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Abstract

We study the saddle-node bifurcation of a spatially homogeneous oscillation in a reaction-

diffusion system posed on the real line. Beyond the stability of the primary homogeneous

oscillations created in the bifurcation, we investigate existence and stability of wave trains

with large wavelength that accompany the homogeneous oscillation. We find two different

scenarios of possible bifurcation diagrams which we refer to as elliptic and hyperbolic.

In both cases, we find all bifurcating wave trains and determine their stability on the

unbounded real line. We confirm that the accompanying wave trains undergo a saddle-

node bifurcation parallel to the saddle-node of the homogeneous oscillation, and we also

show that the wave trains necessarily undergo sideband instabilities prior to the saddle-

node.
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1 SADDLE-NODE OF PERIODIC ORBITS

We consider wave trains u(kx− ωt) near a temporally 2π-periodic solution u∗(−ω∗t), ω∗ 6= 0,

to a reaction-diffusion system

ut = Duxx + f(u;µ), (1.1)

where u ∈ R
N , x ∈ R, µ ∈ R, D = diag (dj) ≥ 0, and f is a smooth nonlinearity. We assume

that u∗ undergoes a saddle-node bifurcation at µ = 0, that is, λ = 0 is geometrically simple

and algebraically double as the only Floquet exponent in Reλ ≥ 0 of the linearized kinetics

ut = f ′(u∗(−ω∗t); 0)u.

Homogeneous oscillations in reaction-diffusion systems are starting points for the under-

standing of wave trains u(kx−ωt), since we can typically find such solutions with k ∼ 0 near

a homogeneous oscillation. Under robust assumptions, for instance D ∼ d · id , homogeneous

oscillations can be stable for the reaction-diffusion system in large or unbounded domains. A

perturbation argument then shows that there is a family of stable accompanying wave trains

with k ∼ 0, see e.g. [8].

Next to the Hopf bifurcation from equilibria towards periodic solutions, modeled by a

complex Ginzburg-Landau equation, the saddle-node bifurcation of periodic solutions is the

simplest bifurcation scenario, where spatio-temporal dynamics involving wave trains can be

studied in a systematic fashion. The present paper is a first step towards such an under-

standing, describing spatio-temporally periodic wave trains as the building blocks. Spatially

non-homogeneous wave trains are typically unstable in the neighborhood of a saddle-node

[2, 8], and hence the saddle-node bifurcation is not expected to be observed experimentally.

However, spatially homogeneous oscillations can be stable up to the saddle node, and are

accompanied by non-homogeneous wave trains that may give rise to more complicated dy-

namics [1].

Our results extend the considerations in [2] by adding the wavenumber as a free parameter

to the stability problem.

Our main results may be summarized as follows, see also Figure 1.1. Typically, wave

trains come along curves, the nonlinear dispersion curves, in the plane of frequency ω and

µ < 0
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Figure 1.1: Sketch of stability sectors (shaded) and curves of existence for wave trains for

fixed µ. (a) the first hyperbolic cases where wave trains at µ = 0 are unstable, (b) second

hyperbolic case where wave trains at µ = 0 are stable. (c) the elliptic case.
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wavenumber k. Varying the parameter µ, theses curves change. Our results characterize the

location of these curves and stability in the ω − k-parameter plane.

Theorem 1 (existence): Near the fold point, µ close to 0, dispersion curves are diffeomorphic

to

• circles, µ ∼ ω2 + k2 (elliptic case), or

• hyperbolas, µ ∼ ω2 − k2 (hyperbolic case);

see Section 2 for a precise statement. In the elliptic case, only the homogeneous oscillation is

left at µ = 0 and no wave trains for µ < 0. In the hyperbolic case, there exist two smooth

curves of wave trains for µ = 0, crossing transversely in the origin.

Theorem 2 (stability): Near the fold point wave trains are stable in a conical sector,

containing a half line on the ω-axis, with opening angle less than π, that is, the sector does

not contain the fold points ( dk
dω

= 0) of the dispersion curves of wave trains.

The assumptions in these theorems require a generic unfolding of the saddle-node in

the kinetics and in the wavenumber, with typical square-root asymptotics of frequency and

wavenumber k, ω − ω∗ ∼ ±√
µ. For the stability result, we additionally require a quadratic

tangency of the marginally stable spectrum at the fold point.

The boundary of the stability sector is always marked by a sideband instability, where

perturbations with wavenumber γ ∼ 0, but γ 6= 0 destabilize first; see for example [3].

One may view the bifurcation diagram as a one-parameter unfolding by fixing either µ

or k. Fixing µ, the branches and instabilities are depicted in Figure 1.1. In all cases, the

dispersion curves emanating from the stable homogeneous oscillations for ω 6= 0 are stable.

