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Abstract

We study multi-pulse solutions in excitable media. Under the assumption that a single pulse
is asymptotically stable, we show that there is a well-defined ”shooting manifold”, consisting
of two pulses traveling towards each other. In the phase space, the two-dimensional manifold
is a graph over the manifold of linear superpositions of two pulses located at x1 and x2, with
x1 − x2 � 1. It is locally invariant under the dynamics of the reaction-diffusion system and
uniformly asymptotically attracting with asymptotic phase. The main difficulty in the proof is
the fact that the linearization at the leading order approximation is strongly non-autonomous
since pulses approach each other with speed of order one.

1 Introduction

Traveling pulses are a ubiquitous phenomenon in excitable media. The most prominent example
is the FitzHugh-Nagumo equation, derived as a simplified model of signal propagation in nerve
axons [5]. Similar models of excitable media have been used in a variety of physical systems,
for instance the CO-oxidation on Pt(110)-surfaces[3] or the dynamics of calcium waves in cell
tissue [8]. Existence and stability of a single traveling pulse are now well established; see [6]
and the references therein. There are also numerous results on existence and stability of multi-
pulses, where widely spaced copies of the single excitation pulse travel in the same direction; see
for example [9, 4, 12]. Typically, excitation pulses appear to annihilate in a head-on collision
when traveling in opposite directions. More systematic recent studies have however exhibited
a plethora of possible different scattering phenomena in the head-on collision; see for example
[10].

The purpose of this paper is to provide a rigorous foundation for the analysis of such nonlinear
scattering processes. The main result shows that the scattering problem around the head-on
collision of pulses is completely described by the ω-limit set of a single trajectory. We call
this trajectory the shooting manifold, as it consists of two copies of the traveling pulse for
t < −T∗ � −1, located at positions x±, so that x± → ±∞ as t → −∞.

To be specific, consider the FitzHugh-Nagumo equation,

ut = uxx + f(u)− v

vt = d2vxx + ε (u− γv)
(1)

1



where the dependent variables u and v are real valued, x, t ∈ R, f(u) = u(α − u)(u − 1) and
d, γ, ε, α are positive constants. Note that, compared to the original model, we included a
small diffusion coefficient d > 0 for the second variable, as this reduces the complexity of several
of our arguments. We believe that our results should be easily adaptable to the special case
d = 0. Letting U := (u, v)t, we will occasionally rewrite (1) as

Ut = DUxx + F (U)

with D, F defined implicitly. Here and throughout this document, when we say U ∈ X, where
X is some Banach space (like L2 or BU), we mean that each component of U is in X. The
existence and stability of pulses for this version of FitzHugh-Nagumo can be inferred from the
existence and stability for d = 0, provided d is sufficiently small; see Alexander, Gardner &
Jones (in [1]). Specifically, there exists a unique positive number c and function Q(ξ) such that
U(x, t) = Q(x+ ct) solves (1). The function Q is infinitely differentiable, unique modulo spatial

translations and there exists β0 > 0 such that eβ0|ξ| d
nQ

dξn
(ξ) is in L2 for all n. Note that (1)

is invariant under reflection in x, so that Q(−x + ct) solves the equation as well. We denote
Q±(x± ct) := (q±(x± ct), p±(x± ct))t := Q(±(x+ ct)). For brevity, we also write ξ± := x± ct.1

The fact that the solutions Q±(ξ±) are stable and exponentially localized indicates that
there ought to be solutions which are roughly the linear superposition of well-separated pulses.
For example,

U(x, t) ∼ Q+(ξ+) + Q−(ξ−)

would be a solution in which a pair of pulses head in from spatial infinity towards each other.
Numerical simulation bears out this intuition—the pulses do not appear to interact at all until
they “hit” each other.2

In this paper, we analytically confirm the existence of this sort of solution for times up to
the point where the pulses begin to strongly interact. Our first main result is:

Theorem 1. There exist δ < 0, T ? > 0 and b ∈ (0, β0) such that the following is true. There
exists a unique solution of (1) of the form

U?(x, t) := Q+(ξ+) + Q−(ξ−) + e−δtρ(x, t)

where ρ(x, t) ∈ L2((−∞,−T ?),H2) ∩ H1((−∞,−T ?), L2). Moreover ρ(x, t) := ρ+(ξ+, t) +

ρ−(ξ−, t) with eb
√

ξ2+1ρ±(ξ, t) ∈ L2((−∞,−T ?),H2) ∩H1((−∞,−T ?), L2).

We will refer to U? as the two-pulse. Notice that the error ρ goes to zero exponentially fast
as t → −∞. The number −T ? should be thought of as the time at which linear superposition
fails to provide an accurate view of the solution. Moreover, the error term is itself the sum of a
right and left moving piece which decay exponentially quickly (in space) away from their centers
of mass.

Equation (1) is invariant under translation in space and time, and thus we conclude that
(inside H1) there is an invariant two-dimensional manifold which consists of temporal and spatial
shifts of U?. As solutions on this manifold consist of two pulses “shooting” at each other, we
call this set the shooting manifold. It is

Mshoot :=
{
U?(· − x0,−T )

∣∣ x0 ∈ R, T ≥ T ?
}

.

One can think of this manifold as being parameterized by the time at which the pulses begin
to interact and the spatial coordinate of the point halfway between the two fronts when this

1We note that we will always view ξ± as functions of x and t, not as independent variables in their own right. We
use ξ as the independent variable which corresponds to ξ+ or ξ−.

2It is at this point when pulses typically annihilate in the FitzHugh-Nagumo equation.
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event takes place. Notice that Mshoot as defined is a manifold with a boundary, ∂Mshoot. The
boundary, of course, is where the pulses begin to interact strongly.

