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Abstract

We show that radially symmetric spikes are unstable in a class of reaction-diffusion
equations coupled to a conservation law. 1

1 Introduction

We consider a class of spatially extended systems that are governed by a scalar reaction-diffusion
equation, coupled to a conservation law,{

ut = ∇ · [a(u, v)∇u+ b(u, v)∇v] ,
vt = ∆v + f(u, v),

t ≥ 0, x ∈ Rk. (1.1)

Here, the functions a, b, and f are of class C3(R2,R). In order to ensure well-posedness on ap-
propriate function spaces, we also assume that a(u, v) ≥ a0 > 0 for all (u, v) ∈ R2. Equations
of the type (1.1) arise in many physical, biological, and chemical applications. We mention
the Keller-Segel model for chemotaxis [6], phase-field models for undercooled liquids [1], and
chemical reactions in closed reactors, with stoichiometric conservation laws for chemical species.
We refer to [13] for a somewhat more extensive review of the literature and specific examples.
Many of those systems are known to exhibit patterns in large or unbounded domains. The
simplest examples in one space-dimension, k = 1, are layers (or interfaces), and possible bound
states formed between pairs of such layers. The simplest higher-dimensional patterns are ra-
dially symmetric, localized and time-independent patterns (u, v)(t, x) = (u∗, v∗)(|x|). We refer
to such solutions as spikes.

In previous work [13], we showed that such localized patterns are always unstable for the
dynamics of (1.1), under quite mild, generic assumptions, in one space-dimension. Our goal
here is to extend such instability results to higher space-dimensions. In this introduction, we
first briefly characterize the types of radially symmetric solutions that we are interested in, and
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then state our main results, which provides an instability statement for a large class of spike
solutions. Our emphasis is on phenomenological assumptions, related to the spike solution,
rather than assumptions on specific shapes and monotonicity properties of a, b, and f .

The following two assumptions characterize spikes as exponentially localized with a stable
background.

(rs1) We assume that spikes are nonconstant, exponentially localized, that is

|(u∗ − u∞, v∗ − v∞)(x)| ≤ Ce−η|x|, for all x ∈ Rk, (u∗, v∗) 6≡ (u∞, v∞),

for some constants u∞, v∞ ∈ R, and C, η > 0.

(rs2) Spikes are asymptotic to constant states that are stable for the pure kinetics,

u′ = 0 v′ = f(u, v),

that is, we assume fv(u∞, v∞) < 0.

We will now outline how to construct spikes that satisfy (rs1)–(rs2); for a more detailed dis-
cussion, see Section 2. One readily checks that radially symmetric spikes satisfy the system{ [

rk−1 (a(u, v)ur + b(u, v)vr)
]
r

= 0,
vrr + k−1

r vr + f(u, v) = 0.
(1.2)

where r := |x| is the radial variable. The first equation in the above system can be integrated
and viewed as a differential equation for u in terms of v,

du
dv

= − b(u, v)
a(u, v)

. (1.3)

Solving this differential equation with appropriate initial conditions, one obtains a solution
u∗ = Φ(v∗). Substituting this solution into the second equation of the system (1.2) we obtain
the equation for v∗,

vrr +
k − 1
r

vr + f(Φ(v), v) = 0. (1.4)

This equation is nothing else than the equation for radially symmetric solutions to

∆v + f(Φ(v), v) = 0. (1.5)

Radially symmetric solutions to such a stationary nonlinear Schrödinger equation have been
studied extensively in the literature, using a variety of techniques, for instance shooting or
variational methods.

Different from the one-dimensional case, even positive solutions of (1.4) that decay to zero need
not be unique and may bifurcate as problem parameters are varied. We will focus here on the
simplest case, where the linearization of (1.4) is invertible and possesses an odd Morse index.
More precisely, consider the linearization K of (1.5) at v∗ as a self-adjoint operator on the closed
subspace of L2(Rk) consisting of radially symmetric functions. We will assume the following
two conditions.
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(rs3) The kernel of K in L2
rad(Rk) is trivial.

(rs4) The operator K on L2
rad(Rk) has an odd number of positive eigenvalues.

Condition (rs3) is typical in the sense that it is violated only for exceptional values of pa-
rameters; see for instance [2, §5]. It is also known to hold for several specific examples, see
[5, 8, 12].

We note that in a typical situation the steady-states have Morse index one, they are in fact
Mountain-Pass type extrema for the functional associated with (1.5). In this case, (rs4) is
satisfied and K has exactly one positive eigenvalue.

We are now ready to state our main result.

Theorem 1.1. Suppose (1.1) possesses an exponentially localized, radially symmetric spike
solution (u∗, v∗) satisfying (rs1)–(rs4). Then (u∗, v∗) is unstable as an equilibrium to (1.1),
considered as an evolution equation on the space of bounded uniformly continuous functions
BUC(R,C2) or on BUCrad(R,C2).

The formal linearization of (1.1) along the spike (u∗, v∗) is the equation

d
dt

(
u

v

)
= L

(
u

v

)
, (1.6)

where

L =

[
∇ · (a∗∇+ a∗u∇u∗ + b∗u∇v∗) ∇ · (b∗∇+ a∗v∇u∗ + b∗v∇v∗)

f∗u ∆ + f∗v

]
. (1.7)

Here ” ∗ ” next to any of the functions a, b, f and their partial derivatives represents the
composition of the respective function with the spike (u∗, v∗).

We can view the differential expression L as a densely defined, closed operator on various
function spaces such as BUC(Rk,C2), L2(Rk,C2) or the exponentially weighted L2

η(Rk,C2)
spaces that we define below. One can check that on these spaces L generates an analytic
semigroup, see for instance [7].

We will show in this paper that the spectrum of L intersects Reλ > 0. This readily implies
that the spectral radius of the semigroup generated by L is larger than 1, and, using a result
of Henry [3, Thm 5.1.5], that the spike is actually unstable for the nonlinear evolution. We
refer to [13, §3] for more details on how spectral instability implies nonlinear instability in this
context.

