance, ` = 1, is often referred to as node

conservation in the leading edge. For a systematic study of such fronts using pointwise Green’s functions

see [25].

Pushed fronts arise when nonlinearities amplify linear growth sufficiently so that the speed of propaga-

tion of disturbances exceeds the linear, pulled speed. Pushed fronts are generally steeper and convergence

towards them is fast, being exponential in time. In fact, the Green’s function for the linearization at

pushed fronts exhibits simple poles associated with the neutral Goldstone modes, while the linearization

near pulled fronts exhibits a singularity with structure similar to the 3-dimensional heat kernel [16]. In

the language of spatial dynamical systems, such a front consists of a heteroclinic orbit which converges to

an equilibrium along a strong-stable invariant manifold. While numerical studies of such fronts have been

performed in many different systems, rigorous theoretical study has been limited to a small number of

mathematical models including the Nagumo equation, coupled-KPP equations, Lotka-Volterra systems,

and the Complex Ginzburg Landau equation [23, 24, 42, 44].

For a more comprehensive review of these two generic types of fronts, including many numerical and

physical examples see [43].
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Our Contributions The main question of interest here is the effect of the trigger on the wavenumber

of the periodic pattern in the wake of the front. One observes that for large enough trigger speeds the

influence is negligible, possibly after an initial transient: in the wake of the trigger, one observes a front

very close to the free front, and the distance between trigger and patterns increases linearly in time. We

will thus focus on the situation when the speed of the trigger is close to that of the free front. One then

expects small corrections to the wavenumber in the wake. In particular, for trigger speeds smaller than

the speed of a free front, one expects a locked state, where the free front has caught up with the trigger.

In this locked state, the trigger can be thought of as exerting a pressure, or strain on the periodic pattern,

causing a perturbation in its wavenumber.

χ
c

upr
c

up

cpuff

utf
c

Figure 1.1: Schematic depiction of our results. The triggering mechanism, χ, travels with speed c and creates

the preparation front upr connecting a stable state (solid red) with an unstable state (dashed blue). The

free front, uff , invades the unstable state with speed cp, leaving behind a periodic pattern up. The resulting

pattern-forming trigger front, utf , is obtained from the combination of upr and utf , for speeds c close to cp.

In the previous work [20], we rigorously characterized a prototypical example of a trigger front which

is perturbed from a pulled free front. There it was shown that wavenumber and front position asymptotics

can be predicted to leading order by the absolute spectrum of the unstable trivial state and to second order

by the projective distance between two invariant manifolds near the unstable homogeneous equilibrium.

Furthermore, it was shown in this case that the wavenumber of the periodic pattern in the wake varies

monotonically as the speed of the trigger is varied.

In this work, our goal is to study trigger fronts perturbed from a pushed free front. Conceptually,

our results are as follows. Assume that a one-dimensional, evolutionary pattern forming system has the

following properties:

• There exists an oscillatory pushed free front uff invading an unstable homogeneous equilibrium u∗
with speed cp > 0.

• For speed cp, there exists a preparation front upr(x − cpt) formed in the wake of a spatial trigger

which connects u∗ to a stable homogeneous state ũ∗ as ξ := x− cpt increases from −∞ to +∞.

• The fronts uff and upr are generic. In other words, when viewed as heteroclinic orbits in a spatial

dynamics formulation, upr is transverse while uff is transversely unfolded in parameters ω and c,

where ω is the temporal frequency of the periodic pattern associated with uff and c is the speed of

the trigger.

• The inclination properties of the relevant invariant manifolds about upr are generic.

Then for trigger speeds close to the free invasion speed cp, there exists a family of pushed trigger

fronts connecting a spatially periodic orbit to the aforementioned stable state. Moreover, this family has

a bifurcation curve in the parameter space µ := (c− cp, ω − ωp) ∈ R2, with the asymptotic form

µ(L) = Ke∆νL(1 +O
(
e−δL)

)
, (1.1)
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where, L � 1, K is a linear mapping from C to R2, and ∆ν denotes the difference of strong stable

eigenvalues associated with the decay of the free pushed front, and other weakly stable eigenvalues (see

Figure 1.3).

e∆νL(1 +O
(
e−δL

)
)

µ(L)

K

ω − ωp

c− cp

C R2

Figure 1.2: Leading order bifurcation curve of pushed trigger fronts in µ-parameter space.

If a pushed free front is oscillatory, the bifurcation curve of pushed trigger fronts takes on a logarithmic

spiral shape, leading to a variety of interesting phenomena. Namely, such trigger fronts will exhibit snaking

behavior. This leads to the possibility of multi-stability of fronts, locking behavior for trigger speeds

slightly higher than cp, and finally hysteretic switching between different wave-numbers. This last effect

is particularly interesting as it could potentially be exploited in the design and control of self-organized

patterning processes.

The genericity assumptions above can also be formulated in terms of spectral information. For upr,

such hypotheses are equivalent to assuming that the Evans function associated with the linearization

about the front has no zeros at the origin. For uff , the associated Evans function has a zero of algebraic

multiplicity two at the origin, corresponding to the temporal and spatial translation symmetries of the

front.

Technically, we use an abstract formulation motivated by the spatial dynamics approach and employ

heteroclinic matching techniques to prove existence of pushed trigger fronts and give universal asymptotics

for their frequency and wave-numbers. We shall show that the front dynamics are, to leading order,

governed by the spectral gap between strong-stable spatial eigenvalues, which govern the asymptotic

decay of the free pushed front, and other weakly stable eigenvalues. As seen in Figure 1.3, the simplest

form of such a gap may come in several varieties, each of which may lead to different phenomena. In

this paper we shall focus on the case depicted on the left where the gap is determined by two complex

conjugate pairs. The other cases in this figure may also lead to many interesting phenomenon and are

briefly discussed in Section 5.

Throughout the paper, we consider two prototypical examples to elucidate our results. The first of

these is the cubic-quintic complex Ginzburg-Landau equation (qcGL). We choose this relatively simple

example to demonstrate our results and motivate their application to more complicated systems. Finding

pushed trigger fronts in the qcGL equation can be reduced to a finite dimensional traveling-wave ODE

in which all of the required hypotheses for our result have been proven in previous studies, or can be

obtained by straightforward arguments.

The second example we consider is a modified Cahn-Hilliard equation. This equation will serve as

an illustration for how our results apply in the case where the existence problem is inherently infinite-

dimensional. While in this setting, it is not straightforward to verify the required hypotheses (see Section

2.2 and Section 5.1), we provide numerical evidence showing the predicted phenomenon, and also evidence

for one of our most important hypotheses: the existence of an oscilliatory pushed free front.
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Figure 1.3: Depiction of different cases for splitting of spatial eigenvalues corresponding to a free pushed front.

The grey areas denote the rest of the spectrum of the linearization of the spatial dynamics formulation. We

study the case depicted in the left plot, here the dotted lines denote the exponential weights we use to select

relevant solutions near the origin.

Outline The following work is structured as follows. In Section 2 we give examples of the relevant

phenomena in specific equations. In Section 3 we formulate our abstract hypotheses and state our main

result. In Section 4 we then give the heteroclinic matching proof for the existence of pushed trigger fronts

and obtain leading order expansions for the bifurcation curve in terms of the spectral information of the

system. We conclude our work in Section 5 by discussing future areas of work and how our results could

be improved and extended.

2 Examples and sketch of main result

To motivate our results, we briefly describe examples in the cubic-quintic complex Ginzburg-Landau and

Cahn-Hilliard equations which illustrate the phenomena mentioned in the introduction.

2.1 Complex Ginzburg-Landau equation

The complex Ginzburg-Landau equation has been used as a modulation equation to study the onset

of coherent structures in many physical systems. Furthermore, pattern-forming free fronts have been

extensively studied in this setting. In particular, it has been shown in [44] that the cubic-quintic variant

ũt = (1 + iα)ũxx + ũ+ (ρ+ iγ)ũ|ũ|2 − (1 + iβ)ũ|ũ|4, x, t ∈ R, ũ ∈ C, (2.1)

possesses pushed free invasion front solutions for a range of parameters ρ, α, γ, β. That is, there exist front

solutions which connect a wave train up(x, t) = rei(kpx−ωpt) at x = −∞ to the unstable homogeneous

equilibrium u∗ ≡ 0 at x → ∞ with an interface which invades the unstable state u∗ with a speed, cp,

faster than the linearized dynamics predict. The parameters of the asymptotic wave train, r, k, ω ∈ R,

can be found to satisfy the nonlinear dispersion relation

1 = k2 − ρr2 + r2,

ω + ck = αk2 − γr2 + βr4. (2.2)

By shifting into a co-moving frame ξ = x − cpt and detuning by u = eiωptũ, such a traveling front

takes the form of a heteroclinic orbit in the finite-dimensional system

0 = (1 + iα)uξξ + cpuξ + (1− iω)u+ (ρ+ iγ)u|u|2 − (1 + iβ)u|u|4. (2.3)

In this setting, we can then study how a spatially progressive triggering mechanism, χε, affects this

pattern-forming front using the following system

0 = (1 + iα)uξξ + cuξ + (χε(ξ)− iω)u+ (ρ+ iγ)u|u|2 − (1 + iβ)u|u|4, (2.4)

ε
d

dξ
χε = χ2

ε − 1, (2.5)

5



where χε takes the role of the trigger with 0 < ε << 1 and χε(0) = 0. When viewed in the stationary

coordinate frame, the inhomogeneity χε travels through the spatial domain, altering the PDE-stability

of u∗. For ξ > 0 the state is stable, while for ξ < 0 it is unstable. Thus, if u0 is locally perturbed, an

oscillatory instability will develop, leading to the formation of a patterned state in the wake of χε.

Numerical simulations show that such a mechanism creates pattern-forming fronts which behave in a

strikingly different manner than in the pulled case [20]. As can be seen in Figure 2.1, the front exhibits

snaking behavior as the trigger speed c is varied near cp. Here the front interface of the solution hys-

teretically “locks” at different distances to the trigger interface located at x − ct = 0. Furthermore, this

locking causes trigger fronts to persist for speeds larger than the free invasion speed cp. Additionally,

Figure 2.1 shows wavenumbers of the periodic pattern in the wake of the trigger vary non-monotonically

and hysteretically as the trigger speed c is varied.
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Figure 2.1: Numerical bifurcation diagrams comparing computations of triggered qcGL equation from

AUTO07P (yellow) and direct simulation (blue and orange dots) with parameter values α = 0.3, γ = −0.2, β =

0.2, ρ = 4 so that cp ≈ 2.66. The bottom three figures depict triggered pushed front profiles for a range of pa-

rameter values: (i): (c, k) = (2.656, 1.1894), (ii): (c, k) = (2.646, 1.0678), (iii) (c, k) = (2.728, 1.1181), zoomed

in near the trigger to illustrate the distance to the interface of the trigger χε which is overlaid in orange. The

direct simulations were done using a 2nd-order exponential time differencing scheme (see [9]) with dt = 0.01,

a spectral spatial discretization with 210 Fourier modes, and were run in the co-moving frame with speed c.

Note that the trigger was made negative near the left boundary at ξ = 0 (not pictured) to accommodate for

the periodic boundary conditions. This was not found to affect the results as the nucleated patterns were

unaffected by this interface, having negative group velocity.

These results were obtained using both numerical continuation and direct simulation of (2.4). The

yellow curves were found via numerical continuation in AUTO07P. In order to avoid periodic boundary

conditions, these computations were done in the blow-up coordinates derived in [19], where periodic orbits

in the traveling wave equation collapse to equilibrium points. The dotted lines (blue and orange) come

6



from measurements of direct simulations. In these simulations the homogeneous state u∗ was locally

perturbed far away from the trigger interface, resulting in a patterned state which locked some distance

away from the interface (blue curve). The trigger speed c was then adiabatically decreased and, when c

reached the turning point of the bifurcation curve found using AUTO07P, the front detached and re-locked

to a solution branch with a different wavenumber and front interface closer to the trigger. The trigger

speed c was then adiabatically increased, continuing solutions along this different branch (orange curve).

2.2 Cahn-Hilliard equation

We have also have investigated these types of fronts in a modified Cahn-Hilliard equation

ut = −(uxx + f(u))xx, f(u) := u+ γu3 − u5, x, t, u ∈ R. (2.6)

Because the linearization about the homogeneous unstable state u∗ ≡ 0 is the same as the standard

Cahn-Hilliard equation with f(u) = u− u3, (2.6) will have the same linear spreading speed [43],

clin =
2

3
√

6

(
2 +
√

7
)√√

7− 1.