Our second main result is that the shooting manifold is stable in the sense that functions
in H1 which are sufficiently close to Mshoot (but far from ∂Mshoot), when evolved according
to (1), decay exponentially quickly to a trajectory on Mshoot until such time as that solution
reaches the boundary. Specifically we have:

Theorem 2. There exist positive constants a, µ1, µ2 and C such that the following is true.
Suppose that

dist H1(U0,Mshoot) ≤ µ1

and
dist H1(U0, ∂Mshoot) ≥ µ2,

where dist H1(U0, A) := inf{|U0 − U |H1

∣∣ U ∈ A}. Then there exist x0 ∈ R and T > T ? such
that, if U(x, t) is the solution of (1) with initial data U(x, 0) = U0(x) and

ϕ(x, t) := eat (U(x, t)− U?(x− x0, t− T )) ,

we have
‖ϕ‖L2((0,−T ?+T ),H2)∩H2((0,−T ?+T ),L2) ≤ Cdist H1(U0,Mshoot).

Remark 3. Our proofs for Theorems 1 and 2 do not strongly rely on the specific form of the
nonlinearity F , the matrix D or even the fact that we have a two-component system. We have
chosen to work with a specific example to make our main ideas and strategies more concrete.
All that really matters for our method is that the pulses are localized and stable. Moreover, the
techniques we use here should be adaptable to reaction diffusion equations with x ∈ Rn.

Remark 4. Taken together, Theorems 1 and 2 imply that the head-on collision of two pulses
is a well-defined scattering problem. By this we mean that investigations into the nature of the
strong interactions which take place during the collision will not be affected by specific choices
for the initial data which lead to this collision. In particular, the result of the scattering process
can be tested in a reliable way by direct numerical simulations, initiated by the sum of two
copies of the traveling pulse, spaced sufficiently far apart; our result guarantees exponential
convergence of this simulation as the initial spacing goes to infinity. When the collision results
in a stable pattern, such as the quiescent state found after annihilation, our result together with
an asymptotic stability result for the asymptotic state allows for semi-rigorous numerical studies,
since errors of numerical simulations need only be controlled on finite time-intervals.

A single pulse solution, Q±, when viewed in the moving reference frame ξ± appears sta-
tionary. This simple observation is crucial to proving the existence and stability of the pulse.
However, the two-pulse solution has non-trivial time dependence and this is the principal com-
plication which we must address in order to prove Theorems 1 and 2. In the following, we give
a rough outline of how we address these issues.

To prove existence of the two-pulse, we make the Ansatz

U?(x, t) := Q+(ξ+) + Q−(ξ−) + R(x, t) (2)

and plug this into (1). (Note that R(x, t) = e−δtρ(x, t).) We arrive at the following equation
for R = (r1, r2)t:

Rt = A(t)R + H1(t) + N1(R) (3)

where
A(t) := D∂2

x + F ′(Q+(ξ+) + Q−(ξ−)),

H1(t) := F (Q+(ξ+)−Q−(ξ−))− F (Q+(ξ+))− F (Q−(ξ−)) q2
+(ξ+)
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and

N1(R) := F (Q+(ξ+) + Q−(ξ−) + R)− F (Q+(ξ+) + Q−(ξ−))− F ′ (Q+(ξ+) + Q−(ξ−))R.

Proving Theorem 1 is equivalent to showing that (3) possess a unique solution which decays
exponentially quickly as t → −∞. Note that H1(t) is an inhomogeneous term and N1(R) is
nonlinear. We will show that H1 is small and that N1(R) is O(R2) later, and neither computation
is particularly complicated. The difficulty is that the linear operator A(t) is non-autonomous.

This operator also shows up when we examine the stability of U?. To study its stability we
let U(x, t) = U?(x, t) + W (x, t) and substitute this into (1). We find

Wt = A(t)W + G1(t)W + N2(W ) (4)

where
G1(t) := F ′(U?(x, t))− F ′(Q+(ξ+) + Q−(ξ−))

and
N2(W ) := F (U? + W )− F (U?)− F ′(U?)W.

Notice that if R decays exponentially in time, then G1(t) will be small. Stability follows from
showing that solutions of (4) with small initial data decay in time.

Since both (3) and (4) are abstractly of the form

Wt = A(t)W + H (5)

where H is some combination of nonlinearities, small linear terms and inhomogeneities, proving
the main theorems will be a consequence of solving this equation with good estimates for the
solution.

Though non-autonomous, A(t) is closely related to the autonomous operators

A± := D∂2
ξ ∓ c∂ξ + F ′(Q±(ξ))

which arise when linearizing (1) about the Q± in the moving reference frames ξ±. Much is
known about these operators, and we discuss these in Section 2.

Our strategy for solving equation (5) is as follows. Let χ+(x) be a C∞ function which
is equal to one on (2,∞) and zero on (−∞,−2) and satisfies 0 ≤ χ′(x) ≤ 1 for all x. Let
χ− := 1−χ+. (These are smooth cut off functions for the positive and negative half lines.) Let
H±(ξ±, t) := χ±(x)H(x, t). Suppose that W± are solutions of the equations

∂tW± := A±W + H±. (6)

If we set W̃ (x, t) := W+(ξ+, t) + W−(ξ−, t), then a direct computation yields

W̃t = A(t)W̃ + H − Res

where
Res := B+(ξ+, t)W−(ξ−, t) + B−(ξ−, t)W+(ξ+, t)

and
B±(t) := F ′(Q+(ξ+) + Q−(ξ−))− F ′(Q∓).

As we shall demonstrate, the error Res has small norm. We then can use a Neumann series to
construct an actual solution of the problem.

Remark 5. This strategy for solving (5) is an adaptation and extension of methods used by
Zelik & Mielke in [13]. In that paper the authors prove (amongst other things) the existence of
multi-pulse solutions in dissipative equations where the pulses do not move (or move only slowly)
with respect to one another. Our use of this method to prove stability appears to be novel.
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The main issues in using this strategy are (a) to properly formulate the function spaces over
which it is appropriate to work, (b) to solve equations of the form (6) so that the solutions have
sufficient decay and regularity that the formal calculation above makes sense rigorously and (c)
estimate the error terms and construct true solutions. The remainder of this paper is organized
as follows. In Section 2 we discuss the operators A± and solutions of (6). In Section 3 we prove
the existence of the two-pulse U?, and thus of Mshoot. Section 4 contains the proof of Theorem
2, i.e. the proof that Mshoot is stable.