The remainder of the paper is organized as follows. We show that spikes naturally come in
families parametrized by the asymptotic state, Section 2. We then recall some results on
the essential spectrum of L in Section 3. The heart of our analysis is contained in Section
4, where we show that there exists at least one real unstable eigenvalue for L whenever the
essential spectrum is stable. The main idea is similar to the construction in [13]. We perform a
homotopy to a system where the linearization is known to exhibit an odd number of unstable
eigenvalues and show that, during the homotopy, eigenvalues may not cross the origin. The
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crucial difficulty is the presence of essential spectrum at the origin, which makes it difficult to
control multiplicities of eigenvalues. We therefore monitor eigenvalues near the origin by using
a carefully crafted Lyapunov-Schmidt type reduction procedure, mimicking the extension of
Evans functions at the essential spectrum. The procedure here is somewhat more subtle than
in [13] since one would not expect Evans functions to be analytic in the presence of terms with
decay 1/r, generated by the Laplacian in higher space-dimension [15].

Notations: We collect some notation that we will use throughout this paper. For an operator
T on a Hilbert space X we use T ∗, dom(T ), kerT , imT , σ(T ), ρ(T ) and T|Y to denote the
adjoint, domain, kernel, range, spectrum, resolvent set and the restriction of T on a subspace
Y of X. If g : R2 → R is a smooth function, e.g., a, b, f or one of its partial derivatives, we
write g∗ := g(u∗, v∗) and g∞ := g(u∞, v∞). If u is a radially symmetric function, we write
u(r) = u(x) if |x| = r, slightly abusing the notation. We denote by L2

rad(Rk,Cm) the space of
radially symmetric functions that belong to L2(Rk,Cm). For η ∈ R, L2

η,rad(Rk,Cm) denotes the
weighted space of vector-valued functions defined via the weighted L2-norm

‖w‖2η =
∫

Rk
|w(x)eη|x||2dx.

Acknowledgment. The authors gratefully acknowledges support by the National Science
Foundation under grant NSF-DMS-0806614.

2 Families of spikes

In this section we show that the existence of a spike satisfying conditions (rs1)–(rs4) implies
the existence of a family of radially symmetric spikes. Recall that a radially symmetric spike
(u∗, v∗) satisfies the system (1.2){ [

rk−1 (a(u, v)ur + b(u, v)vr)
]
r

= 0,
vrr + k−1

r vr + f(u, v) = 0.

Integrating the first equation we obtain that the spike (u∗, v∗) satisfies the equation a(u, v)ur +
b(u, v)vr = mr1−k for some m ∈ R. Since u∗ and v∗ converge exponentially as r → ∞, we
obtain that v∗r → 0 exponentially as r → ∞ by standard ODE arguments. Therefore, u∗

satisfies an equation of the form ur = mr1−k + O(e−εr) for some ε > 0. Since, by (rs1),
u∗ converges exponentially as r → ∞, we conclude that m = 0, which implies that a spike
necessarily satisfies the ODE (1.3),

du
dv

= − b(u, v)
a(u, v)

, u(v0) = u0.

Since a spike is a bounded solution, we may assume without loss of generality that b is bounded.
Moreover, a is bounded away from zero, so that this ODE possesses a global, smooth solution.
We denote the solution to initial conditions u0 at v = v0 by

u(v) = Φ(v, v0;u0), Φ(v0, v0;u0) = u0. (2.1)
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For our particular spike (u∗, v∗), we note that u∗ = Φ(v∗, v∞;u∞) =: ϕ0(v∗). Hence, v∗ satisfies
the equation

vrr +
k − 1
r

vr +H(v) = 0, H(v) := f(ϕ0(v), v). (2.2)

We recall that according to conditions (rs3)-(rs4), K = ∂2
r + k−1

r ∂r + H ′(v∗) has trivial kernel
and the number of its positive eigenvalues is odd. Condition (rs1) asserts that v∗(r) → v∞

exponentially for r →∞, which implies that H ′(v∞) < 0. We will refer to this condition later
on as

ODE-Hyperbolicity:

H ′(v∞) = f∞v −
b∞

a∞
f∞u < 0. (2.3)

In the next lemma, we prove the existence of a smooth family of spikes.

Lemma 2.1. Under the assumptions of Theorem 1.1, there is ε > 0 and a family of spikes
(u∗(·, µ), v∗(·, µ)) for µ ∈ (−ε, ε), such that

(i) the asymptotic values (u∞(µ), v∞(µ)) are smooth functions and 0 6= ∂µu
∞(µ);

(ii) the spikes (u∗(·, µ)−u∞(µ), v∗(·, µ)− v∞(µ)) are given as smooth maps from (−ε, ε) into
H2

rad(Rk,R2); moreover, (u∗(·, 0), v∗(·, 0)) = (u∗(·), v∗(·)).

Proof. The proof, in most of its parts, is similar to the proof of [13, Lem. 2.1]. For
completeness we give the main arguments. We first construct a family of asymptotic states
that satisfy (i) by solving f(u, v) = 0 locally near (u∞, v∞) with the implicit function theorem,
using (rs2), and denote the solution by (u∞(µ), v∞(µ)), µ ∈ (−ε, ε), with

∂µ(u∞(0), v∞(0)) = (−f∞v , f∞u ). (2.4)

We now define
Φµ : R→ R, Φµ(v) = Φ(v, v∞(µ);u∞(µ))

and
H̃ : R× (−ε, ε)→ R, H̃(v, µ) = f(Φµ(v), v).

Note that H̃(v∞(µ), µ) = 0. Next, we seek radially symmetric spikes that are solutions to

vrr +
k − 1
r

vr + H̃(v, µ) = 0, (2.5)

with u = Φµ(v). Using ODE-Hyperbolicity (2.3) again, we infer H̃v(v∞, 0) = H ′(v∞) < 0. It
follows that v∞(µ) is the locally unique equilibrium to (2.5), and v∞ is hyperbolic.

To solve equation (2.5) for µ ≈ 0 we make the change of variables w = v− v∞(µ), which yields
a nonlinear equation

G(w, µ) = wrr +
k − 1
r

wr + H̃(w(·) + v∞(µ), µ) = 0, (2.6)
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where the nonlinearity vanishes at the origin so that G : H2
rad(Rk) × (−ε, ε) → L2

rad(Rk) is a
smooth map. Since v∗ satisfies (2.2), it follows that G(v∗ − v∞, 0) = v∗rr + k−1

r v∗r +H(v∗) = 0.
The w-derivative of G is given by:(

Gw(v∗ − v∞, 0)
)
w = wrr +

k − 1
r

w + H̃v(v∗(·), 0)w = Kw.