Direct numerical simulations using both spectral and finite-difference methods have suggested that, for

γ > 0 sufficiently large this equation possesses oscillatory pushed invasion fronts which freely invade the

homogenous state u∗. Figure 2.2 depicts spacetime diagrams of two free invasion fronts in (2.6), one with

γ < 0 and one with γ > 0. In the former case the front approximately travels with the linear speed clin,

while in the latter case the front travels with a faster speed and possesses steeper decay at the leading

edge. Since the Cahn-Hilliard equation cannot be detuned as in the CGL equation above, such pushed

front solutions would arise in a co-moving frame of speed cp as time-periodic solutions with some temporal

frequency ωp. That is they are solutions to the equation

ωpuτ = −(uξξ + f(u))ξξ + cpuξ, ξ ∈ R, τ ∈ [0, 2π]. (2.7)

We can then study pushed trigger fronts by introducing a uniformly-translating spatial trigger as above

ωuτ = −(uξξ + f̃(ξ, u))ξξ + cuξ, f̃(ξ, u) := χ(ξ)u+ γu3 − u5, ε
d

dξ
χε = χ2

ε − 1 (2.8)

with ε > 0 small, and χε(3N/4) = 0 for some N > 0.

Using numerical arc-length continuation we found that, in a narrow parameter regime, such fronts

possess a spiraling bifurcation curve and thus exhibit locking and multi-stability phenomena, as in CGL.

Here we used the temporal frequency ω in our bifurcation diagrams and note that the wavenumber k can

be determined by the relation c = ω
k since the spatial pattern is stationary in a stationary frame. We also

mention that this locking behavior was corroborated in semi-implicit time-stepping simulations. In these

simulations, if the homogeneous state was perturbed near the trigger, then the resulting patterned state

would lock close to the trigger (i.e. farther out on the spiral). If the homogeneous state was perturbed

far away from the trigger then the pattern would lock far away from the trigger (i.e. closer to (ωp, cp) on

the spiral).

Our numerical continuation method used finite-differences to discretize both temporal and spatial

derivatives and the MATLAB Newton solver “fsolve” to continue solutions on the domain (ξ, τ) ∈ [0, N ]×
[0, 2π] in c and ω for some fixed N large. To accommodate the second parameter we appended the phase

condition ∫ 2π

0

〈∂τu(·, s), u(·, s)− uold(·, s)〉L2([0,L]) ds = 1,

where uold is the solution found at the previous continuation step. This eliminates the non-uniqueness

due to the translation symmetry in time and allows the equation to be solved uniquely. The initial guess
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Figure 2.2: Free invasion fronts in (2.6) for γ = 1.5 (left) and γ = −1.5 (right). The invasion speed on the

right is the linear speed predicted by the linearization about u∗ ≡ 0 while the invasion speed on the left is

much faster and the corresponding front has a sharp leading edge, indicating a nonlinear front. The dashed

red line overlaid on the left indicates the path of the pulled front on the right. Here (2.6) was simulated using

a semi-implicit time stepping method with second order finite differences in space (dx = 0.2) and first order

in time (dt = 0.01).

for the continuation algorithm was one full time-period of a solution obtained from an semi-implicit time-

stepping method, with the same spatial discretizations as above. More details of our continuation method

can be found in the caption of Figure 2.3.

3 Abstract formulation

Our theoretical approach is motivated by the spatial dynamics method first formulated by Kirchgasser

and subsequently developed by many others over the past few decades [13, 27, 28, 39]. By viewing a

pattern-forming system as a continuous-time dynamical system, where the spatial variable is viewed as

the “time-like” variable, the existence of a trigger front can be obtained as a heteroclinic bifurcation from

a nearby pushed free front; see Figure 4.1 for a schematic of such a bifurcation.

In particular, we shall study a system of the form

d

dξ
u0 = f0(u0;µ) (3.1)

d

dξ
u1 = Au1 + f1(u0, u1;µ)u1, ξ ∈ R, µ ∈ R2, (3.2)

where µ shall consist of system parameters, u0 ∈ X0 := Rn, and u1 ∈ X1, a real Hilbert space. Equation

(3.1) governs the triggering mechanism as in (2.5), while (3.2) governs the pattern forming system. Let

A : Y1 ⊂ X1 → X1 be a closed linear operator where Y1 := D(A) is also a real Hilbert space which is

dense and compactly embedded in X1. Furthermore we shall assume that there exists a projection P such

that As := AP and −Au := −(1− P )A are sectorial operators.

Next we assume that the function f0 satisfies

f0(0, µ) = f0(u∗0(µ), µ) = 0,

where u∗0(µ) ∈ X0 varies smoothly in µ for all µ near the origin in R2. Furthermore we assume

f0 ∈ Ck(X0 × R2, X0), f1 ∈ Ck(X0 ×X1 × R2, X1),
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Figure 2.3: (upper left): Bifurcation curve for triggered pushed fronts in (2.8) with temporal frequency ω and

trigger speed c with γ = 1.5 for which the free pushed parameters are (cp, ωp) = (2.0324, 1.5115). (upper

right): Plot of the L2 norm of solutions against the trigger speed c. Insets are zoomed in near the value

c = cp (lower): Spactime diagrams of solutions for a selection of points (i): (c, ω) = (2.001, 1.471), (ii):

(c, ω) = (2.0329, 1.5113), (iii): (c, ω) = (2.0325, 1.5115), (iv): (c, ω) = (2.0324, 1.5115) along the bifurcation

curve. First order forward differences for ∂t and centered second-order differences for ∂x were used, with step

sizes dt = 0.2, dx = 0.5 respectively, and N = 200.

for some k ≥ 1. Defining X := X0 × X1, it is readily seen that U∗ := (0, 0), Ũ∗(µ) := (u∗0(µ), 0) are

equilibria of the system

d

dξ
U = F (U ;µ), F (U ;µ) =

(
f0(u0;µ)

Au1 + f1(U ;µ)u1

)
, U =

(
u0

u1

)
, (3.3)

and

DUF (Ũ∗(µ);µ) =

(
Du0

f0(u∗0, µ) 0

0 A+ f1(u∗0, 0, µ)

)
, DUF (U∗;µ) =

(
Du0

f0(0, µ) 0

0 A+ f1(0, 0, µ)

)
.

Next, motivated by the time-translation symmetry τ → τ − θ, which occurs in a typical spatial

dynamics formulation, we assume the following

Hypothesis A. Let T1 : S1×X → X be a strongly continuous group action of the circle, S1, on X such

that X0 × {0} ⊂ Fix(T1), and A and f1 are both equivariant under this action.
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Finally, we assume the existence of a smooth family of periodic orbits.

Hypothesis B. There exists a family of periodic solutions Up(ξ;µ) of (3.3), smooth in µ, which lie

entirely in the subspace {0} ×X1 and possess trivial isotropy with respect to T1 which acts by,

T1(kζ)Up(ξ, µ) = Up(ξ + ζ;µ)

where k = k(µ) defines the period, 2π/k(µ), of Up.

In a typical spatial dynamics formulation, k represents the spatial wavenumber of the periodic pattern.

Remark 3.1. Note that the u1-components of the equilibria U∗ and Ũ∗ are the same. We have simplified

the setting to reflect those in the examples given above where the trigger is a coefficient in the linear terms

which progressively changes the stability of a constant preparation front. We remark that our abstract

setting could be readily altered to instead study a system with a source-term trigger which moves the

system from one spatially homogeneous equilibrium to another.

CGL spatial dynamics In the setting of the complex Ginzburg-Landau equation given in (2.4)-(2.5),

a formulation as above can be obtained by converting (2.4) into a first order complex system for u and

v := uξ, and then decomposing into equations for the real and imaginary parts of each u = s+it, v = z+iw

so that sξ = z and tξ = w. Setting u0 = χε and u1 = (s, t, z, w)T , one obtains the system

ε
d

dξ
u0 = u2

0 − 1, (3.4)

d

dξ
u1 = A(c, ω)u1 + f1(u0, u1; c, ω)u1 (3.5)

with

A(α, c, ω) = − 1

1 + α2

(
0 I2
A1 A2

)
, f1(u0, u1; c, ω)u1 = Bu1 + c(u1)TCu1 + d(u1)TDu1,

B = − 1

1 + α2

(
0 0

B1 0

)
, C = − 1

1 + α2

(
0 0

C1 0

)
, D =

1

1 + α2

(
0 0

D1 0

)
,

where all the zeros are 2× 2 zero-matrices, I2 is the 2× 2 identity, and

A1 =

(
1− αω ω + α

−(ω + α) 1− αω

)
, B1 =

(
u0 − 1 α(u0 − 1)

α(1− u0) u0 − 1

)
, C1 =

(
ρ+ αγ αρ− γ
γ − αρ ρ+ αγ

)
,

D1 =

(
1 + αβ α− β
β − α 1 + αβ

)
, c(u1) = (s2 + t2) · (0, 0, 1, 1)T , d(u1) = (s2 + t2)2 · (0, 0, 1, 1)T .

Here, the phase space is simply X = R5. The preparation front upr corresponds to a heteroclinic orbit

contained in the {u1 = 0} subspace, while uff is a heteroclinic orbit contained in the {u0 = 1} subspace.

Also the S1-action arises as the gauge-symmetry,

T1(θ) : (u, v) 7→ eiθ(u, v).

Cahn-Hilliard spatial dynamics In the context of the modified Cahn-Hilliard equation given in

(2.8), a formulation as above can be obtained by setting

u0 := χ, u1 = (u, v, θ, w)T := (u, uξ, uξξ + f̃(ξ, u), (uξξ + f̃(ξ, u))ξ)
T

from which one finds

ε
d

dξ
u0 = u2

0 − 1, (3.6)

d

dξ
u1 = A(c, ω)u1 + f1(u0, u1; γ)u1, (3.7)

10



with

A(c, ω) =

(
b1 I3
−ω∂τ b2(c)

)
, f1(u0, u1;µ) = −




0 0 0 0

1− u0 + γu2 − u4 0 0 0

0 0 0 0

0 0 0 0


 , (3.8)

where 0 < ε� 1, I3 is the three dimensional identity matrix, b1 = (0, 1, 0)T , and b2(c) = (c, 0, 0). This is

then an ill-posed evolution equation on the Banach space X = R×H3(T)×H2(T)×H1(T)×L2(T), where

the linear operator A has domain Y = R×H4(T)×H3(T)×H2(T)×H1(T). By setting µ = (c−cp, ω−ωp),

we obtain a system of the form given in (3.3) above. In this form, upr corresponds to a heteroclinic orbit

contained in the {u1 = 0} subspace, while uff is a heteroclinic orbit contained in the {u0 = 1} subspace.

Here, the S1-action arises as a time-shift symmetry τ 7→ τ − θ.

3.1 Spectral hypotheses

Next, we state our spectral hypotheses for the relative equilibria U∗, Ũ∗, and Up of (3.3). It follows from

the compact embedding of Y1 ⊂ X1 that the spectra of DUF , evaluated at each of these, consists of

isolated eigenvalues of finite multiplicity. We thus assume the following,

Hypothesis C. (i) The linearization of F about U∗ at µ = 0 has the following properties:

• The operator DUF (U∗; 0) has algebraically simple eigenvalues νss = −rss±iσss, νsu = −rsu±iσsu

such that rss > rsu > 0, σss, σsu 6= 0, and all other ν ∈ Σ (DUF (U∗;µ)) satisfy either Re{ν} >
−rsu or Re{ν} < −rss.

• Du0
f0(0, 0) has a real unstable eigenvalue νu = ru > 0 which satisfies ru > 2rss − rsu.

(ii) The periodic orbit Up is hyperbolic. That is the linearization about Up has spectrum bounded away

from the imaginary axis except for a simple Floquet exponent, located at 0 ∈ C.

(iii) The spectrum Σ(DUF (Ũ∗); 0) is bounded away from the imaginary axis. That is, there exists a γ > 0

such that all eigenvalues satisfy |Re{ν}| > γ.

νss
νsu

νsu

νss

σss

σsu

−rsu−rss

−ηss −ηsu

∆ν

∆r

∆σ

Figure 3.1: Schematic diagram of notation for leading eigenvalues and relevant quantities.