Acknowledgments: This work was partially supported by the National Science Foundation
through grant NSF DMS-0203301 (A. S.).

2 Properties of the single-pulse linearization A±

We begin this section with the following theorem, which is a special case of Theorem 4.10.7 in
Amann [2]:

Theorem 6. Let X = L2 and X1 = H2 and L be an unbounded linear operator on X with
domain X1. Suppose that L generates an analytic semigroup, eLt, on X and moreover that the
spectrum of L, σ(L), lies in Σ1 :=

{
λ

∣∣ | arg(λ)| > π − φ0

}
for some φ0 ∈ (0, π/2) and does not

contain zero. Moreover suppose that there is a positive number M such that resolvent estimate
(1 + |λ|)‖(λ − L)−1‖X→X ≤ M is true for all λ /∈ Σ1. Let I := (T1, T2) be an interval of R,
X := L2(I, L2) and X1 := H1(I,X) ∩ L2(I,X1). Then

V (t) := eL(t−T1)V0 +
∫ t

T1

eL(t−τ)H(τ)dτ

satisfies ‖V ‖X1 ≤ C(|V0|H1 + ‖H‖X) and Vt = LV + H for t ∈ I a.e.. The constant C is
independent of T1 and T2. Finally, the conclusion holds true if V0 = 0 and T1 = −∞.

Theorem 6 implies that we can solve equations like (6). We expand on this here. First we
describe the spectral properties of A±. In [1], the authors prove the following proposition:

Proposition 7. The spectrum of A± (viewed as an operator on the Banach space of bounded
uniformly continuous functions, BU) consists of a single simple eigenvalue at zero (due to the
translation invariance of the problem) and the rest which lies in the set{

λ
∣∣ <λ < −α0, | arg(λ)| > π − ϕ0

}
where α0 > 0 and ϕ0 ∈ (0, π/2).3

In this paper, we will work, not in BU , but rather with L2 based spaces. The spectrum of
A± when viewed as an (unbounded) operator on L2 functions is identical the spectrum over BU .
This follows from the fact that the eigenfunctions of A± satisfy ordinary differential equations,
and as such decay exponentially at spatial infinity.

We are also interested in the behavior of A± on data which is spatially localized. Let
θb(ξ) := exp(b

√
ξ2 + 1), a smooth “version” of eb|ξ|. Then set Hs

b :=
{
V

∣∣ θb(ξ)V (ξ) ∈ Hs
}
.

In addition, we use the notations Xb := L2
b := H0

b and X1
b := H2

b . The domains of A± in Xb

are X1
b . We denote norms with respect to these spaces using absolute value bars, e.g. | · |Xb

.
The spectrum of A± viewed as an operator on L2

b is equivalent to that of the operator θbA±θ−b

viewed as an operator on L2. For b positive and sufficiently small, θbA±θ−b is relatively bounded
with respect to A±. As such its spectrum is a small perturbation of that of A±. We summarize
and expand on these facts with the following:

3We take the argument, arg, of a complex number to be in (−π, π].
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Proposition 8. There exists b0 ∈ (0, β0] and constants a0 > 0, φ0 ∈ (0, π/2) such that the
following is true for all b ∈ [0, b0]. The spectrum of A± as an unbounded operator on L2

b consists
of a simple eigenvalue at zero and the rest which lies in the set

Σ :=
{
λ

∣∣ <λ < −a0, | arg(λ)| > π − φ0

}
.

In addition, for each δ < 0 there is a number M(δ) > 0 such that we have the resolvent estimate
(1 + |λ|)‖(λ− δ −A±)−1‖L2

b→L2
b
≤ M(δ) for λ ∈ Σ1 where

Σ1 :=
{
λ

∣∣ | arg(λ)| > π − φ0

}
.

Finally, A± generate analytic semigroups eA±t on Xb.

Remark 9. The existence of the semigroups and the resolvent estimate in the above proposition
is implied by the fact that A± are strongly elliptic.

For the interval I1 := (−∞,−T ?), we define

Xδ,b,I1 :=
{
V (x, t)

∣∣ eδtV (x, t) ∈ L2(I1, Xb)
}

and
X1

δ,b,I1
:=

{
V (x, t)

∣∣ eδtV (x, t) ∈ L2(I1, X
1
b ) ∩H1(I1, Xb)

}
.

We denote norms with respect to these spaces using double bars, e.g. ‖ · ‖Xa,b,I2
.

Given the definition of R above, we expect that this function exists for all negative times
and decays exponentially in that direction. Thus, for existence we will be working with the
spaces Xδ,b,I1 and X1

δ,b,I1
where δ is a small negative number. We have the following lemma,

which is implied by Proposition 8 and Theorem 6. It concerns solutions of Wt = A±W + H,
with H ∈ Xδ,b,I1 .

Lemma 10. Fix δ < 0, b ∈ [0, b0] and I1 = (−∞,−T ?). Let H ∈ Xδ,b,I1 and

Ψ±H :=
∫ t

−∞
eA±(t−τ)H(ξ, τ)dτ.

Then
‖Ψ±H‖X1

δ,b,I1
≤ C‖H‖Xδ,b,I1

and
(Ψ±H)t = A±Ψ±H + H

for t ∈ I1 a.e.. The constant C depends on δ, b, but not on T ?.

Remark 11. Note that it is crucial here that δ be negative. Since H ∈ Xδ,b,I1 , we could
equivalently study the problem W̃t = (A± + δ)W̃ + H̃ with H̃ ∈ X0,b,I1 . The spectrum of A± + δ
is simply that of A± shifted by an amount δ, which means it is in the left half plane. Without
this consideration we could not allow to I1 to be semi-infinite. Moreover we point out that Ψ±H
is maximally regular, a fact which we exploit later on.