Only in the second hyperbolic case, the entire branches are stable, in the first hyperbolic and

in the elliptic case, wave trains destabilize for small nonzero wavenumbers k ∼ √
µ. In the

second hyperbolic case, one can also find stable wave trains for |k| ≥ O(
√
µ), µ < 0, that is,

when the homogeneous oscillations have disappeared. Therefore, in this case spatial pattern

formation via (stable) wave trains is in fact a precursor for the homogeneous oscillation of the

kinetics as µ increases from negative values.

µ
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Figure 1.2: Sketches of the bifurcation and stability of wave trains for fixed k. Solid lines

indicate stable wave trains, dashed lines unstable ones; the onset is always a sideband insta-

bility. (a) k = 0, the homogeneous oscillation. (b) first hyperbolic case for k 6= 0, (c) second

hyperbolic case for k 6= 0. (d) elliptic case for k 6= 0.
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A different view point on the result fixes the wavenumber k and follows wave trains in

the parameter µ, as depicted in Figure 1.2. One finds existence for µ > µ∗(k), µ∗(0) = 0,

µ∗(k) = µ∗(−k), say, where a saddle-node bifurcation occurs. In the elliptic case, µ′′∗(0) > 0,

so that wave trains with k 6= 0 disappear prior to the homogeneous saddle-node bifurcation

when following them with decreasing µ. In the hyperbolic case, µ′′∗(0) < 0, wave trains with

k 6= 0 still exist at the homogeneous saddle-node µ = 0 and disappear only at µ∗ < 0. In all

cases, wave trains destabilize at some µ+(k) in a sideband instability before the saddle-node,

µ+(k) > µ∗(k).

2 EXISTENCE OF WAVE TRAINS

In this section, we study the existence of wave trains near the saddle-node using Lyapunov-

Schmidt reduction; wave trains u(kx− ω̃t) solve

k2Du′′ + ω̃u′ + f(u;µ) = 0, u(ξ) = u(ξ + 2π). (2.1)

At ω̃ = ω∗ 6= 0, k = 0, and µ = 0, we assume the existence of a basic solution u∗(ξ). The

linearization at this solution

L∗u := ω∗u
′ + f ′(u∗; 0)u : H1

per(0, 2π) → L2(0, 2π), (2.2)

possesses a kernel containing e0 := u′∗. Note that L∗ has a compact resolvent, so that L∗

is Fredholm of index zero, and λ = 0 is an isolated eigenvalue of finite multiplicity. For the

saddle-node situation we make the generic assumption that λ = 0 is geometrically simple and

algebraically double.

Hypothesis 1 (Fold) The kernel of L∗ is spanned by e0, there is a generalized eigenvector

e1 with L∗e1 = e0, and no solution u ∈ H1
per(0, 2π) to L∗u = e1.

We define the (generalized) eigenvectors of the L2-adjoint Lad
∗ of L∗ for j = 0, 1 by e∗j , so

that

Lad
∗ e

∗

0 = 0, Lad
∗ e

∗

1 = e∗0, (e∗j , ej) = 0, (e∗j , e1−j) = 1,

and let P denote the projection onto the generalized kernel, that is,

Pw = (e∗0, w)e1 + (e∗1, w)e0.

We denote ∂jf∗ := ∂jf(u∗; 0) and define the coefficients

aµ = (∂µf∗, e
∗

0), ak = −(Du′′∗ , e
∗

0), aω = (e′1 −
1

2
∂uuf∗e

2
1, e

∗

0). (2.3)

Theorem 1 Assume Hypothesis 1 and that the coefficients aω, ak, and aµ, defined in (2.3)

do not vanish. Then, up to rescaling in ω, k, and µ, and a near-identity change of parameters

k, ω, and µ, wave trains exist for
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hyperbolic case, aωak < 0: ω2 − k2 = µ

elliptic case, aωak > 0: ω2 + k2 = µ.

Proof. Exploiting Fredholm properties, we can write any vector u ∈ H1
per(0, 2π) uniquely

as u = u∗ + αe0 + βe1 + v, with Pv = 0. We set α = 0 in order to eliminate the trivial phase

shift of solutions and write ω̃ = ω∗ + ω. Expanding (2.1) and using ω∗u
′
∗ + f∗ = 0 gives,

F(β, v; k2, ω, µ) := L∗(βe1 + v) + ω(u∗ + βe1 + v)′+ (2.4)

k2D(u∗ + βe1 + v)′′ + µ∂µf∗ +
1

2
∂uuf∗(βe1 + v)2 +R = 0,

with remainder

R = O(|β|3 + |v|3 + µ2 + |µ|(|β| + |v|)),

in H1 := H1
per(0, 2π), when |v| = ‖v‖H1 . In order to regularize the leading order derivative,

we also consider the regularized equation

M(k2, ω)F(β, v; k2, ω, µ) = 0, (2.5)

where

M(k2, ω) =

(

k2

ω∗

D
d

dξ
+ 1 +

ω

ω∗

)−1

: H1 × R × R+ 7→ L2,

is continuously differentiable in k2 and ω as a direct calculation in Fourier series shows.3.