Hypothesis C(i) encodes the spectral splitting corresponding to the leading order decay of the free

pushed front and also describes the decay of the preparation front in backwards time, requiring that it

decays with a fast rate. This will aid in our analysis and is not restrictive in our results since we imagine

such a front to be controlled by the experimenter or an outside mechanism. For instance, for the examples

given in Section 2, one could obtain such a fast decay by tuning ε > 0 to be sufficiently small. Hypothesis

C(ii) readily gives that Up is not degenerate with respect to perturbations in µ. Hypotheses C(iii) reflects

11



the fact that the state Ũ∗, which corresponds to the asymptotic state ahead of the trigger, is typically

PDE-stable.

Remark 3.2. These spectral hypotheses would need to be adapted if the PDE from which the system

originated possessed any conserved quantities or additional symmetries. We briefly discuss how our results

would change for these cases in Section 5.

Using the sectoriality of the decomposition of A, we can define spectral projections P
ss/su
1,∞ to obtain

eigenspaces, Ess
1,∞ and Esu

1,∞ of DUF (U∗) which are associated with the spectral splitting in Hypothesis

C(i). These spaces have the decomposition

E
ss/su
1,∞ = E

ss/su,l
1,∞ + E

ss/su,s/u
1,∞ ,

where “l” denotes the 2-dimensional eigenspaces corresponding to the leading eigenvalues νss/su and “s/u”

denote the eigenspaces corresponding to the spectral sets {ν < −rss} and {ν > −rsu} respectively.

Also, let e
ss/su
1,∞ ∈ Ess/su,l

1,∞ denote the unit-normed complex eigenvectors of DUF (U∗) associated with the

eigenvalues νss/su, and let e∗j,∞ denote the complex eigenvector of the adjoint linearization −DUF (U∗)
∗

with eigenvalue −νsu.

From these spectral hypotheses we have the following result on locally invariant manifolds around U∗.

Lemma 3.3. According to the spectral splitting
(

Σ (DUF (U∗; 0)) ∩ {Re ν ≤ −rss}
) ⋃ (

Σ (DUF (U∗; 0)) ∩ {Re ν ≥ −rsu}
)
,

the system (3.3) possesses locally-invariant manifolds W ss
loc(U∗) and W su

loc(U∗) which are Ck- and C1-

smooth respectively. Furthermore, the periodic orbit Up and equilibrium Ũ∗ possess Ck-smooth locally

invariant manifolds W cu
loc(Up), and W s

loc(Ũ∗).

Proof. This follows by standard results on infinite dimensional locally invariant manifolds (see [22] or

[45]). We also mention that higher degrees of smoothness of W su
loc(U∗) can be obtained if the spectral gap

∆η = rss − rsu is sufficiently large.

Next we state our assumptions on the heteroclinic orbits formed by the preparation and pushed free

fronts.

Hypothesis D. For µ = 0, there exist Ck-smooth heteroclinic solutions q0
i (ξ) of (3.3) for i = 1, 2 such

that for some S > 0 sufficiently large

• q0
1(ξ) ∈ {{0} ×X1} and q2(ξ) ∈ {X0 × {0}} for all ξ ∈ R,

• {q0
1(ξ)}ξ∈[S,∞) ⊂W ss

loc(U∗),

• {q0
1(ξ)}ξ∈(−∞,−S] ⊂W cu

loc(Up),

• {q0
2(ξ)}ξ∈(−∞,−S] ⊂W su

loc(U∗),

• {q0
2(ξ)}ξ∈[S,∞) ⊂W s

loc(Ũ∗).

Furthermore, for some ε > 0 small, there exist a, b ∈ C such that q0
i has the following asymptotics,

q0
1(ξ) = aeνssξess,l

1,∞ + c.c.+O(e−(rss+ε)ξ), as ξ → +∞,
q0
2(ξ) = beνuξeu

1,∞ +O(e(ru+ε)ξ), as ξ → −∞,

where c.c. stands for complex-conjugate and the vectors ess,l
1,∞ ∈ Ess,l

1,∞, and eu
1,∞ ∈ Eu

1,∞ have unit-norm

and are complex eigenvectors of the linearization DUF (U∗) associated with the leading eigenvalues νss and

νu respectively.

Finally, the orbit q0
2 is robust to perturbations in µ. That is there exists a smooth family of heteroclinic

orbits q2(ξ, µ) satisfying the above properties for all |µ| � 1 and q2(ξ; 0) = q0
2(ξ).
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The second part of this hypothesis states that, to leading order, q0
1 and q0

2 approach U∗ along the

leading eigenspaces Ess,l
1,∞ and Eu,l

1,∞ as ξ → ±∞ respectively. In this notation, q0
1 denotes the pushed free

front, while q2 denotes the preparation front.

3.2 Invariant manifolds and variational set-up

We now construct global invariant manifolds in neighborhoods of the heteroclinic orbits q0
1 and q0

2 . To do

so we define variations, w0
i (ξ) = U(ξ) − q0

i (ξ), about such orbits with i = 1, 2, and study the variational

equations
d

dξ
wi = Ai(ξ)w

0
i + g0

i (ξ, wi), ξ ∈ R, (3.9)

with

Ai(ξ) := DUF (q0
i (ξ); 0), g0

i (ξ, wi) := F (q0
i (ξ) + wi;µ)− F (q0

i (ξ); 0)−Ai(ξ)w0
i .

In order to study these variations we shall use exponential dichotomies of the linear variational equations

and their adjoints

d

dξ
w = Ai(ξ)w, (3.10)

d

dξ
ψ = −Ai(ξ)∗ψ, i = 1, 2. (3.11)

Before doing so, we require the following well-posedness assumption.

Hypothesis E. For both i = 1, 2, if w0(ξ) is a bounded solution of either of the linear variational equations

(3.10) or (3.11) for all ξ ∈ R and w0(ξ0) = 0 for some ξ0 ∈ R, then w0 ≡ 0.

We remark that for finite-dimensional systems and many parabolic equations this hypothesis holds via

parabolic regularity results [3, 39].

Proposition 3.4. (Existence of Exponential Dichotomies) Assuming the above hypotheses, (3.10) has

exponential dichotomies on J1 = R+, J2 = R− with a splitting according to the eigenspaces E
ss/su
1,∞ given

above. That is there exist projections P
ss/su
i (ξ) : X → X for ξ ∈ Ji such that the following holds for some

K > 0:

• For any ζ ∈ Ji and u ∈ X, there exists a solution Φss
i (ξ, ζ)u of (3.10) defined for ξ ≥ ζ, continuous

in (ξ, ζ) for ξ ≥ ζ, and differentiable in (ξ, ζ) for ξ > ζ, such that Φss
i (ζ, ζ)u = P ss

i (ζ)u and

|Φss
i (ξ, ζ)u| ≤ K e−rss(ξ−ζ)|u|, ξ ≥ ζ (3.12)

• For any ζ ∈ Ji and u ∈ X, there exists a solution Φsu
i (ξ, ζ)u of (3.10) defined for ξ ≤ ζ, continuous

in (ξ, ζ) for ξ ≤ ζ, and differentiable in (ξ, ζ) for ξ < ζ, such that Φsu
i (ζ, ζ)u = P su

i (ζ)u and

|Φsu
i (ξ, ζ)u| ≤ K e−rsu(ξ−ζ)|u|, ξ ≤ ζ. (3.13)

• The solutions Φss
i (ξ, ζ)u and Φsu

i (ξ, ζ)u satisfy

Φss
i (ξ, ζ)u ∈ R(P ss

i (ξ)) for all ξ ≥ ζ, ξ, ζ ∈ Ji,
Φsu
i (ξ, ζ)u ∈ R(P su

i (ξ)) for all ξ ≤ ζ, ξ, ζ ∈ Ji,

where | · |, unless otherwise stated, denotes the norm on X.

Proof. See [35] or [39].
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The first two bullets of this proposition correspond to the usual stable-unstable dichotomy when

considered in an weighted norm ||u||η := supξ∈Ji eηξ|u(ξ)| with 0 < rsu < η < rss.

Let us denote Eji (ξ) = P ji (ξ)X, for i = 1, 2 and j = ss, su. Also, as they will be necessary to the

subsequent analysis, we isolate the leading components of these ξ-dependent subspaces as follows

Ess
i (ξ) = Ess,l

i (ξ) + Ess,s
i (ξ), Esu

i (ξ) = Esu,l
i (ξ) + Esu,u

i (ξ), i = 1, 2, (3.14)

such that the spaces E
ss/su,l
i (ξ) are unique and satisfy

E
ss/su,l
1 (ξ)→ E

ss/su,l
1,∞ ξ →∞,

E
ss/su,s/u
2 (ξ)→ E

ss/su,s/u
1,∞ ξ → −∞. (3.15)

Such a decomposition of, say for example Ess
2 (ξ), can be achieved by first obtaining exponential dichotomies

associated with the spectral sets {ν : Re{ν} ≤ −rss}, {ν : Re{ν} ≥ −rss} and then taking the intersection

of their associated ξ-dependent subspaces. Denote the resulting dichotomies of these restricted subspaces

as Φ
ss/su,l
i for i = 1, 2.

From Proposition 3.4, we are then able to obtain the existence of globally invariant manifolds in a

neighborhood of q0
i (ξ) for all ξ ∈ Ji, and µ sufficiently small.

Proposition 3.5. For all µ sufficiently small the equilibrium (3.3) possesses strong stable and weak-

stable/unstable invariant manifolds W ss(U∗) and W su(U∗) which exist in a neighborhood of the orbits q0
1

and q0
2 respectively. Furthermore, W ss(U∗) is Ck-smooth while W su(U∗) is in general only C1-smooth. In

an exponentially weighted space with weight η ∈ (rsu, rss), W
ss(U∗) contains all solutions which stay close

to q0
1(ξ) for all ξ ≥ 0 while W su(U∗) contains all solutions which stay close to q0

2(ξ) for all ξ ≤ 0. Finally,

these manifolds are smooth in the parameter µ and have tangent spaces which satisfy, for µ = 0,

Tq0i (ξ)W
j(U∗) = Eji (ξ), j = ss, su, i = 1, 2.

Proof. This proof follows in the same way as those in [38, Sec. 3.5] which use the existence of exponential

dichotomies from [35, Thm. 3.3.3] and infinite-dimensional center manifold results of [45]; see also [39,

40].

In an analogous fashion, one may use the spectral properties of the linearization about Up and Ũ to

obtain the following proposition,

Proposition 3.6. For all µ sufficiently small, the equilibria Up and Ũ∗ of (3.3) possess Ck-smooth center-

unstable and stable manifolds, denoted as W cu(Up) and W s(Ũ∗), which exist in a neighborhood of the orbits

q0
1 and q0

2, and are smooth in the parameter µ. Here, W cu(Up) contains all solutions which stay close to

q0
1(ξ) for all ξ ≤ 0 and W s(Ũ∗) contains those which stay close to q0

2(ξ) for all ξ ≥ 0.

Proof. The hypothesis on the linearizations at Up and Ũ∗ give the existence of center-unstable and stable

dichotomies Φ
s/cu
−1 along q0

1(ξ) for ξ ≤ 0, and stable and unstable dichotomies Φ
s/u
+2 along q0

2(ξ) for ξ ≥ 0.

As in Proposition 3.5, one can then use these dichotomies and variation of constants formulas to prove

the above proposition.

3.3 Intersection hypotheses

We wish to construct pushed trigger fronts as intersections between W cu(Up) and W s(Ũ∗) near the equi-

librium U∗ under certain conditions on the heteroclinic chain composed of q0
1 and q0

2 . We first assume the

tangent spaces of the invariant manifolds along q0
i (ξ) generically behave as a codimension-two heteroclinic

bifurcation problem:
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Hypothesis F. (i) The tangent spaces Tq01(0)W
cu(Up), and Tq01(0)W

ss(U∗) form a Fredholm pair with

index 0, and satisfy

dim
(
Tq01(0)W

cu(Up) + Tq01(0)W
ss(U∗)

)⊥
= dim

(
Tq01(0)W

cu(Up) ∩ Tq01(0)W
ss(U∗)

)
= 2.

(ii) The tangent spaces Tq02(0)W
su(U∗), and Tq02(0)W

s(Ũ∗) intersect transversely, form a Fredholm pair

of index 1, and satisfy

dim
(
Tq2(0)W

su(U∗) ∩ Tq2(0)W
s(Ũ∗)

)
= 1.