Next, we will show that K is invertible. Since the kernel of K is assumed to be trivial, (rs3),
it is sufficient to show that K is Fredholm of index zero. To see this, we first consider K as
an operator from H2

rad(Rk) into L2
rad(Rk). Since the spike (u∗, v∗) is exponentially localized,

v∗(r)→ v∞, exponentially for r →∞. Thus, the operator K is a relatively compact (actually,
even in the Schatten-von Neumann Bp ideal, for the right choice of p, see [17, Thm. 4.1])
perturbation of K∞ = ∆ +H ′(v∞). By ODE-Hyperbolicity (2.3), we have H ′(v∞) < 0 so that
K∞ is invertible and K is Fredholm with index 0.

Using the Implicit Function Theorem, we now find a local smooth solution w(·, µ) ∈ H2
rad(Rk).

One readily concludes that w(r;µ) → 0 for r → ∞, which gives the asymptotics of the spike
solution v = w + v∞ as claimed.

We note that one can verify that all spikes in the family satisfy the conditions (rs1)–(rs4).

3 Essential spectrum

In this section we compute the essential spectrum and show that it is stable, whenever the
asymptotic equilibrium is stable.

First, we define the limiting operator L∞ through

L∞ =

[
a∞∆ b∞∆
f∞u ∆ + f∞v

]
. (3.1)

Just like the operator L, we will consider the operator L∞ on various function spaces, or merely
as a differential expression, slightly abusing notation. We recall the definition of essential
spectrum that we use in this paper. For a given choice of function space, we say λ is in the
essential spectrum σess(L) if L− λ is not Fredholm index zero. We refer to the complement of
the essential spectrum in the spectrum as the point spectrum σpoint(L) .

One can compute the essential spectrum using arguments similar to [3, §5, Appendix]. In the
next proposition we collect some results on the essential spectrum. For the proof we refer to
[13, Sec. 4].

Proposition 3.1. Under the assumptions of Theorem 1.1, the following hold true:

(i) The essential spectra of the operators L and L∞ coincide, and are equal for the choices
of function space X = L2(Rk,C2) and X = BUC(Rk,C2).

(ii) The essential spectrum of L is given by

σess(L) =
{
λ±(ξ) : ξ ∈ Rk

}
, where λ±(ξ) =

tr(ξ)±
√

tr(ξ)2 − 4det(ξ)
2

,
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with

tr(ξ) = −(a∞ + 1)|ξ|2 + f∞v , det(ξ) = a∞|ξ|4 + (f∞u b
∞ − f∞v a∞)|ξ|2.

(iii) The essential spectral radius of eL is larger than 1 if f∞v > 0.

(iv) The essential spectral radius of eL is 1 if f∞v < 0.

On the radially symmetric subspace, the differential expression for L is

Lrad =

[
1

rk−1∂r
[
rk−1 (a∗∂r + l1)

]
1

rk−1∂r
[
rk−1 (b∗∂r + l2)

]
f∗u(r) 1

rk−1∂r(rk−1∂r) + f∗v (r)

]
, (3.2)

where
l1 = a∗uu

∗
r + b∗uv

∗
r , and l2 = a∗vu

∗
r + b∗vv

∗
r . (3.3)

Lemma 3.2. Under the assumptions of Theorem 1.1, the essential spectrum of L and Lrad

coincide.

Proof. Using the same compact perturbation argument given in the proof of Proposi-
tion 3.1(i), see also [13, Prop. 4.1], one can show that the essential spectrum of Lrad and
of L∞rad, the restriction of L∞ to the set of radially symmetric functions, coincide. From
Proposition 3.1(i) it follows that to finish the proof of lemma it is enough to show that
σess(L∞rad) = σess(L∞).

Simply restricting Fredholm properties to the closed radially symmetric subspace, we find that
σess(L∞rad) ⊆ σess(L∞). Let ξ ∈ Rk and λ ∈ {λ−(ξ), λ+(ξ)}. From the definition of λ± we infer
that there is vector z 6= 0 such that(

−D∞|ξ|2 +N∞ − λ
)
z = 0,

where

D∞ =

[
a∞ b∞

0 1

]
, N∞ =

[
0 0
f∞u f∞v

]
. (3.4)

Let Z = L2
rad(Rk) ⊗ z = {f ⊗ z : f ∈ L2

rad(Rk)} and let L∞Z be the restriction of L∞rad to
Z ∩H2

rad(Rk). One can easily check that

D−1
∞ (L∞Z − λ)(f ⊗ z) = ∆radf ⊗ z +D−1

∞ (N∞ − λ)f ⊗ z = (∆rad + |ξ|2)f ⊗ z.

Since σess(∆rad) = (−∞, 0] (see for instance [4, Thm.2]), we have that ∆rad + |ξ|2 is not
Fredholm, which implies that D−1

∞ (L∞Z −λ) is not Fredholm, as an operator from Z ∩H2
rad(Rk)

to Z. Thus, L∞rad − λ is not Fredholm. Hence, σess(L∞rad) = σess(L∞), proving the lemma.
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4 Tracing the point spectrum

This section presents the core of our arguments which yield the existence of an unstable eigen-
value provided that the essential spectrum is stable. We first construct a homotopy of our
equation to a simpler equation, Section 4.1 and show that spikes are unstable at the end of
the homotopy, Section 4.2. We discuss the kernel of the linearization, Fredholm properties in
weighted spaces, and far-field asymptotics of eigenfunctions in Sections 4.3–4.5. The crucial
step is carried out in Section 4.6, where we control for eigenvalues in a neighborhood of λ = 0.
The discussion in Sections 4.3–4.6 is valid during the entire homotopy and will allow us to prove
our main result in Section 4.7.

4.1 Homotopy

In this section we make use of the homotopy constructed in [13, Sec. 5.1] in order to relate (1.1)
to a ”simpler” system. For this simpler system, we can easily compute the point spectrum. The
homotopy is constructed so that it does not modify the structure of the spikes and does not
change the stability of σess(L). To be precise, we introduce the homotopy parameter τ ∈ [0, 1]
and consider the system{

ut = ∇ · [aτ (u, v)∇u+ bτ (u, v)∇v] ,
vt = ∆v + f̃(u, v, τ),

t ≥ 0, x ∈ Rk, (4.1)

The functions aτ , bτ : R2 → R and f̃ : R2 × [0, 1]→ R are defined by

aτ (u, v) = (1− τ)a(u, v) + τ, bτ (u, v) = (1− τ)b(u, v),

f̃(u, v, τ) = f(u, v)− f(ϕτ (v), v) + f(ϕ0(v), v),

where ϕτ is the solution of the Cauchy problem

du

dv
= − bτ (u, v)

aτ (u, v)
, u(v∞) = u∞. (4.2)

We collect some aspects of this homotopy in the following remark.