Since MF = ω∗u
′+Mf(u), the left-hand side of (2.5) is C1 in k2 and ω, and smooth in the

other variables. We first solve (2.5) projected on the kernel of P . Using 1−M = O(k2 + |ω|)
and (1 − P )u′∗ = 0, and (1 − P )L∗e1 = 0 we obtain

N v + (1 − P )

[

M
(

k2Du′′∗ + µ∂µf∗ +
1

2
∂uuf∗(βe1 + v)2 +R

)]

+O((|β| + |ω|)k2) = 0,

where N = (1 − P )(ω∗v
′ + Mf ′∗v) = (1 − P )(L∗ + O(k2 + |ω|))v and the terms of order

O((|β| + |ω|)(k2 + |ω|)) are (1 − P )(β(ω∗e
′
1 + Mf ′∗e1) + ωMu′∗). Since the linearization N :

(1−P )H1 → (1−P )L2 of the left-hand side with respect to v at 0 is boundedly invertible for

small k2, we can solve with the implicit function theorem for v as

v = O(β2 + k2 + ω2 + |µ|).

We substitute the result into equation (2.5) projected on the generalized kernel, RgP . Since

PM − MP = O(k2 + |ω|) and smoothness of e∗j allows for integration by parts, we may

equivalently solve (2.4), projected on RgP , which slightly simplifies our task of deriving the

reduced equations.

3One can obtain higher order derivatives in k
2 by considering M as a map from H

m into H
m−1. Since

the subsequent analysis can be performed in any space H
m, we see that u is C

1 with values in H
m, and the

equation for the derivatives of u with respect to k
2 inductively show that u is actually of class C

m in k
2. Since

our analysis does only require k
2-terms, we omit the details of this bootstrap argument.
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In order to obtain the reduced equation in the direction of e0, e1, we first take the scalar

product with e∗1, use that u′∗ = e0, and expand, which gives

β + ω + µ(∂µf∗, e
∗

1) +O
(

k2 + β2 + |µ|2 + ω2
)

= 0. (2.6)

On the other hand, projecting with e∗0 and expanding gives

ωβ(e′1, e
∗

0) + β2 1

2
(∂uuf∗e

2
1, e

∗

0) + k2(Du′′∗ , e
∗

0) + µ(∂µf∗, e
∗

0)

+O
(

ω3 + k3 + β3 + µ2 + β|µ|
)

= 0. (2.7)

We now solve the projection on the kernel, (2.6) for β with the implicit function theorem,

β = −ω + O(ω2 + |µ| + k2)

and substitute the result into the equation on the generalized kernel (2.7)

ω2(−e′1 +
1

2
∂uuf∗e

2
1, e

∗

0) + k2(Du′′∗, e
∗

0) + µ(∂µf∗, e
∗

0) + O(|ω|3 + |ωµ| + |ω|k2 + µ2) = 0.

Using definition (2.3) for the coefficients aj , this equation can be rewritten in the short form

aµµ = aωω
2 + akk

2 + O(|ω|3 + |ωµ| + |k|3 + µ2). (2.8)

Solving for µ with the implicit function theorem, we obtain

aµµ = aωω
2 + akk

2 + O(|ω|3 + |k|3).

The function µ(ω, k) possesses a non-degenerate critical point in the origin, when aj 6= 0, so

that we can use the Morse Lemma to find near-identity coordinates ω1, k1 where

µ = ±ω2
1 ± k2

1, (ω1, k1) = ψ1(ω, k), ψ1(z1, z2) = (z1

√

|aω/aµ|, z2
√

|ak/aµ|) + O(z2
1 + z2

2).

Here, the ±-signs corresponds to the signs of aω/aµ and ak/aµ respectively. Also, the change

of coordinates respects the symmetry k 7→ −k by uniqueness, and in particular leaves the

ω-axis invariant.

Remark 2.1 The coefficients aj can be interpreted as follows. For k = 0, aω/aµ de-

termines the direction of branching in the saddle-node and thereby fixes the sign of µ where

homogeneous oscillations exist. The sign of ak/aω decides on the nature of the bifurcation

for the wave trains: it distinguishes precisely between the elliptic and the hyperbolic case by

characterizing whether wave trains with k 6= 0 exist at µ = 0 or not, that is, if the curve of

wave trains ω(µ) with fixed k 6= 0 undergoes a saddle node after crossing µ = 0 (hyperbolic)

or before crossing µ = 0 (elliptic).