These hypotheses enforce genericity on the heteroclinic orbits in the sense that q0
1 can be transversely

unfolded in the parameter µ. In the setting of an evolutionary PDE with both time- and space-translational

symmetries (like the Cahn-Hilliard equation mentioned above), q0
1 is a modulated traveling wave with both

τ - and ξ-derivative lying in the intersection Tq01(0)W
cu(Up) ∩ Tq01(0)W

ss(U∗), while q0
2 lies in the subspace

of time-independent functions and thus has only ξ-derivative lying in the intersection Tq2(0)W
su(U∗) ∩

Tq2(0)W
s(Ũ∗). See [19, Sec. 4.3] for more discussion on this topic.

We must also make an assumption on the inclination properties of the invariant manifolds between U∗
and Ũ∗. Let P su

2,+(ξ) denote the projection in X onto Esu
2 (ξ) = Tq02(ξ)W

su(U∗) along Ẽs
+2(ξ), the orthogonal

complement of
dq02
dξ (ξ) in Tq02(ξ)W

s(Ũ∗). Such a projection can be constructed in the same manner as in

[35, Eqn. 3.20].

Hypothesis G. (Inclination property) The restricted projection

P l := P su
2,+(0)

∣∣∣
Ess,l

2 (0)

is an isomorphism from Ess,l
2 (0) onto Esu,l

2 (0).

We note that the equivariance of F with respect to the S1-action implies that P l commutes with

T1.This equivariance makes P l complex linear when considered on the complexification of the subspaces

E
ss/su,l
2 (0) and will enforce certain conditions on the coefficients of the bifurcation equation, see Section 4.6

below. Additionally, this hypothesis can be given a geometric interpretation when the invariant manifold

W s(Ũ∗) about q2(ξ) can be extended for all ξ ∈ R, as is the case when X is finite dimensional. In such

a situation, this hypothesis says that W s(Ũ∗) converges towards the non-leading strong-stable eigenspace

Ess,s
1,∞ in backwards time and hence does not lie in an inclination-flip configuration [26].

Remark 3.7. Since X is a Hilbert space, it can be decomposed as a sum of complex one-dimensional

irreducible representations. In the spatial-dynamics formulation for the Cahn-Hilliard equation for u0 ≡ 1,

this decomposition is simply the Fourier series

U(t) =
∑

`∈Z
U`e

i`τ , U` ∈ R4,

and can be used to determine the spatial eigenvalues of the linearization of (3.7) about the equilibrium

u1 = 0. Replacing ∂τ by i`, and setting (c, ω) = (cp, ωp), the linearization can be broken down into a set

of infinitely many finite-dimensional linear systems, whose eigenvalues ν` satisfy

0 = ν4
` + f ′(u∗)ν

2
` − cpν` + iωp`, ` ∈ Z, (3.16)

with corresponding eigenspaces lying in the subspaces

Y` = spanU`,U−`∈R4{U`ei`τ , U−`e
−i`τ}.

Hypothesis G then requires that each of the leading eigenspaces, E
ss/su,l
1,∞ , must lie in the same subspace Y`

for some `. If this was not true, we would obtain that the two irreducible representations θ 7→ ei`1θ, and

θ 7→ ei`2θ for distinct `1 and `2 are isomorphic, a contradiction.
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As in other heteroclinic bifurcation problems, we must require the invertibility of a certain mapping

constructed using Melnikov integrals. Hence for j = 1, 2 we let e∗j (ξ) be bounded solutions of the adjoint

variational equation (3.11) such that e∗j (0) = e∗j,0 for vectors e∗j,0 ∈ X with unit-norm which satisfy

spanj=1,2{e∗j,0} =
(
Tq1(0)W

cu(Up) + Tq1(0)W
ss(U∗)

)⊥
.

We then assume the following

Hypothesis H. The following mapping is invertible,

M :R2 → (Ess
1 (0) + Ecu

−1(0))⊥,

µ 7→
∑

i=1,2

∫ ∞

−∞
〈DµF (q0

1(ζ); 0)µ, e∗j (ζ)〉dζ e∗j,0.

3.4 Statement of main result

With all of these hypotheses in hand, we define the desired solution as follows,

Definition 3.8. A pushed trigger front is a heteroclinic orbit Utf(ξ;µ) of (3.3) which satisfies the following

properties:

(i) |Utf(ξ;µ)−Up(ξ;µ)| → 0 and Utf converges along the invariant manifold W cu(Up) as ξ → −∞ with

asymptotic phase.

(ii) Utf(ξ;µ)→ Ũ∗(µ) along the invariant manifold W s(U∗) as ξ →∞.

Since we only discuss pushed trigger fronts in the rest of this work, we shall henceforth refer to such

solutions as just trigger fronts.

Theorem 1. Assume Hypotheses A–H and recall the definition of the eigenvectors esu,l
1,∞, and e∗j,∞ from

Section 3.1. Then, there are constants ρ, L∗ > 0 so that for all L > L∗ there exists a triggered pushed

front Utf(ξ;µ∗(L)), with bifurcation curve µ∗(L), which has the leading order expansion,

µ∗(L) = −
∑

j=1,2

[
e2∆νLdj + c.c.

]
M−1e∗j,0 +O(e−(2∆r+ρ)L)).

Here,

dj = ac1c̃j

〈
esu,l

1,∞, e
∗
j,∞

〉
C
, ∆ν = νss − νsu, ∆r = Re ∆ν,

the Melnikov mapping M is defined in Hypothesis H, the constants a, c1, c̃j ∈ C are defined in Hypothesis

D, Lemma 4.9, and Lemma 4.10 respectively, and 〈·, ·〉C is the complexified inner product induced by the real

inner product on X. Moreover, for each L, the elements of the group orbit {T1(θ)Utf(ξ, µ∗(L)) : θ ∈ [0, 2π)}
are also pushed triggered fronts.

Remark 3.9. In a typical spatial dynamics formulation, temporal translations form the group orbit of

each trigger front, Utf .

4 Proof of Main Theorem

4.1 Variational set-up

Our approach to proving Theorem 1 will follow that of Rademacher in [37]. There, a gluing-matching

procedure akin to Lin’s method [31] was used to construct solutions near a heteroclinic cycle between a

periodic orbit and an equilibrium. Our case is simpler as we glue near a fixed equilibrium, not a periodic

orbit.
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We wish to construct the desired solution, which connects Up to Ũ∗, by studying variational equations

about the heteroclinic orbits corresponding to the preparation front and the pushed front. For the former,

since the heteroclinic q2(ξ;µ) is robust in µ, we study variations w2(ξ) = U(ξ) − q2(ξ;µ) and define the

system
d

dξ
w2 = A2(ξ)w2 + g2(ξ, w2;µ), ξ ∈ R, (4.1)

with

A2(ξ) := DUF (q2(ξ; 0)), g2(ξ, wi) := F (q2(ξ;µ) + w2;µ)− F (q2(ξ;µ);µ)−A2(ξ)w2.

For the variations about the pushed front more care must be taken due to the fact that, under our

hypotheses, q0
1(ξ) does not generically persist for all µ in a neighborhood of the origin. To deal with

this we select a trajectory, q1(ξ;µ), defined for ξ ≥ 0, which is contained in the strong-stable manifold

W ss(U∗), and approaches q0
1 uniformly as µ → 0. This can be done by realizing that trajectories which

are near q0
1 and lie in the strong stable manifold are described using the following variation of constants

formula

vss(ξ;µ, v0) = Φss
1 (ξ, 0)v0 +

∫ ξ

0

Φss
1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ +

∫ ξ

∞
Φsu

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ, (4.2)

G1(ξ, v;µ) = F (q0
1(ξ) + v;µ)− F (q0

1(ξ);µ)−DUF (q0
1(ξ); 0)v,

where v0 ∈ Ess
1 (0). In a similar manner we may also define for ξ ≤ 0,

vcu(ξ;µ, v0) = Φcu
−1(ξ, 0)v0 +

∫ ξ

0

Φcu
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ +

∫ ξ

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ, (4.3)

where v0 ∈ Ecu
−1(0), and Φ

cu/s
−1 is the dichotomy associated with the periodic orbit Up along q0

1 for ξ ≤ 0.

It then follows for µ sufficiently small (see [26, Lem 2.1]) that there exists vectors vss
0 (µ) ∈ Ess

1 (0) and

vcu
0 (µ) ∈ Ecu

−1(0), smooth in µ, such that vss
0 (0) = vsu

0 (0) = 0 and

vss(0;µ, vss
0 )− vcu(0;µ, vcu

0 ) ∈
(
Tq01(0)W

ss(U∗) + Tq01(0)W
cu(U∗)

)⊥
. (4.4)

Indeed, this can be obtained by using the Implicit Function theorem to solve the projected equation

0 = Q [vss(0;µ, vss
0 )− vcu(0;µ, vcu

0 )] ,

= vss
0 − vcu

0 +Q
(∫ 0

∞
Φsu

1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ −
∫ 0

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ

)
,

for vss
0 and vcu

0 in terms of µ, whereQ is the orthogonal projection ofX onto
(
Tq01(0)W

ss(U∗) + Tq01(0)W
cu(U∗)

)
.

We shall denote such unique trajectories as

q1(ξ;µ) := vss(ξ;µ, vss
0 (µ)), ξ ≥ 0,

q−1 (ξ;µ) := vsu(ξ;µ, vsu
0 (µ)), ξ ≤ 0,

so that q1 approaches U∗ along the strong-stable manifoldW ss(U∗) as ξ → +∞ and satisfies q1(ξ; 0) = q0
1(ξ)

for ξ ≥ 0, while q−1 approaches Up along the center-unstable manifold W cu(Up) as ξ → −∞ and satisfies

q1(ξ; 0) = q0
1(ξ) for ξ ≤ 0.

We can then define the variation w1(ξ) = U(ξ)− q1(ξ;µ) for ξ ≥ 0 and the variational equation

d

dξ
w1 = A1(ξ)w1 + g1(ξ, w1;µ), ξ ∈ R+, (4.5)

with

A1(ξ) := DUF (q1(ξ; 0); 0), g1(ξ, wi) := F (q1(ξ;µ) + w1;µ)− F (q1(ξ;µ);µ)−A1(ξ)w1.
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Next, let

Σi =

(
dq0
i

dξ
(0)

)⊥
, i = 1, 2

be fixed transverse sections to qi, with ξ chosen so that each Σi lies in a small neighborhood of U∗
and the orthogonal complement is taken in X. In order to construct the trigger front we wish to find

solutions w1(ξ) and w2(ξ) of the variational equations in (4.1) and (4.5) which lie in W cu(Up) and W s(Ũ∗)

respectively and satisfy the following “gluing” condition for some L > 0:

w2(−L)− w1(L) = q1(L;µ)− q2(−L;µ). (4.6)

If these conditions hold then the corresponding solutions Ui of (3.3) satisfy

U1(L) = U2(−L), |U1(−ξ)→ Up(ξ)|+ |U2(ξ)− Ũ∗| → 0, ξ →∞,

so that the solution composed of the concatenation of U1 and U2 is the desired heteroclinic. Also, the

smoothness of F gives the following pointwise estimates on the variational nonlinearities

Lemma 4.1. There exists constants Ci > 0 such that gi and its derivative Dwigi satisfy the following

estimates for all ξ and sufficiently small wi ∈ X and µ ∈ R2,

|gi(ξi, wi;µ)| ≤ C
(
|wi|2 + |µ||wi|

)
, (4.7)

|Dwigi(ξi, wi;µ)| ≤ C(|wi|+ |µ|). (4.8)

Proof. This follows from the assumptions on F and the heteroclinic solutions qi above.

We construct solutions wi(ξ) to (4.5) and (4.1) separately, with each satisfying Silnikov boundary

conditions for sufficiently large L > 0:

P ss
1 (0)w1(0) = s1, P su

1 (L)w1(L) = u1, (4.9)

P ss
2 (−L)w2(−L) = s2, P su

2 (0)w2(0) = u2, (4.10)

where ui, si ∈ X are free variables satisfying

s1 ∈ Ess
1 (0), u1 ∈ Esu

1 (L), (4.11)

s2 ∈ Ess
2 (−L), u2 ∈ Esu

2 (0). (4.12)

Also, we require that wi(0) ∈ Σi. To simplify notation, let Wi := (si, ui) for i = 1, 2.