Remark 4.1. The homotopy satisfies the following properties.

(i) The homotopy originates at our equation (1.1), f̃(u, v, 0) = f(u, v);

(ii) Hτ (v) := f̃(ϕτ (v), v, τ) = H(v);

(iii) If we define u∗τ := ϕτ (v∗) and v∗τ := v∗ then (u∗τ , v
∗
τ ) is a spike for (4.1) satisfying conditions

(rs1)–(rs4);

(iv) The background states for the system (4.1), lim|x|→±∞ u∗τ (x) = u∞ and lim|x|→±∞ v∗τ (x) =
v∞, do not depend on τ .
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The linearization of (4.1) along the spike (u∗τ , v
∗
τ ) is given by

d
dt

(
u

v

)
= Lτ

(
u

v

)
, (4.3)

where Lτ is defined by replacing a, b and f in the definition (1.7) of L by aτ , bτ and f̃(·, ·, τ),
respectively.

Lemma 4.2. If f∞v < 0 the essential spectrum of Lτ is stable.

Proof. From Proposition 3.1(iv) it follows that it suffices to show that f̃∞v < 0. The latter
was proved in [13, Lem. 5.2].

4.2 Instability at τ = 1

At the end of the homotopy, the system possesses a lower triangular structure and we can
readily infer instability.

Lemma 4.3. If f∞v < 0, then the spikes in the system (4.1) with τ = 1 are unstable. Moreover,
L1 has an odd number of positive eigenvalues.

Proof. We note that if τ = 1 the operator L1 has lower triangular block structure

L1 =

[
∆ 0
f∗u R1

]
,

where R1 = ∆ + H ′1(v∗) = ∆ + H ′(v∗), using Remark 4.1(ii) . Therefore, the spectrum of
L1 is the union of the spectra of ∆ and R1. We note that the restriction of R1 to the space
of radially symmetric functions is K, which according to (rs4) has an odd number of unstable
eigenvalues. Hence, L1 has an odd number of unstable eigenvalue, proving the lemma.

4.3 The kernel of Lrad

From our assumptions on a, b, f , one can see that the kernel of Lrad (and of Lτ for all τ)
consists of smooth functions for all functions spaces in consideration here. In fact, functions in
the kernel solve the system of ODEs

a∗ur + (a∗uu
∗
r + b∗uv

∗
r )u+ b∗vr + (a∗vu

∗
r + b∗vv

∗
r )v = 0; (4.4)

vrr +
k − 1
r

vr + f∗uu+ f∗v v = 0. (4.5)

To solve the system (4.4)–(4.5), we first solve the first equation for u in terms of v.

Lemma 4.4. If u, v ∈ BUC(R+) satisfy equation (4.4) then u = α(∂µu∗|µ=0+ b∗

a∗∂µv
∗
|µ=0)− b∗

a∗ v,
for some constant α ∈ C. Here, (u∗(·, µ), v∗(·, µ)) refers to the family of spikes as constructed
in Lemma 2.1.
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Proof. The proof is a straightforward adaptation of the argument given in [13, Lem. 5.4]
and will be omitted here.

Lemma 4.5. A pair (u, v) belongs to the kernel of L in BUC(R,C2) if and only if for some
α ∈ C,

u = α∂µu
∗
|µ=0 v = α∂µv

∗
|µ=0. (4.6)

Proof. From Lemma 4.4 we have that u = α(∂µu∗|µ=0 + b∗

a∗∂µv
∗
|µ=0)− b∗

a∗ v, for some constant
α ∈ C. Substituting this expression into equation (4.5) we obtain that a function v from the
kernel of L in BUC satisfies the following equation

vrr +
k − 1
r

vr + (f∗v − f∗u
b∗

a∗
)v = −α(f∗u∂µu

∗
|µ=0 +

b∗

a∗
∂µv

∗
|µ=0). (4.7)

Once again using the fact that (u∗(·, µ), v∗(·, µ)) is a family of spikes, that v∗(·, µ) satisfies the
equation

v∗rr(r, µ) +
k − 1
r

v∗r (r, µ) + f(u∗(r, µ), v∗(r, µ)) = 0.

Differentiating with respect to µ in this equation and setting µ = 0, we infer that α∂µv∗|µ=0 is
a particular solution of equation (4.7). Hence, the general solution of equation (4.7) is of the
form v = α∂µv

∗
|µ=0 + ṽ, where ṽ is a solution of the equation

ṽrr +
k − 1
r

ṽr + (f∗v − f∗u
b∗

a∗
)ṽ = 0, (4.8)

which is equivalent to Kṽ = 0. From (rs3) we obtain that ṽ = 0, proving the lemma.

4.4 Fredholm properties of Lrad on exponentially weighted spaces

We will set up our perturbation problem using exponentially weighted spaces, introduced at
the end of Section 1. It turns out that the linearized operator is Fredholm in spaces with small
nonzero exponential weight, so that one can attempt to use regular Fredholm perturbation
theory for eigenvalues.

Lemma 4.6. There exists η∗ > 0 such that the operator Lrad is Fredholm with index −1 in
L2
η,rad(Rk,C2) for all η ∈ (0, η∗).

Proof. The proof is a somewhat non-standard generalization of Palmer’s theorem; see [10, 11],
and [16] for generalizations and applications to perturbation theory. The details of the proof
will be presented elsewhere [14].

Next, we consider the adjoint of Lrad with respect to the non-weighted L2-scalar product, so
that L∗rad is a closed operator on L2

−η(R,C2).

Lemma 4.7. The kernel of L∗rad in L2
−η,rad(Rk,C2) is spanned by the constant vector-valued

function (1, 0)T.
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Proof. From Lemma 4.5 it follows that the kernel of Lrad on L2
η,rad(Rk,C2) is trivial,

hence its cokernel is one-dimensional by Lemma 4.6. We conclude that the kernel of L∗rad in
L2
−η,rad(Rk,C2) is one-dimensional. A short explicit calculation shows that the vector (1, 0)T

belongs to the kernel of L∗rad, which proves the lemma.