When we examine the stability of U?, we wish to show that solutions decay exponentially
as time evolves. As it happens we will have to work on the finite time interval I2 := (−T,−T ?)
and we define

Xa,b,I2 :=
{

V (x, t)
∣∣ ea(T+t)V (x, t) ∈ L2(I2, Xb)

}
and

X1
a,b,I2

:=
{

V (x, t)
∣∣ ea(T+t)V (x, t) ∈ L2(I2, X

1
b ) ∩H1(I2, Xb)

}
.
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We will study Wt = A±W + H, for H ∈ Xa,b,I2 with a > 0.
As in the previous remark, working with Xa,b,I2 and a > 0 is equivalent to working with

A± + a on X0,b,I2 . This has the effect of pushing the zero eigenvalue into the right half plane,
which implies we cannot solve Wt = A±W +H as an initial value problem with solutions whose
norm is independent of I2. Instead we will solve a boundary problem related to the center and
stable eigenspaces of A±, which we now describe.

The center eigenspace of A± is Xc
± := span{Q′

±}. Let Πc
± be the spectral projection onto

Xc
±. This projection is given by

Πc
±· = 〈e±, ·〉Q′

±,

where 〈·, ·〉 is the standard L2 inner product and e± is the eigenfunction associated with the
simple zero eigenvalue of A†± (the adjoint of A± with respect to 〈·, ·〉). We remark that e±
enjoys the same properties as Q± does. Let Xs

± = ker Πs
±, the stable eigenspace of A±, and

Πs
± := 1−Πc

±.
The boundary value problem and its solution are described by:

Lemma 12. Fix a ∈ (0, a0), b ∈ [0, b0]. Let H ∈ Xa,b,I2 , W s ∈ Xs
± ∩H1

b and

Γ±(W s,H) := eA±(T+t)Πs
±W s +

∫ t

−T

eA±(t−τ)Πs
±H(τ)dτ −

∫ −T ?

t

eA±(t−τ)Πc
±H(τ)dτ.

Then
‖Γ±(W s,H)‖X1a,b,I2 ≤ C

(
|W s|H1

b
+ ‖H‖Xa,b,I2

)
,

(Γ±(W s,H))t = A±Γ±(W s,H) + H

for t ∈ I2 a.e. and

Πs
±Γ±(W s,H)

∣∣
t=−T = W s, Πc

±Γ±(W s,H)
∣∣

t=−T ? = 0.

The constant C depends on a, b, but not on I2.

Proof. The definition of Γ± consists of two pieces, each of which is dealt with in a different way.
Let

Γ1H := eA±(T+t)W s +
∫ t

−T

eA±(t−τ)Πs
±H(τ)dτ.

Let As
± = A± restricted to Xs

±. The spectrum of this operator lies in Σ and generates the
analytic semigroup eA±(T+t)Πs

± (and restricted to Xs
±). As Σ lies in the left half plane and is

separated from the imaginary axis by a distance a0, Theorem 6 implies (since a ∈ (0, a0))

‖Γ1H‖X1a,b,I2 ≤ C
(
‖W s‖H1

b
+ ‖H‖Xa,b,I2

)
,

∂tΓ1H = AsΓ1H + Πs
±H

for t ∈ I2 a.e. and Πs
±Γ1H|t=−T = W s. Moreover Πc

±Γ1H = 0.
Consider the term

Γ2H := −
∫ −T ?

t

S±(t− τ)Πc
±H(ξ, τ)dτ.

Note that eA±tΠc
± = Πc

± and that Πc
± is infinitely smoothing (since Q′

± lies in Hs
b for any s ∈ R).

Thus, the spatial regularity of Γ2H is assured. Lebesgue’s differentiation lemma guarantees that
the time derivative of Γ2H exists and is equal to ΠcH(ξ, t) a.e.. Also Πc

±Γ2H|t=−T ? = 0 and
Πs
±Γ2H = 0. The only thing left to verify is that

‖Γ2H‖X1
a,b,I2

≤ C‖H‖Xa,b,I2

with the constant C independent of I2. The fact that Γ2 is an integral which goes backwards
in time and that a > 0 combine to give us this result, which in turn implies Lemma 12.
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3 Existence

In this section we will solve equation (3) and thus prove the existence of the two-pulse solution.
To do so we would like to solve Wt = A(t)W + H. What is the appropriate function space for
H? The function H1 in (3) is given by

H1(t) :=
(

(2 + 2α)q+(ξ+)q−(ξ−)− 3q2
+(ξ+)q−(ξ−)− 3q2

−(ξ−)q+(ξ+)
0

)
.

Notice that this function consists of sums and products of functions which are spatially localized
in the moving coordinates ξ± := x± ct.

Let
mb(x, t) := χ+(x)θb(ξ+) + χ−(x)θb(ξ−).

(This is a smooth “version” of min{θb(ξ+), θb(ξ−)}.) We introduce the following function spaces,
for the interval I1 := (−∞,−T ?),

Zδ,b,I1 :=
{
V (x, t)

∣∣ eδtmb(x, t)V (x, t) ∈ L2(I1, L
2)

}
and

Z1
δ,b,I1

:=
{
V (x, t)

∣∣ eδtmb(x, t)V (x, t) ∈ L2(I1,H
2) ∩H1(I1, L

2)
}

.

Roughly, these spaces consist of functions which are sums of moving and localized functions.
Note that here and in the next section, we are thinking of T ? as being a fixed, large, but as of
yet unspecified positive number.

The following lemmata relate the X spaces of Section 2 to the Z spaces. The first says that
a function in an X space, when put in a moving either reference frame ξ+ or ξ−, belongs to an
appropriate Z space.

Lemma 13. Suppose that V ∈ Xδ,b,I1 (resp. X1
δ,b,I1

) with δ ≤ 0, b ≥ 0. Let Ṽ (x, t) := V (ξ±, t).
Then

‖Ṽ ‖Zδ,b,I1
≤ C‖V ‖Xδ,b,I1

.