Remark 2.2 The condition on the multiplicity of the eigenvalue λ = 0 for L∗ in Hypo-

thesis 1 translates into a condition for the Floquet multipliers of the linearization of the ODE

(2.1) in the periodic orbit u∗. In fact, geometric and algebraic multiplicities of L∗ and the
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trivial Floquet multiplier 1 coincide. Eigenfunctions to L∗ coincide with periodic solutions to

the ODE, hence geometric multiplicities coincide. A generalized Floquet eigenfunction solves

ωu′1 = f ′∗u1, with u1(2π) = u1(0) + 2π/ω∗u∗(0). The function e1(ξ) := u1(ξ) − ξu∗(ξ) is now

easily checked to yield a generalized eigenfunction to L∗. Hence our condition on the algebraic

multiplicity of λ = 0 can be reinterpreted as the same condition on the multiplicity of the

trivial Floquet multiplier.

Remark 2.3 The unfoldings of the saddle-node actually occur as typical unfoldings of

singularities of dispersion relations also for k∗ 6= 0. Indeed, assume that for ω̃ = ω∗ + ω

and k̃ = k∗ + k, we cannot continue the nonlinear dispersion curve with the implicit function

theorem at k = ω = 0, k∗ω∗ 6= 0. Typically, we can still reduce to a one-dimensional bifurcation

problem, where linear terms in ω and k vanish. A typical unfolding in µ then gives a reduced

equation

aµµ = aωω
2 + aωkωk + akk

2 + . . . .

which can again be reduced to either the hyperbolic or the ellipitic case by the implicit function

theorem and the Morse lemma. The hyperbolic case has been observed in [6, Figure 4] when

dispersion curves of trigger waves and phase waves collide.

Of course, one could attempt to unfold higher codimension singularities of homogeneous

wave trains in order to detect the emergence of this singularity for nonzero values of k. A

typical scenario would be the case when the reduced equation expands into

a1µ1 = aωω
2 + akµ2k

2 + a4k
4, (2.9)

where elliptic or hyperbolic singularities bifurcate from the k = 0-axis, depending on the sign

of a4aω. We can also interpret level sets µ ≡ const in (2.9) as level sets of the Hamiltonian

H(ω, k) defined by the right-hand side of (2.9), so that dispersion curves or level lines are

actually flow lines of the second-order pendulum k̈ = −4aωakµ2k + 8a4aωk
3.

3 STABILITY OF THE BIFURCATING WAVE TRAINS

The spectrum near a wave train on the unbounded real line consists precisely of those λ for

which there exists a ν = iγ ∈ iR, and a nontrivial solution to the boundary-value problem

λw = D(k∂ξ + ν)2w + ω̃∂ξw + f ′(u;µ)w, w(0) = w(2π), (3.1)

where u denotes the wave train solution from the preceding section to the wavenumber k with

frequency ω̃ = ω∗ + ω; see for instance [5, 9].

By assumption, at k = 0, µ = 0, there are no solutions to this boundary-value problem

in Reλ > 0 and the only solution in Reλ = 0 is given by ν = 0, λ = 0, w = u′. By the

assumptions on a simple saddle-node, this eigenvalue is algebraically double, see Remark 2.2.

We denote the operator on the right-hand side of (3.1) as Lν,k,µ. We consider Lν,k,µ as

a closed operator on L2 with periodic boundary conditions. The domain of definition is H1
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or H2, for k = 0 and k 6= 0, respectively. Using the regularization employed in the previous

section, it readily follows that the resolvent is continuously differentiable in k2 = 0. Since

λ = 0 is an isolated eigenvalue of multiplicity two for ν = k = µ = 0, we can continue the

corresponding eigenprojection P = P0,0,0 as Pν,k,µ for nearby parameter values, so that P is

continuously differentiable in k2. In particular, Pν,k,µ : RgP → RgPν,k,µ is an isomorphism,

so that we obtain an operator

L̂ := P−1
ν,k,µLν,k,µPν,k,µ : RgP → RgP.

Recall the definition of the eigenvectors ej and the adjoint eigenvectors e∗j from §2. For

our stability result we define and abbreviate

α(ω, k, ν) :=
1

2
[(e∗1, L̂e0) + (e∗0, L̂e1)],

β(ω, k, ν) :=
1

4
[(e∗1, L̂e0) − (e∗0, L̂e1)]2 + (e∗1, L̂e1)(e∗0, L̂e0), (3.2)

α0
νν := ∂2

να(0, 0, 0),

α0
ω := ∂ωα(0, 0, 0),

β0
νν := ∂2

νβ(0, 0, 0).