With these solutions we follow the gluing-matching procedure used in [37], which is outlined below

and depicted in Figure 4.1.

• Section 4.2 (Silnikov Solutions): Use variation of constants formulas to prove existence of

variational solutions wi(Wi;µ,L), lying near q1 and q2, which lie in certain exponentially weighted

function spaces and satisfy the boundary conditions (4.11)-(4.12).

• Section 4.3 (Gluing): Use the gluing condition (4.6) to solve for the “outer” boundary variables

W0 := (s1, u2) in terms of the “inner” boundary variables WL := (s2, u1), L, and µ.

• Section 4.4 (Transverse intersection): Match the solution w2(W0;µ,L) with W s(Ũ∗(µ)) in the

transverse section Σ2 of q2(0).

• Section 4.5 (Non-transverse intersection): Match the the solution w1(W0;µ,L) with W cu(Up)

in the transverse section Σ1 of q1(0) by first solving the matching condition in E1 := Ess
1 (0)+Ecu

−1(0)

where Ecu
−1(0) := Tq1(0)W

cu(Up). Then solve the condition in the complement E⊥1 using Melnikov

integrals.

In Section 4.6 we then derive asymptotics which allow us to obtain the bifurcation curve discussed in

Theorem 1.
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W cu(Up)

q01

q02
U∗

Ũ∗
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W s(Ũ∗) w1(L)

w2(−L)

W cu(Up)

Σ1

Σ2

u1(ξ)

u2(ξ)

W s(Ũ∗)

U∗

q1

q−1

Σ1 Σ2

Ess
1 (0)

Esu
1 (0)W cu(Up)

q1(0)

s1

u2

q2(0)

W s(Ũ∗)

Ess
2 (0)

Esu
2 (0)

w1(0)

w2(0)

q−1 (0)

Figure 4.1: Schematic diagram of gluing construction. The top left figure depicts the global phase portrait in X

for µ = 0, showing the two manifolds we wish to connect. The top right figure depicts the gluing construction

near the equilibrium U∗ for µ close to 0, where initial data are taken in transverse sections Σ1,Σ2. These

sections are depicted in the bottom figure with the corresponding Silnikov data s1, u2 prescribed in each.

4.2 Silnikov Solutions

In order to find solutions with the desired decay, we use exponentially weighted norms. Let ηss, ηsu > 0

be fixed constants such that δss := rss − ηss and δsu := ηsu − rsu are positive and arbitrarily small. Also

define the quantity m := ηss − 2ηsu, which quantifies the size of the spectral gap ∆η := ηss − ηsu, so that

m < 0 if and only if ηss/ηsu < 2.

To begin we define the L-dependent norms

||w1||1,L := sup
ξ∈I1

eηssξ+γssL|wss
1 (ξ)|+ sup

ξ∈I1
eηsuξ+γsuL|wsu

1 (ξ)| (4.13)

||w2||2,L := sup
ξ∈I2

eηss(ξ+L)+κssL|wss
2 (ξ)|+ sup

ξ∈I2
eηsu(ξ+L)+κsuL|wsu

2 (ξ)| (4.14)

where I1 = [0, L], I2 = [−L, 0], wji (ξ) := P ji (ξ)wi(ξ) for i = 1, 2, j = ss, su and

γss = ∆η + |m| − ηsu, γsu = ∆η + |m| − ηsu, κss = ∆η + |m|, κsu = ∆η + |m|+ ρ,

with ρ > 0 arbitrarily small. Note by the definition of m, these quantities are all positive.

Remark 4.2. These norms were determined in order to make the upcoming fixed point operators uniform

contractions in a sufficiently small neighborhood of the origin, and accommodate for all sizes of the spectral

gap ∆η in the gluing-matching procedure. We remark that more general conditions on γss/su and κss/su

can be determined, but we have omitted them for the sake of presentation.
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We denote

Γε1,L := {w1 ∈ Ck([0, L], X) : ||w1||1,L < ε },
Γε2,L := {w2 ∈ Ck([−L, 0], X) : ||w2||2,L < ε},

and define the variation-of-constants operators

Ψi(wi,Wi;µ,L) := Ψss
i (w1,W1;µ,L) + Ψsu

i (w1,W1;µ,L)

with (
Ψss

1 (w1;W1, µ, L)(ξ)

Ψsu
1 (w1;W1, µ, L)(ξ)

)
:=

(
Φss

1 (ξ, 0)s1 +
∫ ξ

0
Φss

1 (ξ, ζ)g1(ζ, w1(ζ);µ)dζ

Φsu
1 (ξ, L)u1 +

∫ ξ
L

Φsu
1 (ξ, ζ)g1(ζ, w1(ζ);µ)dζ

)
,

(
Ψss

2 (w2;W2, µ, L)(ξ)

Ψsu
2 (w2;W2, µ, L)(ξ)

)
:=

(
Φss

2 (ξ,−L)s2 +
∫ ξ
−L Φss

2 (ξ, ζ)g2(ζ, w2(ζ);µ)dζ

Φsu
2 (ξ, 0)u2 +

∫ ξ
0

Φsu
2 (ξ, ζ)g2(ζ, w2(ζ);µ)dζ

)
.

Finally, for some small δ > 0 we denote

ΛδL = {µ ∈ R2 : e(2∆η−ρ)L|µ| < δ}, Xδ
η,L = {u ∈ X : eηL|u| < δ}. (4.15)

Here, the weight in the parameter space ΛδL was chosen to capture the O(e2∆νL) leading-order dynamics

of the bifurcation equation for µ. It is readily seen that if wi is a fixed point of Ψi then it must also solve

(4.5) or (4.1) for i = 1, 2. We then have the following proposition,

Proposition 4.3. There exists an ε0 > 0 such that the following holds. For all 0 < ε < ε0, and L

sufficiently large, there exists a δ > 0 such that for all µ ∈ ΛδL and W1 = (s1, u1) which satisfy

s1 ∈ Xε/6
γss,L

, u1 ∈ Xε/6
ηsu+γsu,L

, (4.16)

the variational equation (4.5) has a unique solution w∗1(W1, µ, L) ∈ Γε1,L which is Ck in (ξ,W1, µ) and

satisfies the boundary conditions (4.11).

Proof. We prove this result by showing that the operator,

Ψ1(W1) : Γε1,L × ΛδL → Γε1,L,

which can readily be shown to be Ck in both arguments, is well-defined and a uniform contraction. The

resulting unique fixed point will then be the desired solution.

We shall need the following pointwise estimates on the the nonlinearity g1. For any ξ ∈ [0, L] with

w ∈ X and µ ∈ R2 sufficiently small, Hypothesis D and Lemma 4.1 give a constant C1 > 0 such that

|g1(ξ, w;µ)| ≤ C1(|w(ξ)|2 + |w(ξ)||µ|)

≤ C1

(
|wss(ξ)|2 + |wsu(ξ)|2 + |µ| (|wss(ξ)|+ |wsu(ξ)|)

)

≤ C1

(
e−2ηssξ−2γssL||wss||21,L + e−2ηsuξ−2γsuL||wsu||21,L + |µ|

(
e−ηssξ−γssL||wss||1,L + e−ηsuξ−γsuL||wsu||1,L

) )
.

(4.17)

Note that wj(ξ) = P j1 (ξ)w(ξ). Similarly, for w, v ∈ X we have the quadratic estimate

|g1(ξ, w;µ)− g1(ξ, v;µ)| ≤ C ′1
(
|w(ξ)|+ |v(ξ)| · |w(ξ)− v(ξ)|+ |µ||w(ξ)− v(ξ)|

)

≤ C ′1e−2ηssξ−2γssL (||wss||1,L + ||vss||1,L) · ||wss − vss||1,L
+ C ′1e−2ηsuξ−2γsuL (||wsu||1,L + ||vsu||1,L) · ||wsu − vsu||1,L
+ C ′1|µ|

(
e−ηssξ−γssL||wss − vss||1,L + e−ηsuξ−γsuL||wsu − vsu||1,L

)
.

(4.18)
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We then find

sup
ξ∈I1

eηssξ+γssL|Ψss
1 (w1)(ξ)| ≤ sup

ξ∈I1
e(ηss−rss)ξ+γssL|s1|+ eηssξ+γssL

∫ ξ

0

e−rss(ξ−ζ)C1

(
|w1(ζ)|2 + |w1(ζ)||µ|

)
dζ.

(4.19)

The condition on s1 gives

sup
ξ∈I1

e(ηss−rss)ξ+γssL|s1| ≤
ε

6
. (4.20)

Next we estimate the term involving |w1|2 in (4.19):

sup
ξ∈I1

eηssξ+γssL
∫ ξ

0

e−rss(ξ−ζ)C1|w1(ζ)|2dζ

≤ C1

(
e−(γss+δss)L − e−(γss+ηss)L

) ||wss||21,L
2ηss − rss

+ C1

(
e(γss−2γsu+ηss−2ηsu)L − e(γss−2γsu−δss)L

) ||wsu||21,L
|2ηsu − rss|

≤ 2C1C
∗
1 ||w1||21,L < ε/6. (4.21)

where C∗ = max{ 1
2ηss−rss ,

1
|2νsu−rss|}, and we require ε < 1

12C1C∗
. Also note that we have used the fact

that γss − 2γsu = 2ηsu − ηss − |m| − 2ρ.

The term with |w1||µ| in (4.19) can similarly be estimated by

C1 sup
ξ∈I1

eηssξ+γssL
∫ L

0

e−rss(ξ−ζ)|µ|
(
e−ηssζ−γssL||wss||1,L + e−ηsuζ−γsuL||wsu||1,L

)

≤ C1|µ|
(

e−δssL||wss||1,L + e(γss−γsu+∆η)L||wsu||1,L
)

≤ C1δ||w||1,L < ε/6, (4.22)

for any 0 < δ < 1
6C1

, since µ ∈ ΛδL and γss − γsu = −2ρ.

Combining (4.20), (4.21), and (4.22) we obtain

||Ψss
1 (w1)||1,L < ε/2. (4.23)

Similar estimates may be applied to obtain

||Ψsu
1 (w1)||1,L < ε/2, (4.24)

for any ε < (C1 max{ 1
2ηss−rsu ,

1
2ηsu−rsu })

−1. These can then be combined to obtain ||Ψ1(w)||1,L < ε.

To prove the contraction, the pointwise estimate (4.18) can be used in a similar way to obtain

||Ψ1(w;W1, µ, L)−Ψ1(v;W1, µ, L)||1,0 ≤ C1C∗
(
4ε+ |µ|e∆ηL

)
||w − v||1,L <

1

2
||w − v||1,L, w, v ∈ Γε1,L,

(4.25)

For ε0 sufficiently small, and L sufficiently large. Since Ψ1 is smooth in µ and W1, the Uniform Contraction

principle then gives the result.

An analogous proof gives the existence of a solution for (4.1).

Proposition 4.4. There exists an ε0 > 0 such that the following holds: For all 0 < ε < ε0 and L

sufficiently large there exists a δ > 0 such that for all µ ∈ ΛδL and W2 = (s2, u2) which satisfy

s2 ∈ Xε/6
κss,L

, u2 ∈ Xε/6
ηsu+κsu,L

, (4.26)

equation (4.1) has a unique solution w∗2(W2, µ, L) ∈ Γε2,L which is Ck in (ξ,W2, µ).
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4.3 Gluing

We now wish to find boundary data W1 = (s1, u1) and W2 = (s2, u2) for which the solutions w∗1 , w
∗
2 satisfy

the gluing equation (4.6). We use the projections P ss
2 (−L) and P su

1 (L) to decompose the gluing equation

(4.6) into the system

P ss
2 (−L)w∗1(L)− s2 = P ss

2 (−L)∆q(L)

u1 − P su
1 (L)w∗2(−L) = P su

1 (L)∆q(L) (4.27)

where ∆q(L) = q2(−L)− q1(L).

To simplify this system, we use the following estimates on the ξ-dependent projections.

Lemma 4.5. For L sufficiently large there exists a constant K > 0 such that

|P j1 (L)u− P j1,∞u| ≤ Ke−∆ηL|u|, (4.28)

|P j2 (−L)u− P j1,∞u| ≤ Ke−∆ηL|u|, (4.29)

for j = ss, su, u ∈ X.

Proof. Using the asymptotic decay of Ai(ξ) as ξ → ±∞ for i = 1, 2 respectively, this result follows from

[35, Cor. 2].