(resp. ‖Ṽ ‖Z1
δ,b,I1

≤ ‖V ‖X1
δ,b,I1

.) The constant C does not depend on T ?.

Proof. This result immediately follows from the fact that, for t ≤ 0 and x ∈ R,

2∑
j=0

|d
jmb

dxj
(x, t)| ≤ C

2∑
j=0

|d
jθb

dξj
±

(ξ±)|.

The next lemma tells us that a function in a Z space, when cut off to either the positive or
negative half lines and then viewed in a moving frame, belongs to an X space.

Lemma 14. Suppose that V ∈ Zδ,b,I1 (resp. Z1
δ,b,I1

) with δ ≤ 0, b ≥ 0. Let Ṽ (ξ±, t) :=
χ±(x)V (x, t). Then

‖Ṽ ‖Xδ,b,I1
≤ C‖V ‖Zδ,b,I1

.

(resp. ‖Ṽ ‖X1
δ,b,I1

≤ ‖V ‖Z1
δ,b,I1

.) The constant C does not depend on T ?.

Proof. The proof follows from the fact that, for t ≤ 0 and x ∈ R,

2∑
j=0

| dj

dxj
(χ±(x)θb(ξ±))| ≤ C

2∑
j=0

|d
jmb

dxj
(x, t)|.

8



Finally, if we have a spatially localized function which moves left and another which moves
right, their product is small.

Lemma 15. Suppose that V± ∈ X1
δ,b,I1

with δ ≤ 0, b ≥ 0. Let Ṽ±(x, t) := V (ξ±, t). Then

‖Ṽ+Ṽ−‖Z1
δ,b,I1

≤ Ce−bcT ?

‖V+‖X1
δ,b,I1

‖V−‖X1
δ,b,I1

.

The constant C does not depend on T ?.

Proof. First we remark that the space Z1
δ,b,I1

is an algebra if δ ≤ 0 and b ≥ 0. Second, for all
t ∈ I1 and x ∈ R,

|∂tχ±(x)θ−b(ξ∓)|+
j=2∑
j=0

|∂j
xχ±(x)θ−b(ξ∓)| ≤ Ce−bcT ?

This estimate is less complicated than it appears. If we replace χ+(x) with the heaviside function
Heav+(x), then it is clear that Heav+(x)θ−b(x − ct) achieves its maximum at x = 0, provided
t < 0, of course. This maximum is roughly Ce−bct. The derivatives are bounded in a similar
fashion. Given this estimate, this lemma follows immediately from writing down the definition
of the norms.

Now we can prove:

Proposition 16. If T ? is sufficiently large, the following is true. Fix δ < 0 and b ∈ [0, b0]. Then
there exists a map Ψ : Zδ,b,I1 7−→ Z1

δ,b,I1
with the following properties. First, ‖Ψ‖Zδ,b,I1→Z1

δ,b,I1
≤

C with the constant C independent of T ?. Second,

(ΨH)t = A(t)(ΨH) + H

for t ∈ I1 a.e..

Proof. (In this proof, for brevity, we set Z = Zδ,b,I1 , Z1 = Z1
δ,b,I1

X = Xδ,b,I1 and X1 = X1
δ,b,I1

.)
For a function J ∈ Z, define J±(ξ±, t) := χ±(x)J(x, t). Lemma 14 implies J± lie in X. Let
W± = Ψ±J±, Ψ± as in Lemma 10. Let

Ψ̃J := W+(ξ+, t) + W−(ξ−, t).

Proposition 10 and Lemma 13 imply Ψ̃J ∈ Z1 and so we can insert it directly into (5). Doing
so yields

(Ψ̃J)t = A(t)(Ψ̃J) + J − EJ

where
EJ := B+(ξ+, t)W−(ξ−, t) + B−(ξ−, t)W+(ξ+, t).

The maps B± defined in Section 1 are specifically

B±(ξ±, t) = q±(ξ±)
(
−3q±(ξ±) + 2(α + 1)− 6q∓(ξ∓) 0

0 0

)
.

The matrix in the above is bounded, and the prefactor of q±(ξ±) allows us to estimate EJ via
Lemma 15:

‖EJ‖Z1 ≤ Ce−bcT ?

‖J‖X.

Choose T ? large enough so that Ce−bcT ?

< 1/2 and consider the following map defined by a
Neumann series:

ΨH := Ψ̃ ◦
∞∑

j=0

EjH.
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The sum converges and a direct computation shows ΨH solves (5). The bounds on the norm of
Ψ follow immediately from the norms on Ψ± and E.

The solution of (5) given by ΨH is the unique solution. Uniqueness is shown if we can prove
that the zero solution is the only solution of (5) for H = 0. Suppose that W0 ∈ Z1 is a function
such that W0,t := A(t)W0. Consider the equation

Vt = −A†(t)V + W0, V (t = −T ?) = 0.

Here A†(t) is the adjoint of A(t) computed with respect to the L2 (spatial) inner product (point-
wise in time). An argument completely parallel to the one used to prove the existence of Ψ can
be used to solve this equation. Call this solution V0. Let 〈·, ·〉xt be the L2 spacetime inner
product. Then

〈W0,W0〉xt = 〈W0, V0,t + A†(t)V0〉xt

= 〈−W0,t + A(t)W0, V0〉xt

= 0
(7)

(Note that the initial condition on V0 is necessary in the integration by parts in the above
calculation.) This concludes the proof of Proposition 16.

Now we are able to prove the existence and uniqueness of the solution U?. The following
theorem is equivalent to Theorem 2:

Theorem 17. There exists δ ∈ ((b0 − 2β0)c, 0) such that following is true if T ? is sufficiently
large. There exists a unique R ∈ Z1

δ,b,I1
(for each b ∈ [0, b0]) which satisfies (3) for all t ∈ I1

a.e..