Theorem 2 Assume that in the unfolding of a homogeneous saddle-node, the homogeneous

oscillation is marginally stable at criticality, α0
νν , β

0
νν > 0, α0

ω 6= 0. Then there exists a ’cone’

given by

{(ω, k) | − α0
ωω > ωmarg(|k|)}, ωmarg(|k|) =

∣

∣

∣

∣

akα
0
ω

aω

√
βνν

∣

∣

∣

∣

· |k| + O(k2), (3.3)

enclosing the stable homogeneous wave train, such that wave trains are stable inside the cone

but unstable outside. The instability at the threshold ωmarg(|k|) is always a sideband instability.

Proof. We expand the eigenvalue problem for L̂ at λ = 0 in coordinates, and retrieve a

2 × 2-matrix M , whose eigenvalues are precisely the critical eigenvalues of the wave train for

values of ν close to zero:

M(ν;µ, k) =

(

(e∗1, L̂e0) (e∗1, L̂e1)
(e∗0, L̂e0) (e∗0, L̂e1)

)

.

For µ = k = ν = 0, the matrix is given by the standard Jordan block, and in general, we can

expand

M(ν;µ, k) =

(

0 1

0 0

)

+ O(|ν| + |k| + |µ|).

A difficulty with the (natural) parameterization of solutions by the parameters µ and k is the

discontinuity of branches in the bifurcation point. This discontinuity is removed by considering

ω and k as independent parameters, just like in the existence proof, and let µ = µ(ω, k) be a

function of ω and k. We then have

M(ν;ω, k) =

(

0 1

0 0

)

+ O(|ν| + |k| + |ω|).
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Up to a smooth change of coordinates, we may assume that M is in the normal form

M(ν;ω, k) =

(

α 1

β α

)

,

and we readily compute that the two coefficients are as given in (3.2). Note that for the matrix

M , the eigenvalues are given through

λ = α±
√

β. (3.4)

In order to analyze this still very general eigenvalue problem, we will exploit the following

additional ingredients:

(i) at the fold points, we have double zero eigenvalues also for wave trains, k 6= 0;

(ii) M(0;ω, k) possesses a nontrivial kernel for all ω, k;

(iii) the homogeneous oscillations are marginally stable at the bifurcation point with quadratic

tangency (otherwise, all wave trains are unstable nearby);

(iv) the slope of curves in the ω-k-existence diagram gives us linear group velocities, dλ
dν

,

since linear and nonlinear group velocities coincide, which will allow us to find a simple

expression for the relevant term of order νk.

We first exploit (i). By (2.8) wave trains exist for points in the ω-k-plane with

aµµ = aωω
2 + akk

2 + a1µω + . . . ,

so that for fixed parameter µ, wave trains undergo a saddle-node bifurcation when ∂k
∂ω

= 0,

that is, ω = − a1

2aω

µ+ O(µ2), or, in terms of k,

ω = ωsnk
2 + O(k4), ωsn = − a1ak

2aωaµ
.

Along this curve, α and β vanish, and (3.1) depends only on k2 at ν = 0, so that

α(ω, k, 0) = αω(ω, k2) = α0
ω · (ω − ωsnk

2) + O(ω2 + k4)

β(ω, k, 0) = βω(ω, k2) = β0
ω · (ω − ωsnk

2) + O(ω2 + k4) (3.5)

Now, (ii) implies β = α2 at ν = 0, that is,

βω(ω, k2) = α2
ω(ω, k2) = (α0

ω)2(ω − ωsnk
2)2 + O(|ω|3 + k4).

Assumption (iii) on stability at ω = k = 0 together with the fact that (3.1) at k = 0 depends

only on ν2, imply that

α(0, 0, ν) = α0
ννν

2 + O(ν4), β(0, 0, ν) = β0
ννν

2 + O(ν4), α0
νν , β

0
νν > 0, (3.6)

where we excluded the boundary cases α0
ννβ

0
νν = 0.
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Before exploiting property (iv), we first infer the form of the stability criterion, and denote

β0
νk := ∂νkβ(0, 0, 0) and α0

νk := ∂νkα(0, 0, 0).