4.5 Asymptotics of eigenfunctions

We recall that L∞rad is the restriction of L∞ to the set of radially symmetric functions. The
eigenvalue problem associated with the operator L∞rad, is given by{

a∞(urr + k−1
r ur) + b∞(vrr + k−1

r vr) = λu

vrr + k−1
r vr + f∞u u+ f∞v v = λv,

(4.9)

This system can be rewritten in the form

D∞

(
∂rr +

k − 1
r

∂r

)(
u

v

)
+
(
N∞ − λ

)(
u

v

)
= 0, (4.10)

where D∞ and N∞ were defined in (3.4). We therefore define the linear dispersion relation

Λ(λ, ν) =

[
a∞ν2 − λ b∞ν2

f∞u ν2 + f∞v − λ

]
and d(λ, ν) = det Λ(λ, ν).

Remark 4.8. Next, we collect some results proved in [13, Lem. 5.10].

(i) In case Re λ > 0, there are two roots νj , j = 1, 2 of the equation d(λ, ν) = 0 with
Re νj > 0.

(ii) Setting λ = γ2, the νj , j = 1, 2, can be considered as analytic functions of γ with
expansion

ν1(γ) =

√
f∞v

a∞f∞v − b∞f∞u
γ +O(γ2) ν2(γ) =

√
−H ′(v∞) +O(γ2),

where H was defined in (2.2), and H ′(v∞) < 0 is guaranteed by (2.3).

We can now state the main result of this subsection.

Lemma 4.9. The solutions to (4.9) for λ in a complex neighborhood of the origin can be
characterized as follows.

(i) In case Re λ > 0, the solutions of the system (4.9) are of the form

(u(r), v(r))T = C1r
1−k/2Kk/2−1(νr) + C2r

1−k/2Ik/2−1(νr),

where, Cj, j = 1, 2 are vectors in the kernel of Λ(λ, νj) and ν = νj, j = 1, 2.2

2Here, Iα and Kα are the modified Bessel functions satisfying the equation r2h′′ + rh− (r2 + α2)h = 0, such

that Kα is bounded at ∞, Iα is bounded at 0, see [9].
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(ii) Setting λ = γ2, the solution r1−k/2Kk/2−1(ν1r) is bounded at +∞ and the constant C1

can be chosen as an analytic function C1 = α(γ) with expansion

α(γ) = (−f∞v , f∞u )T + O(γ)

such that the function defined by α(γ)r1−k/2Kk/2−1(ν1(γ)r) satisfies (4.9).

Proof. The proof of (i) follows immediately from the definition of the modified Bessel
functions and Remark 4.8. To prove (ii) one can argue in a similar way to the proof of [13,
Lem. 5.10(ii)].

4.6 The eigenvalue problem near 0

In this section we discuss the eigenvalue problem Lradu = λu, near λ = 0 using Lyapunov-
Schmidt reduction. The following proposition states that the eigenvalue problem can be reduced
to finding the roots of a single scalar function.

Proposition 4.10. Under the assumptions of Theorem 1.1, there exists δ > 0 and function
E : [0, δ]→ C, such that for any γ > 0,

γ2 ∈ σpoint(L) if and only if E(γ) = 0. (4.11)

Moreover, we have that

(i) if k = 2 the function E is continuous on [0, δ], differentiable on (0, δ], E(0) = 0 and

E(γ) =
a∞f∞v − b∞f∞u

ln γ
+

1
ln γ
O(γ2) +O(γ2).

It can be extended analytically to B(0, δ) \ [−δ, 0];

(ii) if k ≥ 3 the function E can be extended analytically to B(0, δ) and E(0) 6= 0.

Step 1: The ansatz. We are interested in solutions to

(
L − γ2

)(u
v

)
= 0, (4.12)

for γ ∼ 0. We use the ansatz
(u, v)T = w + βα(γ)hk(γ), (4.13)

where w ∈ L2
η,rad(Rk,C2) and β ∈ C, α(·) are defined in Remark 4.8. The function hk is defined

as
[hk(γ)](r) = χ(r)jk(γ)r1−k/2Kk/2−1(ν1(γ)r) (4.14)

for r > 0, γ ∈ B(0, δ) \ [−δ, 0] and χ ∈ C∞(R+) is a smooth function satisfying χ(r) = 0 for
all r ≤ 1 and χ(r) = 1 for all r ≥ 2. The function jk is defined as follows: j2(γ) = (ln γ)−1

and jk(γ) = γk−2(ν1(γ))1−k/2 for k ≥ 3. Again, ν1(·) is as in Remark 4.8. In the sequel

12



we will show that with this choice of jk, the function hk can be extended smoothly up to
γ = 0 in an appropriate sense. Clearly, a function (u, v)T of the form (4.13) that solves the
eigenvalue equation (4.12) for γ > 0 belongs to the kernel of Lrad. We will see in Step 5 that
any eigenfunction is actually of the form (4.13).

Summarizing, the ansatz allows us to consider the eigenvalue problem in the smaller space
L2
η,rad(Rk,C2), only, instead of L2

rad(Rk,C2), at the expense of adding a free parameter β.

Since spikes are exponentially localized, we obtain that

w0 :=(∂µu∗|µ=0 − ∂µu
∞(0), ∂µv∗|µ=0 − ∂µv

∞(0))T

=(∂µu∗|µ=0, ∂µv
∗
|µ=0)T − α(0) ∈ L2

η,rad(Rk,C2). (4.15)

Step 2: Setup of the bifurcation problem. As shown in Section 4.4 , we can choose
η > 0 small enough, but fixed, so that Lrad is Fredholm on L2

η,rad(Rk,C2) and kerL∗rad =
Span{(1, 0)T} on L2

−η,rad(Rk,C2). Here L∗rad refers to the L2 adjoint. Thus, we have the
following characterization of the image:

imLrad =
{

(u, v)T ∈ L2
η,rad(Rk,C2) :

∫
R
u(r)rk−1dr = 0

}
.