Proof. (In this proof, for brevity, we set Z = Zδ,b,I1 , Z1 = Z1
δ,b,I1

X = Xδ,b,I1 and X1 = X1
δ,b,I1

.)
Define the map

Φ(R) := Ψ(H1 + N1(R)),

with Ψ as in Proposition 16. Since Z1 is an algebra and F is a polynomial in each component,
we have:

Lemma 18. Fix δ < 0 and b ≥ 0. Then there exists C > 0 independent of T ? such that

‖N1(R)‖Z1
δ,b,I1

≤ C
(
‖R‖2Z1

δ,b,I1
+ ‖R‖3Z1

δ,b,I1

)
and

‖N1(R1)−N1(R2)‖Z1
δ,b,I1

≤ C
(
‖R1 + R2‖Z1

δ,b,I1
+ ‖R1 + R2‖2Z1

δ,b,I1

)
‖R1 −R2‖Z1

δ,b,I1
.

With this, we can view Φ as a map from Z1 to itself. A fixed point of Φ corresponds to a
solution of (3). Note that

‖Φ(R)‖Z1 ≤ C
(
‖H1‖Z + ‖R‖2Z1 + ‖R‖3Z1

)
and

‖Φ(R1 −R2)‖Z1 ≤ C
(
‖R1 + R1‖Z1 + ‖R1 + R1‖2Z1

)
‖R1 −R2‖Z1 .

Provided ‖H1‖Z is sufficiently small, the above estimates imply that Φ is a contraction on a
ball around the origin in Z1, which in turn implies it has a fixed point. Thus all that needs to
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be checked is that H1 is small, which is implied by calculations similar to those which prove
Lemma 15. Here is the computation:

eδtmb(x, t)q−(ξ−)q+(ξ+) =
eδt(θb(ξ+)χ+(x) + θb(ξ−)χ−(x))

θβ0(ξ−)θβ0(ξ+)
θβ0(ξ−)q(ξ−)θβ0(ξ+)q(ξ+).

A routine calculation shows that for t ≤ −T ?

eδtχ+(x)
θβ0−b(ξ+)θβ0(ξ−)

≤ Ce((2β0−b)c+δ)T ?

.

So, provided 0 > δ > −(2β0 − b)c and by taking T ? sufficiently large, we can make H1 as small
as we like. This completes the existence proof.

4 Stability

In this section, we prove Theorem 2, which states that the shooting manifold Mshoot is stable.
In what follows, we let I2 := (−T,−T ?),

Za,b,I2 :=
{

V (x, t)
∣∣ ea(T+t)mb(x, t)V (x, t) ∈ L2(I2, L

2)
}

and
Z1

a,b,I2
:=

{
V (x, t)

∣∣ ea(T+t)mb(x, t)V (x, t) ∈ L2(I2,H
2) ∩H1(I2, L

2)
}

.

These spaces are the “two-sided” versions of Xa,b,I2 and X1
a,b,I2

.
Recall that if we set U(x, t) = U?(x, t) + W (x, t), then W solves (4). If we were studying

the stability of a single pulse, we would like to have detailed information about the center and
stable eigenspaces of A±. However, since A(t) is non-autonomous these eigenspaces are not
really well-defined objects. Nonetheless we can define subspaces of H1 which play the roles that
Xc
± and Xs

± do in proving the stability of Q±. Let

Xc
T := span{Q′

+(x− cT ), Q′
−(x + cT )},

which is roughly the center direction of the linearization about the two pulse at time −T . Also
set Xs

±,T :=
{
f(x± cT )

∣∣ f ∈ Xs
±

}
—the “shifted” stable subspaces. The approximate stable

direction is Xs
T := Xs

+,T ∩ Xs
−,T , which, by counting dimensions, we expect is a co-dimension

two subspace of L2. The following lemma justifies this claim:

Lemma 19. For each T ≥ T ?, there exists a projection, Πc
T , of L2 onto Xc

T along Xs
T .

Proof. We construct the projection explicitly. Set c±∓ := 〈e±(· ∓ cT ), Q′
∓(· ± cT )〉 and M :=[

1 c−+
c+
− 1

]
. The adjoint eigenfunctions decay exponentially at spatial infinity, so we have

|〈e±(· ∓ cT ), Q′
∓(· ± cT )〉| ≤ Ce−2β0cT . Thus M is certainly invertible. Letting (a+, b+)t :=

M−1(1, 0)t, (a−, b−)t := M−1(0, 1)t, v±(x) := a±e+(x − cT ) + b±e−(x + cT ) guarantees
〈v±(·), Q′

±(· ∓ cT )〉 = 1 and 〈v±(·), Q′
∓(· ± cT )〉 = 0. Clearly

Πc
T := 〈v+, ·〉Q′

+(x− cT ) + 〈v−, ·〉Q′
−(x + cT )

has its range in Xc
T . The conditions on v± guarantee that Πc

T restricted to Xc
T is the identity

and (Πc
T )2 = Πc

T . In a similar vein, the kernel of Πc
T is Xs

T since being in this kernel implies
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being orthogonal to both e+(x − cT ) and e−(x + cT ) (and vice versa). It is precisely those
conditions which characterize elements of Xs

±,T . Thus

Πs
T := 1−Πc

T

is a projection onto Xs
T . This completes the proof.

We can now state the following proposition which is crucial to proving Theorem 2.

Proposition 20. If T ? is sufficiently large, the following is true. Fix a ∈ (0, a0). Then there
exists a map Γ : Xs

T × Za,0,I2 7−→ Z1
a,0,I2

with the following properties.
First, ‖Γ‖Xs

T×Zδ,b,I1→Z1
δ,0,I1

≤ C with the constant C independent of T . Second, if W :=
Γ(W s,H), then for t ∈ I2 a.e.

Wt = A(t)W + H, and

Πs
T W = W s, Πc

T ?W = 0.
(8)

Here, and in the following, when we write Πs
T V or Πc

T V of a time dependent function V (t), we
mean Πs

T V (t = −T ) or Πc
T V (t = −T ) unless otherwise explicitly stated. Also, Xs

T is considered
as a subspace of H1 with corresponding topology.