Since eigenvalues λ(iγ) in (3.4) to the 2× 2-matrix form connected curves and eigenvalues

are stable for ν = iγ not small, stability is equivalent to the absence of purely imaginary

eigenvalues λ = iτ . We therefore look for solutions of

−τ2−2iατ+α2 = β, α = αω+iγkα0
νk−γ2α0

νν+h.o.t., β = α2
ω+iγkβ0

νk−γ2β0
νν+h.o.t. (3.7)

The real part of this equation only contains terms in τγ and even powers in τ , γ. It can be

expanded into

−τ2 + γ2β0
νν = O

(

(|k| + |ω|)(|τ |2 + |γ|2) + |γ|4 + |τ |4
)

,

which we can solve for γ using the Newton-Polygon in the analytic variables γ and τ as

γ = ± τ
√

β0
νν

+ O(|kτ | + |ωτ | + |τ |3). (3.8)

The imaginary part of (3.7) can be expanded as

−2αωτ + 2α0
νντγ

2 + 2αωα
0
νkkγ = β0

νkkγ + O
(

(|γ|3 + |τ |3)(|k| + |ω|) + |γ|5 + |τ |5
)

,

with αω = αω(ω, k2). Substituting the expansion (3.8) for γ into this result and dividing by τ

(τ = 0 always gives a solution to the analytic equation by translational symmetry) gives

−2αω + 2
α0

νν

β0
νν

τ2 = ± β0
νk

√

β0
νν

k + O
(

(|k| + |ω|)τ2 + τ4 + |k|2 + |ω|2
)

.

This equation can be solved via the implicit function theorem for τ2, with expansion

τ2 =
β0

νν

2α0
νν

(

± β0
νk

√

β0
νν

k + 2α0
ωω + O(k2 + ω2)

)

.

Imaginary eigenvalues exist when τ2 ≥ 0. We therefore solve the equation τ2 = 0 for ω by the

implicit function theorem and find that wave trains are stable for

−α0
ωω >

∣

∣

∣

∣

∣

β0
νk

2
√

β0
νν

∣

∣

∣

∣

∣

· |k| + O(k2). (3.9)

From the construction, the onset of instability is at τ = 0, hence it is a sideband instability [7,

8], which can be detected directly by solving

∂ννλ = 0, with λ = α+
√

β,

and expanding in k and ω.

Lastly, we use property (iv) to express β0
νk in terms of α0

ω and ak, aω from the existence

result. We consider a line ω = ack in the bifurcation diagram, with µ = µ(k) chosen appro-

priately. The existence condition (2.8) implies that on the one hand

dω

dk
= − ak

aωac
+ O(|k|). (3.10)
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On the other hand, the group velocity can also be computed from the linearization, see e.g.

[4], as cg = −dλ/dν|ν=0. In our case, this is well defined only for µ 6= 0. At k = 0, reflection

symmetry implies dλ/dν|ν=0 = 0. More precisely, (3.6) shows that the leading terms are order

νk, hence cg to leading order is given by evaluating

k∂νkM = k

(

∂νkα 0

∂νkβ ∂νkα

)

on the kernel of M and projecting back onto the kernel. Kernel span(e) and cokernel span(e∗)

at ν = 0 are

e =

(

1

−αω

)

, e∗ =
1

2αω

(

αω

−1

)

,

and we compute

cg = − k

2αω

(

αω

−1

)T (

∂νkα 0

∂νkβ ∂νkα

)(

1

−αω

)

=
k∂νkβ

2αω
− k∂νkα.

Evaluating in ω = ack, substituting (3.5) and, using (iv), equating with (3.10) at k = 0 gives

− ak

aωac
=

kβ0
νk

2α0
ωack

⇔ β0
νk = −2α0

ωak

aω
.

Together with (3.9) we obtain the stability criterion (3.3) as claimed.

Remark 3.4 In the hyperbolic case, the width of the marginal stability cone is basically

unrelated to the width of the sectors that contain a half line on the ω-axis and are bounded by

the curves of wave trains at µ = 0. In the following section, we give an example where the

stability sector is larger and an example where it is smaller than the corresponding sector at

µ = 0. We also note that the stability sector does not contain the fold points dk
dω

= 0 of the

curves of wave trains: wave trains destabilize in a sideband instability prior to undergoing a

saddle-node as predicted in [8].

Remark 3.5 It would be interesting to determine stability in multiple spatial dimensions

x ∈ R
n. In that case, the boundary value problem (3.1) has an additional parameter accounting

for transverse perturbations weiκy: λw = D[(k∂ξ + ν)2 − κ2]w + f ′(u;µ)w. While it is not

difficult to compute the influence of small and large κ, we do not know if the stability sector

may shrink, or even collapse to the k = 0 half line due to transverse instabilities of the wave

trains prior to the longitudinal instabilities which we computed here.

Remark 3.6 A somewhat larger stability region is obtained when one weakens the notion

of decay to a pointwise decay instead of decay in norm. This convective stability is determined

by the location of critical branch points of the dispersion relation, where detM = ∂ν(detM) =

0, for complex ν and λ. A straightforward computation reveals that these branch points come

in a complex conjugate pair and cross the imaginary axis when ω crosses a parabola ω =

ωabsk
2 + O(k4). It would be interesting to relate the coefficient ωabs to the coefficient ωsn
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that locates the saddle-node bifurcation of wave trains. We do not know whether the saddle-

node of the wave trains can be contained in the region of convective stability, or if, near the

saddle-node, perturbations grow pointwise as well as in norm.