From this lemma, the heteroclinic asymptotics in Hypothesis D then give that (4.27) has the leading

order form

s2 =
[
w∗,ss1 (L)− q1(L)

] (
1 +O(e−∆ηL)

)

u1 =
[
w∗,su2 (−L) + q2(−L)

] (
1 +O(e−∆ηL)

)
.

Hence, it suffices to prove the existence of solutions to the truncated system

s2 = w∗,ss1 (L)− q1(L)

u1 = w∗,su2 (−L) + q2(−L).

Such solutions can be found as fixed points of the following operator,

Hgl : XεL × Xε0 × ΛδL → XεL

(WL;W0, µ) 7→
(

Ψss
1 (w∗1(s1, u1, µ, L), µ, L)(L)

Ψsu
2 (w∗2(s2, u2, µ, L);µ,L)(−L)

)
+

( −q1(L;µ)

q2(L;µ)

)
, (4.30)

where we solve for the inner boundary values near the equilibrium U∗,

WL := (s2, u1) ∈ XεL := Xε
κss,L ×Xε

ηsu+γsu,L,

in terms of the outer boundary values near q1(0) and q2(0),

W0 := (s1, u2) ∈ Xε0 := Xε
γss,L ×Xε

ηsu+κsu,L.

The exponential weights on these values are chosen to be consistent with the contraction arguments in

Propositions 4.3 and 4.4. We then obtain the following existence result,

Proposition 4.6. There exists an ε1 > 0 such that the following holds. For all ε < ε1, L sufficiently

large, there exists a δ > 0 such that the mapping Hgl : XεL × Xε0 × ΛδL → XεL has a unique fixed point

WL
† (W0, µ, L) :=

(
s†2(W0, µ, L), u†1(W0, µ, L)

)
which is Ck smooth in all its variables.
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Proof. First note that since w∗i is smooth in Wi and µ, and w∗i (0; 0, L) = 0, we have that

||w∗1(W1;µ,L)||1,L ≤ C3

(
eγssL|s1|+ e(ηsu+γsu)L|u1|+ e∆ηL|µ|

)
,

||w∗2(W2;µ,L)||2,L ≤ C3

(
eκssL|s2|+ e(ηsu+κsu)L|u2|+ e∆ηL|µ|

)
. (4.31)

Similar to the proofs in the previous section, the pointwise estimates (4.17) and (4.18) then give the

estimates

eκssL|Φss
1 (L, 0)s1| ≤ K1e(κss−rss)L|s1|,

eκssL|
∫ L

0

Φss
1 (L, ζ)g1(ζ, w∗1 ;µ)dζ| ≤ C2eκssL

(
e−2(ηss+γss)L||wss

1 ||21,L + e−2(ηsu+γsu)L||wsu
1 ||21,L

)

+ |µ|
(

e−(ηss+γss)L||wss
1 ||1,L + e−(ηsu+γsu)L||wsu

1 ||1,L
)
,

for the first component of Hgl.

For the second component we obtain for some constants K2,K
′
2 > 0,

e(ηsu+γsu)L|Φsu
2 (−L, 0)u2| ≤ K2e(2ηsu+γsu)L|u2| ≤ K2e(ηsu+γsu−κsu)Lε, (4.32)

e(ηsu+γsu)L|
∫ −L

0

Φsu
2 (−L, ζ)g2(ζ, w∗2 ;µ)dζ| ≤ K2e(2ηsu+γsu−δsu)L

(
e−2(ηss+κss)L||wss

2 ||22,L + e−2(ηsu+κsu)L||wsu
2 ||22,L

+ |µ|
(

e−(ηss+κss)L||wss
2 ||2,L + e−(ηsu+κsu)L||wsu

2 ||2,L
))

≤ K2

(
e(−3∆η−|m|−ηsu)L||wss

2 ||22,L + e(−ηsu−∆η−|m|)L||wsu
2 ||22,L

+ |µ|
(

e−∆ηL||wss
2 ||2,L + e−(δsu+ρ)L||wsu

2 ||2,L
))

,

eηsu+γsuL|q2(L)| ≤ K ′2e(∆η+|m|−ru)L.

Pairing these estimates with those in (4.31) and using Hypothesis C, we can then obtain the desired

invariance of Hgl for sufficiently small ε.

Uniform Contraction then follows in a similar manner, using the fact that ||w∗i (Wi) − w∗i (Vi)||i,L ≤
C2|Wi −Vi| for small enough Wi,Vi.

This proposition implies the existence of boundary data

WL
gl(W

0, µ, L) :=
(
sgl
2 (W0, µ, L), ugl

1 (W0, µ, L)
)
,

smooth in all dependent variables, which give glued solutions

wgl
1 (W0, µ, L)(ξ) := w∗1(s1, u

gl
1 (W0), µ, L)(ξ), wgl

2 (W0, µ, L)(ξ) := w∗2(sgl
2 (W0), u2, µ, L)(ξ),

satisfying (4.27).

4.4 Transverse matching

Now we match the glued solution with the stable manifold W s(Ũ∗) inside Σ2. Since this manifold is

Ck-smooth and intersects W su(U∗) transversely, we have that W s(Ũ∗) ∩Σ2 can be locally described near

q2(0) as a graph h2 : Es
+2(0) ∩ Σ2 → Esu

2 (0) ∩ Σ2, where Es
+2(0) := P s

+2(0)X and

|h2(v2;µ)| ≤ Ks|v2|(|µ|+ |v2|),
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for some Ks > 0, and sufficiently small µ and v2 ∈ Es
+2(0)∩Σ2. Here, P s

+2(ξ) is the projection associated

with the dichotomy used to construct the invariant manifold W s(Ũ∗). We thus obtain the matching

equation

wgl
2 (W0;µ,L)(0) = v2 + hs(v2;µ), (4.33)

which we use to solve for (u2, v2) in terms of (s1, µ). Defining

g̃i(ξ,W
0;µ) := gi(ξ, w

gl
i (W0;µ,L)(ξ);µ), i = 1, 2,

we use the projected solution operators Ψ
ss/su
2 to write (4.33) as

u2 − v2 = hs(v2, µ)− Φss
2 (0,−L)sgl

2 (W0)−
∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ;W0;µ)dζ. (4.34)

Proposition 4.7. For some ε2 > 0 the following holds: For all 0 < ε < ε2 there exists a δ > 0 such that

(4.33) has a Ck-solution (utr
2 , v

tr
2 )(s1, µ) ∈ Xε

ηsu+κsu,L
×Xε

ηsu+κsu,L
, for each (s1, µ) ∈ Xε/8

γss,L
× ΛδL.

Proof. First, Hypothesis F implies that the canonical mapping

S2 :(Esu
2 (0) ∩ Σ2)× (Es

+2(0) ∩ Σ2)→ Σ2

(u2, v2) 7→ u2 − v2,

is invertible with uniformly bounded inverse. Thus (4.33) can be rewritten as the fixed point problem

(u2, v2) = S−1
2

(
hs(v2, µ)− Φss

2 (0,−L)sgl
2 (W0)−

∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ,W0;µ)dζ
)

=

(
hs(v2;µ) , −P s

+2(0)

(
Φss

2 (0,−L)sgl
2 (W0) +

∫ 0

−L
Φss

2 (0, ζ)g̃2(ζ,W0;µ)dζ

))
. (4.35)

since S−1
2 (x) = (P su

2,+(0)x,−P s
+2(0)x), where P su

2,+(ξ) was defined in Hypothesis G above.

We then obtain the following estimates on the different terms of the right-hand side of the above

equation for some constant K > 0,

e(ηsu+κsu)L
∣∣∣hs(v2, µ)

∣∣∣ ≤ Ke(ηsu+κsu)L
(
|v2||µ|+ |v2|2

)

≤ Kε(δ + ε), (4.36)

e(ηsu+κsu)L|P s
+2(0)wss

2 (0)| ≤ Ke(ηsu+κsu−ηss−κss)L||wss
2 ||2,L = Ke(ρ−∆η)L||wss

2 ||2,L. (4.37)

Applying the estimates in (4.31) we conclude that (4.35) is a uniform contraction and thus possesses a

unique fixed point.

We denote the subsequent glued solutions which also solve the transverse matching problem as

wtr
1 (s1, µ, L)(ξ) := wgl

1 (s1, u
tr
2 , µ, L)(ξ), wtr

2 (s1, µ, L)(ξ) := wgl
2 (s1, u

tr
2 , µ, L)(ξ),

where utr
2 = u2

tr(s1, µ).

4.5 Non-Transverse matching

Now let us match the glued solution with W cu(Up) in Σ1. In a neighborhood of q1(0;µ), the intersection

of the center-unstable manifold W cu(Up) ∩ Σ1 can be described as a graph q−1 (0;µ) + v + hp(v;µ) with

hp : Ecu
−1(0) ∩ Σ2 → Ẽss

1 (0)⊕ E⊥1 , v ∈ Ecu
−1(0) ∩ Σ2
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where Ecu
−1(0) := P cu

−1(0)X, E1 := Ecu
−1(0) + Ess

1 (0), and Ẽss
1 (0) is the orthogonal complement of Z =

Ecu
−1(0) ∩ Ess

1 (0) in Ess
1 (0). Also define the orthogonal projection Q1 : Ecu

−1(0) → Z ∩ Σ2 and let ṽ1 =

(I −Q1)v, v1 = Q1v. We remark that since d
dξ q

0
1(0) ∈ Z, the range of Q is a one-dimensional subspace.

We thus wish to solve the matching equation

wtr
1 (s1, µ, L)(0) = q−1 (0;µ)− q1(0;µ) + ṽ1 + v1 + hp(ṽ1 + v1;µ). (4.38)

In order to do this we shall first solve the projected equation on E1 after which we can the solve on the

complement E⊥1 using Melnikov integrals.

To achieve this first step, we apply the orthogonal projection P1 : X → E1 to (4.38) and use (4.4) to

obtain

s1 − ṽ1 = v1 + P1

(
hp(ṽ1 + v1;µ)− Φsu

1 (0, L)ugl
1 (s1, u

tr
2 )−

∫ 0

L

Φsu
1 (0, ζ)g̃1(ζ,W0

tr;µ)dζ

)
. (4.39)

We then obtain the following result,

Proposition 4.8. There exists ε3 > 0 such that the following holds. For all ε < ε3 there exists a δ > 0

such that there is a unique Ck-solution (sm
1 , ṽ

m
1 )(v1, µ, L) ∈ Xε

γss,L
×Xε

γss,L
of (4.39) for each v1 ∈ Xε

γss,L
,

and µ ∈ ΛδL.

Proof. The proof follows in a similar manner as in Proposition 4.7 and we omit it.

We denote the corresponding solutions as

wm
i (v1, µ, L)(ξ) = wtr

i (sm
1 (v1, µ, L), µ, L)(ξ).

Now we wish to solve the component of (4.38) in E⊥1 and thus complete the gluing matching procedure.

This can be done by solving the equations

〈
wn

1 (v1, L)(0), e∗j,0
〉

=
〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
+ 〈hp(v1 + ṽn

1 ;µ), e∗j,0〉, j = 1, 2,

where and e∗1,0, e
∗
2,0 ∈ X have unit norm and form a basis of E⊥1 . Also, these basis elements correspond to

bounded solutions e∗j (ξ) of the adjoint variational equation (3.11) which satisfy e∗j (0) = e∗j,0. Applying the

variation of constants formula to wn
1 and noticing that

〈
P ss

1 w
n
1 (0), e∗j,0

〉
= 0 we then obtain, for j = 1, 2,

〈
Φsu

1 (0, L)utr
1 , e
∗
j,0

〉
=
〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
+〈hp(v1+ṽn

1 ;µ), e∗j,0〉−
〈∫ 0

L

Φsu
1 (0, ζ)g̃1(ζ,W0

tr;µ)dζ, e∗j,0

〉
.

(4.40)

The expressions from (4.2) and (4.3) give that

〈
q−1 (0;µ)− q1(0;µ), e∗j,0

〉
=

〈∫ 0

−∞
Φs
−1(ξ, ζ)G1(ζ, vcu(ζ);µ)dζ +

∫ ∞

0

Φsu
1 (ξ, ζ)G1(ζ, vss(ζ);µ)dζ, e∗j,0

〉

=

(∫ ∞

−∞

〈
DµF (q0

1(ζ); 0), e∗j (ζ)
〉
dζ

)
µ+O(|µ|2).