To prove this proposition we utilize the following lemmata, which are completely parallel to
those in Section 3. We omit their proofs.

Lemma 21. Suppose that V ∈ Xa,b,I2 (resp. X1
δ,b,I2

) with a ≥ 0, b ≥ 0. Let Ṽ (x, t) := V (ξ±, t).
Then

‖Ṽ ‖Za,b,I2
≤ C‖V ‖Xa,b,I2

.

(resp. ‖Ṽ ‖Z1
a,b,I2

≤ ‖V ‖X1
a,b,I2

.) The constant C does not depend on T or T ?.

Lemma 22. Suppose that V ∈ Za,b,I2 (resp. Z1
a,b,I2

) with a ≥ 0, b ≥ 0. Let Ṽ (ξ±, t) :=
χ±(x)V (x, t). Then

‖Ṽ ‖Xa,b,I2
≤ C‖V ‖Za,b,I2

.

(resp. ‖Ṽ ‖X1
a,b,I2

≤ ‖V ‖Z1
a,b,I2

.) The constant C does not depend on T or T ?.

Lemma 23. Suppose that V± ∈ X1
a,b,I2

with a ≥ 0, b ≥ 0. Let Ṽ±(x, t) := V (ξ±, t). Then

‖Ṽ+Ṽ−‖Z1
a,b,I2

≤ Ce−bcT ?

‖V+‖X1
a,b,I2

‖V−‖X1
a,b,I2

.

The constant C does not depend on T or T ?.

Proof. (of Proposition 20) Suppose H ∈ Za,0,I2 . (Note that there is no spatial decay in H).
Our approach here is similar to that used to prove Proposition 16. We proceed as follows. Let
H±(ξ±, t) = χ±H(x, t). We have H± ∈ Xa,0,I2 by Lemma 22. Let

W bc
+ := Γ+(W s,H+), W bc

− := Γ−(0,H−),

where Γ± are as in Proposition 12.4

Setting Γbc(W s,H) := W bc
+ (ξ+, t) + W bc

− (ξ−, t), we find that

(Γbc(W s,H))t = A(t)Γbc(W s,H) + H − Ebc(W s,H)

4Note that we have placed the entirety of the stable direction’s initial data into the solution W bc
+ . This is an

arbitrary decision, which does not affect uniqueness.
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with
Ebc(W s,H) := B+(ξ+, t)R−(ξ−, t) + B−(ξ−, t)R+(ξ+, t).

Moreover, Πs
T Γbc(W s,H) = W s and Πc

T ?Γbc(W s,H) = 0.
The function Ebc(W s,H) is not small, since W bc

± are not in spatially decaying spaces.
However, the maps B±(t) contain only infinitely differentiable functions which decay at the
rate e−β0|ξ| as |ξ| → ∞. Ergo, if V ∈ H1 we have B±(t)V ∈ H1

β0
and this in turn implies

Ebc(W s,H) ∈ Za,β0,I2 ! Thus if we can solve

W d
t = A(t)W d + Ebc(W s,H)

Πs
T W d = 0, Πc

T ?W d = 0
(9)

then W d + Γbc(W s,H) would solve (8).
Now suppose J ∈ Za,b,I2 . Let J±(ξ±, t) := χ±(x)J(x, t). By Lemma 22, J± ∈ Xa,b,I2 . Let

W± := Γ±(0, J±)

and Γ̃J := W+(ξ+, t) + W−(ξ−, t). Note that Γ̃J ∈ Z1
a,b,I2

. Additionally,

(Γ̃J)t := A(t)(Γ̃J) + J − EdJ

with
EdJ := B+(ξ+, t)W−(ξ−, t) + B−(ξ−, t)W+(ξ+, t).

Γ̃J also meets meets the boundary conditions in (9). Lemma 23 implies that

‖EdJ‖Za,b,I2
≤ Ce−bcT ?

‖J‖Za,b,I2
.

If T ? is large enough so that Ce−bcT ?

< 1/2, then

ΓdJ := Γ̃ ◦
∞∑

n=0

En
d J

converges and satisfies
(ΓdJ)t := A(t)(ΓdJ) + J,

and Πs
T ΓdJ = 0, Πc

T ?ΓdJ = 0. Therefore Γ(W s,H) := Γbc(W s,H) + ΓdEbc(W s,H) solves (8).
Finally, we note that the solution computed above is in fact unique. This argument is nearly

identical to that used to prove the uniqueness of R in the previous section, and so we omit it.

We now prove a nonlinear version of Proposition 20.

Proposition 24. For T ? sufficiently large the following is true. Fix a ∈ (0, a0). There is a
constant C independent of T such that the following is true. There is a map Γ?

T (W s) defined
for W s ∈ Xs

T ∩H1 with |W s|H1 ≤ C and taking values in in Z1
a,0,I2

such that Γ?
T (W s) satisfies

(4) for t ∈ I2 a.e.,
‖Γ?

T (W s)‖Z1
a,0,I2

≤ C‖W s‖H1

and
Πs

T Γ?
T (W s) = W s, Πc

T ?Γ?(W s) = 0.
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Proof. Let
Ω(W s,W ) := Γ(W s, G1(t)W + N2(W )).

If Ω(W s,W ?) = W ?, then W ? is a solution of (4) and meets the boundary conditions in (9).
Given that the solution R of (3) from Theorem 17 lies in Z1

δ,b,I1
, (that is to say, it decays as

t goes to −∞ like eδt) we have the following estimate on G1(t):

‖G1V ‖Z1
a,b,I2

≤ CeδT ?

‖V ‖Z1
a,b,I2

.

Moreover, we have the following lemma which is analogous in all respects to Lemma 18:

Lemma 25. Fix a ∈ (0, a0) and b ≥ 0. Then there exists C > 0 independent of T ? such that

‖N2(W )‖Z1
a,b,I2

≤ C
(
‖W‖2Z1

a,b,I2
+ ‖W‖3Z1

a,b,I2

)
and

‖N2(W1)−N1(W2)‖Z1
a,b,I2

≤ C
(
‖W1 + W2‖Z1

a,b,I2
+ ‖W1 + W2‖2Z1

a,b,I2

)
‖W1 −W2‖Z1

a,b,I2
.