It follows that equation (4.12) with ansatz (4.13) is equivalent to the following system, F (w, β, γ) = 0〈(
Lrad − γ2

)(
w + βα(γ)hk(γ)

)
, (1, 0)T

〉
L2(0,∞;rk−1dr)

= 0. (4.16)

Here, the function F : H2
η,rad(Rk,C2)× C2 → imLrad is defined by

F (w, β, γ) = P0

(
Lrad − γ2

)(
w + βα(γ)hk(γ)

)
and P0 is the orthogonal projection in L2

η,rad(Rk,C2) onto imLrad. We view (4.16) as an equation
F(w, β, γ) = 0 for the variables (w, β, γ) ∈ H2

η,rad(R,C2)× C2, with values F ∈ imLrad × C.

Step 3: Smoothness of the bifurcation problem. For our perturbation analysis, we will
rely on expansions of F . For this it is essential to establish smoothness properties. We will see
that we can extend the function

F0 : Ωk(δ)→
(
Lrad − γ2

)
(α(γ)hk(γ)) ∈ L2

η(R,C2)

to a domain Ωk(δ),

Ω2(δ) =B(0, δ) \ [0, δ],

Ωk(δ) =B(0, δ), for k ≥ 3.

which is in fact given by a domain of analyticity of hk; see Lemma A.4.

Now, let ψ, φ0 ∈ C∞(R+) be smooth functions satisfying ψ(r) = 1 for all r ∈ [1, 2] and ψ(r) = 0
for all r ≥ 3 and all r ∈ [0, 1

2 ]. We choose the function ψ0 such that it satisfies the conditions
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ψ0(r) = 0 for all r ∈ [0, 1
2 ] and ψ0(r) = 1 for all r ≥ 1. We note that ψ0χ = χ, and thus, from

(4.14) we obtain that
ψ0hk(γ) = hk(γ) for all γ ∈ Ωk(δ). (4.17)

Next, we will show that(
L∞rad − γ2

)
(α(γ)hk(γ)) = χ[1,2]

(
L∞rad − γ2

)
(α(γ)ψhk(γ)) , (4.18)

where χ[1,2] is the characteristic function of the interval [1, 2]. Since from Lemma 4.9(ii) we
know that α(γ)[hk(γ)](r) satisfies (4.9) and χ(r) = 1 for all r ≥ 2 and χ(r) = 0 for all r ∈ [0, 1],
we obtain that(

L∞rad − γ2
)

(α(γ)hk(γ)) (r) = 0 for all r ∈ [0, 1] and all r ≥ 2. (4.19)

Also, since L∞rad is a differential operator and ψ(r) = 1 and ψ′(r) = ψ′′(r) = 0 for all r ∈ [1, 2]
one can verify that

χ[1,2]L∞rad(ψu) = χ[1,2]L∞radu for all u ∈ H2
loc(R+,C2).

This, together with (4.19), proves (4.18) which together with (4.17) implies the representation
for F0

F0(γ) = (Lrad − L∞rad) (ψ0α(γ)hk(γ)) + χ[1,2]

(
L∞rad − γ2

)
(α(γ)ψhk(γ)) . (4.20)

Since L − L∞ is a second order differential operator whose matrix-valued coefficients decay
exponentially at∞ and ψ0 is a bounded C∞ function and supp(ψ0) ⊆ [12 ,∞), we have that the
linear operator defined by w → (L−L∞)(ψ0w) is bounded from H2

−η,rad(R,C2) to L2
η,rad(R,C2).

Moreover, since ψ ∈ C∞(R+) has compact support, supp(ψ0) ⊆ [12 , 3], the operator of multipli-
cation by ψ is bounded from H2

−η,rad(Rk) to H2
η,rad(Rk). Recall that ν1 is analytic on B(0, δ)

by Remark 4.8.

It remains to investigate smoothness of hk. Lemma A.4 in the appendix states that hk is analytic
from Ωk(δ) to H2

−η,rad(Rk). Moreover, in the case k = 2, the limit lim
γ→0,γ>0

F0(γ) = Lrad(α(0)h0
k)

exists in L2
η,rad(Rk). Now, using the representation (4.20), we conclude that F0 is well-defined

and analytic on Ωk(δ), and continuous on [0, δ] in the case k = 2.

Step 4: Construction of the Evans function. From the definition of w0 in (4.15) it
follows that F (w0, 1, 0) = 0. Since F is bounded linear in w and β, and since F0 is analytic on
Ωk(δ), we conclude that F is analytic on H2

η,rad(Rk) × C × Ωk(δ). Differentiating F in w, we
obtain that

Fw(w0, 1, 0) = P0Lrad.

Since Lrad is Fredholm of index -1 with trivial kernel, and P0 projects onto its range, we infer
that the linearization in w, Fw(w0, 1, 0), is boundedly invertible. From the Implicit Function
Theorem it follows that we can solve locally the first equation in (4.16), and find a unique
smooth solution

w∗ : B(1, δ)× Ωk(δ) ⊂ C2 → H2
η,rad(Rk,C2), w∗(1, 0) = w0,
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so that locally
F (w, β, γ) = 0⇐⇒ w = w∗(β, γ).

From this local uniqueness we conclude that w∗(β, γ) = βw∗(1, γ) for all (β, γ) ∈ B(1, δ)×Ωk(δ),
so that we may restrict to β = 1 in the sequel. By continuity of the solution, w∗(1, γ) +
α(γ)h(γ) 6= 0 for small γ.

Substituting w∗ into the second equation of (4.16) completes the Lyapunov-Schmidt reduction
and gives us a bifurcation equation E(γ) = 0, where E : Ωk(δ)→ C is defined as

E(γ) =
〈(
Lrad − γ2

)(
w∗(1, γ) + α(γ)hk(γ)

)
, (1, 0)T

〉
L2
. (4.21)

Now, w∗ is an analytic function on Ωk(δ), continuous on [0, δ] for k = 2 by the implicit function
theorem. Also, the map F0 : γ →

(
L − γ2

)
(α(γ)hk(γ)) is an analytic functions on Ωk(δ) and

continuous on [0, δ] by Step 3. We can conclude that E is analytic and continuous on γ ∈ [0, δ]
in the case k = 2.