For the class of complex Ginzburg Landau equations (4.1) considered below we show in

Remark 4.7 that the aforementioned branch points are always unstable near the saddle-nodes.

On large bounded domains with separated boundary conditions stability criteria are a little

more subtle. Spectra of the linearization are discrete but converge to curves as the size of

the domain goes to infinity. These curves were characterized in terms of the roots νj of the

dispersion relation in [10] and called the absolute spectrum. Curves of absolute spectrum

terminate in the branch points that determine convective stability. Therefore the region where

wave trains are stable in large but finite domains is contained in the region of convective

stability and contains the region of stability from our main theorem. The region of stability

in large domains may well differ from the region of convective stability, since the curves of

absolute spectrum might cross the imaginary axis before the branch points cross. We have

not attempted to resolve this somewhat more subtle and interesting question. However, in

numerical computations for some examples of the form (4.1) the branch points were the most

unstable points of the absolute spectrum.

Note that all critical curves of absolute spectrum can be computed from the matrix M , since

the absolute spectrum converges locally uniformly to the essential spectrum as k → 0.

4 AN EXAMPLE

To illustrate the results above, we consider the complex Ginzburg-Landau equation

At = (1 + ia)Axx +Af(|A|2;µ) + iAg(|A|2), (4.1)

where we suppress µ whenever µ = 0, and assume

f(1) = 0, f ′(1) = 0, g(1) = 0, (4.2)

∂µf(1) 6= 0, f ′′(1) 6= 0, g′(1) 6= 0.

Wave trains here come as relative equilibria with respect to the gauge symmetry, A =

rei(kx−ωt), with

−k2 + f(r2;µ) = 0, −ak2 + ω + g(r2) = 0. (4.3)

Using (4.2), we may solve the second equation in (4.3) for r2 by

r2 = 1 − ω

g′(1)
+

ak2

g′(1)
+ O(ω2 + k4). (4.4)

Substituting into the first equation, using that ω = ak2 at r = 1, and expressing the higher

order terms through ω, k gives

−k2 + µ∂µf(1) +
f ′′(1)

2(g′(1))2
ω2 + O(|ω|3 + k4) = 0. (4.5)
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In particular, we find the hyperbolic case if f ′′(1) > 0 and the elliptic case if f ′′(1) < 0.

Linear stability of A∗ = r∗(ω, k)e
i(ωt−kx), with r∗ given by (4.4), leads to

λA = (1 + ia)Axx +
(

f∗ + f ′∗|A∗|2 + ig∗ + ig′∗|A∗|2 + iω
)

A+
(

f ′∗A
2
∗ + ig′∗A

2
∗

)

Ā,

λĀ = (1 − ia)Āxx +
(

f∗ + f ′∗|A∗|2 − ig∗ − ig′∗|A∗|2 + iω
)

Ā+
(

f ′∗A
2
∗ − ig′∗A

2
∗

)

A,

where f∗ = f(r∗), f
′
∗ = f ′(r∗), and g′∗ = g′(r∗). Writing A = Beikx this reduces at r∗ = BB̄ = 1

to

λB = (1 + ia)(Bxx + 2ikBx) + (f ′∗ + ig′∗)(B + B̄),

λB̄ = (1 − ia)(B̄xx − 2ikB̄x) + (f ′∗ − ig′∗)(B + B̄).

The ansatz B = beiγx, B̄ = b̄eiγx gives the spectrum as eigenvalues to the γ-dependent family

of 2 × 2-matrices

M(γ;ω, k) =

(

(1 + ia)(−γ2 − 2kγ) + (f ′∗ + ig′∗) f ′∗ + ig′∗
f ′∗ − ig′∗ (1 − ia)(−γ2 + 2kγ) + (f ′∗ − ig′∗)

)

.

The eigenvalues are

λ± = f ′∗ − 2iakγ − γ2 ±
√

(f ′∗)
2 − 4ig′∗kγ + 4k2γ2 + 2g′∗aγ

2 + 4iakγ3 − a2γ4.

For stability at k = 0, we infer the necessary condition g′∗a < 0. Following the arguments

in the general case, we have stability if γ = 0 is stable, i.e. f ′∗ < 0, and if the wave train is

sideband stable [8], which can be detected by expanding λ− to quadratic order in γ:

λ− = 2i

(

g′∗
f ′∗

− a

)

kγ +

(

−1 − 2k2

f ′∗
− 2(g′∗)

2k2

(f ′∗)
3

− g′∗a

f ′∗

)

γ2 + O(|γ|3).