These estimates imply

‖Ω(W s,W )‖Z1
a,0,I2

≤ C
(
|W s|H1 + eδT ?

‖W‖Z1
a,0,I2

+ ‖W‖2Z1
a,0,I2

+ ‖W‖3Z1
a,0,I2

)
and

‖Ω(W s,W1 −W2)‖Z1
a,0,I2

≤ C
(
‖W1 + W1‖Z1

a,0,I2
+ ‖W1 + W1‖2Z1

a,0,I2

)
‖W1 −W2‖Z1

a,0,I2
.

For T ? sufficiently large and |W s|H1 sufficiently small, Ω(W s,W ) is a contraction (in the W
argument). Letting Γ?(W s) be the map which sends W s to this fixed point finishes the propo-
sition.

Now we can prove the following theorem, which is equivalent to Theorem 2:

Theorem 26. The following is true for T ? sufficiently large. Fix a ∈ (0, a0). There exist
T ?? > T ? and positive constants µ and C such that the following is true for all T0 > T ??.
Suppose that U0(x) is such that

|U0 − U?(−T0)|H1 ≤ µ.

Then, there exist ∆T , ∆x ∈ R which have the following properties. First, ∆T and ∆X depend
smoothly on U0 ∈ H1, and |∆T |+ |∆x| ≤ C|U0−U?(−T0)|H1 . Second, if U(x, t) is the solution
of (1) with initial data U(x,−T ) = U0(x), where T = T0 + ∆T , then

‖U?(· −∆x, ·)− U(·, ·)‖Z1
a,0,I2

≤ C|U0 − U?(−T0)|H1 .

(Here I2 := (−T,−T ?), as per normal.)

Proof. First let W0(x) := U0(x)− U?(x,−T0). We define

η(W s;T ) := Πs
T Γ?(W s).

Notice that if
W0(x) = W s(x) + η(W s;T0)
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then Proposition 24 implies that the solution of (1) with initial data U? +W0 does indeed decay
as in Theorem 26. In essence, η is a stable fibration around U?. We remark that η is smooth in
both of its arguments. This is a consequence of the fact that the maps Γ±(W s,H) are smooth
in W s and T . It is also true that these derivatives are uniformly bounded in T .

If we can find ∆x, ∆T and W s such that

U?(x,−T0) + W0(x) = U?(x−∆x,−T0 −∆T ) + W s(x−∆x) + η(W s;T0 + ∆T ).

then we would be done. Let T := T0 + ∆T , x̃ := x−∆x and W̃0(x̃) := W0(x). Define

θ(W s,∆x,∆T ; W̃0) := U?(x̃ + ∆x,−T + ∆T )− U?(x̃,−T ) + W s(x̃) + η(W s;T )− W̃0(x̃).

We have θ(0, 0, 0; 0) = 0. We view W̃0 as a parameter in this function, and we will use the
implicit function theorem to show there exist functions W s(W̃0), ∆x(W̃0) and ∆T (W̃0) defined
for W̃0 in a neighborhood of the origin (in H1) such that the equation

θ
(
W s(W̃0),∆x(W̃0),∆T (W̃0); W̃0

)
= 0.

To do so, we need only show that the derivative of θ with respect to (W s,∆x,∆T ) is
invertible. To do so, first let θs := Πs

T θ, θc := Πc
T θ and

Θ :=
(

θs

θc

)
.

Then, the derivative of θ with respect to (W s,∆x,∆T ) is the derivative of Θ with respect to
the same variables. This is

L :=
(

∂W sθs ∂∆xθs ∂∆T θs

∂W sθc ∂∆xθc ∂∆T θc

)
.

Note that since Xc
T is two-dimensional, this matrix is “square.” (We remark that all derivatives

are evaluated at (W s,∆x,∆T ) = (0, 0, 0).)
We have

∂∆xθ =∂xU?(x̃, T )
=Q′

+(x̃− cT ) + Q′
−(x̃ + cT ) + ∂xR(x̃,−T )

=Q′
+(x̃− cT ) + Q′

−(x̃ + cT ) + O(eδT )

and

∂∆T θ =∂tU
?(x̃, T )

=cQ′
+(x̃− cT )− cQ′

−(x̃ + cT ) + ∂tR(x̃,−T )

=cQ′
+(x̃− cT )− cQ′

−(x̃ + cT ) + O(eδT ).

Thus, if we make the identification of
(

k+

k−

)
∈ R2 with k+Q′

+(x̃− cT )+k−Q′
−(x̃+ cT ) ∈ Xc

T ,

we have

(∂∆xθc ∂∆T θc) =
(

1 c
1 −c

)
+ O(eδT ) (10)

and
(∂∆xθs ∂∆T θs) = O(eδT ). (11)

Since η ∈ Xc
T , we have Πs

T η = 0 and this in turn implies

∂W sθs = id
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where by id we mean the identity on Xs
T . Therefore

L =
(

id 0
∂W sθc Lc

)
+ O(eδT )

with

Lc :=
(

1 c
1 −c

)
.

We remark that ∂W sθ is uniformly bounded in T , and so we see that L is a small perturbation
of an invertible map and is thus invertible. This concludes the proof.

Remark 27. The map from the perturbation to the phase shifts ∆T and ∆x defines the smooth
strong stable foliation of a neighborhood of the manifold. If the perturbation W s is localized
around the pulse positions, one can compute ∆x and T0 to leading order by projecting along the
strong stable foliations of the single pulses, separately. In the proof, this is reflected by the fact
that Ebc is small in this case and therefore ∂W sθc is small; our approximation for the stable
subspace, composed as the direct sum of the stable subspaces for the individual pulses, Lemma
19, is exponentially close to the ”true” stable subspace to the non-autonomous evolution.
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