Step 5: Invertibility for E(γ) 6= 0. In this subsection we show that the eigenfunctions are
necessarily of the form described in the ansatz (4.13) which is equivalent to prove that Lrad−λ
is invertible for Reλ > 0 whenever E(γ) 6= 0, where λ = γ2. Consider the system(

Lrad − γ2
)(u

v

)
=

(
g1
g2

)
, (4.22)

for right-hand sides g1, g2 ∈ L2
rad(Rk,C2). Since γ2 is not in the essential spectrum for Reλ > 0

we have that Lrad − γ2 is Fredholm of index 0. It is therefore sufficient to solve this equation
for right-hand sides gj , j = 1, 2 in a dense subset of L2

rad(Rk,C2), for example L2
η,rad(Rk,C2).

Seeking solutions of (4.22) in the form of our ansatz (4.13), which for Reλ > 0 clearly provides
us with L2-functions, we obtain the system{

F (w, β, γ) = P0(g1, g2)T〈(
Lrad − γ2

)(
w + βα(γ)hk(γ)

)
, (1, 0)T

〉
L2

=
〈

1, g1
〉
L2
.

(4.23)

This is a linear system in w and β, and the joint linearization is Fredholm of index zero, since
the Fredholm index of Lrad is −1. Thus, we can solve this equation with bounded inverse
provided that there is no kernel, which is equivalent to E(γ) 6= 0.

Step 6: Estimating E(γ) for γ > 0. We will split the argument for the two cases that are
significantly different, that is , when k = 2 or k ≥ 3.

The case k = 2. Since w∗(1, γ) ∈ H2
η,rad(R2,C2) we have that

E(γ) =
〈
Lrad

(
α(γ)h2(γ)

)
, (1, 0)T

〉
L2

+
1

ln γ
O(γ2).

Recall the definition of the functions lj(r) from (3.3). Since lj(r)→ 0 exponentially, as r →∞,
j = 1, 2, one has that ∫ ∞

0

1
r
∂r[r(lj(r)v(r))]rdr = 0
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for any function v ∈ H2
−η,rad(R2) whose support does not include r = 0. This implies that

E(γ) =
∫ ∞

0

1
r
∂r

(
r((b∗(r)f∞u − a∗(r)f∞v )[h2(γ)]′(r)

)
rdr. (4.24)

We expand h2(γ), next. Therefore recall that the modified Bessel function can be written in
the form

K0(z) = (ln z)f0(z) + g0(z), for all z ∈ C \ R−, (4.25)

with two entire function f0 and g0.

Since ν1 is analytic, ν1(0) = 0 and ν ′1(0) > 0 the function ρ : B(0, δ) → C defined by ρ(γ) =
ln (ν1(γ)

γ ) is analytic, for some small δ > 0. Next we note that

ln (ν1(γ)r) = ln γ + ρ(γ) + ln r for all γ ∈ B(0, δ), r > 0. (4.26)

From equation (4.26) and since the functions f0 and g0 are entire functions, we can expand

[h2(γ)](r) =
χ(r)
ln γ

(
g0(0)− ln γ − ρ(γ) +O(γ2) +O(γ2) ln γ

)
,

and

[h2(γ)]′(r) =
χ′(r)
ln γ

(
g0(0)− ln γ − ρ(γ) +O(γ2) +O(γ2) ln γ

)
+
χ(r)
ln γ

(−r−1 +O(γ2) +O(γ2) ln γ).

Substituting these expansions for h2 into (4.24), we arrive at the expansion for E

E(γ) =
a∞f∞v − b∞f∞u

ln γ
+

1
ln γ
O(γ2) +O(γ2). (4.27)

The case k ≥ 3. By Lemma A.4, the limit lim
γ→0,γ>0

hk)(r) = ckχ(r)r2−k exists for any fixed

r, and convergence holds in the H2
−η,rad(Rk)-norm. Moreover, we have ck 6= 0. Using the

definition of the function E, we therefore obtain

E(0) = 〈Lrad(α(0)hk(0)), (1, 0)T
〉
L2

=
∫ ∞

0

1
rk−1

∂r

(
rk−1((b∗(r)f∞u − a∗(r)f∞v )ck∂r(χ(r)r2−k)

)
rk−1dr

+
∫ ∞

0

1
rk−1

∂r

(
rk−1(l1(r) + l2(r))χ(r)r2−k

)
rk−1dr

= (k − 2)ck(a∞f∞v − b∞f∞u ),

where we used lj(r)→ 0 as r →∞, exponentially, j = 1, 2, in the last equality.
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4.7 Proof of Theorem 1.1

Proposition 4.10 implies that for any τ ∈ [0, 1], there exists δτ > 0 and an analytic function
Eτ : Ωk(δτ ) → C that detects the eigenvalues of Lτ,rad according to (4.11). Since E is smooth
in τ , there is a constant c∗ independent of τ such that |Eτ (γ)| ≥ c∗

ln γ , uniformly in τ , so that
we can exclude eigenvalues of Lτ,rad in (0, δ∗). In addition, equation (1.6) is well-posed for all
τ , which implies sup Re σ(Lτ,rad) < ∞. Thus, the number of real unstable eigenvalues of Lrad

is finite,
N(τ) = #{λ(τ) ∈ σpoint(Lτ ) : λ(τ) > 0} <∞,

for all τ ∈ [0, 1]. This fact allows us to define a parity index as follows,

ip(τ) = (−1)N(τ). (4.28)

Since eigenvalues are uniformly bounded away from 0 and∞ on the positive real axis, they can
only leave the positive axis in complex pairs. Therefore, ip is constant, independent of τ . Also,
by Lemma 4.3 ip(1) = −1, so that N(τ) 6= 0. This proves the linear instability of spikes and
Theorem 1.1.

A Appendix

In this appendix we discuss the analyticity of hk and the possibility of extending the function
analytically to a neighborhood of 0. We start with two abstract lemmas.

Lemma A.1. Given η > 0, p : R+ → R a C∞ function, and f an entire function such that

(i) p(r) = 0 for all r ∈ [0, 1];

(ii) |p(r)| ≤ crm for all r > 0, for some constants c > 0 and m ∈ N;

(iii) |f(z)| ≤ ceω|z| for all z ∈ C, for some constants c > 0 and ω ∈ R+.

Then, there exists δ > 0 such that the function Fp : B(0, δ)→ L2
−η,rad(Rk), given by [Fp(γ)](r) =

p(r)f(ν1(γ)r), is well-defined and analytic on B(0, δ).