Now, since there exists constants C > 0 such that

|hp(v1 + ṽn
1 (v1;µ);µ)| ≤ C(|v1|+ |µ|)2,

|
〈∫ 0

L

Φsu
1 (0, ζ)g̃1(ζ,W0

tr;µ)dζ, e∗j,0

〉
| ≤ e−γssLC (|v1|+ |µ|)2

(4.41)

for µ sufficiently small and L sufficiently large, we can use the quadratic estimates on g̃1 to obtain that

(4.40) has the form

〈
Φsu

1 (0, L)utr
1 , e
∗
j,0

〉
=

∫ ∞

−∞

〈
DµF (q0

1(ζ); 0), e∗j (ζ)
〉
dζ µ+O

(
(|µ|+ |v1|)2

)
, (4.42)
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or after rearranging,

Mµ(v1, L) =
( ∑

j=1,2

〈
Φsu

1 (0, L)utr
1 , e
∗
j,0

〉
e∗j,0

)
+O

(
(|µ|+ |v1|)2

)
. (4.43)

Since the Melnikov mapping is invertible by assumption, the implicit function theorem then gives,

for L sufficiently large, that there exists a family of solutions µm(v1, L) with the following leading order

expansion

µtf(v1, L) =M−1
( ∑

j=1,2

〈
Φsu

1 (0, L)utr
1 , e
∗
j,0

〉
e∗j,0

)
+O (|v1|) . (4.44)

Let us denote the corresponding glued solution for these parameters as wtf
i (ξ) := W tf

i (v1, µtf(v1, L), L)(ξ)

and the projections as w
tf,ss/su
i (ξ) = P

ss/su
i (ξ)wtf

i (ξ). From these we immediately obtain the desired het-

eroclinic solution Utf as a concatenation of the solutions U tf
i := qi + wtf

i . This gives the existence of a

one-parameter family of solutions for each L as described in the statement of the theorem. By uniqueness,

the parameter v1 must parameterize the group orbit of a solution under the S1-action.

4.6 Leading order bifurcation equation expansions

In this section, we complete the proof of the theorem by obtaining the desired expansion of the bifurcation

equation (4.44) obtained in the previous section. Let us ease notation by denoting wi = wtf
i , w

ss/su
i =

w
tf,ss/su
i , and µ = µtf . To obtain finer expansions we isolate the leading components of the ξ-dependent

subspaces as described in (3.14) above,

Ess
i (ξ) = Ess,l

i (ξ) + Ess,s
i (ξ), Esu

i (ξ) = Esu,l
i (ξ) + Esu,u

i (ξ), i = 1, 2.

In the following we will study these real subspaces using the complexified flow. Here the complexification

of the eigenspaces E
ss/su,l
1,∞ are spanned by the eigenvectors e

ss/su,l
1,∞ , e

ss/su,l
1,∞ of DUF (U∗) corresponding to

the leading complex-conjugate eigenvalues νss/su, νss/su. Before continuing, we prove the following three

lemmata which are needed in our derivation of the leading order bifurcation equation.

Lemma 4.9. For L > 0 sufficiently large there exist constants c1, c2 ∈ C and ρ > 0 such that the following

asymptotic expansions hold

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c1e
∆νLesu,l

1,∞ +O(e−(∆r+ρ)L),

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c2e∆νLesu,l
1,∞ +O(e−(∆r+ρ)L).

Proof. First note that by its construction, the restricted dichotomy Φss,l
2 (ξ, ζ) is well-defined for both

ξ ≥ ζ and ξ ≤ ζ. Hence there exists vectors vss
1 , v

ss
2 which span Ess,l

2 (0) such that

Φss,l
2 (−L, 0)vss

1 = e−νssLess,l
1,∞ +O(e(rss−ρ)L)),

Φss,l
2 (−L, 0)vss

2 = e−νssLess,l
1,∞ +O(e(rss−ρ)L)).

Applying Φss
2 (0,−L) to both sides of these equations, we then obtain

Φss
2 (0,−L)ess,l

1,∞ = eνssLvss
1 +O(e−(rss+ρ)L)),

Φss
2 (0,−L)ess,l

1,∞ = eνssLvss
2 +O(e−(rss+ρ)L)).

In a similar manner, there exists vectors vsu
1 , v

su
2 which span Esu,l

2 (0) such that

Φsu
2 (−L, 0)vsu

1 = e−νsuLesu,l
1,∞ +O(e(rsu−ρ)L),

Φsu
2 (−L, 0)vsu

2 = e−νsuLesu,l
1,∞ +O(e(rsu−ρ)L). (4.45)
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Hypothesis G then gives that there exists constants c1, c
′
1 ∈ C not both zero such that

P su
2,+v

ss
1 = P lvss

1 = c1v
su
1 + c′1v

su
2 .

Since P l is an isomorphism which commutes with the action T1(θ), it can then be obtained that P l is

complex-linear so that c′1 = 0. Combing this all together we obtain,

Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)ess,l

1,∞ = c1e(νss−νsu)Lesu,l
1,∞ +O(e−(∆r+ρ)L). (4.46)

The expansion for ess,l
1,∞ follows in an analogous way for some constant c2 ∈ C.

In a similar manner, we can also obtain expansions for bounded solutions of the adjoint variational

equation along q1.

Lemma 4.10. Let q1(0) be sufficiently close to U∗, L sufficiently large, and E⊥1 = span{e∗j,0}j=1,2.

Then, for some ρ > 0, there exists a complex eigenvector e∗j,∞ of (DUF (U∗))
∗ with eigenvalue −νsu and

|e∗j,∞| = 1, such that the bounded solutions of the adjoint equation satisfy

e∗j (L) = Φ∗,us
1 (L, 0)e∗j,0 =

(
c̃je
−νsuLe∗j,∞ + c.c.

)
(1 +O(e−ρL)),

for some constants c̃j ∈ C, where Φ∗,us
1 denotes the dichotomy of the adjoint variational equation (3.11)

associated with the spectral set {ν : Re{ν} ≤ rsu}.
Before completing the analysis of the bifurcation equation, we need one more prepatory lemma which

estimates the scalar product contained inside of (4.43).

Lemma 4.11. There exists a ρ > 0 such that for all L sufficiently large, and j = 1, 2 we have the following

expansion 〈
u1, e

∗
j (L)

〉
=
〈
wsu

2 (−L), e∗j (L)
〉

+O(e−(2∆η+ρ)L). (4.47)

Proof. Applying P ss
2 (−L) to (4.6), we use the asymptotic expansion of Hypothesis D, and the projection

estimates in Lemma 4.5 to obtain

s2 = −P ss
2 (−L)∆q(L) + P ss

2 (−L)w1(L)

= aeνssLess,l
1,∞ + c.c.+O(e−(rss+∆η)L). (4.48)

This, combined with the result of Lemma 4.10, and the fact that
〈
ess,l

1,∞, e
∗
j,∞

〉
= 0 , allows us to obtain

the estimate

|
〈
wss

2 (−L), e∗j (L)
〉
| ≤ Ke−(2∆η+δss)L,

for some constant K > 0. Also, once again using the projection estimates in Lemma 4.5, we obtain

〈
∆q(L), e∗j (L)

〉
=
〈
q2(L), e∗j (L)

〉
(1 +O(e−∆ηL)),

≤ Ke(rsu−ru)L,

≤ Ke−(2∆η+ρ)L,

where this last inequality comes from the eigenvalue requirements in Hypothesis C(i).

Finally, we use the gluing equation (4.6), and the fact that e∗j (ξ) ⊥ Ess
1 (ξ), to find

〈
u1, e

∗
j (L)

〉
=
〈
wsu

1 (L), e∗j (L)
〉

=
〈
wsu

2 (−L) + wss
2 (−L)− wss

1 (L)−∆q(L), e∗j (L)
〉

=
〈
wsu

2 (−L) + wss
2 (−L)−∆q(L), e∗j (L)

〉
,

which, combined with the above estimates yields the result.
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We may now complete the proof of the main theorem with the following proposition which gives the

leading order expansion of the right-hand side of (4.43).

Proposition 4.12. The bifurcation equation (4.44) has the following leading order expansion in µ,

Mµ = −
∑

j=1,2

(
e2∆νLdj + c.c.

)
e∗j,0 +O(e−(2∆r+ρ)L) +O (|µ| (|v1|+ |µ|)) , (4.49)

where

dj = ac1c̃j

〈
esu,l

1,∞, e
∗
j,∞

〉
C
,

for a, c1, c̃j ∈ C as defined in Hypothesis D, Lemma 4.9, and Lemma 4.10 respectively, and where 〈·, ·〉C
is the complexified inner product induced by the real inner product on X.

Proof. To begin, by applying the projection P su
2,+(0), and its complement I − P su

2,+(0) to the transverse

matching equation (4.33), we obtain

u2 = wsu
2 (0) = −P su

2,+(0)wss
2 (0) +O(e−(ηss+∆η)L).

Then, using estimates similar to those in the proof of Proposition 4.3 we find

wsu
2 (−L) = Φsu

2 (−L, 0)u2 +O(e−(2∆η+ρ)L)

wss
2 (0) = Φss

2 (0,−L)s2 +O(e−(rssL+2∆ηL)).

We then combine these estimates to obtain,

wsu
2 (−L) =Φsu

2 (−L, 0)u2 +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)wss
2 (0) +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)
[
Φss

2 (0,−L)s2 +O(e−(rssL+2∆ηL))
]

+O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)s2 +O(e−(2∆η+ρ)L)

=− Φsu
2 (−L, 0)P su

2,+(0)Φss
2 (0,−L)

(
aeνssLess,l

1,∞ + c.c.
)

+O(e−(2∆η+ρ)L)

= ac1e(2νss−νsu)Lesu,l
1,∞ + ac2e(2νss−νsu)L esu,l

1,∞ +O(e−(2∆η+ρ)L),

where estimate (4.48) was used in the fifth line, and Lemma 4.9 used in the sixth. Since this last expression

must be real (being the flow of a real initial condition), it can be found that c2 = c1. Hence we obtain

wsu
2 (−L) = ac1e(2νss−νsu)Lesu,l

1,∞ + c.c+O(e−(2∆η+ρ)L). (4.50)

Applying Lemma 4.10 to (4.43), we obtain

〈
Φsu

1 (0, L)u1, e
∗
j,0

〉
C =

〈
u1, e

∗
j (L)

〉
C =

〈
u1, e

−νsuLc̃j e
∗
j,∞ + c.c.

〉
C (1 +O(e−ρL)). (4.51)

Finally by substituting the expansion obtained for u1 in Lemma 4.11, and taking into account the fact

that 〈
esu,l

1,∞, e
∗
1,∞

〉
C

= 0,

we obtain the result.

5 Discussion

5.1 Application of results

We now discuss the applicability of our result in the examples given in Section 2.
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Cubic-quintic complex Ginzburg-Landau equation In this example, all of the required hy-

potheses either have been proven in previous works, or can be proven using straightforward techniques.

As we study real equations above, one must first write (2.4) in terms of the variables Reu, Imu or u, u,

obtaining a four-dimensional real system. We also note that the well-posedness assumption of Hypothesis

E is trivially satisfied.

Next it can readily be calculated for parameters as in the following proposition, that the eigenvalues

of the asymptotic linearization of (2.4) with ξ = +∞ about the equilibrium u∗ ≡ 0 is hyperbolic, with a

complex conjugate pair of eigenvalues on each side of the imaginary axis. Furthermore, for ξ = −∞, the

spectrum of the linearization consists of complex conjugate pairs νss, νss, and νsu, νsu which satisfy the

desired hypotheses. The results of [44] then give the following proposition

Proposition 5.1. For α, β, γ sufficiently small, and ρ > 1, there exists a pushed front solution uff of the

form uff(ξ, t) = eiωptuf(ξ) which invades u∗ with speed cp > clin and some angular frequency ωp. Here, uf

solves (2.3), approaches the periodic pattern up = rpeikpξ as ξ → −∞, and approaches u∗ as ξ → +∞,

where cp, ωp, rp, and kp satisfy the nonlinear dispersion relation (2.2). Furthermore, the periodic orbit,

up, has two-dimensional center-unstable manifold in the flow defined by (2.3).