From f ′∗ < 0 we find that the wave trains are sideband stable if, and only if,

2(g′∗)
2k2 + (g′∗a+ 2k2 + f ′∗)(f

′

∗)
2 < 0. (4.6)

Expanding f ′∗ = −f ′′(1)ω/g′(1) + O(k2 + ω2), see (4.2) and (4.4), and employing the implicit

function theorem for the critical curve where equality holds, we obtain the sharp stability

condition

ω2 >

∣

∣

∣

∣

2(g′(1))3

a(f ′′(1))2

∣

∣

∣

∣

k2 + O(k4). (4.7)

The condition f ′∗ < 0 singles out a sign of ω as it can be expanded into

f ′′(1)g′(1)ω > 0. (4.8)

Conditions (4.7) and (4.8) together characterize the stability cone.

These results are plotted in Figure 4.1 (compare with Fig. 1.1) for the specific choices

f(y;µ) = −µ± (y − 1)2 , g(y) = y − 1. (4.9)
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In this case, the stability condition g′∗a < 0 is a < 0, and we compute from (4.3) that

±µ = ω2 ∓ k2 + a2k4 + 2|a|k2ω

for the nonlinear dispersion curves. Note that the upper choice of signs gives the hyperbolic

case where f(y;µ) = (y − 1)2 − µ. The stability cone is given by f ′∗ < 0, i.e. here f ′′(1)ω > 0,

and

ω2 >
k2

2|a| − ak2(ak2 + 2ω) − 1

a
(2k2 ± 2ak2 ∓ 2ω)(ak2 − ω)2,

according to (4.6). Hence, in the hyperbolic case, the leading order slope of the existence lines

at µ = 0 is fixed at 1, while the parameter a varies the opening of the stability sector (also in

the elliptic case).

Remark 4.7 To illustrate the absolute stability discussed in Remark 3.6, we computed ωsn

and ωabs for (4.1). As to ωsn, we refine equation (4.5) to

−k2 + µ∂µf(1) +
f ′′(1)

2(g′(1))2
(ω2 + a2k4 − 2aωk2) +O(|ω|3 + k6) = 0,

which, using K = k2 and c = (g′(1))2/f ′′(1), implies that to leading order

K± =
c

a2
+
ω

a
±
√

c2

a4
+

2c

a3
(ω − aµ∂µf(1)).

Saddle-nodes are located at dK/dω = 0, which implies ω = aµ∂µf(1), so (4.5) gives ωsn = a.

As to ωabs, we solve ∂ν detM(−iν;ω, k) = 4k + 4aν + h.o.t. = 0 to leading by ν = −k/a.
Substituting this and γ = −iν into the equation for λ±, we readily see that the square root

term is purely imaginary to leading order. Hence, double roots occur as a complex conjugate

pair, and the real part vanishes if f ′∗ − 2νak + ν2 = 0, which, to leading order, means

f ′′(1)

g′(1)
(ak2 − ω) + 2k2 +

k2

a2
= 0.

We thus have ωabs = a+ (2 + 1/a2)g′(1)/f ′′(1), and sgn(ωabs − ωsn) = sgn(g′(1)/f ′′(1)).

For g′(1)f ′′(1) > 0, the stability sector lies in ω > 0, so that branch points would be

stable at saddle-nodes, if ωsn > ωabs, which is not possible in this case. On the other hand,

g′(1)f ′′(1) < 0 implies ω < 0, but then ωsn < ωabs is excluded as well. Therefore, the nearly

homogeneous wave trains of (4.1) that are close to a saddle-node are absolutely unstable, and

thus not only unstable on the real line, but also on large bounded domains.
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Caption Figure 1.1:

Sketch of stability sectors (shaded) and curves of existence for wave trains for fixed µ. (a)

the first hyperbolic cases where wave trains at µ = 0 are unstable, (b) second hyperbolic case

where wave trains at µ = 0 are stable. (c) the elliptic case.

Caption Figure 1.2:

Sketches of the bifurcation and stability of wave trains for fixed k. Solid lines indicate

stable wave trains, dashed lines unstable ones; the onset is always a sideband instability. (a)

k = 0, the homogeneous oscillation. (b) first hyperbolic case for k 6= 0, (c) second hyperbolic

case for k 6= 0. (d) elliptic case for k 6= 0.

Caption Figure 4.1:

Stability sectors and existence of wave trains to the complex Ginzburg-Landau equation

(4.1) and (4.9); some curves for fixed µ are plotted, darker regions have larger µ. (a) elliptic

case and a = −1; (b) first hyperbolic case for a = −1; (c) second hyperbolic case for a = −1/4.
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