Proof. Since ν1 is analytic and ν1(0) = 0 we can choose δ > 0 such that ω|ν1(γ)| ≤ η/2.
Using the hypothesis (i)–(iii) we estimate

|[Fp(γ)](r)| ≤ c|p(r)|eω|ν1(γ)r| ≤ cχ[1,∞)(r)r
meη/2r for all γ ∈ B(0, δ), r > 0. (A.1)

It follows that Fp(γ) ∈ L2
−η,rad(Rk) for all γ ∈ B(0, δ) and so, Fp is well-defined. From

Lebesgue’s Dominated Convergence Theorem and the estimate (A.1) we infer that Fp is con-
tinuous. Next, we prove that Fp is weakly analytic, that is, the function defined by F vp (γ) :=
〈Fp(γ), v〉L2 is analytic for all v ∈ L2

η,rad(Rk), which will then imply that Fp is analytic. To
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check this, we integrate F vp on the boundary of a rectangle R ⊂ B(0, δ) using Fubini’s Theorem.
Since ν1 and f are analytic we have∮

∂R
F vp (γ)dγ =

∫ ∞
0

(∮
∂R

(p(r)f(ν1(γ)r)) dγ
)
v(r)rk−1dr = 0.

Lemma A.2. Given η > 0, p : R+ → R a C∞ function, and f an entire function such that

(i) p(r) = 0 for all r ∈ [0, 1];

(ii) max(|p(r)|, |p′(r)|, |p′′(r)|) ≤ crm for all r > 0, for some constants c > 0 and m ∈ N;

(iii) |f(z)| ≤ ceω|z| for all z ∈ C, for some constants c > 0 and ω ∈ R+.

Then, there exists δ > 0 such that the function Fp : B(0, δ) → H2
−η,rad(Rk), defined in

Lemma A.1, is well-defined and analytic on B(0, δ).

Proof. First we note that using standard complex analysis arguments one can show that
the functions f ′ and f ′′ are entire functions and they satisfy condition (iii) from Lemma A.1.
Also, we note that by our assumption the functions p, p′ and p′′ satisfy conditions (i)–(ii) from
Lemma A.1. We have

[Fp(γ)]′(r) = p′(r)f(ν1(γ)r) + ν1(γ)p(r)f ′(ν1(γ)r)

[Fp(γ)]′′(r) = p′′(r)f(ν1(γ)r) + 2ν1(γ)p′(r)f ′(ν1(γ)r) + ν1(γ)2p(r)f ′′(ν1(γ)r),

for all γ ∈ B(0, δ) and all r > 0. Now, using analyticity of ν1, we conclude from Lemma A.1
that the maps γ → [Fp(γ)](j) : B(0, δ)→ L2

−η,rad(Rk) are well-defined and analytic. This proves
the lemma.

Applying these two lemmas to our particular situation we obtain the following result.

Lemma A.3. For each η > 0 there exists δ > 0 such that

(i) There exists F2, G2 : B(0, δ)→ H2
−η,rad(Rk) two analytic functions such that

h2(γ) =
1

ln γ
F2(γ) +G2(γ) for all γ ∈ B(0, δ) \ [0, δ]; (A.2)

(ii) For k ≥ 3, the function hk can be extended as an analytic function from B(0, δ) into
H2
−η,rad(Rk).

Proof. (i) Recall the decomposition of K0, the definitions of f0 and g0 (4.25), and the
expansion of ln(ν1(γ)r), (4.26).

Using this representation and the definition of h2 in (4.14) we calculate

[h2(γ)](r) =
1

ln γ
χ(r)K0(ν1(γ)r) =

1
ln γ

χ(r) [(ln γ + ρ(γ) + ln r)f0(ν1(γ)r) + g0(ν1(γ)r)]
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=
1

ln γ
[ρ(γ)χ(r)f0(ν1(γ)r) + χ(r)g0(ν1(γ)r) + χ(r)(ln r)f0(ν1(γ)r)]

+ χ(r)f0(ν1(γ)r).

We note that the functions p(r) = χ(r) and q(r) = χ(r) ln r satisfy conditions (i)–(ii) from
Lemma A.2, the functions f0 and g0 have exponential growth, that is they satisfy condition
(iii) from Lemma A.2. Since, in addition, ρ is analytic, we obtain that there is a δ > 0 such
that the functions F2, G2 : B(0, δ)→ H2

−η,rad(Rk) defined by

[F2(γ)](r) = χ(r) [(ρ(γ) + ln r)f0(ν1(γ)r) + g0(ν1(γ)r)] , [G2(γ)](r) = χ(r)f0(ν1(γ)r),

are analytic, proving (i).

(ii) The proof of (ii) is similar to the proof of (i). Indeed, if k ≥ 3, then there are two entire
functions fk/2 and gk/2 such that Kk/2−1(z) = zk/2−1fk/2(z)+z1−k/2gk/2(z). From the definition
of hk in (4.14) we calculate

[hk(γ)](r) = γk−2χ(r)(ν1(γ)r)1−k/2Kk/2−1(ν1(γ)r)

= γk−2χ(r)
[
fk/2(ν1(γ)r) + (ν1(γ)r)2−kgk/2(ν1(γ)r)

]
= γk−2χ(r)fk/2(ν1(γ)r) +

(
γ

ν1(γ)

)k−2

χ(r)r2−kgk/2(ν1(γ)r)

= γk−2χ(r)fk/2(ν1(γ)r) + e−(k−2)ρ(γ)χ(r)r2−kgk/2(ν1(γ)r)

Again, we note p(r) = χ(r) and q(r) = χ(r)r2−k satisfy conditions (i)–(ii) from Lemma A.2,
the functions fk/2 and gk/2 satisfy condition (iii) from Lemma A.2. Since ρ is analytic, from
Lemma A.2 we conclude that hk can be extended as an analytic function from B(0, δ) into
H2
−η,rad(Rk).

We collect the main conclusions of this appendix in the following lemma:

Lemma A.4. Let Ω2(δ) = B(0, δ) \ [0, δ] and Ωk(δ) = B(0, δ) for k ≥ 3. The function
hk : Ωk(δ) → H2

−η,rad(Rk) is well-defined and analytic. For all k, the limit lim
γ→0,γ>0

hk = h0
k

exists in H2
−η,rad(Rk), and h0

k(r) = ckχ(r)r2−k, for some non-zero constant ck.
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