Remark 5.2. Note that our parameter assumptions differ slightly from those of [44] where ρ is scaled

to be equal to 1, and the coefficient of the linear term u is small. In order to go from our parameters to

theirs, one should make the scalings

u =
ũ

a
, x =

x̃

a2
, t =

t̃

a4
, c = a2c̃, χε = a4χ̃ε, γ = a2γ̃, a2 = ρ.

Next, for the trigger χ0 given in (2.4) above, or for a step-function trigger satisfying χ0 ≡ ±1 for

ξ ≶ 0, we have that the trivial solution u∗ is a preparation front, and that, for the variables U =

(Reu,Reuξ, Imu, Imuξ, χ0), the spatial dynamics equilibria U∗ = (0, 0, 0, 0,−1), Ũ∗ = (0, 0, 0, 0, 1) satisfy

W su(U∗) = 3 and W s(Ũ∗) = 3, where one dimension from each count is from the χ direction. Also, let Uff

denote the heteroclinic orbit in this formulation which corresponds to uff . For χ0, the tangent spaces of

these invariant manifolds are constant and can be explicitly calculated in terms of the spatial eigenvalues.

The desired transversality of the intersection about u0 can then be obtained by calculating that

det

(
1 1

ν+
2 ν−1

)
6= 0,

where ν±j solve the dispersion relation, d±(ν) = (1 + iα)ν2 + cν+ (±1− iω), and are ordered by increasing

real part. A standard singular-perturbation argument then gives the transversality for χε with 0 < ε� 1.

All that is left is to verify are the intersection properties along Uff , and the invertibility of the associated

Melnikov matrix. Note that since there is no non-leading strong-stable eigenspace, Ess,s
1,∞, the inclination

assumption in Hypothesis G is trivially satisfied.

Proposition 5.3. For α, β, γ, ε sufficiently small, the tangent spaces satisfy

dimTUff (ξ)W
ss(U∗) ∩ TUff (ξ)W

cu(Up) = dim
(
TUff (ξ)W

ss(U∗) + TUff (ξ)W
cu(Up)

)⊥
= 2,

and the Melnikov matrix

M =

( ∫∞
−∞ 〈ψ1(ξ), ∂cF (Uff(ξ)〉 dξ

∫∞
−∞ 〈ψ1(ξ), ∂ωF (Uff(ξ)〉 dξ∫∞

−∞ 〈ψ2(ξ), ∂cF (Uff(ξ)〉 dξ
∫∞
−∞ 〈ψ2(ξ), ∂ωF (Uff(ξ)〉 dξ

)
,

is invertible, where ψj(ξ) are solutions of the adjoint variational equation of the linearization of (2.4) with

initial conditions ψj(0) satifying

spanj=1,2{ψj(0)} =
(
TUff (ξ)W

ss(U∗) + TUff (ξ)W
cu(Up)

)⊥
.
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Proof. First, after scaling t = ωτ , note that ∂τuff and ∂ξuff are linearly independent and lie in the kernel

of the linear operator

T : V 7→ − ωVτ + (1 + iα)Vξξ + cVξ + V + gA,A(Aff , Aff)V. (5.1)

Since ε is small, it can be readily obtained that χε does not induce any eigenfunctions corresponding

to resonance poles of the Evans function about u∗ and hence that ∂τuff , and ∂ξuff span the kernel, so

that 0 is an eigenvalue of T with geometric multiplicity 2. We claim its algebraic multiplicity is also equal

to 2. Momentarily assuming this claim, the first statement of the proposition follows immediately, as the

adjoint variational equation is found to have two linearly independent bounded solutions. The proofs of

Theorem 8.4 and Lemma 8.7 in [39] can then be used to obtain that M is invertible.

To prove the claim, we first note that in the real-coefficient case α = γ = β = 0 the linearized operator

T is self-adjoint when defined on an exponentially weighted space L2
c/2(R × T) with weight e

c
2 ξ. This

implies that T does not have a generalized kernel for α = γ = β = 0. Since algebraic simplicity is an

open property, we then have that for complex parameters α, γ, β sufficiently small, the eigenfunctions

∂tuff , ∂ξuff remain algebraically simple.

With these propositions in hand we can then apply our results to obtain the existence of a family of

pushed trigger fronts in the modified qcGL equation which bifurcate from the pushed free front solution

obtained in Proposition 5.1.

Remark 5.4. We also note that our results could be obtained for qcGL with the step function trigger χ0

by first simplifying the phase-space with the blow-up coordinates used in [20]. One then obtains a phase

space R+ × S2, where S2 denotes the Riemann sphere. In these coordinates, the dynamics are smoothly

foliated over S2 which is a normally hyperbolic invariant manifold. Furthermore, the dynamics on S2 are

described by a Ricatti equation which can be explicitly integrated. Here, the periodic orbit up reduces to a

point, with one-dimensional unstable manifold, while the target manifold W s
+(0) is two dimensional. Lin’s

method could then be readily applied to obtain the desired result.

Cahn-Hilliard In the case of Cahn-Hilliard, more work needs to be done to apply our bifurcation

result. While the existence of a preparation front upr can be obtained using a Conley index argument

(see [21, App. A]), the existence of an oscillatory pushed front is, to the authors’ knowledge, still an open

problem. Furthermore, the spectrum of the linearized modulated traveling wave problem would have to

be obtained by first using a Fourier decomposition in time,

iω`û = −∂ξξ (∂ξξû+ f ′(u∗)û) = c∂ξû, ` ∈ Z,

writing each equation as a first order equation in ξ, and finding the four spatial eigenvalues ν` which

satisfy

0 = ν4 + f ′(u∗)ν
2 − cpν + iωp`, ` ∈ Z.

Using a scaling argument, it is possible to show that such spatial eigenvalues are bounded far away from the

imaginary axis for large ` and thus only a few values of ` need be studied. From this one should hopefully

be able to establish (or assume) the intersection properties of Section 3.3, possibly after factoring out the

S1-equivariance, and obtain a leading order expansion for the bifurcation equation.

In practice, one may also proceed by verifying the hypotheses with numerical computations. As shown

above, the existence of a pushed front can be evidenced by numerical continuation. Then, the spaitial

eigenvalues ν` could be found for each ` using the values for cp and ωp obtained from the AUTO calculation

in Figure 2.3. Regarding the discussion in Remark 3.7, we note that for the numerically determined cp
and ωp, the leading eigenspaces corresponding to νss/su lie in the ` = 1 Fourier subspace.

One could then use a numerical eigenvalue solver to test the transversality hypotheses on upr and

uff . For the former, one need only verify that the kernel of the discretized linearization about upr is
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empty. For the latter, since the free pushed front is time-periodic in a co-moving frame, one must look

at the spectrum of the discretized linear period map and determine that the algebraic multiplicity of the

Floquet exponent at 0 is two. Finally, since inclination-flip configurations are degenerate, the failure of

the inclination hypothesis could be tested by perturbing the preparation or free pushed fronts.

In many experiments and models using the Cahn-Hilliard equation (see for example [15, 21, 41]), the

preparation front is controlled by a traveling source term, instead of a spatial inhomogeniety as in (2.8)

above. Such systems usually take the form

ut = −(uxx + f(u))xx + cux + ch(x), (5.2)

where the source term h : R → R is positive, spatially localized, and deposits mass into the system to

transform a stable homogeneous equilibrium into to an unstable state in its wake. For simplicity, let us

also assume that h′ is compactly supported. To apply our results in this case we must take into account

that this equation preserves mass and hence has a linearization with additional neutral modes. This is

manifested in the corresponding spatial dynamics formulation,

ux = v

vx = θ − f(u)

θx = w

wx = −ω∂τ + cux + h(ξ), (5.3)

as the existence of a conserved quantity

I(u1; c) =
1

2π

∫ 2π

0

w − cu dτ, u1 = (u, v, θ, w),

which is constant under the flow for all |ξ| sufficiently large (i.e. outside of the support of h′). The

existence of such a quantity implies the existence of a family of periodic orbits and hence pushed free

invasion fronts which are parameterized by fixed values I(u1; s) ≡ m. Thus, pushed free invasion fronts,

if shown to exist, will come in a 1-parameter family as well. One can obtain existence of pushed trigger

fronts, by restricting the phase-space to the affine, co-dimension one subspaces {I ≡ m} and then applying

our results.

More generally, if the spatial dynamics formulation of a pattern-forming system possesses conserved

quantities one must perform a dimension counting to check that our genericity and intersection hypotheses

still hold. Namely, one must verify that the introduction of neutral modes about the equilibria and

periodic orbit preserves the transversality and Fredholm properties we require. For more information and

an example of such calculations see [19, Sec. 4].

5.2 Other spectral splittings

As mentioned in the introduction, the spectral splitting associated with the pushed front’s strong-stable

decay and the next weakly-stable eigenvalue comes in other varieties in addition to the case we studied.

First we remark that a system where νss has a complex conjugate while νsu is real and simple should

behave in the same way as discussed above, as the quantity ∆ν would still be complex. One such example

arrises in the Extended Fisher-Kolmogorov equation,

ut = −γ∂4
xu+ ∂2

xu+
u

b
(b+ u)(1− u), x, t ∈ R, u ∈ R. (5.4)

It has been observed in [42] that pushed fronts exist for b sufficiently small. For γ < 1/12, this front is

asymptotically constant in the wake, while for γ > 1/12 it forms a spatially periodic pattern of “kinks” and

“anti-kinks”. In the former case, with γ = 0.08 for example, the pushed speed is found to be cp ≈ 2.175
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while spatial eigenvalues νss, νss ≈ −0.575971 ± 1.21251 i and νsu ≈ −0.365678. Hence, the pushed front

in this case has an oscillatory tail and we thus predict that a triggered version of this equation, with say

χ(x − ct) multiplied by the linear term u, would exhibit non-monotone front locking with respect to the

trigger interface.

Many examples arise where both νss and νsu are real, generically leading to monotone front selection

and no front locking phenomena unless a more complicated spatial trigger is introduced. One such example

is the cubic-quintic Nagumo equation,

ut = ∂2
xu+ u+ du3 − u5, x, t ∈ R, u ∈ R. (5.5)

Here, using a reduction of order method (see [42]), one finds that free pushed fronts exist for all d > 2
√

3
3

and travel with speed cp = −d+2
√
d2+4√

3
.

While such fronts will always be asymptotically constant (i.e. no periodic pattern in the wake), we

hypothesize that certain spatial triggers could induce the front locking phenomena discussed above. To this

end, one could explore triggering phenomena by moving into a co-moving frame of speed c and studying

the equation on a semi-infinite domain x ∈ (−∞, 0] with various boundary conditions B1(ux) +B2(u) = 0

at x = 0. In order for the problem to be well-posed, one would look at conditions of the form ux(0, t) =

φ(u(0, t)), for some smooth function φ : R → R. Triggered fronts would then be obtained by finding

connections between the strong-stable manifold, W ss(0), and the boundary manifold Bφ defined by the

graph of φ. By selecting specific boundary conditions, one could then obtain multi-stability of fronts

which lock to the boundary condition at different distances. See [34] for a general study of this subject

in the case where the co-moving frame speed is zero. We also remark that it may be possible to observe

interesting dynamics if a triggering mechanism could be used to perturb pushed fronts in the phase-field

system studied in [19].

5.3 Stability of pushed trigger fronts

Though we did not study the stability of pushed trigger fronts, we expect such solutions to be stable for

parameters lying on branches of the bifurcation curve µ∗(L). For more general types of triggers, resonance

poles or branch poles ahead of the preparation front could induce faster speeds and different wavenumbers

in the wake. The solutions we construct here would in such a case be unstable. These effects have been

documented in a particular, prototypical case of coupled KPP equations in [24]. In the context of the

examples given in Section 2, if ε were not small, the interface of χε would be shallow, taking a long time to

ramp up from -1 to 1. This would cause resonance poles to arise in the linearization about u∗ leading to

instabilities in the interfacial region where χε is not close to ±1. Such an example could also be realized

in (5.2) by making the source term h only weakly localized. Here, the resulting preparation front would

possess localized instabilities as the interface slowly passes through the spinodal region.

Additionally, different patterns would be selected if the triggering function χ were not monotone. For

example, if there were a bounded region where χ > 1 then the linearization about the unstable equilibrium

could possess unstable extended point spectrum which would effect the pattern-selection mechanism. Also,

see [46] for interesting numerical results where spatially periodic forcing induces the selection of different

patterns and locking behavior.
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